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Abstract

Linear programming (LP) decoding, originally proposed by Feldmanet al. [4] as an approximation

to the maximum-likelihood (ML) decoding of binary linear codes, solves a linear optimization problem

formed by relaxing each of the finite-field parity-check constraints into a number of linear constraints.

While providing a number of advantages over iterative message-passing (IMP) decoders, such as its

amenability to finite-length performance analysis, LP decoding is computationally more complex to

implement in its original form than IMP decoding, due to boththe large size of the relaxed LP problem

and the inefficiency of using general-purpose LP solvers.

This paper explores ideas for fast LP decoding of low-density parity-check (LDPC) codes. We first

show a number of properties of the LP decoder, and by modifying the previously reported Adaptive

LP decoding scheme [9] to allow removal of unnecessary constraints, we prove that LP decoding can

be performed by solving a number of LP problems that contain at most one linear constraint derived

from each of the parity-check constraints. Then, as a step toward designing an efficient LP solver that

takes advantage of the particular structure of LDPC codes, we study a sparse interior-point method for

solving this sequence of linear programs. Since the most complex part of each iteration of the interior-

point algorithm is the solution of a (usually ill-conditioned) system of linear equations for finding the

step direction, we propose a preconditioning algorithm to be used with the preconditioned conjugate-

gradient method for solving such systems. The proposed preconditioning algorithm is similar to the

encoding procedure of LDPC codes, and we demonstrate its effectiveness via both analytical methods

and computer simulation results.
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Efficient Implementation of Linear

Programming Decoding

I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are becoming oneof the dominant means of error-

control coding in the transmission and storage of digital information. By combining randomness and

sparsity, LDPC codes with large block lengths can correct errors using iterative message-passing (IMP)

algorithms at coding rates that are closer to the capacity than any other class of practical codes [2].

While the performance of IMP decoders for the asymptotic case of infinite lengths is studied extensively

using probabilistic methods such as density evolution [3],the finite-length behavior of these algorithms,

especially their error floors, are still not well-characterized.

Linear programming (LP) decoding was proposed by Feldmanet al. [4] as an alternative to IMP

decoding of LDPC and turbo-like codes. LP decoding approximates the maximum-likelihood (ML)

decoding problem by a linear optimization problem via a relaxation of each of the finite-field parity-

check constraints of the ML decoding into a number of linear constraints. Many observations suggest

similarities between the performance of LP and iterative message-passing decoding methods [4], [5], [6].

In fact, the sum-product message-passing algorithm can be interpreted as a minimization of a nonlinear

function, known as Bethe free energy, over the same feasibleregion as LP decoding [7], [8].

Due to its geometric structure, LP decoding seems to be more amenable than IMP decoding to finite-

length analysis. In particular, the finite-length behaviorof LP decoding can be completely characterized

in terms of pseudocodewords, which are the vertices of the feasible space of the corresponding linear

program. Another characteristic of LP decoding – theML certificate property– is that its failure to

find an ML codeword is always detectable. More specifically, the decoder always gives either an ML

codeword or a nonintegral pseudocodeword as the solution. On the other hand, the main disadvantage of

LP decoding is its higher complexity compared to IMP decoding.

In order to make linear programming (LP) decoding practical, it is necessary to find efficient imple-

mentations that make its time complexity comparable to those of the message-passing algorithms. A

conventional implementation of LP decoding is highly complex due to two main factors: (1) the large

size of the LP problem formed by relaxation, and (2) the inability of general-purpose LP solvers to solve

the LP efficiently by taking advantage of the properties of the decoding problem.
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The standard formulation of LP decoding [4] has a size that grows very rapidly with the density of the

Tanner graph representation of the code. Adaptive LP (ALP) decoding was proposed in [9] to address

this problem, reducing LP decoding to solving a sequence of much smaller LP problems. The size of

these LP problems has been observed in practice to be independent of the degree distribution, and more

specifically, less than a small factor (less than two) times the number of parity checks. However, this

observation has not been analytically explained.

More recently, an equivalent formulation of the LP decodingproblem was proposed in [11] and [12],

with a problem size growing linearly with both the code length and the maximum check node degrees.

While this formulation requires solving only one LP, the overall complexity of this method in practice

remains substantially higher than that of ALP decoding.

In this paper, we take some steps toward designing efficient LP solvers for LP decoding that exploit

the inherent sparsity and structure of this particular class of problems. Our approach is based on a sparse

implementation of interior-point algorithms. In an independent work, Vontobel studied the implementa-

tion and convergence of interior-point methods for LP decoding and mentioned a number of potential

approaches to reduce its complexity [13]. It is also worth noting that a different line of work in this

direction has been to apply iterative methods based on message-passing, instead of general LP solvers,

to perform the optimization for LP decoding; e.g. see [8] and[14].

We first propose two modified versions of ALP decoding. The main idea behind these modifications

is to adaptively remove a number of constraints at each iteration of ALP decoding, while adding new

constraints to the problem. We prove a number of properties of these algorithms, which facilitate the design

of a low-complexity LP solver. In particular, we show that the modified ALP decoders have thesingle-

constraint property, which means that they perform LP decoding by solving a series of linear programs

that each contain at most one linear constraint from each parity check. An important consequence of this

property is that the constraint matrices of the linear programs that are solved have a structure similar, in

terms of the locations of their nonzero entries, to that of the parity-check matrix.

Then, we focus on the most complex part of each iteration of the interior-point algorithm, which is

solving a system of linear equations to compute the Newton step. Since these linear systems become

ill-conditioned as the interior-point algorithm approaches the solution, iterative methods that are often

used for solving sparse systems, such as the conjugate-gradient (CG) method, perform poorly in the later

iterations of the optimization. To address this problem, wepropose a criterion for designing precondi-

tioners that take advantage of the properties of LP decoding, along with a number of greedy algorithms

to search for such preconditioners. The proposed preconditioning algorithms have similarities to the
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encoding procedure of LDPC codes, and we demonstrate their effectiveness via both analytical methods

and computer simulation results.

The rest of this paper is organized as follows. In Section II,we review codes, LP decoding, and ALP

decoding. In Section III, we propose some modifications in ALP decoding, and demonstrate a number

of properties of ALP decoding and its variations. In SectionIV, we review a class of the interior-point

linear programming methods, as well as the preconditioned conjugate gradient (PCG) method for solving

linear systems, with an emphasis on sparse implementation.In Section V, we introduce the proposed

preconditioning algorithms to improve the PCG method for LPdecoding. Some theoretical analysis and

computer simulation results are presented in Section VI, and some concluding remarks are given in

Section VII.

II. LP DECODING

A. Notation

Throughout the paper, we denote scalars and column vectors by lower-case letters (a), matrices by

upper-case letters (A), and sets by calligraphic upper-case letters (A). We write theith element of a

vectora and the(i, j)th element of a matrixA asai andAi,j, respectively. The cardinality (size) of a

finite setA is shown by|A|. The support set (or briefly, support) of a vectora of lengthn is the set of

locationsi ∈ {1, . . . , n} such thatai 6= 0. Similarly, the fractional support of a vectora ∈ R
n is the set

of locationsi ∈ {1, . . . , n} such thatai /∈ Z.

A binary linear codeC of block lengthn is a subspace of{0, 1}n. This supspace can be defined as

the null space (kernel) of a parity-check matrixH ∈ {0, 1}m×n in modulo-2 arithmetic. In other words,

C =
{

u ∈ {0, 1}n
∣

∣Hx = 0 mod 2
}

. (1)

Hence, each row ofH corresponds to a binary parity-check constraint. The design rate of this code is

defined asR = 1 − m
n

. In this paper, we assume thatH has full row rank (mod 2), in which case the

design rate is the same as the rate of the code.

Given them×n parity-check matrix,H, the code can also be described by a Tanner graph. The Tanner

graphT is a bipartite graph containingn variable nodes(corresponding to the columns ofH) andm

check nodes(corresponding to the rows ofH). We denote byI = {1, . . . , n} the set of (indices of)

variable nodes, and byJ = {1, . . . ,m} the set of (indices of) check nodes. Variable nodei is connected

to check nodej via an edge in the Tanner graph ifHj,i = 1.
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The neighborhoodN (j) of a check (variable) nodej is the set of variable (check) nodes it is directly

connected to via an edge, i.e., the support set of thejth row (column) ofH. The degreedj of a node

j, where the type of the node will be clear from the context, is the cardinality of its neighborhood. Let

S ⊆ I be a subset of the variable nodes. We callS a stopping setif there is no check node in the graph

that has exactly one neighbor inS. Stopping sets characterize the termination of a belief propagation

erasure decoder.

Each code can be equivalently represented by many differentparity-check matrices and Tanner graphs.

However, it is important to note that the performance of suboptimal decoders, such as message-passing or

LP decoding, may depend on the particular choice ofH andT . A low-density parity-check (LDPC) code

is a linear code which has at least one sparse Tanner graph representation, where the average variable

node and check node degrees do not grow withn or m.

A linear program (LP)1 of dimensionn is an optimization problem with a linear objective function

and a feasible set (space) described by a number of linear constraints (inequalities or equations) in terms

of n real-valued variables. Each linear constraint in the LP defines a hyperplane inn-dimensional space.

If the solution to an LP is bounded and unique, then it is at a vertex v of the feasible space, on the

intersection of at leastn such hyperplanes. Conversely, for any vertexv of the feasible space of an LP,

there exists a choice of the coefficients of the objective function such thatv is the unique solution to the

LP.

B. LP Relaxation of Maximum-Likelihood Decoding

Consider a binary linear codeC of lengthn. If a codewordv ∈ C is transmitted through a memoryless

binary-input output-symmetric (MBIOS) channel, the ML codeworduML given the received vectorr ∈
R
n is the codeword that maximizes the likelihood of observingr, i.e.,

uML = argmax
u∈C

Pr[r|u]. (2)

For binary codes, this problem can be rewritten as the equivalent optimization problem

ML Decoding
minimize γTu

subject to u ∈ C,
(3)

1Throughout the paper, we abbreviate the terms “linear program” and “linear programming” both as “LP”.
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whereγ is the vector of log-likelihood ratios (LLR) defined as

γi = log
Pr(ri|ui = 0)

Pr(ri|ui = 1)
. (4)

The ML decoding problem (3) is an optimization with a linear objective function in the real domain,

but with constraints that are nonlinear in the real space (although, linear in modulo-2 arithmetic). It

is desirable to replace these constraints by a number of linear constraints, such that decoding can be

performed using linear programming. The feasible space of the desired LP would be the convex hull of

all the codewords inC, which is calledthe codeword polytope. Since a global minimum occurs at one

of the vertices of the polytope, using this feasible space makes the set of potential (unique) solutions to

the LP identical to the set of codewords inC. Unfortunately, the number of constraints needed for this

LP representation grows exponentially with the code length, therefore making this approach impractical.

As an approximation to ML decoding, Feldmanet al. proposed a relaxed version of this problem by first

considering the convex hull of the local codewords defined byeach row of the parity-check matrix, and

then intersecting them to obtain what is known as thefundamental polytope, P [6].

To describe the (projected) fundamental polytope, linear constraints are derived from a parity-check

matrix as follows. For each rowj = 1, . . . ,m of the parity-check matrix, i.e., each check node, the LP

formulation includes the constraints

∑

i∈V

ui −
∑

i∈N (j)\V

ui ≤ |V| − 1, ∀ V ⊆ N (j) such that|V| is odd, (5)

which can be written in the equivalent form

∑

i∈V

(1− ui) +
∑

i∈N (j)\V

ui ≥ 1, ∀ V ⊆ N (j) such that|V| is odd. (6)

We refer to the constraints of this form asparity inequalities. If the variablesui are zeroes and ones,

these constraints will be equivalent to the original binaryparity-check constraints. To see this, note that

if V is a subset ofN (j), with |V| odd, and the corresponding parity inequality fails to hold,then all

variable nodes inV must have the value 1, while those inN (j)\V must have the value 0. This implies

that the corresponding vectoru does not satisfy parity checkj. Conversely, if parity checkj fails to

hold, there must be a subset of variable nodesV ⊆ N (j) of odd size such that all nodes inV have the

value 1 and all those inN (j)\V have the value 0. Clearly, the corresponding parity inequality would

be violated. Now, given this equivalence, we relax the LP problem by replacing each binary constraint,

ui ∈ {0, 1}, by a box constraint, 0 ≤ ui ≤ 1. LP decoding can then be written as
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LP Decoding
minimize γTu

subject to u ∈ P.
(7)

Lemma 1 ([4], originally by [15]): For any check nodej, the set of parity inequalities (5) defines the

convex hull of all0 − 1 assignments of the variables with indices inN (j) that satisfy thejth binary

parity-check constraint.

Since the convex hull of a set of vectors in[0, 1]k is a subset of[0, 1]k, the set of parity inequalities for

each check node automatically restrict all the involved variables to the interval[0, 1]. Hence, we obtain

the following corollary:

Corollary 1: In the formulation of LP decoding above, the box constraintsfor variables that are

involved in at least one parity-check constraint are redundant.

The fundamental polytope has a number of integral (binary-valued) and nonintegral (fractional-valued)

vertices. The integral vertices, which satisfy all the parity-check equations as shown before, exactly

correspond to the codewords ofC. Therefore, the LP relaxation has theML certificate property, i.e.,

whenever LP decoding gives an integral solution, it is guaranteed to be an ML codeword. On the

other hand, if LP decoding gives as the solution one of the nonintegral vertices, which are known

aspseudocodewords, the decoder declares a failure.

C. Adaptive Linear Programming Decoding

In the original formulation of Feldmanet al. for LP decoding, the number of parity inequalities for

each check node of degreedj is equal to the number of odd-sized subsets of its neighborhood, which

is equal to2dj−1. Even for parity-check matrices of moderate row weights, this number can be very

large. In [9] a cutting-plane algorithm was proposed as an alternative to the direct implementation of

LP decoding (7). In this method, referred to as “adaptive LP decoding” (ALP decoding), a hierarchy

of linear programs with the same objective function as in (7)are solved, with the solution to the last

program being identical to that of LP decoding. The first linear program in this hierarchy is made up of

only n box constraints, such that for eachi ∈ {1, 2, . . . , n}, we include the constraint
{

0 ≤ ui if γi ≥ 0,

ui ≤ 1 if γi < 0.
(8)

The solution to this initial problem corresponds to the result of an (uncoded) bit-wise hard decision based

on the received vector.
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Algorithm 1 ALP Decoding
1: Setup the initial LP problem with constraints from (8), andk ← 0;

2: Find the solutionu0 to the initial LP problem by bit-wise hard decision;

3: repeat

4: k ← k + 1;

5: Find the setSk of all parity inequalities and box constraints that are violated atuk−1;

6: If |Sk| > 0, add the constraints inSk to the LP problem and solve it to obtainuk;

7: until |Sk| = 0

8: Outputu = uk as the solution to LP decoding.

The adaptive LP decoding algorithm is presented here as Algorithm 1 (ALP decoding). In Step 5 of

this algorithm, the search for all the violated parity inequalities can be performed using Algorithm 1

of [9] in O(
∑m

i=1 dj log dj) = O(mdmax log dmax) time, without having to examine all theO(m2dmax)

parity inequalities given by the original LP decoding formulation. Furthermore, based on observations,

it is conjectured in [10] that there is no need to check for violated box constraints in Step 5, since they

cannot be violated at any of the intermediate solutionsuk of ALP decoding. In the next section, we

present a proof of this conjecture.

In [9], the number of iterations of ALP decoding was upper-bounded by the code length,n. However,

it was observed in the simulations that the typical number ofiterations is much smaller in practice (less

than20 for all n < 2000). Moreover, one can conclude from the following theorem that, at each iteration

of ALP decoding, the number of violated parity inequalitiesadded to the problem is at mostm, where

m is the number of check nodes.

Theorem 1 ([10]): If at any given pointu ∈ [0, 1]n, one of the parity inequalities introduced by a

check nodej is violated, the rest of the parity inequalities from this check node are satisfied with strict

inequality.

III. PROPERTIES ANDVARIATIONS OF ALP DECODING

In this section, we prove some properties of LP and ALP decoding, and propose some modifications to

the ALP algorithm. As we will see, many of the elegant properties of these algorithms are consequences

of Theorem 1.

First, we propose an alternative to using Algorithm 1 of [9] for finding all the violated parity inequalities

at any given pointu ∈ [0, 1]n. Consider the general form of parity inequalities in (6) fora given check
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nodej, and note that at most one of these inequalities can be violated atu. To find this inequality, if it

exists, we need to find an odd-sizedV ⊆ N (j) that minimizes the left-hand side of (6). If there were no

requirement that|V| is odd, the left-hand side expression would be minimized by putting anyi ∈ N (j)

with ui ≥ 1
2 in V. However, if suchV has an even cardinality, we need to select one elementi∗ of

N (j) to add to or remove fromV, such that the increase on the left-hand side of (6) is minimal. This

means thati∗ is the element whose corresponding valueui∗ is closest to12 . This results in Algorithm 2,

which hasO(dj) complexity for check nodej, thus reducing the complexity of finding all them parity

inequalities fromO(
∑m

i=1 dj log dj) with Algorithm 1 of [9] to O(
∑m

j=1 dj) = O(E), whereE is the

total number of edges in the Tanner graph.

Algorithm 2 Find the Violated Parity Inequality from Check Nodej at u

1: S ← {i ∈ N (j)|ui > 1
2};

2: if |S| is odd then

3: V ← S;

4: else

5: i∗ ← argmini∈N (j) |ui − 1
2 |;

6: V ← S\{i∗} if i∗ ∈ S; otherwiseV ← S ∪ {i∗};
7: end if

8: if (6) is satisfied atu for this j andV then

9: Check nodej does not introduce a violated parity inequality atu;

10: else

11: We have found the violated parity inequality from check nodej;

12: end if

A. Modified ALP Decoding

Definition 1: A linear inequality constraint of the formaTx ≤ b is calledactiveat pointx0 if it holds

with equality; i.e.,aTx0 = b, and is calledinactive if it holds with strict inequality; i.e.aTx0 < b.

The following is a corollary of Theorem 1

Corollary 2: If one of the parity inequalities introduced by a check node is active at a pointx0 ∈ [0, 1]n,

all parity inequalities from this check node must be satisfied at x0.

Corollary 2 can be used to simplify Step 5 of ALP decoding (Algorithm 1) as follows. We first find

the parity inequalities currently in the problem that are active at the current solution,uk. This can be

October 27, 2018 DRAFT



9

done simply by checking if the slack variable correspondingto a constraint is zero. Then, in the search

for violated constraints, we exclude the check nodes that introduce these active inequalities.

Now consider the linear programLP k at an iterationk of ALP decoding, with an optimum pointuk.

This point is the vertex (apex) of then-dimensional cone formed by all hyperplanes correspondingto the

active constraints. It is easy to see that among the constraints in this linear program, the inactive ones

are non-binding, meaning that, if we remove the inactive constraints from the problem,uk remains an

optimum point of the feasible space. This fact motivates a modification in the ALP decoding algorithm,

where, after solving each LP, a subset of the constraints that are active at the solution are removed.

By combining the two ideas proposed above, we obtain the modified ALP decoding algorithm A

(MALP-A decoding), stated in Algorithm 3. It was conjectured in [10] that no box constraint can be

violated at any intermediate solution of ALP decoding. We will prove this conjecture for both ALP and

MALP decoding in this section. Hence, we do not search for violated box constraints in the intermediate

iterations of the proposed algorithms.

Algorithm 3 MALP-A Decoding
1: Setup the initial LP problem with constraints from (8), andk ← 0;

2: Find the solutionu0 to the initial LP problem by bit-wise hard decision;

3: repeat

4: k ← k + 1; flag ← 0;

5: for j = 1 to m do

6: if there is no active parity inequality from check nodej in the problemthen

7: if check nodej introduces a parity inequality that is violated atuk−1 then

8: Remove the parity inequalities of check nodej (if any) from the current problem;

9: Add the new (violated) constraint to the LP problem;flag ← 1;

10: end if

11: end if

12: end for

13: If flag = 1, solve the LP problem to obtainuk;

14: until flag = 0

15: Outputu = uk as the solution to LP decoding.

Checking the condition in line 7 can be done using Algorithm 2in O(dj) time, wheredj is the degree
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of check nodej, and the role of the if-then structure of line 6 is to limit this processing to only check

nodes that are not currently represented in the problem by anactive constraint. In line 8, before adding a

new constraint from check nodej to the problem, any existing (inactive) constraint is removed from the

problem. Alternatively, we can move this command to line 6; i.e. remove all the inactive constraints in the

problem. We call the resulting algorithm the modified ALP decoding algorithm B (MALP-B decoding).

The LP problems solved in the ALP and modified ALP decoding algorithms can be written in the

“standard” matrix form as

minimize γTu

subject to Au ≤ b,

ui ≥ 0 ∀ i ∈ I : γi ≥ 0,

ui ≤ 1 ∀ i ∈ I : γi < 0,

(9)

where matrixA is called theconstraint matrix.

B. Properties

In Theorem 2 of [9], it has been shown that the sequence of solutions to the intermediate LP problems

in ALP decoding converges to that of LP decoding in at mostn iterations. In the following theorem,

in addition to proving that this property holds for the two modified ALP decoding algorithms, we show

three additional properties shared by all three variationsof adaptive LP decoding.

We assume that the optimum solutions to all the LP problems inthe intermediate iterations of either

ALP, MALP-A, or MALP-B decoding are unique. However, one cansee that this uniqueness assumption

is not very restrictive, since it holds with high probability if the channel output has a finite probability

density function (pdf). Moreover, channels that do not satisfy this property, such as the binary symmetric

channel (BSC), can be modified to do so by adding a very small continuous-domain noise to their output

(or LLR vector).

Theorem 2 (Properties of adaptive LP decoding):Let u0, u1, . . . , uK be the unique solutions to the

sequence of LP problems,LP 0, LP 1, . . . , LPK , solved in either ALP, MALP-A, or MALP-B decoding

algorithms. Then, the following properties hold for all three algorithms:

a) The sequence of solutionsu0, u1, . . . satisfy all the box constraints0 ≤ ui ≤ 1, ∀ i = 1, . . . , n.

b) The costs of these solutions monotonically increase withthe iteration number; i.e.,

γTu0 < γTu1 < . . . (10)
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c) u0, u1, . . . converge to the solution of LP decoding,u∗, in at mostn iterations.

d) Consider the set of parity inequalities included inLP k which are active at its optimum solution,uk.

Let J k = {j1, j2, . . . , j|J k|} be the set of indices of check nodes that generate these inequalities.

Then,uk is the solution to an LP decoding problemLPDk with the LLR vectorγ and the Tanner

graph corresponding to the check nodes inJ k.

The proof of this theorem is given in Appendix I.

The following theorem shows an interesting property of the modified ALP decoding schemes, which

we call the “single-constraint property.” This property does not hold for ALP decoding.

Theorem 3:In the LP problem at any iterationk of the MALP-A and MALP-B decoding algorithms,

there is at most one parity inequality corresponding to eachcheck node of the Tanner graph.

Proof: [By induction] The initial LP problem consists only of box constraints. So, it suffices to show

that, if the LP problemLP k at an iterationk satisfies the desired property, the LP problemLP k+1 in the

subsequent iteration satisfies this property, as well. Consider check nodej which has a violated parity

inequality κj at the solutionuk of LP k. According to Corollary 2, if there already has been a parity

inequality κ̃j from this check node inLP k, κ̃j cannot be active atuk, hence, the MALP decoder will

removeκ̃j before addingκj to LP k+1. As a result, there cannot be more than one parity inequalityfrom

any check nodej in LP k+1

Corollary 3: The number of parity inequalities in any linear program solved by the MALP decoding

algorithms is at mostm

The result above is in contrast to the non-adaptive formulations of LP decoding, where the size of the

LP problems grows with the check node degree. Consequently,the complexity of these two algorithms

can be bounded by their number of iterations times the worst-case complexity of solving an LP problem

with n variables andm parity inequalities. Therefore, an interesting problem toinvestigate is how the

number of iterations of the MALP decoding algorithms varieswith the code parameters, such as the

length or the check node degrees, and how its behavior changes depending on whether the LP decoding

output is integral or fractional. In Subsection III-D, we present some simulation results, studying and

comparing ALP decoding and its modifications in terms of the number of iterations.

An important consequence of Theorem 3 is that, in the LP problems that are solved by these two

algorithms, the distribution of the nonzero elements of theLP constraint matrix,A, has the same structure

as that of the parity-check matrix,H, after removing the rows ofH that are not represented by a parity

inequality in the LP. This is due to the fact that the support set of a row ofA, corresponding to a parity

inequality, is identical to that of the row ofH from which it has been derived, and in addition, each
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row of A is derived from a unique row ofH. As we will see later in this paper, this property, which is

not shared by LP or ALP decoding, maintains the same desirable combinatorial properties (e.g., degree

distribution) forA that theH matrix has. This can be exploited in the design of efficient LPsolvers.

Remember that the LP problem in the last iteration of the MALPdecoding algorithms has the same

solution as standard LP decoding. This solution is a vertex of the feasible set, defined by at leastn

active inequalities from this LP problem. Hence, using Corollary 3, we conclude that at leastn−m box

constraints are active at the solution of LP decoding. This yields the following properties of LP decoding.

Corollary 4: The solution to any LP decoding problem differs in at mostn−m coordinates from the

vector obtained by making bit-based hard decisions on the LLR vectorγ.

Corollary 5: Each pseudocodeword of LP decoding has at mostm fractional entries.

Remark 1:This bound on the size of the fractional support of pseudocodewords is tight in the sense

that there are LP decoding relaxations which have pseudocodewords with exactlym fractional entries.

An example is the pseudocodeword[1, 12 , 0,
1
2 , 0, 0,

1
2 ] of the (7, 4, 3) code withm = 3, given in [4].

C. Connection to Erasure Decoding

For the binary erasure channel (BEC), the performance of belief propagation (BP), or its equivalent,

the peeling algorithm, has been extensively studied. The peeling algorithm can be seen as performing

row and column permutations to triangularize a submatrix ofH consisting of the columns corresponding

to the erased bits. It is known that the BP and peeling decoders succeed on the BEC if and only if the

set of erased bits does not contain a stopping set.

Feldmanet al. have shown in [4] that LP decoding and BP decoding are equivalent on the BEC.

In other words, the success or failure of LP decoding can alsobe explained by stopping sets. In this

subsection, we show a connection between LP decoding on the BEC and LP decoding on general MBIOS

channels, allowing us to derive a sufficient condition for the failure of LP decoding on general MBIOS

channels based on the existence of stopping sets.

Theorem 4:Consider an LP decoding problemLPD0 with LLR vector γ, γi 6= 0 ∀ i ∈ I, resulting

in the unique integral solution (i.e., the ML codeword)u. Also, let ũ be the result of bit-based hard

decisions onγ; i.e., ũi = 0 if γi > 0, and ũi = 1 otherwise. Then, the setE ⊆ I of positions whereu

and ũ differ, does not contain a stopping set.

Proof: Let’s assume, without loss of generality, thatu is the vector of all-zeroes, in which case we

will have

E =
{

i ∈ I|γi < 0
}

. (11)
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We form an LP erasure decoding problemLPDBEC with u as the transmitted codeword andE as the

set of erased positions.LPDBEC has the same feasible spaceP asLPD0, but has a new LLR vector

λ, defined such that∀ i ∈ I,

λi =







0 if i ∈ E ,
1 otherwise,

(12)

Clearly, sinceP ⊆ [0, 1]n, we haveλT v ≥ 0, ∀ v ∈ P. We prove the theorem by showing that the

all-zeroes vectoru is the unique solution toLPDBEC , as well.

Assume that there is another vectorv ∈ P such that we have

λT v = λTu = 0. (13)

Combining (12) and (13) yields

∑

i∈I\E

vi = 0, (14)

implying thatvi = 0, ∀ i ∈ I\E . Therefore, using (11), the cost of the vectorv for LPD0 will be

γT v =
∑

i∈E

γivi

≤ 0 = γTu, (15)

with equality if and only ifvi = 0, ∀ i ∈ I. Since, by assumption,u is the unique solution toLPD0,

we must havev = u = [0, . . . , 0]T . Hence,u is also the unique solution toLPDBEC . Finally, due to

the equivalence of LP and BP decodings on the BEC, we concludethat E does not contain a stopping

set.

Theorem 4 will be used later in the paper to design an efficientway to solve the systems of linear

equations we encounter in LP decoding.

D. Simulation Results

We present simulation results for ALP, MALP-A, and MALP-B decoding of random(3, 6)-regular

LDPC codes, where the cycles of length four are removed from the Tanner graphs of the codes. The

simulations are performed in an AWGN channel with the SNR of2 dB (the threshold of belief-propagation

decoding for the ensemble of(3, 6)-regular codes is1.11 dB), and include 8 different lengths, with 1000

trials at each length.

In Fig. 1, we have plotted the histograms of the number of iterations using the three algorithms for

lengthn = 480. The first column of histograms includes the results of all the decoding instances, while
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Fig. 1. The histograms of the number of iterations for ALP, MALP-A, and MALP-B decoding for a random(3, 6)-regular

LDPC code of length 480 at SNR = 2 dB. The left, middle, and right columns respectively correspond to the results of all

decoding instances, decodings with integral outputs, and decodings with fractional output.

the second and third columns only include the decoding instances with integral and fractional outputs,

respectively. From this figure, we can see that when the output is integral (second column), the three

algorithms have a similar behavior, and they all converge inless that 15 iterations. On the other hand,

when the output is fractional (third column), the typical numbers of iterations are 2-3 times higher for all

algorithms, so that we observe two almost non-overlapping peaks in the histograms of the first columns.

In Fig. 2, the average numbers of iterations of the three algorithms are plotted for both integral and

fractional decoding outputs versus the code length. As a measure of the deviation of the results from the

mean, we have also included the95% one-sided confidence upper bound for each curve, which is defined

as the smallest number which is higher than at least95% of the values in the population. We can observe

that the number of iterations for MALP-A and MALP-B decodingare significantly higher that that of

ALP when the output is fractional. On the other hand, for decoding instances with integral outputs, where

the LP decoder is successful in finding the ML codeword, the increase in the number of iterations for

the modified ALP decoders relative to the ALP decoder is very small. Hence, the MALP decoders pay a

small price in terms of the number of iterations in exchange for obtaining the single-constraint property.

Moreover, our simulations indicate that the size of the largest LP that is solved in each MALP-A or

MALP-B decoding problem is smaller on average than that of ALP decoding by17% for integral outputs
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Fig. 2. The number of iterations of ALP, MALP-A, and MALP-B decoding versus code length for random(3, 6)-regular LDPC

codes at SNR = 2 dB. The solid and dashed curves represent, respectively, the average values and the95% one-sided confidence

upper bounds.

and30% for fractional outputs.

IV. SOLVING THE LP USING THE INTERIOR POINT METHOD

General-purpose LP solvers do not take advantage of the particular structure of the optimization

problems arising in LP decoding, and, therefore, using themcan be highly inefficient. In this and the

next sections, we investigate how LP algorithms can be implemented efficiently for LP decoding. The

two major techniques for linear optimization used in most applications are Dantzig’s simplex algorithm

[16] and the interior point methods.

A. Simplex vs. Interior-Point Algorithms

The simplex algorithm takes advantage of the fact that the solution to an LP is at one of the vertices

of the feasible polyhedron. Starting from a vertex of the feasible polyhedron, it moves in each iteration

(pivot) to an adjacent vertex, until an optimal vertex is reached. Each iteration involves selecting an
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adjacent vertex with a lower cost, and computing the size of the step to take in order to move to that

edge, and these are computed by a number of matrix and vector operations.

Intertior-point methods generally move along a path withinthe interior of the feasible region. Starting

from an interior point, interior point methods approximatethe feasible region in each iteration, and take

a Newton-type step towards the next point, until they get to the optimum point. Computation of these

steps involves solving a linear system.

The complexity of an LP solver is determined by the number of iterations it takes to converge and

the average complexity of each iteration. The number of iterations of the simplex algorithm has been

observed to be polynomial (superlinear), on average, in theproblem dimensionn, while its worst-case

performance can be exponential. An intuitive way of understanding why the average number of simplex

pivots to successfully solve an LP decoding problem is at least linear inn is to note that each pivot

makes one basic primal variable nonbasic (i.e. sets it to zero) and makes one nonbasic variable basic (i.e.

possibly increases it from zero). Hence, starting from an initial point, it should generally take at least a

constant timesn pivots to arrive at a point corresponding to a binary codeword. Therefore, even if the

computation of each simplex iteration were done in linear time, one could not achieve a running time

better thatO(n2), unless the simplex method is fundamentally revised.

In contrast to the simplex algorithm, for certain classes ofiterior-point methods, such as the path-

following algorithm, the worst-case number of iterations has been shown to beO(
√
n), although these

algorithms typically converge inO(log n) iterations [17]. Therefore, if the Newton step at each iteration

can be computed efficiently, taking advantage of the sparsity and structure in the problem, one could

obtain an algorithm that is faster than the simplex algorithm for large-scale problems.

Interior-point methods consist of a variety algorithms, differing in the way the optimization problem

is approximated by an unconstrained problem, and how the step is calculated at each iteration. One of

the most successful classes of interior-point methods is the primal-dual path-following algorithm, which

is most effective for large-scale applications. In the following subsection we present a brief review of

this algorithm. For a more comprehensive description, we refer the reader to the literature on linear

programming and interior-point methods.

B. Primal-Dual Path-Following Algorithm

For simplicity, in this section we assume that the LP problems that we want to solve are of the form

(9). However, by introducing a number of additional slack variables, we can modify all the expressions

in a straighforward way to represent the case where both types of box constraints may be present for
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each variable.

We first write the LP problem withq variables andp constraints in the “augmented” form

Primal LP

minimize cTx

subject to Ax = b,

x ≥ 0.

(16)

Here, to convert the LP problem (9) into the form above, we have taken two steps. First, noting that each

variableui in (9) is subject to exactly one box constraint of the formui ≥ 0 or ui ≤ 1, we introduce

the variable vectorx and cost vectorc, such that for anyi = 1, . . . , n, xi = ui and ci = γi if the

former inequality is included (i.e.,γi ≥ 0), andxi = 1− ui andci = −γi, otherwise. Therefore, the box

constraints will all have the formxi ≥ 0, and the coefficients of the parity inequalities will also change

correspondingly. Second, for anyj = 1, . . . , p, we convert the parity inequalityAj⋄x ≤ bj in (9), where

Aj⋄ denotes thejth row of A, to a linear equationAj⋄x + xn+j = bj , by introducingp nonnegative

slack variablesxn+1, . . . , xq, whereq = n+ p, with corresponding coefficients equal to zero in the cost

vector,c. We will sometimes refer to the firstn (non-slack) variables as thestandard variables. The dual

of the primal LP has the form

Dual LP

minimize bT y

subject to AT y + z = c,

z ≥ 0,

(17)

wherey andz are the dual standard and slack variables, respectively.

The first step in solving the primal and dual problems is to remove the inequality constraints by

introducing logarithmicbarrier terms into their objective functions.2 The primal and dual objective

functions will thus change tocTx−µ
∑q

i=1 log xi andbT y−µ
∑q

i=1 log zi, respectively, for someµ > 0,

resulting in a familiy of convex nonlinear barrier problemsP (µ), parameterized byµ, that approximate

the original linear program. Since the logarithmic term forcesx andz to remain positive, the solution to

the barrier problem is feasible for the primal-dual LP, and it can be shown that asµ→ 0, it approaches

the solution to the LP problem. The key idea of the path-following algorithm is to start with someµ > 0,

and reduce it at each iteration, as we take one step to solve the barrier problem.

2Because of this step, interior-point methods are sometime referred to in the literature as barrier methods.
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The Karush-Kuhn Tucker (KKT) conditions provide necessaryand sufficient optimality conditions for

P (µ), and can be written as [17, Chapter 9]

Ax = b (18)

AT y + z = c (19)

XZe = µe (20)

x, z ≥ 0, (21)

whereX andS are diagonal matrices with the entries ofx andz on their diagonal, respectively, ande

denotes the all-ones vector. If we define

F (s) =











Ax− b

AT y + z − c

XZe− µe











,

wheres = (x, y, z) is the current primal-dual iterate, the problem of solvingP (µ) reduces to finding the

(unique) zero of the multivariate functionF (s). In Newton’s method,F (s) is iteratively approximated

by its first order Taylor series expansion arounds = sk

F (sk +∆sk) ≈ F (sk) + J(sk)∆sk, (22)

whereJ(s) is the Jacobian matrix ofF (s). The Newton direction∆sk = (∆xk,∆yk,∆zk) is obtained

by setting the right-hand side of (22) to zero, resulting in the following system of linear equations:










A 0 0

0 AT I

Zk 0 Xk





















∆xk

∆yk

∆zk











=











rb

rc

re











(23)

whererb = b−Axk, rc = c−AT yk−zk, andre = µke−XkZke are the residuals of the KKT equations

(18), andµk is the value ofµ at iterationk. If we start from a primal and dual feasible point, we will

not need to computerb andrc, as they will remain zero throughout the algorithm. However, for sake of

generality, here we do not make any feasibility assumption,in order to have the flexibility to apply the

equations in the general, possibly infeasible case.

The solution to the linear system (23) is given by

(AD2
kA

T )∆yk = rb +AD2
krc −AZ−1

k re, (24)

∆xk = D2
kA

T∆yk −D2
krc + Z−1

k re, (25)

∆zk = X−1
k (re − Z∆xk), (26)
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where

D2
k = XkZ

−1
k . (27)

To simplify the notation, we will henceforth drop the subscript k from Dk, but it should be noted that

D is a function of the iteration number,k. Having the Newton direction, the solution is updated as

xk+1 = xk + βk
P∆xk,

yk+1 = yk + βk
D∆yk,

zk+1 = zk + βk
D∆zk,

and the primal and dual step lengths,βk
P , β

k
D ∈ [0, 1], are chosen such that all the entries ofx and z

remain nonnegative.

Since we are interested in solving the LP and not the barrier programP (µ) for a particularµ, rather

than taking many Newton steps to approach the solution toP (µ), we reduce the value ofµ each time

a Newton step is taken, so that barrier program gives a betterapproximation of the LP. A reasonable

updating rule forµ is to make it proportional to the duality gapgd , (xk)T zk, that is

µk =
(xk)T zk

q
. (28)

The primal-dual path-following algorithm described abovewill iterate until the duality gap becomes

sufficiently small; i.e.(xk)T zk < ǫ. It has been shown that with a proper choice of the step lengths, this

algorithm takesO
(√

q log(ǫ0/ǫ)
)

to reduce the duality gap fromǫ0 to ǫ.

In order to initialize the algorithm, we need some feasiblex0 > 0, y0, andz0 > 0. Obtaining such an

initial point is nontrivial, and is usually done by introducing a few dummy variables, as well as a few

rows and columns to the constraint matrix. This may not be desirable for a sparse LP, since the new rows

and columns will not generally be sparse. Furthermore, if the Newton directions are computed based on

the feasibility assumption; i.e. thatrb = 0 and rc = 0, round-off errors can cause instabilities due to

the gradual loss of feasibility. As an alternative, an infeasible variation of the primal-dual path-following

algorithm is often used, where anyx0 > 0, y0, andz0 > 0 can be used for initialization. This algorithm

will simultaneously try to reduce the duality gap and the primal-dual feasibility gap to zero. Consequently,

the termination criterion will change: we stop the algorithm if (xk)T zk < ǫ, ||rb|| < δP , and||rc|| < δD.

C. Computing the Newton Directions: Preconditioned Conjugate Gradient Method

The most complex step at each iteration of the interior-point algorithm in the previous subsection is

to solve the “normal” system of linear equations in (24). While these equations were derived for the
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primal-dual path-following algorithm, in most other variations of interior-point methods, we encounter

linear systems of similar forms, as well.

Various algorithms for solving linear systems fall into twomain categories ofdirect methodsand

iterative methods. While direct methods, such as Gaussian elimination attempt to solve the system in

a finite number of steps, and are exact in the absence of rounding errors, iterative methods start from

an initial guess, and derive a sequence of approximate solutions. Since the constraint matrixAD2AT

in (24) is symmetric and positive definite, the most common direct method for solving this problem is

based on computing the Cholesky decomposition of this matrix. However, this approach is inefficient

for large-scale sparse problems, due to the computational cost of the decomposition, as well as loss of

sparsity. Hence, in many LP problems, e. g. network flow linear programs, iterative methods such as the

conjugate gradient (CG) method [18] are preferred.

Suppose we want to find the solutionx∗ to a system of linear equations given by

Qx = w, (29)

whereQ is a q × q symmetric positive definite matrix. Equivalently,x∗ is the unique minimizer of the

functional

f(x) =
1

2
xTQx− wTx. (30)

We call two nonzero vectors,u, v ∈ Rq, Q-conjugate if

uTQv = 0. (31)

The CG method is based on building a set ofQ-conjugate basis vectorsh1, . . . , hq, and computing the

solutionx∗ as

x∗ = α1h1, . . . , αqhq, (32)

whereαk =
hT
k w

hT
k Qhk

. Hence, the problem becomes that of finding a suitable set of basis vectors. In the CG

method, these vectors are found in an iterative way, such that at stepk, the next basis vectorhk is chosen

to be the closest vector to the negative gradient off(x) at the current pointxk, under the condition that

it is Q-conjugate toh1, . . . , hk−1. For a more comprehensive description of this algorithm, the reader is

referred to [19].

While in principle the CG algorithm requiresq steps to find the exact solutionx∗, sometimes a much

smaller number of iterations provides a sufficiently accurate approximation to the solution. The distribution

of the eigenvalues of the coefficient matrixQ has a crucial effect on the convergence behavior of the
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CG method (as well as many other iterative algorithms). In particular, it is shown that [19, Chapter 6]

‖x∗ − xk‖Q ≤ 2
[

√

κ(Q)− 1
√

κ(Q) + 1

]k‖x∗ − x0‖Q, (33)

where‖x‖Q =
√

(xTQx) andκ(Q) is the spectral condition number of Q, i.e. the ratio of the maximum

and minimum eigenvalues of Q. Using this result, the number of iterations of the CG method required

to reduce‖x∗ − xk‖ by a certain factor from its initial value can be upper-bounded by a constant times
√

κ(Q). We henceforth call a matrixQ ill-conditioned, in loose terms, if CG converges slowly in solving

(29).

In the interior-point algorithm, the spectral behavior ofQ = AD2AT changes as a function of the

diagonal elementsd1, . . . , dq, of D, which are, as described in the previous subsection, the square roots of

the ratios between the primal variables{xi} and the dual slack variables{zi}. In Fig. 3, the evolution of

the distributions of{xi}, {zi}, and{di} through the iterations of the interior-point algorithm is illustrated

for an LP subproblem of an MALP decoding instance. We can observe in this figure thatxi andzi are

distributed in such a way that the productxizi is relatively constant over alli = 1, . . . , q. This means

that, although the path-following algorithm does not completely solve the barrier problems defined in

IV-B, the condition (20) is approximately satisfied for alli. A consequence of this, which can also be

observed in Fig. 3, is that

di ≈
1√
µ
xi, ∀ i = 1, . . . , q. (34)

As the iterates of the interior-point algorithm become closer to the solution andµ approaches zero, many

of the di’s take very small or very large values, depending on the value of the correspondingxi in the

solution. This has a negative effect on the spectral behavior of Q, and as a result, on the convergence of

the CG method.

When the coefficient matrixQ of the system of linear equations is ill-conditioned, it is common to use

preconditioning. In this method, we use a symmetric positive-definite matrixM as an approximation of

Q, and instead of (29), we solve the equivalent preconditioned system

M−1Qx = M−1w. (35)

We hence obtain the preconditioned conjugate gradient (PCG) algorithm, summarized as Algorithm 4.

In order to obtain an efficient PCG algorithm, we need the preconditionerM to satisfy two require-

ments. First,M−1Q should have a better spectral distribution thanQ, so that the preconditioned system

can be solved faster than the original system. Second, it should be inexpensive to solveMx = z, since

we need to solve a system of this form at each step of the preconditioned algorithm. Therefore, a natural
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Fig. 3. The parametersdi, xi, andzi, for i = 1, . . . , q at four iterations of the interior-point method for an LP subproblem

of MALP decoding withn = 1920, p = 627, q = 2547. The variable indices,i, (horizontal axis) are permuted to sortdi in

increasing order.

approach is to design a preconditioner which, in addition toproviding a good approximation ofQ, has

an underlying structure that makes it possible to solveMx = z using a direct method in linear time.

One important application of the PCG algorithm is in interior-point implementations of LP for minimum-

cost network flow (MCNF) problems. For these problems, the constraint matrixA in the primal LP

corresponds to the node-arc adjacency matrix of the networkgraph. In other words, the LP primal

variables represent the edges, each constraint is defined for the edges incident to a node, and the diagonal

elements,d1, . . . , dq, of the diagonal matrixD can be interpreted as weights for theq edges (variables).

A common method for designing a preconditioner forAD2AT is to select a setM of p columns ofA

(edges) with large weights, and formM = AMD2
MAT

M, where the subscriptM for a matrix denotes a
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Algorithm 4 Preconditioned Conjugate Gradient (PCG)

1: Compute an initial guessx0 for the solution;

2: r0 = w −Qx0;

3: SolveMz0 = r0;

4: h0 = z0;

5: for i = 0, . . . , until convergencedo

6: li = Qhi;

7: αi = (zi)T ri/(hi)T li;

8: xi+1 = xi + αihi;

9: ri+1 = ri − αili;

10: SolveMzi+1 = ri+1;

11: νi = (zi+1)T ri+1/(zi)T ri;

12: hi+1 = zi+1 + νihi;

13: end for

matrix consisting of the columns of the original matrix withindices inM.

It is known that at a non-degenerate solution to an MCNF problem, the nonzero variables (i.e., the

basic variables) correspond to a spanning tree in the graph.This means that, when the interior-point

method approaches such a solution, the weights of all the edges, except those defining this spanning tree,

will go to zero. Hence, a natural selection forM would be the set of indices of the spanning tree with

the maximum total weight, which results in the maximum-weight spanning tree (MST) preconditioner.

Finding the maximum-weight spanning tree in a graph can be done efficiently in linear time, and besides,

due to the tree structure of the graph represented byAM, the matrixM can be inverted in linear time

as well.3 The MST has been observed in practice to be very effective, especially at the latter iterations

of the interior-point method, when the operating point is close to the final solution.

V. PRECONDITIONERDESIGN FORLP DECODING

Our framework for designing an effective preconditioner for LP decoding, similar to the MST pre-

conditioner for MCNF problems, is to find apreconditioning set, M ⊆ {1, . . . , q}, corresponding top

3Throughout the paper, we refer to solving a system of linear equations with coefficient matrixM , in loose terms, as inverting

M , although we do not explicitly computeM−1.
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columns ofA andD, resulting inp × p matricesAM andDM, such thatM = AMD2
MAT

M is both

easily invertible and a good approximation ofQ = AD2AT . To satisfy these requirements, it is natural

to selectM to include the variables with the highest weights,{di}, while keepingAM andDM full

rank and invertible inO(q) time. Then, the solutionzi+1 to Mzi+1 = ri+1 in the PCG algorithm can

be found by sequentially solvingAMf1 = ri+1, D2
Mf2 = f1, andAT

Mzi+1 = f2, for f1, f2, andzi+1,

respectively.

We are interested in having a graph representation for the constraints and variables of a linear program

of the form (16) in the LP decoding problem, such that the selection of a desirableM can be interpreted

as searching for a subgraph with certain combinatorial structures.

Definition 2: Consider an LP of the form (16) withp constraints andq variables, wherexn+1, . . . , xq

are slack variables. Theextended Tanner graphof this LP is a bipartite graph consisting ofq variable

nodesandp constraint nodes, such that variable nodei is connected to constraint nodei if xi is involved

in the jth constraint; i.e.,Ai,j is nonzero.

For the linear programs in the MALP decoding algorithms, since each constraint is derived from

a unique check node of the original Tanner graph, the extended Tanner graph will be a subgraph of

the Tanner graph, with the addition ofq degree-1 (slack) variable nodes, each connected to one of the

constraint nodes. In general, for an iteration of MALP decoding of a code with anm× n parity-check

matrix, the extended Tanner graphs would containp ≤ m constraint nodes,n variable nodes corresponding

to the standard variables (bit positions), andp slack variable nodes. As extended Tanner graphs are special

cases of Tanner graphs, they inherit all the combinatorial concepts defined for Tanner graphs, such as

stopping sets. A small example of an extended Tanner graph isgiven in Fig. 4.

A. Preconditioning via Triangulation

For a sparse constraint matrix,A, a sufficient condition forAM andAT
M to be invertible inO(q) time

is thatAM can be made upper or lower triangular, with nonzero diagonalelements, using column and/or

row permutations. We call a preconditioning setM that satisfies this property atriangular set. Once an

upper- (lower-) triangular formA△
M of AM is found, we start from the last (first) row ofA△

M, and, by

taking advantage of the sparsity, solve for the variable corresponding to the diagonal element of each

row recursively inO(1) time. It is not difficult to see that there always exists at least one triangular set

for any LP decoding problem; one example is the set of columnscorresponding to the slack variables,

which results in a diagonalAM.

As a criterion for finding the best approximationAMD2
MAT

M of AD2AT , we search for the triangular
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Fig. 4. An extended Tanner graph for an LP problem withn = 4, p = 3, andq = 7.

set that contains the columns with the highest weights,di. One can consider different strategies of

scoring a triangular set from the weights of its members, e.g., the sum of the weights, or the largest

value of minimum weight. It is interesting to study as a future work whether given any such metric, the

“maximum-weight” (or optimal) triangular set can be found in polynomial time. However, in this work,

we propose a (suboptimal) greedy approach, which is motivated by the properties of the LP decoding

problem.

The problem of bringing a parity-check matrix into (approximate) triangular form has been studied by

Richardson and Urbanke [20] in the context of the encoding ofLDPC codes. The authors proposed a

series of greedy algorithms that are similar to the peeling algorithm for decoding in the binary erasure

channel: repeatedly select a nonzero entry (edge) of the matrix (graph) lying on a degree-1 column or

row (variable or check node), and remove both the column and row of this entry from the matrix. They

showed that parity-check matrices that are optimized for erasure decoding can be made almost triangular

using this greedy approach. It is important to note that thiscombinatorial approach only relies on the

placement of the nonzero entries of the matrix, rather than their values.

The fact that the constraint matrices of the LP problems in MALP decoding have structure similar to

the corresponding parity-check matrix motivates the use ofa greedy algorithm analogous to those in [20]

for triangulating the matrixA. However, this problem is different from the encoding problem, in that we

are not merely interested in makingA triangular, but rather, we look for the triangular submatrix with

the maximum weight. In fact, as mentioned earlier, finding one triangular form ofA is trivial, due to

the presence of the slack variables. Here, we present three greedy algorithms to search for the MTS, one
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of which is related to the algorithms of Richardson and Urbanke. Throughout this section, we will also

refer to the outputs of these (suboptimal) greedy algorithms, in loose terms, as the MTS, although they

may not necessarily have the maximum possible weight.

1) Incremental Greedy Search for the MTS:Although an ideal preconditioning set would contain the

q columns of the matrix that have theq highest weights, in reality, the square submatrix ofA composed

of theseq columns is often neither triangular nor full rank. In the incremental greedy search for the

MTS, we start by selecting the highest-weight column, and try to expand the set of selected columns by

giving priority to the columns of higher weights, while maintaining the property that the corresponding

submatrix can be made lower-triangular by column and row permutations.

Let S be a set of selected columns fromA, where|S| ≤ p. In order to check whether the submatrix

AS can be made lower-triangular by column and row permutations, we can treat the variable nodes

corresponding toS in the Tanner graph as erased bits, and use the peeling algorithm to decode them

in O(q) time. For completeness, this process, which we call the Triangulation Step, is described in

Algorithm 5.

Algorithm 5 Triangulation Step
1: Input: The setS with |S| = s ≤ p, and the matrixA;

2: Output: An s× s lower-triangular submatrixA△
S , if possible;

3: Initialization: Ã← AS , and initializecol androw as zero-length vectors;

4: for k = 1 to s do

5: if the minimum row degree inÃ is not one then AS cannot be made lower-triangular by

permutation; DeclareFailure and exit the algorithm;

6: Select any degree-1 rowj from Ã, and leti be the index of the column that contains the only

nonzero entry of rowj;

7: col←
[

col

i

]

, row←
[

row

j

]

;

8: Set all the entries in columni and rowj of Ã to zero;

9: end for

10: FormA△
S by settingA△

S i,j
= AS coli,rowj

, ∀ i, j ∈ {1, . . . s};

Using the Triangulation Step as a subroutine, the incremental greedy search method, given by Algo-

rithm 6, first sorts the columns according to their corresponding weights,di (or, alternatively,xi), and

initializes the preconditioning set,M, as an empty set. Starting with the highest-weight column and

October 27, 2018 DRAFT



27

going down the sorted list of column indices, it adds each column toM if the submatrix corresponding

to the resulting set can be made lower triangular using the Triangulation Step.

Algorithm 6 Incremental Greedy Search for the MTS
1: Input: p× q constraint matrixA, and the set of column weights,d1 . . . dq;

2: Output: A triangular setM and thep× p lower-triangular matrixA△
M;

3: Initialization: M← ∅, i← 0;

4: Sort the column indices{1, . . . , q} according to their corresponding weights,di, in decreasing order,

to obtain the permuted sequenceπ1, . . . , πq, such thatdπ1
≥ . . . ≥ dπq

;

5: while i < q and |M| < p do

6: i← i+ 1, M←M∪ {πi};
7: if the Triangulation Step can bring the submatrixAS into the lower-triangular formA△

S then

8: M← S, A△
M ← A△

M;

9: end if

10: end while

We claim that, due to the presence of the slack columns inA, Algorithm 6 will successfully find a

triangular setM of p columns; i.e., it exits the while-loop (lines 5-10) only when |M| = p. Assume,

on the contrary, that the algorithm ends while|M| < p, so that the matrixAM is a p × |M| lower-

triangular matrix. This means that if we add any columnk ∈ {1, . . . , q}\M to M, it cannot be made

lower triangular, since otherwise, columnk would have already been added to|M| whenπi = k in the

while-loop.4 However, this clearly cannot be the case, since we can produce a p × p lower-triangular

matrix A△
M, simply by adding the columns corresponding to the slack variables of the lastp−|M| rows

of AM. Hence, we conclude that|M| = p.

2) Column-wise Greedy Search for the MTS:Algorithm 7 is a column-wise greedy search for the

MTS. It successively adds the index of the maximum-weight degree-1 column ofA to the setM, and

eliminates this column and the row that shares its only nonzero entry. Matrix A initially contains p

degree-1 slack columns, and at each iteration, one such column will be erased. Hence, there is always

a degree-1 column in the residual matrix, and the algorithm proceeds untilp columns are selected. The

resulting preconditioning set will correspond to an upper-triangular submatrixAM.

4Note that if any setS of columns can be made lower triangular, any subset of these columns can be made lower triangular,

as well.
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Algorithm 7 Column-wise Greedy Search for the MTS
1: Input: p× q constraint matrixA, and the set of column weightsd1, . . . , dq;

2: Output: A triangular setM and the upper-triangular matrixA△
M;

3: Initialization: Ã← A, M← ∅, and initializecol androw as zero-length vectors;

4: Define and formDEG1 as the index set of all degree-1 columns inÃ;

5: for k = 1 to p do

6: Let i ∈ DEG1 be the index of the (degree-1) column ofÃ with the maximum weight,di, and let

j be the index of the row that contains the only nonzero entry ofthis column;

7: M←M∪ i, col ←
[

col

i

]

, row ←
[

row

j

]

;

8: Set all the entries in rowj of Ã (including the only nonzero entry of columni) to zero;

9: UpdateDEG1 from the residual matrix,̃A;

10: end for

11: FormA△
M by settingA△

Mi,j
= Acoli,rowj

, ∀ i, j ∈ {1, . . . p};

3) Row-wise Greedy Search for the MTS:Algorithm 8 uses a row-wise approach for finding the MTS.

In this method, we look at the set of degree-1 rows, add toM the indices of all the columns that

intersect with these rows at nonzero entries, and eliminatethese rows and columns fromA. Unlike the

column-wise method, it is possible that, at some iteration,these is no degree-1 row in the matrix. In this

case, we repeatedly eliminate the lowest-weight column, until there is one or more degree-1 rows.

In addition to this difference, the number of columns inM by the end of this procedure is often

slightly smaller thatp. Hence, we perform a “diagonal expansion” step at the end, where p − |M|
columns corresponding to the slack variables are added toM, while keeping it a triangular set. A

problem with this expansion method is that, since the algorithm does not have a choice in selecting the

slack variables added in this step, it may add columns that have very small weights.

Let A△
M1

be the triangular submatrix obtained before the expansion step. As an alternative to diagonally

expandingA△
M1

by adding slack columns, we can apply a “triangular expansion.” In this method, we

form a matrix Ā consisting of the columns ofA that do not share any nonzero entries with the rows

in vector row, and apply a column-wise or row-wise greedy search to this matrix in order to obtain a

high-weight lower-triangular submatrixA△
M2

. This requirement for forminḡA ensures that the resulting
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Algorithm 8 Row-wise Greedy Search for the MTS
1: Input: p× q constraint matrixA, and the set of column weightsd1, . . . , dq;

2: Output: A triangular setM and the lower-triangular matrixA△
M;

3: Initialization: Ã← A, M← ∅, and initializecol androw as zero-length vectors;

4: Define and formDEG1 as the index set of all degree-1 rows iñA;

5: while Ã is not all zeroesdo

6: if |DEG1| > 0 then

7: Let j ∈ DEG1 be any degree-1 row of̃A, and i be the index of the column that contains the

only nonzero entry of this row;

8: M←M∪ i, col←
[

col

i

]

, row←
[

row

j

]

;

9: Set all the entries in columni of Ã (including the only nonzero entry of rowj) to zero, and

updateDEG1;

10: else

11: Let i be the index of the nonzero column of̃A with the minimum weight,di. Set all the entries

in column i to zero, and updateDEG1;

12: end if

13: end while

14: Diagonal Expansion: For each rowj of A that is not represented inrow, appendj to row, and

appendi = j + n, i.e., the index of the corresponding slack column, to bothcol andM;

15: FormA△
M by settingA△

Mi,j
= Acoli,rowj

, ∀ i, j ∈ {1, . . . p};

triangular submatricesA△
M1

andA△
M2

can be concatenated as




A△
M1

0

B A△
M2



 , (36)

to form a larger triangular submatrix ofA. This process can be continued, if necessary, until a square

p × p triangular matrixA△
M is obtained, although our experiments indicate that one expansion step is

often sufficient to provide such a result. It is easy to see that this approach is potentially stronger than

the diagonal expansion in Algorithm 8, since it has the diagonal expansion as a special case.
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B. Implementation and Complexity Considerations

To compute the running time of Algorithm 6, note that while Step 4 hasO(q log q) complexity, the

computational complexity of the algorithm is dominated by the Triangulation Step. This subroutine has

O(q) complexity, and is calledO(q) times in Algorithm 6, which makes the overall complexityO(q2).

An interesting problem to investigate is whether we can simplify the triangulation process in line 7 to

have sublinear complexity by exploiting the results of the previous round of triangulation, as stated in

the following open problem concerning erasure decoding:

Open Problem:Consider the Tanner graph corresponding to an arbitrary LDPC code of lengthn.

Assume that a setE of bits are erased, andE does not contain a stopping set in the Tanner graph. Thus,

the decoder successfully recovers these erased bits using the peeling algorithm (i.e., the triangulation

Algorithm 5). Now, we add a biti to the set of erased bits. Givenj, E , and the complete knowledge of

the process of decodingE , such as the order in which the bits are decoded, and the checknodes used,

is there ano(n) scheme to verify ifE ∪ {i} can be decoded by the peeling algorithm?

In addition this potential simplification, it is possible tomake a number of modifications to Algorithm

6 in order to reduce its complexity. Lets be the size of the smallest stopping set in the extended Tanner

graph ofA, which means that the submatrix formed by anys − 1 columns can be made triangular.

Then, instead of initializingM to be the empty set, we can immediately add thes − 1 highest-weight

columns toM, since we are guaranteed thatAM can be made triangular. Moreover, at each iteration of

the algorithm, we can considerk > 1 column to be added toM, in order to reduce the number of calls

to the triangulation subroutine. The value ofk can be adaptively selected to make sure that the modified

algorithm remains equivalent to Algorithm 6.

To assess the complexity of Algorithm 7, we need to examine Steps 8 and 11 that involve column

or row operations, as well as Steps 4, 6, and 9 that deal with the list of degree-1 columns. Since there

is anO(1) number of nonzero entries in each column or row ofA, running Step 8p times (due to the

for-loop), and derivingA△
M from A in Step 11 each takeO(q) time. However, one should be careful in

selecting a suitable data structure for storing the setDEG1, since, in each cycle of the for-loop, we need

to extract the element with the maximum weight, and add to andremove from this set anO(1) number

of elements. By using a binary heap data structure [21], which is implementable as an array, all these

(Steps 6 and 9) can be done inO(log q) time in the worst case. Also, the initial formation of the heap

(Step 4) hasO(q) complexity. As a result, the total complexity of Algorithm 7becomesO(q log q).

Similarly, in Algorithm 8, we need a mechanism to extract theminimum-weight member of the set
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of remaining columns. While the heap structure mentioned above works well here, since no column is

added to the set of remaining columns, we can alternatively sort the set of all columns by their weights

as a preprocessing step withO(q log q) complexity, thus making the complexity of the while-loop linear.

Since the complexity of steps 15 (diagonal expansion) and 16are linear, as well, the total running time

of Algorithm 8 will be O(q log q).

The process of finding a triangular preconditioner is performed at each iteration of the interior-point

algorithm. Since the values of primal variables,{xi}, do not substantially change in one iteration, we

expect the maximum-weight triangular set at each iterationto be relatively close to that in the previous

iteration. Consequently, an interesting area for future work is to investigate modifications of the proposed

algorithms, where the knowledge of the MTS in the previous iteration of the interior-point method is

exploited to improve the complexity of these algorithms.

VI. A NALYSIS OF THE MTS PRECONDITIONING ALGORITHMS

A. Performance Analysis

It is of great interest to study how the proposed algorithms perform as the problem size goes to infinity.

We expect that a number of asymptotic results similar to those of Richardson and Urbanke in [20] can

be derived, e.g., showing that the greedy preconditioner designs perform well for capacity-approaching

LDPC ensembles. However, since one of the main advantages ofLP decoding over message-passing

decoding is its geometrical structure that facilitates theanalysis of its performance in the finite-length

regime, in this work we focus on studying the proposed algorithms in this regime.

We will study the behavior of the proposed preconditioner inthe later iterations of the interior-point

algorithm, when the iterates are close to the optimum. This is justified by the fact that, as the interior-

point algorithm approaches the boundary of the feasible region during its later iterations, many of the

primal variables,xi, and the dual slack variables,zi, approach zero, thus deteriorating the conditioning

of the matrixQ = AD2AT . This is when a precoditioner is most needed. In addition, wecan obtain

some information about the performance of the preconditioner in the later iterations by focusing on the

optimal point of the feasible set.

Consider an LP problem in the augmented form (16) as part of ALP or MALP decoding, and assume

that it has a unique optimal solution (although parts of our analysis can be extended to the case with

non-unique solutions). We denote by the triplet(x∗, y∗, z∗) the primal-dual solution to this LP, and by

(x, y, z) an intermediate iterate of the interior-point method. We can partition the set of theq columns
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of A into thebasic set

B = {i|x∗i > 0} (37)

and thenonbasic set

N = {i|x∗i = 0}. (38)

For brevity, we henceforth refer to the columns of the constraint matrixA corresponding to the basic

variables as the “basic columns.” It is not difficult to show that, for an LP with a unique solution, the

number of basic variables, i.e.,|B|, is at mostp. To see this, assume thatl of the standard variables

x∗1 . . . x
∗
n are nonzero, which means thatn − l box constraints of the formxi ≥ 0 are active atx∗.

Sincex∗ is a vertex defined by at leastn active constraints in the LP, we conclude that at leastl parity

inequalities must be active atx∗, thus leaving at mostp − l nonzero slack variables. We call the LP

nondegenerateif |B| = p, anddegenerateif |B| < p.

It is known that the unique solution(x∗, y∗, z∗) is “strictly complementary” [22], meaning that for

any i ∈ {1, . . . , q} either x∗i = 0 and z∗i > 0, or x∗i > 0 and z∗i = 0. Remembering from (27) that

di =
√

xi/zi, as the iterates of the interior-point algorithm approach the optimum, i.e.,µ given in (28)

goes to zero, we will have

lim
µ→0

di =

{∞ if i ∈ B,

0 if i ∈ N ,
(39)

Therefore, towards the end of the algorithm, the matrixQ = AD2AT will be dominated by the columns

of A andD corresponding to the basic set. Hence, it is highly desirable to select a preconditioning set

that includes all the basic columns, i.e.,B ⊆M, in which caseAMD2
MAT

M becomes a better and better

approximation ofQ, as we approach the optimum of the LP. In the rest of this subsection, we will show

that, when the solution to the LP is integral andµ is sufficiently small, this property can be achieved by

low complexity algorithms similar to Algorithms 7 and 8.

Lemma 2:Consider the extended Tanner graphT k for an LP subproblemLP k of MALP decoding.

If the primal solution toLP k is integral, the set of variable nodes corresponding to the basic set, whose

definition is based on the augmented form (16) of the LP, does not contain any stopping set.

Proof: Consider an erasure decoding problemPBEC on T k, where the basic variable nodes are

erasures. We prove the lemma by showing that the peeling (or LP) decoder can successfully correct these

erasures.

We denote byu∗ andx∗ the solutions to the primal LP in the (original) standard form (9) and in the

augmented form (16). From part c) of Theorem 2, we know thatu∗ is also the solution to a full LP
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decoding problemLPDk with the LLR vectorγ and the Tanner graph comprising the standard variable

nodes and the active check nodes,Jact.
We partition the basic setB into Bstd andBslk, the sets of basic standard variables and basic slack

variables, respectively. We also partition the set of checknodes inT k into Jact andJinact, the sets of

check nodes that generate the active and inactive parity inequalities ofLP k, respectively. Clearly, the

neighbors of the slack variable nodes inBslk are the check nodes inJinact, since an inactive parity

inequality has, by definition, a nonzero slack.

Step 1:We first show that, even if we remove the check nodes inJinact from T k, the set of basic

standard variable nodes,Bstd, does not contain a stopping set.

Remembering the conversion of the LP in the standard form (9)with inequality constraints to the

augmented form (16), we can write

Bstd =
{

i ∈ I
∣

∣ (γi ≥ 0 , u∗i = 1) or (γi < 0 , u∗i = 0)
}

. (40)

Using, as in Theorem 4, the notatioñu for the result of bit-based hard decision onγ, one can see that

Bstd is identical toE , the set of positions whereu∗ and ũ differ. Hence, knowing thatu∗ is the solution

to an LP decoding problem, and using Theorem 4, we conclude that the setBstd does not contain a

stopping set in the Tanner graph that only includes the checknodes inJact.
Step 2:Now we return toT k, and consider solvingPBEC , where all the basic variables are erasures,

using the peeling algorithm. Since the slack variables which are basic are connected only to the inactive

check nodes, we know from Step 1 that the erased variablesBstd can be decoded by only using the active

check nodesJact. Once these variable nodes are peeled off the graph, we are left with the basic slack

variable nodes, each of which is connected to a distinct check node inJinact. Therefore, the peeling

algorithm can proceed by decoding all of these variables. This completes the proof.

Lemma 2 shows that, under proper conditions, the submatrixÃ of A formed by only including

the columns corresponding to the basic variables can be madelower triangular by column and row

permutations. This suggests that looking for a maximum-weight triangular set is a natural approach for

designing a preconditioner in MALP decoding. In particular, the following theorem shows that, under

the conditions of Lemma 2, the incremental greedy Algorithm6 indeed finds a preconditioning set that

includes all such columns.

As the interior-point algorithm progresses, the basic variables approach 1, while the nonbasic variables

approach zero. Hence, referring to (39), we see that after a large enough number of iterations, the|B|
highest-weight columns ofA will correspond to the basic setB. The following theorem shows that two
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of the proposed algorithms indeed find a preconditioning setthat includes all such columns.

Theorem 5:Consider an LP subproblemLP k of an MALP decoding problem. If the primal solution

to LP k is integral, at the iterates of the interior-point method that are sufficiently close to the solution,

both the Incremental Greedy Algorithm and the Row-wise Greedy Algorithm can successfully find a

triangular set that includes all the columns correspondingto the basic set.

Proof: As the interior-point algorithm progresses, the weightsdi corresponding to the basic variables

approach∞, while the weights of nonbasic variables approach zero. Hence, whenµ becomes sufficiently

small, the columns corresponding to the basic set,B will be the |B| highest-weight columns ofA, and

according to Lemma 2, the matrixAB consisting of these columns can be made triangular, provided that

the solution toLP k is integral.

In view of this result, the proof of the claim for the incremental greedy algorithm becomes straigh-

forward: The preconditioning setM continues to grow by one member at each iteration, at least until it

includes all the|B| highest-weight (i.e., basic) columns.

To prove that the triangular setM given by the row-wise greedy algorithm includes the basic set,

as well, it is sufficient to show that none of the basic columnswill be erased fromÃ (i.e., become all

zeroes) in line 11 of Algorithm 8. Assume that, at some iteration, a columni is selected in line 11 to be

erased. Columni has the minimum weight among the nonzero columns currently in Ã. Therefore, ifi is

a basic column andµ is small enough, all the other nonzero columns are basic columns, as well, since

the basic columns are the|B| highest-weight columns ofA. This means that̃A could be made triangular,

without running out of degree-1 rows and having to erase column i. So, columni cannot be basic.

Remark 2:The proof above suggests that Theorem 5 can be stated in more general terms. For any

s ∈ {1, . . . , q}, let S be a set consisting of thes highest-weight columns ofA. Then, if the set of

variable nodes corresponding toS in the (extended) Tanner graph does not contain a stopping set, that

is, AS can be made triangular by row and column permutations, then the preconditioning sets found by

Algorithms 6 and 8 both containS.

The assumption that the solution is integral does not hold for all LPs that we solve in adaptive LP

decoding. On the other hand, in practice, we are often interested in solving the LP exactly, only when LP

decoding finds an integral solution (i.e., the ML codeword).This, of course, does not mean that in such

cases every LP subproblem solved in the adaptive method has an integral solution. However, one can

argue heuristically that, if the final LP subproblem has an integral solution, the intermediate LPs are also

very likely to have an integral solution. To see this, remember from Theorem 2 that each intermediate

LP problem that is solved in adaptive LP decoding is equivalent to a full LP decoding that uses a subset
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of the check nodes in the Tanner graph. Now, if LP decoding with the complete Tanner graph has an

integral solution, it is natural to expect that, after removing a subset of check nodes, which can also

reduce the number of cycles, the LP decoder still very likelyto find an integral solution.

B. Performance Simulation

We simulated the LP decoding of(3, 6)-regular LDPC codes on the AWGN channel using the MALP-

A algorithm and our sparse implementation of the path-following interior-point method. We have shown

earlier that, as interior-point progresses, the matrixAD2AT that needs to be inverted to compute the

Newton steps becomes more and more ill-conditioned. We haveobserved that this problem becomes

more severe in the later iterations of the MALP-A algorithm,where the LP problem is larger and more

degenerate due to the abundance of active constraints at theoptimum of the problem.

In Figs. 5-8, we present the performance results of the PCG method for four different systems of

linear equations in the form of (24), solved in the infeasible primal-dual path-following interior-point

algorithm, using the preconditioners designed by greedy Algorithms 6-8.5 In these simulations, we used

a randomly-generated(3, 6)-regular LDPC code of length 2000, where the cycles of lengthfour were

removed. The performance of the PCG algorithm is measured bythe behavior of the relative residual

error ‖ri‖22/‖w‖22, whereri andw are defined in Algorithm 4, as a function of the iteration number i of

the PCG algorithm.

In Figs. 5 and 6, we considered solving (24) in two different iterations of the interior-point algorithm

for solving an LP problem. This LP problem was selected at the6th iteration of an MALP decoding

problem at SNR = 1.5 dB, and the solution to the LP wasintegral. The constraint matrixA for this LP

had 713 rows and 2713 columns, and we used the PCG algorithm tocompute the Newton step. Fig. 5

corresponds to finding the Newton step at the8th iteration of the interior-point algorithm. In this scenario,

the duality gapgd = xT z was equal to 48.6, and the condition numberκ(Q) of the problem was equal

to 3.46× 104. We have plotted the residual error of the CG method without preconditioning, as well as

the PCG method using the three proposed preconditioner designs. For this problem, except during the

first 10-15 iterations, the behaviors of the three preconditioned implementations are very similar, and all

significantly outperform the CG method.

In Fig. 6, we solved (24) at the18th iteration of the same LP, where the interior-point is muchcloser

to the solution, withgd = 0.22 and κ(Q) = 2.33 × 108. In this problem, the convergence of the CG

5In all the simulations of the Row-wise Greedy Search (Algorithm 8) that we present in this section, we have used a diagonal

expansion, rather than a triangular expansion, as described in Subsection V-A.
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Fig. 5. The progress of the residual error for different PCG implementations, solving (24) in the8th iteration of the interior-

point algorithm, in an LP with anintegral solution. The constraint matrixA has 830 rows and 3830 columns,gd = 48.6, and

κ(Q) = 3.46 × 104.

method is very slow, so that in 200 iterations, the residual error does not get below0.07. The PCG

method with incremental greedy preconditioning, reachinga residual error of10−4 in 40 iterations, has

the fastest convergence, followed by the column-wise greedy preconditioner.

To study the performance of the algorithms when the LP solution is not integral, we considered an

LP from the 6th iteration of an MALP-A decoding problem at SNR= 1.0 dB, where the solution was

fractional. The matrixA had 830 rows and 3830 columns. Fig. 7 corresponds to the8th iteration of

the interior-point algorithm, withgd = 46.4 and κ(Q) = 2.03 × 104, while Fig. 8 corresponds to the

18th (penultimate) iteration, withgd = 0.155 and κ(Q) = 2.61 × 108. These parameters are chosen

such that the scenarios in these two figures are respectivelysimilar to those in Figs. 5 and 6, the main

difference being that the decoding problem now has a fractional solution. We can observe that, while the

performance of the CG method is very similar in Fig. 5 and Fig.7, as well as in Fig. 6 and Fig. 8, the

preconditioned implementations have slower convergence when the LP solution is fractional. In particular,

in Fig. 8, the row-wise greedy preconditioner does not improve the convergence of the CG method, and

is essentially ineffective.
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Fig. 6. The progress of the residual error for different PCG implementations, solving (24) in the8th iteration of the interior-

point algorithm, in an LP with anintegral solution. The constraint matrixA has 830 rows and 3830 columns,gd = 0.22, and

κ(Q) = 2.33 × 108.
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Fig. 7. The progress of the residual error for different PCG implementations, solving (24) in the8th iteration of the interior-

point algorithm, in an LP with afractional solution. The constraint matrixA has 830 rows and 3830 columns,gd = 46.4, and

κ(Q) = 2.03 × 104.
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Fig. 8. The progress of the residual error for different PCG implementations, solving (24) in the8th iteration of the interior-

point algorithm, in an LP with afractional solution. The constraint matrixA has 830 rows and 3830 columns,gd = 0.155, and

κ(Q) = 2.61 × 108.

C. Discussion

Overall, we have observed that in very ill-conditioned problems, the incremental and the column-wise

greedy algorithms are significantly more effective than therow-wise greedy algorithm in speeding up

the solution of the linear system. The better performance ofthe column-wise approach relative to the

row-wise approach can be explained by the fact that the former, which searches for degree-1 columns,

has more choices at each stage, since the columns ofA have lower degrees on average than its rows.

Besides, while the column-wise is always able to find a complete triangular preconditioning set, the

row-wise algorithm needs to expand the preconditioning setat the end by adding some slack columns

that may have very low weights. Considering both the complexity and performance, the column-wise

search (Algorithm 7) seems to be a suitable choice for a practical implemetation of LP decoding.

A second observation that we have made in our simulations is that the convergence of the PCG method

cannot be well characterized just by the condition number ofthe preconditioned matrix. In fact, we have

encountered several situations where the preconditioned matrix had a much higher condition number than

the original matrix, yet it resulted in a much faster convergence. For instance, in the scenario studied
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in Fig. 8, the condition number of the preconditioned matrixM−1Q for both the column-wise and the

incremental algorithms was higher than that ofQ by factor of 50–100, while these preconditioners still

improved the convergence compared to the CG method. Indeed,it is believed in the literature that the

speed of convergence of the CG can typically be better explained by the number of distinct clusters of

eigenvalues.

While we studied the interior-point method in the context ofMALP decoding, the proposed algorithms

can also be applied to the LPs that may have more than one constraint from each check node. For instance,

we have observed that the proposed implementation is also very effective for ALP decoding. However, in

the absence of the single-constraint property, some of the analytical results we presented may no longer

be valid.

VII. C ONCLUSION

In this paper, we studied various elements in an efficient implementation of LP decoding. We first

studied the adaptive LP decoding algorithm and two variations and demonstrated a number of properties

of these algorithms. Specifically, we proposed modifications of the ALP decoding algorithm that satisfy

the single-constraint property; i.e., each LP to be solved contains at most one parity inequality from each

check node of the Tanner graph.

We later studied a sparse interior-point implementation oflinear programming, with the goal of

exploiting the properties of the decoding problem in order to achieve lower complexity. The heart of

the interior-point algorithm is the computation of the Newton step via solving an (often ill-conditioned)

system of linear equations. Since iterative algorithms forsolving sparse linear systems, including the

conjugate-gradient method, converge slowly when the system is ill-conditioned, we focused on finding a

suitable preconditioner to speed up the process.

Motivated by the properties of LP decoding, we studied a new framework for desiging a preconditioner.

Our approach was based on finding a square submatrix of the LP constraint matrix which contains the

columns with the highest possible weights, and at the same time, can be made lower- or upper-triangular

by column and row permutations, making it invertible in linear time. We proposed a number of greedy

algorithms for designing such preconditioners, and provedthat, when the solution to the LP is integral,

two of these algorithms indeed result in effective preconditioners. We demonstrated the performance of

the proposed schemes via simulation, and we observed that the preconditioned systems are most effective

when the current LP has an integral solution.

One can imagine various modifications and alternatives to the proposed greedy algorithms for designing
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preconditioners. It is also interesting to investigate thepossibility of finding other adaptive or nonadaptive

formulations of LP decoding that result in solving the fewest/smallest possible number of LPs, while

maintaining the single-constraint property. Moreover, there are several aspects of the implementation of

LP decoding that are not explored in this work. These potential areas for future research include the

optimum selection of the stopping criteria and step sizes for the interior-point algorithm and the CG

method, as well as the theoretical analysis of the effect of preconditioning on the condition number and

the eigenvalue spectrum of the linear system, similar to thestudy done in [23] for network flow problems.

APPENDIX I

PROOF OFTHEOREM 2

Proof:

a) To prove the claim, we show that the solution to any linear programLP k consisting of then initial

(single-sided) box inequalities given by (8) and any numberof parity inequalities of the form (6)

satisfies all the double-sided box constraints of the form0 ≤ ui ≤ 1, i ∈ I = {1, . . . , n}.
For simplicity, we first transform each variableui, i ∈ I, and its coefficientγi in the objective

function, respectively, into a new variablevi and a new coefficientλi, where
{

vi = ui andλi = γi if γi ≥ 0,

vi = 1− ui andλi = −γi if γi < 0.
(41)

By this change of variables, we can rewriteLP k in terms of v. In this equivalent LP, all the

variablesvi will have nonnegative coefficientsλi in the objective function, and the box constraints

(8) will all be transformed into inequalities of the formvi ≥ 0. However, the transformed parity

inequalities will still have the form

∑

i∈Aj

(1− vi) +
∑

i∈Bj

vi ≥ 1, (42)

although here some of the setsAj may have even cardinality. To prove the claim, it suffices to

show that the unique solutionvk to this LP satisfiesvki ≤ 1, ∀ i ∈ I.

Assume, on the contrary, that for a subset of indicesL ⊆ I, we havevki > 1, ∀ i ∈ L, and

0 ≤ vk ≤ 1, ∀ i ∈ I\L. We define a new vector̃vk as






ṽki = 1 if i ∈ L,

ṽki = vki if i ∈ I\L.
(43)

Remembering thatλi ≥ 0, ∀ i ∈ I, we will haveλT ṽk ≤ λT vk. Moreover,ṽk clearly satisfies all

the double-sided box constraints0 ≤ ṽki ≤ 1, ∀ i ∈ I. We claim that any parity inequality of the
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form (42) in the LP, which is by assumption satisfied atvk, is also satisfied at̃vk. To see this, note

that the first sum in (42) can only either increase or remain constant by moving fromvk to ṽk, and

it will be nonnegative at̃vk. Moreover, the second sum will remain constant ifL∩Bj = ∅, or will

decrease but remain greater than or equal to one ifL∩ Bj 6= ∅. In both cases, inequality (42) will

be satisfied at̃vk. Hence, we have shown that there is a feasible pointṽk which has a cost smaller

than or equal to that ofvk. This contradicts the assumption thatvk is the unique solution to the

LP. Consequently, the solution to the LP should satisfy all the double-sided box constraints.

b) We need to show thatγTuk < γTuk+1 for any 0 ≤ k < K. This is obvious for ALP decoding, as

the feasible set ofLP k contains the feasible set ofLP k+1. For MALP-A and MALP-B, letLP ∗k

be the problem obtained by removing fromLP k a subset (or all) of the parity inequalities that are

inactive at its solution,uk. As discussed earlier, these inactive inequalities are non-binding, so the

solution toLP ∗k must beuk, as well. Now,LP k+1 is obtained by adding some new (violated)

constraints toLP ∗k. Hence, the feasible set ofLP ∗k strictly contains that ofLP k+1, which yields

γTuk < γTuk+1.

c) Similar to the proof of [9, Theorem 2].

d) Similar to part b), letLP ∗k be the LP problem obtained by removing fromLP k all of the parity

inequalities that are inactive atuk, and remember thatuk is the solution toLP ∗k, as well. Clearly,

all the parity inequalities inLP ∗k are from check nodes with indices inJ k, thus the feasible space

of LP ∗k contains that ofLPDk. Hence, it remains to show thatuk, the optimum feasible point

for LP ∗k, is also in the feasible space ofLPDk.

Let Ik ⊆ {1, . . . , n} be the set of indices of variable nodes that are involved in atleast one of

the parity inequalities inLP ∗k (or, equivalently, check nodes inJ k), and letĨk be the set of the

remaining indices. According to Corollary 2, all the parityinequalities from check nodes inJ k are

satisfied atuk. In addition, we can conclude from Corollary 1 that the box constraints for variables

with indices inIk are satisfied, as well.

Now, for any i ∈ Ĩk, the variableui will be decoupled from all other variables, since it is only

constrained by a box constraint according to (8). Hence, in the solutionuk, such a variable will

take the valueuki = 0 if γi > 0 or uki = 1 if γi < 0.6 Consequently,uk satisfies all the parity

inequalities and box constraints ofLPDk, and hence is the solution to this LP decoding problem.

6We assume thatγi 6= 0, since otherwise,uk

i will not have a unique optimum value, which contradicts the uniqueness

assumption onuk in the theorem.
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