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Abstract

Linear programming (LP) decoding, originally proposed lgtdfmanet al. [4] as an approximation
to the maximum-likelihood (ML) decoding of binary lineardss, solves a linear optimization problem
formed by relaxing each of the finite-field parity-check doaisits into a number of linear constraints.
While providing a number of advantages over iterative ngsgeassing (IMP) decoders, such as its
amenability to finite-length performance analysis, LP di#eg is computationally more complex to
implement in its original form than IMP decoding, due to bttke large size of the relaxed LP problem
and the inefficiency of using general-purpose LP solvers.

This paper explores ideas for fast LP decoding of low-dgnsdrity-check (LDPC) codes. We first
show a number of properties of the LP decoder, and by modjfyfre previously reported Adaptive
LP decoding scheme [9] to allow removal of unnecessary cainss, we prove that LP decoding can
be performed by solving a number of LP problems that contadim@st one linear constraint derived
from each of the parity-check constraints. Then, as a steprtbdesigning an efficient LP solver that
takes advantage of the particular structure of LDPC codesstwdy a sparse interior-point method for
solving this sequence of linear programs. Since the mosipbtoapart of each iteration of the interior-
point algorithm is the solution of a (usually ill-conditied) system of linear equations for finding the
step direction, we propose a preconditioning algorithm ¢oused with the preconditioned conjugate-
gradient method for solving such systems. The proposedopditioning algorithm is similar to the
encoding procedure of LDPC codes, and we demonstrate gstefness via both analytical methods

and computer simulation results.
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. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are becoming afethe dominant means of error-
control coding in the transmission and storage of digitérmation. By combining randomness and
sparsity, LDPC codes with large block lengths can correairgrusing iterative message-passing (IMP)
algorithms at coding rates that are closer to the capacén tiny other class of practical codes [2].
While the performance of IMP decoders for the asymptoti@a#dnfinite lengths is studied extensively
using probabilistic methods such as density evolution 8, finite-length behavior of these algorithms,
especially their error floors, are still not well-characted.

Linear programming (LP) decoding was proposed by Feldmiaal. [4] as an alternative to IMP
decoding of LDPC and turbo-like codes. LP decoding appraxi® the maximum-likelihood (ML)
decoding problem by a linear optimization problem via axatmn of each of the finite-field parity-
check constraints of the ML decoding into a number of lineamstraints. Many observations suggest
similarities between the performance of LP and iterativessage-passing decoding methods [4], [5], [6].
In fact, the sum-product message-passing algorithm cantbepreted as a minimization of a nonlinear
function, known as Bethe free energy, over the same feassigien as LP decoding [7], [8].

Due to its geometric structure, LP decoding seems to be moemnable than IMP decoding to finite-
length analysis. In particular, the finite-length behawbtLP decoding can be completely characterized
in terms of pseudocodewords, which are the vertices of thsiliée space of the corresponding linear
program. Another characteristic of LP decoding — e certificate property— is that its failure to
find an ML codeword is always detectable. More specificallg tlecoder always gives either an ML
codeword or a nonintegral pseudocodeword as the solutinrth® other hand, the main disadvantage of
LP decoding is its higher complexity compared to IMP decgdin

In order to make linear programming (LP) decoding practitalk necessary to find efficient imple-
mentations that make its time complexity comparable to éhosthe message-passing algorithms. A
conventional implementation of LP decoding is highly coexptiue to two main factors: (1) the large
size of the LP problem formed by relaxation, and (2) the iligbdf general-purpose LP solvers to solve

the LP efficiently by taking advantage of the properties & decoding problem.
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The standard formulation of LP decoding [4] has a size thatvgrvery rapidly with the density of the
Tanner graph representation of the code. Adaptive LP (Aldoding was proposed in [9] to address
this problem, reducing LP decoding to solving a sequence wéhnmsmaller LP problems. The size of
these LP problems has been observed in practice to be indepeof the degree distribution, and more
specifically, less than a small factor (less than two) tines number of parity checks. However, this
observation has not been analytically explained.

More recently, an equivalent formulation of the LP decodimgblem was proposed in [11] and [12],
with a problem size growing linearly with both the code lédnghd the maximum check node degrees.
While this formulation requires solving only one LP, the mlecomplexity of this method in practice
remains substantially higher than that of ALP decoding.

In this paper, we take some steps toward designing efficiensalvers for LP decoding that exploit
the inherent sparsity and structure of this particularstafsproblems. Our approach is based on a sparse
implementation of interior-point algorithms. In an indegent work, Vontobel studied the implementa-
tion and convergence of interior-point methods for LP déogdind mentioned a number of potential
approaches to reduce its complexity [13]. It is also worthingpthat a different line of work in this
direction has been to apply iterative methods based on megsassing, instead of general LP solvers,
to perform the optimization for LP decoding; e.g. see [8] &d].

We first propose two modified versions of ALP decoding. Thenmdea behind these modifications
is to adaptively remove a number of constraints at eachtiberaf ALP decoding, while adding new
constraints to the problem. We prove a number of properfidsese algorithms, which facilitate the design
of a low-complexity LP solver. In particular, we show thaetmodified ALP decoders have tisengle-
constraint propertywhich means that they perform LP decoding by solving a sesfdinear programs
that each contain at most one linear constraint from eadtypdreck. An important consequence of this
property is that the constraint matrices of the linear pmogg that are solved have a structure similar, in
terms of the locations of their nonzero entries, to that ef plarity-check matrix.

Then, we focus on the most complex part of each iteration efitierior-point algorithm, which is
solving a system of linear equations to compute the Newtep.s$ince these linear systems become
ill-conditioned as the interior-point algorithm approashthe solution, iterative methods that are often
used for solving sparse systems, such as the conjugategrg@G) method, perform poorly in the later
iterations of the optimization. To address this problem, wepose a criterion for designing precondi-
tioners that take advantage of the properties of LP decodilogpg with a number of greedy algorithms

to search for such preconditioners. The proposed preconiig algorithms have similarities to the
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encoding procedure of LDPC codes, and we demonstrate tiiedtieeness via both analytical methods
and computer simulation results.

The rest of this paper is organized as follows. In Sectionvl,review codes, LP decoding, and ALP
decoding. In Section Ill, we propose some modifications inPAdecoding, and demonstrate a humber
of properties of ALP decoding and its variations. In Sectignwe review a class of the interior-point
linear programming methods, as well as the preconditiomejugate gradient (PCG) method for solving
linear systems, with an emphasis on sparse implementdtioBection V, we introduce the proposed
preconditioning algorithms to improve the PCG method forddeoding. Some theoretical analysis and
computer simulation results are presented in Section Vi#l, smme concluding remarks are given in

Section VII.

Il. LP DECODING
A. Notation

Throughout the paper, we denote scalars and column vecyolswer-case lettersa), matrices by
upper-case lettersA|), and sets by calligraphic upper-case lettedy. (We write theith element of a
vectora and the(s, j)th element of a matrixd asa; and 4, ;, respectively. The cardinality (size) of a
finite set.A is shown by|.A|. The support set (or briefly, support) of a vectoof lengthn is the set of
locationsi € {1,...,n} such thata; # 0. Similarly, the fractional support of a vectarc R" is the set
of locationsi € {1,...,n} such thata; ¢ Z.

A binary linear codeC of block lengthn is a subspace of0,1}™. This supspace can be defined as

the null space (kernel) of a parity-check matfikc {0, 1}*" in modulo-2 arithmetic. In other words,
C={ue{0,1}"|Hz =0 mod 2}. 1)

Hence, each row off corresponds to a binary parity-check constraint. The degte of this code is
defined ask = 1 — 7. In this paper, we assume that has full row rank (mod 2), in which case the
design rate is the same as the rate of the code.

Given them x n parity-check matrixH, the code can also be described by a Tanner graph. The Tanner
graph7 is a bipartite graph containing variable nodegcorresponding to the columns @&f) andm
check nodegcorresponding to the rows dff). We denote byZ = {1,...,n} the set of (indices of)
variable nodes, and hy = {1,...,m} the set of (indices of) check nodes. Variable node connected

to check nodg via an edge in the Tanner graphif;; = 1.
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The neighborhoodV () of a check (variable) nodgis the set of variable (check) nodes it is directly
connected to via an edge, i.e., the support set ofjtheow (column) of 4. The degreel; of a node
j, where the type of the node will be clear from the contexthis ¢ardinality of its neighborhood. Let
S C 7 be a subset of the variable nodes. We &l stopping seff there is no check node in the graph
that has exactly one neighbor &. Stopping sets characterize the termination of a beliepagation
erasure decoder.

Each code can be equivalently represented by many diff@amity-check matrices and Tanner graphs.
However, it is important to note that the performance of stineal decoders, such as message-passing or
LP decoding, may depend on the particular choicé/adnd7 . A low-density parity-check (LDPC) code
is a linear code which has at least one sparse Tanner grapdsegpation, where the average variable
node and check node degrees do not grow withr .

A linear program (LFH of dimensionn is an optimization problem with a linear objective function

and a feasible set (space) described by a number of lineatraints (inequalities or equations) in terms
of n real-valued variables. Each linear constraint in the LPnésfia hyperplane in-dimensional space.
If the solution to an LP is bounded and unique, then it is at @exev of the feasible space, on the
intersection of at least such hyperplanes. Conversely, for any verteaf the feasible space of an LP,
there exists a choice of the coefficients of the objectivetion such that is the unique solution to the
LP.

B. LP Relaxation of Maximum-Likelihood Decoding

Consider a binary linear codeof lengthn. If a codewordv € C is transmitted through a memoryless
binary-input output-symmetric (MBIOS) channel, the ML ewbrd«"’~ given the received vector ¢

R™ is the codeword that maximizes the likelihood of observinge.,

uML = arg max Pr[r|u). 2
ueC
For binary codes, this problem can be rewritten as the elguivaptimization problem
minimize 47 u
ML Decoding 3)
subjectto wu € C,

Throughout the paper, we abbreviate the terms “linear progrand “linear programming” both as “LP".
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where~ is the vector of log-likelihood ratios (LLR) defined as

Pr(ri|u; = 0)

Pr(riju; =1)° @

i = log

The ML decoding probleni(3) is an optimization with a linednjextive function in the real domain,
but with constraints that are nonlinear in the real spactadgabh, linear in modulo-2 arithmetic). It
is desirable to replace these constraints by a number dadirlinenstraints, such that decoding can be
performed using linear programming. The feasible spacé@fdesired LP would be the convex hull of
all the codewords irC, which is calledthe codeword polytopeSince a global minimum occurs at one
of the vertices of the polytope, using this feasible spackawndhe set of potential (unique) solutions to
the LP identical to the set of codewords@n Unfortunately, the number of constraints needed for this
LP representation grows exponentially with the code lentdtbrefore making this approach impractical.
As an approximation to ML decoding, Feldmanal. proposed a relaxed version of this problem by first
considering the convex hull of the local codewords define@gdagh row of the parity-check matrix, and
then intersecting them to obtain what is known asftedamental polytopeP [6].

To describe the (projected) fundamental polytope, linearstraints are derived from a parity-check
matrix as follows. For each row = 1,...,m of the parity-check matrix, i.e., each check node, the LP
formulation includes the constraints

ui— Y wi<[V[-1, VV CN(j) such thatV| is odd (5)
i€V iEN(H)\V
which can be written in the equivalent form
d—u)+ Y wi>=1, ¥V CN( such thatV] is odd (6)
i€V iEN(G)\V
We refer to the constraints of this form aarity inequalities If the variablesu; are zeroes and ones,
these constraints will be equivalent to the original binpayity-check constraints. To see this, note that
if V is a subset of\V(j), with |V| odd, and the corresponding parity inequality fails to hakkn all
variable nodes iV must have the value 1, while those M(j)\V must have the value 0. This implies
that the corresponding vectar does not satisfy parity check Conversely, if parity checl fails to
hold, there must be a subset of variable noleS N (;) of odd size such that all nodes 1A have the
value 1 and all those iW'(j)\V have the value 0. Clearly, the corresponding parity inetualould
be violated. Now, given this equivalence, we relax the LPofmm by replacing each binary constraint,

u; € {0,1}, by abox constraint0 < u; < 1. LP decoding can then be written as
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minimize 47 u
L P Decoding @)
subjectto wu € P.

Lemma 1 ([4], originally by [15]): For any check nodg, the set of parity inequalitie§](5) defines the
convex hull of all0 — 1 assignments of the variables with indicesAf(j) that satisfy thejth binary
parity-check constraint.

Since the convex hull of a set of vectors|in1]* is a subset of0, 1%, the set of parity inequalities for
each check node automatically restrict all the involvedaldes to the interval0, 1]. Hence, we obtain
the following corollary:

Corollary 1: In the formulation of LP decoding above, the box constraiiois variables that are
involved in at least one parity-check constraint are redmnd

The fundamental polytope has a number of integral (binatyed) and nonintegral (fractional-valued)
vertices. The integral vertices, which satisfy all the fyacheck equations as shown before, exactly
correspond to the codewords 6f Therefore, the LP relaxation has thL certificate propertyi.e.,
whenever LP decoding gives an integral solution, it is gotw®@d to be an ML codeword. On the
other hand, if LP decoding gives as the solution one of theimegral vertices, which are known

as pseudocodewordshe decoder declares a failure.

C. Adaptive Linear Programming Decoding

In the original formulation of Feldmaet al. for LP decoding, the number of parity inequalities for
each check node of degrele is equal to the number of odd-sized subsets of its neighlookhehich
is equal to2% 1. Even for parity-check matrices of moderate row weightss trumber can be very
large. In [9] a cutting-plane algorithm was proposed as aerrative to the direct implementation of
LP decoding[(l7). In this method, referred to as “adaptive leeadling” (ALP decoding), a hierarchy
of linear programs with the same objective function as[ind® solved, with the solution to the last
program being identical to that of LP decoding. The firstdinprogram in this hierarchy is made up of
only n box constraints, such that for eack {1,2,...,n}, we include the constraint

0 § U; if Yi 2 0,
{ 8

u; <1 if v < 0.
The solution to this initial problem corresponds to the lestian (uncoded) bit-wise hard decision based

on the received vector.
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Algorithm 1 ALP Decoding
1: Setup the initial LP problem with constraints frofd (8), ane- 0;

2: Find the solutionu” to the initial LP problem by bit-wise hard decision;
3: repeat
4. k<« k+1;

5. Find the setS* of all parity inequalities and box constraints that are ated atu*—';

@

If |S*| > 0, add the constraints i§* to the LP problem and solve it to obtairt;
until |S¥| =0

N

8: Outputu = «* as the solution to LP decoding.

The adaptive LP decoding algorithm is presented here asrifigo[d (ALP decoding). In Step 5 of
this algorithm, the search for all the violated parity inalities can be performed using Algorithm 1
of [9] in O, d;logd;) = O(mdmaz 10g dma:) time, without having to examine all the (m2%ma=)
parity inequalities given by the original LP decoding folation. Furthermore, based on observations,
it is conjectured in [10] that there is no need to check folated box constraints in Step 5, since they
cannot be violated at any of the intermediate solutiofisof ALP decoding. In the next section, we
present a proof of this conjecture.

In [9], the number of iterations of ALP decoding was uppeuwtaed by the code length, However,
it was observed in the simulations that the typical numbdtasftions is much smaller in practice (less
than20 for all n» < 2000). Moreover, one can conclude from the following theorent,thtieach iteration
of ALP decoding, the number of violated parity inequalitetded to the problem is at most, where
m is the number of check nodes.

Theorem 1 ([10]): If at any given pointu € [0,1]™, one of the parity inequalities introduced by a
check nodegj is violated, the rest of the parity inequalities from thieck node are satisfied with strict

inequality.

[1l. PROPERTIES ANDVARIATIONS OF ALP DECODING

In this section, we prove some properties of LP and ALP dewpdind propose some madifications to
the ALP algorithm. As we will see, many of the elegant projperbf these algorithms are consequences
of Theoren L.

First, we propose an alternative to using Algorithm 1 of @] finding all the violated parity inequalities

at any given point: € [0,1]". Consider the general form of parity inequalities [ih (6) éogiven check
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nodej, and note that at most one of these inequalities can be elktu. To find this inequality, if it
exists, we need to find an odd-siz€dc A/ (j) that minimizes the left-hand side &fl (6). If there were no
requirement that)| is odd, the left-hand side expression would be minimized biimg anyi € N (j)
with u; > % in V. However, if suchyY has an even cardinality, we need to select one elentenf
N(j) to add to or remove fronV, such that the increase on the left-hand side[bf (6) is mihiffiais
means that* is the element whose corresponding vailyeis closest to%. This results in Algorithni 2,
which hasO(d;) complexity for check nodg, thus reducing the complexity of finding all the parity
inequalities fromO(3 1", d;log d;) with Algorithm 1 of [9] to O(3_T, d;) = O(E), whereE is the

total number of edges in the Tanner graph.

Algorithm 2 Find the Violated Parity Inequality from Check Nogdeat u
: S {i e N(G)|ui > 5}
if |S| is oddthen

V< S;

[EEY

N

w

4: else

5 % <— argminen() [ui — 3;

6: V<« S\{i*} if i* € S; otherwiseV + S U {i*};

7: end if

8: if (@) is satisfied au for this j andV then

9: Check nodej does not introduce a violated parity inequality.at
10: else

11:  We have found the violated parity inequality from check ngde

12: end if

A. Modified ALP Decoding

Definition 1: A linear inequality constraint of the form’ = < b is calledactiveat pointz" if it holds
with equality; i.e.,a” 2% = b, and is callednactiveif it holds with strict inequality; i.ea”z° < b.
The following is a corollary of Theorefd 1

Corollary 2: If one of the parity inequalities introduced by a check nadadtive at a point® < [0, 1]",
all parity inequalities from this check node must be satistiez.

Corollary[2 can be used to simplify Step 5 of ALP decoding @ithm[1) as follows. We first find

the parity inequalities currently in the problem that aréivacat the current solutiony*. This can be
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done simply by checking if the slack variable correspondm@ constraint is zero. Then, in the search
for violated constraints, we exclude the check nodes thteddace these active inequalities.

Now consider the linear programP* at an iterationk of ALP decoding, with an optimum point*.
This point is the vertex (apex) of thedimensional cone formed by all hyperplanes corresponttirtge
active constraints. It is easy to see that among the conraa this linear program, the inactive ones
are non-binding meaning that, if we remove the inactive constraints from pnoblem,u* remains an
optimum point of the feasible space. This fact motivates difitation in the ALP decoding algorithm,
where, after solving each LP, a subset of the constraintsattgaactive at the solution are removed.

By combining the two ideas proposed above, we obtain the firddALP decoding algorithm A
(MALP-A decoding), stated in Algorithrh]3. It was conjectdren [10] that no box constraint can be
violated at any intermediate solution of ALP decoding. Wd miove this conjecture for both ALP and
MALP decoding in this section. Hence, we do not search folatal box constraints in the intermediate

iterations of the proposed algorithms.

Algorithm 3 MALP-A Decoding
1: Setup the initial LP problem with constraints frond (8), ane- 0;

2: Find the solutionu® to the initial LP problem by bit-wise hard decision;
3: repeat
4 k< k+1; flag + 0;

5. for j=1tomdo

6: if there is no active parity inequality from check noglé the problemthen

7 if check nodej introduces a parity inequality that is violatedt~! then

8: Remove the parity inequalities of check nofdéf any) from the current problem;
9 Add the new (violated) constraint to the LP problefilag < 1;

10: end if

11: end if

12:  end for

13:  If flag =1, solve the LP problem to obtain®;
14: until flag =10

15: Outputu = u* as the solution to LP decoding.

Checking the condition in line 7 can be done using Algoriffiin 2(d;) time, whered; is the degree
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of check nodej, and the role of the if-then structure of line 6 is to limitghprocessing to only check
nodes that are not currently represented in the problem kactwe constraint. In line 8, before adding a
new constraint from check nodeto the problem, any existing (inactive) constraint is reegh¥rom the
problem. Alternatively, we can move this command to line.&, iemove all the inactive constraints in the
problem. We call the resulting algorithm the modified ALP ad@ing algorithm B (MALP-B decoding).
The LP problems solved in the ALP and modified ALP decodingiligms can be written in the

“standard” matrix form as
minimize 47 u

subjectto Au < b,
9)
u >0 VYieZl: ~ >0,

u; <1 ViGI:%—<0,

where matrixA is called theconstraint matrix

B. Properties

In Theorem 2 of [9], it has been shown that the sequence ofignfuto the intermediate LP problems
in ALP decoding converges to that of LP decoding in at mosterations. In the following theorem,
in addition to proving that this property holds for the two difeed ALP decoding algorithms, we show
three additional properties shared by all three variatiwihadaptive LP decoding.

We assume that the optimum solutions to all the LP problenthénintermediate iterations of either
ALP, MALP-A, or MALP-B decoding are unique. However, one cae that this uniqueness assumption
is nhot very restrictive, since it holds with high probalyilif the channel output has a finite probability
density function (pdf). Moreover, channels that do nots$atihis property, such as the binary symmetric
channel (BSC), can be modified to do so by adding a very smatiramous-domain noise to their output
(or LLR vector).

Theorem 2 (Properties of adaptive LP decodingkt «°, «',...,u" be the unique solutions to the
sequence of LP problem&,P?, LP!, ... LPX, solved in either ALP, MALP-A, or MALP-B decoding

algorithms. Then, the following properties hold for allékralgorithms:

a) The sequence of solution8, ', ... satisfy all the box constrain® < v; <1, Vi=1,...,n.

b) The costs of these solutions monotonically increase thighiteration number; i.e.,
AT < 4Tul < ... (20)
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c) «%,u',... converge to the solution of LP decoding;, in at mostn iterations.

d) Consider the set of parity inequalities includedii?* which are active at its optimum solution”.
Let 7% = {41, 7o, ... ,Jjg+} be the set of indices of check nodes that generate thesealitézg
Then,u* is the solution to an LP decoding probleb® D* with the LLR vectory and the Tanner
graph corresponding to the check nodes7ih.

The proof of this theorem is given in Appendix I.

The following theorem shows an interesting property of thedified ALP decoding schemes, which
we call the “single-constraint property.” This propertyedonot hold for ALP decoding.

Theorem 3:In the LP problem at any iteratiok of the MALP-A and MALP-B decoding algorithms,
there is at most one parity inequality corresponding to eddtk node of the Tanner graph.

Proof: [By induction] The initial LP problem consists only of boxmsiraints. So, it suffices to show
that, if the LP problent. P* at an iteration satisfies the desired property, the LP proble@**! in the
subsequent iteration satisfies this property, as well. densheck nodg which has a violated parity
inequality ~; at the solutionu® of LP*. According to Corollan[ R, if there already has been a parity
inequality #; from this check node i Pk, k; cannot be active at®, hence, the MALP decoder will
remover; before addings; to LP**!. As a result, there cannot be more than one parity inequatity
any check nodg in LP*+1 [

Corollary 3: The number of parity inequalities in any linear program edhby the MALP decoding
algorithms is at mostn

The result above is in contrast to the non-adaptive fornariatof LP decoding, where the size of the
LP problems grows with the check node degree. Consequéimycomplexity of these two algorithms
can be bounded by their number of iterations times the waasé complexity of solving an LP problem
with n variables andn parity inequalities. Therefore, an interesting problenineestigate is how the
number of iterations of the MALP decoding algorithms vaneigh the code parameters, such as the
length or the check node degrees, and how its behavior chategending on whether the LP decoding
output is integral or fractional. In Subsection IlI-D, weepent some simulation results, studying and
comparing ALP decoding and its modifications in terms of thenher of iterations.

An important consequence of Theoréin 3 is that, in the LP problthat are solved by these two
algorithms, the distribution of the nonzero elements ofltReconstraint matrix A, has the same structure
as that of the parity-check matri¥{, after removing the rows off that are not represented by a parity
inequality in the LP. This is due to the fact that the suppettaf a row of A, corresponding to a parity

inequality, is identical to that of the row aff from which it has been derived, and in addition, each
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row of A is derived from a unique row off. As we will see later in this paper, this property, which is
not shared by LP or ALP decoding, maintains the same desii@hbinatorial properties (e.g., degree
distribution) for A that the H matrix has. This can be exploited in the design of efficientdoRrers.

Remember that the LP problem in the last iteration of the MAldeoding algorithms has the same
solution as standard LP decoding. This solution is a verfethe feasible set, defined by at least
active inequalities from this LP problem. Hence, using @arg 3, we conclude that at least— m box
constraints are active at the solution of LP decoding. Thaklg the following properties of LP decoding.

Corollary 4: The solution to any LP decoding problem differs in at mest m coordinates from the
vector obtained by making bit-based hard decisions on the iz&ctor~y.

Corollary 5: Each pseudocodeword of LP decoding has at mostactional entries.

Remark 1: This bound on the size of the fractional support of pseudeawodds is tight in the sense
that there are LP decoding relaxations which have pseudwoamds with exactlymn fractional entries.

An example is the pseudocodewdid,0, 1,0,0, 1] of the (7,4, 3) code withm = 3, given in [4].

C. Connection to Erasure Decoding

For the binary erasure channel (BEC), the performance a¢foptopagation (BP), or its equivalent,
the peeling algorithm, has been extensively studied. Thedirge algorithm can be seen as performing
row and column permutations to triangularize a submatri¥fafonsisting of the columns corresponding
to the erased bits. It is known that the BP and peeling desosiecceed on the BEC if and only if the
set of erased bits does not contain a stopping set.

Feldmanet al. have shown in [4] that LP decoding and BP decoding are e@rivain the BEC.
In other words, the success or failure of LP decoding can bés@xplained by stopping sets. In this
subsection, we show a connection between LP decoding onEkea®d LP decoding on general MBIOS
channels, allowing us to derive a sufficient condition fog fhilure of LP decoding on general MBIOS
channels based on the existence of stopping sets.

Theorem 4:Consider an LP decoding problemPD° with LLR vector~, +; # 0 V i € Z, resulting
in the unique integral solution (i.e., the ML codeword) Also, let & be the result of bit-based hard
decisions ony; i.e., u; = 0 if 7; > 0, anda; = 1 otherwise. Then, the sét C 7 of positions whereu
andu differ, does not contain a stopping set.

Proof: Let’s assume, without loss of generality, thais the vector of all-zeroes, in which case we
will have
E=1{ieTIly<0}. (11)
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We form an LP erasure decoding probldn® DPEC with u as the transmitted codeword afidas the
set of erased position€&.PDPFC has the same feasible spa@eas LPD°, but has a new LLR vector
A, defined such that i € Z,
0 if i€é,
Ai = 12)
1 otherwise

Clearly, sinceP C [0,1]", we have v > 0, V v € P. We prove the theorem by showing that the
all-zeroes vector is the unique solution t&. PDBEC | as well.

Assume that there is another vectoe P such that we have
Moy =Ty =0. (13)

Combining [12) and[(13) yields
> vi=0, (14)
i€T\E
implying thatv; = 0, V i € Z\&. Therefore, using(11), the cost of the vectofor L P D° will be
7= Z%”Ui
ic€

<0= ’yTu, (15)

with equality if and only ifv; = 0, V i € Z. Since, by assumption, is the unique solution td.PD°,
we must havey = u = [0,...,0]”. Hence,u is also the unique solution td PDBFC. Finally, due to
the equivalence of LP and BP decodings on the BEC, we conchate€ does not contain a stopping
set. [
Theorem’# will be used later in the paper to design an efficieayt to solve the systems of linear

equations we encounter in LP decoding.

D. Simulation Results

We present simulation results for ALP, MALP-A, and MALP-Badeling of random(3, 6)-regular
LDPC codes, where the cycles of length four are removed floenTanner graphs of the codes. The
simulations are performed in an AWGN channel with the SNR dB (the threshold of belief-propagation
decoding for the ensemble @3, 6)-regular codes ig.11 dB), and include 8 different lengths, with 1000
trials at each length.

In Fig.[d, we have plotted the histograms of the number offtens using the three algorithms for

lengthn = 480. The first column of histograms includes the results of &l decoding instances, while
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Fig. 1. The histograms of the number of iterations for ALP, MRA, and MALP-B decoding for a randor(s, 6)-regular
LDPC code of length 480 at SNR = 2 dB. The left, middle, and trighlumns respectively correspond to the results of all

decoding instances, decodings with integral outputs, @awmbdings with fractional output.

the second and third columns only include the decoding lests with integral and fractional outputs,
respectively. From this figure, we can see that when the ougpintegral (second column), the three
algorithms have a similar behavior, and they all convergieds that 15 iterations. On the other hand,
when the output is fractional (third column), the typicahmuers of iterations are 2-3 times higher for all
algorithms, so that we observe two almost non-overlappeakp in the histograms of the first columns.
In Fig.[2, the average numbers of iterations of the threerilgos are plotted for both integral and
fractional decoding outputs versus the code length. As asureaof the deviation of the results from the
mean, we have also included th&’% one-sided confidence upper bound for each curve, which inatfi
as the smallest number which is higher than at 168%t of the values in the population. We can observe
that the number of iterations for MALP-A and MALP-B decodiage significantly higher that that of
ALP when the output is fractional. On the other hand, for diéng instances with integral outputs, where
the LP decoder is successful in finding the ML codeword, tleeeiase in the number of iterations for
the modified ALP decoders relative to the ALP decoder is vemgls Hence, the MALP decoders pay a
small price in terms of the number of iterations in exchargeobtaining the single-constraint property.
Moreover, our simulations indicate that the size of thedatd_P that is solved in each MALP-A or

MALP-B decoding problem is smaller on average than that oPAlecoding byl 7% for integral outputs
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Fig. 2. The number of iterations of ALP, MALP-A, and MALP-Bd=ling versus code length for randds 6)-regular LDPC
codes at SNR = 2 dB. The solid and dashed curves represemctisely, the average values and %% one-sided confidence

upper bounds.

and 30% for fractional outputs.

IV. SOLVING THE LP USING THE INTERIOR POINT METHOD

General-purpose LP solvers do not take advantage of thécydart structure of the optimization
problems arising in LP decoding, and, therefore, using tloam be highly inefficient. In this and the
next sections, we investigate how LP algorithms can be implged efficiently for LP decoding. The
two major techniques for linear optimization used in mogtligations are Dantzig's simplex algorithm

[16] and the interior point methods.

A. Simplex vs. Interior-Point Algorithms

The simplex algorithm takes advantage of the fact that ttatisa to an LP is at one of the vertices
of the feasible polyhedron. Starting from a vertex of thesfiele polyhedron, it moves in each iteration

(pivot) to an adjacent vertex, until an optimal vertex iscteed. Each iteration involves selecting an
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adjacent vertex with a lower cost, and computing the sizeéhefstep to take in order to move to that
edge, and these are computed by a nhumber of matrix and vegotoat@®ns.

Intertior-point methods generally move along a path wittie interior of the feasible region. Starting
from an interior point, interior point methods approximéte feasible region in each iteration, and take
a Newton-type step towards the next point, until they geth® dptimum point. Computation of these
steps involves solving a linear system.

The complexity of an LP solver is determined by the numbertefations it takes to converge and
the average complexity of each iteration. The number ofiitens of the simplex algorithm has been
observed to be polynomial (superlinear), on average, inpteblem dimensiom, while its worst-case
performance can be exponential. An intuitive way of underding why the average number of simplex
pivots to successfully solve an LP decoding problem is astldimear inn is to note that each pivot
makes one basic primal variable nonbasic (i.e. sets it to)z@rd makes one nonbasic variable basic (i.e.
possibly increases it from zero). Hence, starting from atiainpoint, it should generally take at least a
constant times: pivots to arrive at a point corresponding to a binary codelwdiherefore, even if the
computation of each simplex iteration were done in lineareti one could not achieve a running time
better thatO(n?), unless the simplex method is fundamentally revised.

In contrast to the simplex algorithm, for certain classest@fior-point methods, such as the path-
following algorithm, the worst-case number of iteratiorestbeen shown to b@(/n), although these
algorithms typically converge i®(logn) iterations [17]. Therefore, if the Newton step at each ttera
can be computed efficiently, taking advantage of the spyaesid structure in the problem, one could
obtain an algorithm that is faster than the simplex algariflor large-scale problems.

Interior-point methods consist of a variety algorithmdfetting in the way the optimization problem
is approximated by an unconstrained problem, and how theistealculated at each iteration. One of
the most successful classes of interior-point methodseagptimal-dual path-following algorithm, which
is most effective for large-scale applications. In thedaiing subsection we present a brief review of
this algorithm. For a more comprehensive description, Werrthe reader to the literature on linear

programming and interior-point methods.

B. Primal-Dual Path-Following Algorithm

For simplicity, in this section we assume that the LP prolseéhat we want to solve are of the form
(@). However, by introducing a number of additional slackiatales, we can modify all the expressions

in a straighforward way to represent the case where bothstgpdox constraints may be present for
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each variable.

We first write the LP problem witly variables ang constraints in the “augmented” form

minimize ¢’z
Primal LP  subjectto Az =b, (16)
x > 0.

Here, to convert the LP problernl (9) into the form above, weehtaken two steps. First, noting that each
variableu; in (9) is subject to exactly one box constraint of the foumn> 0 or u; < 1, we introduce
the variable vectorr and cost vectoe, such that for anyi = 1,...,n, x; = u; and¢; = ; if the
former inequality is included (i.ey; > 0), andxz; = 1 —u; and¢; = —~;, otherwise. Therefore, the box
constraints will all have the forme; > 0, and the coefficients of the parity inequalities will alsaaobe
correspondingly. Second, for apy= 1,...,p, we convert the parity inequalitd;,z < b; in (@), where
A, denotes thejth row of A, to a linear equatioM .z + z,4; = b;, by introducingp nonnegative
slack variablesc,, 1, ..., z,, Whereq = n + p, with corresponding coefficients equal to zero in the cost
vector,c. We will sometimes refer to the first (non-slack) variables as tleandard variablesThe dual

of the primal LP has the form

minimize b’y
Dual LP  subjectto ATy +z =, (17)
z >0,

wherey and z are the dual standard and slack variables, respectively.

The first step in solving the primal and dual problems is to geenthe inequality constraints by
introducing logarithmicbarrier termsinto their objective functionE.The primal and dual objective
functions will thus change to” z — . >"7_, log z; andbTy — >, log z;, respectively, for somg > 0,
resulting in a familiy of convex nonlinear barrier problem®$..), parameterized by, that approximate
the original linear program. Since the logarithmic termcé®z and z to remain positive, the solution to
the barrier problem is feasible for the primal-dual LP, andain be shown that gs — 0, it approaches
the solution to the LP problem. The key idea of the path-feitg algorithm is to start with somg > 0,

and reduce it at each iteration, as we take one step to sadvbalrier problem.

2Because of this step, interior-point methods are sometiferred to in the literature as barrier methods.
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The Karush-Kuhn Tucker (KKT) conditions provide necessamy sufficient optimality conditions for

P(u), and can be written as [17, Chapter 9]

Az =b (18)
Aly+z=c (19)
XZe = pe (20)
x,z >0, (22)

where X and S are diagonal matrices with the entrieszofand = on their diagonal, respectively, ard

denotes the all-ones vector. If we define

Ax —b
F(s)= ATy +z—¢|,
XZe — pe

wheres = (z,y, z) is the current primal-dual iterate, the problem of solviiy:) reduces to finding the
(unique) zero of the multivariate functiofi(s). In Newton’s methodF'(s) is iteratively approximated

by its first order Taylor series expansion aroung s*
F(sF + As®) = F(sF) + J(s*)As*, (22)

where J(s) is the Jacobian matrix of'(s). The Newton directioms* = (Az*, Ay*, Az¥) is obtained

by setting the right-hand side df (22) to zero, resultinghia following system of linear equations:

A 0 0 Axk T

0 AT I AyF | = |r, (23)

Zr 0 Xp| |AZF Te
wherer, = b— Az*, r. = c— ATyF — 2F, andr, = p*e — X, Z,e are the residuals of the KKT equations
(I8), andy* is the value ofy at iterationk. If we start from a primal and dual feasible point, we will
not need to compute, andr., as they will remain zero throughout the algorithm. HoweWer sake of
generality, here we do not make any feasibility assumpiiomrder to have the flexibility to apply the
equations in the general, possibly infeasible case.

The solution to the linear systein (23) is given by

(ADEAT)Ay* = ry + AD}r. — AZ 1, (24)
Az* = DEATAY® — Diro+ Z M, (25)
Az = X (re — ZAY), (26)
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where
D} = X7, " (27)

To simplify the notation, we will henceforth drop the subigtik from Dy, but it should be noted that

D is a function of the iteration numbek, Having the Newton direction, the solution is updated as
ot = ab 4 pE AR,
Y=y + BHAYY,
KL= kg gk ALk

and the primal and dual step lengtii;, 8% € [0,1], are chosen such that all the entriesaofind »
remain nonnegative.

Since we are interested in solving the LP and not the barregram P(u) for a particularu, rather
than taking many Newton steps to approach the solutioR (@), we reduce the value gf each time
a Newton step is taken, so that barrier program gives a bafproximation of the LP. A reasonable

updating rule foru is to make it proportional to the duality gap = (z%)7 2%, that is

E_ M (28)
q

The primal-dual path-following algorithm described abavi iterate until the duality gap becomes
sufficiently small; i.e.(z*)7 2% < e. It has been shown that with a proper choice of the step Isngjis
algorithm takes0 (,/glog(eo/€)) to reduce the duality gap fromy to .

In order to initialize the algorithm, we need some feasilfle> 0, 3°, andz° > 0. Obtaining such an
initial point is nontrivial, and is usually done by introdng a few dummy variables, as well as a few
rows and columns to the constraint matrix. This may not béraele for a sparse LP, since the new rows
and columns will not generally be sparse. Furthermore,aéfNewton directions are computed based on
the feasibility assumption; i.e. thaf = 0 andr. = 0, round-off errors can cause instabilities due to
the gradual loss of feasibility. As an alternative, an isfbke variation of the primal-dual path-following
algorithm is often used, where any > 0, 3°, andz® > 0 can be used for initialization. This algorithm

will simultaneously try to reduce the duality gap and thernai-dual feasibility gap to zero. Consequently,

the termination criterion will change: we stop the alganitif (z¥)72* < ¢, ||rp|| < 6p, and||r.|| < ép.

C. Computing the Newton Directions: Preconditioned CoapegGradient Method

The most complex step at each iteration of the interior{algorithm in the previous subsection is

to solve the “normal” system of linear equations inl(24). Whhese equations were derived for the
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primal-dual path-following algorithm, in most other vdi@ns of interior-point methods, we encounter
linear systems of similar forms, as well.

Various algorithms for solving linear systems fall into twimain categories oflirect methodsand
iterative methodsWhile direct methods, such as Gaussian elimination attdémgolve the system in
a finite number of steps, and are exact in the absence of nogretiors, iterative methods start from
an initial guess, and derive a sequence of approximateisoutSince the constraint matri® D2 A”
in (24) is symmetric and positive definite, the most commaedi method for solving this problem is
based on computing the Cholesky decompaosition of this mattowever, this approach is inefficient
for large-scale sparse problems, due to the computatiosdlaf the decomposition, as well as loss of
sparsity. Hence, in many LP problems, e. g. network flow linragrams, iterative methods such as the
conjugate gradient (CG) method [18] are preferred.

Suppose we want to find the solutiofi to a system of linear equations given by
Q= w, (29)

whereQ is a g x ¢ symmetric positive definite matrix. Equivalently’ is the unique minimizer of the
functional

f(z) = %xTQm —wlz. (30)

We call two nonzero vectors,, v € R?, QQ-conjugate if
u'Qu = 0. (32)

The CG method is based on building a set(ptonjugate basis vectors,, ..., h,, and computing the
solutionz* as

= ajhi, ..., aqhg, (32)

whereqy, = . Hence, the problem becomes that of finding a suitable seagi§lvectors. In the CG

hfw
hT Qhy,
method, these vectors are found in an iterative way, sudhattetepk, the next basis vectdt, is chosen
to be the closest vector to the negative gradienf (@f) at the current point*, under the condition that
it is Q-conjugate tohq, ..., hi_1. For a more comprehensive description of this algorithra, rsader is
referred to [19].

While in principle the CG algorithm requiressteps to find the exact solutiarf, sometimes a much

smaller number of iterations provides a sufficiently actaiegoproximation to the solution. The distribution

of the eigenvalues of the coefficient matiix has a crucial effect on the convergence behavior of the
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CG method (as well as many other iterative algorithms). Iriigdar, it is shown that [19, Chapter 6]

K(Q) -1
VEQ)+1

where||z| o = v/ (2T Qz) andx(Q) is the spectral condition number of Q, i.e. the ratio of theximam

* k *
lz* — 2¥[lq < 2] " llz* = 2%llq, (33)

and minimum eigenvalues of Q. Using this result, the numlbétecations of the CG method required
to reducel|z* — 2*|| by a certain factor from its initial value can be upper-boeshdy a constant times
m. We henceforth call a matrig ill-conditioned, in loose terms, if CG converges slowly wisng
29).

In the interior-point algorithm, the spectral behavior @f= AD?A” changes as a function of the
diagonal elements,, ..., d,, of D, which are, as described in the previous subsection, theregaots of
the ratios between the primal variablgs;} and the dual slack variablds;}. In Fig.[3, the evolution of
the distributions of z;}, {z;}, and{d;} through the iterations of the interior-point algorithm lisstrated
for an LP subproblem of an MALP decoding instance. We can s this figure that:;; and z; are
distributed in such a way that the produgt; is relatively constant over afl = 1,...,¢. This means
that, although the path-following algorithm does not costglly solve the barrier problems defined in
IV-B, the condition [(20) is approximately satisfied for allA consequence of this, which can also be
observed in Figl]3, is that

1
di~—x;, Vi=1,...,q. (34)
Vi

As the iterates of the interior-point algorithm become elta® the solution ang approaches zero, many
of the d;’s take very small or very large values, depending on theevaluthe corresponding; in the
solution. This has a negative effect on the spectral behafi@, and as a result, on the convergence of
the CG method.

When the coefficient matrix) of the system of linear equations is ill-conditioned, it @yxamon to use
preconditioning. In this method, we use a symmetric pasithefinite matrixA/ as an approximation of

Q, and instead of (29), we solve the equivalent preconditasestem
M™1Qz = M tw. (35)

We hence obtain the preconditioned conjugate gradient jR@§arithm, summarized as Algorithih 4.
In order to obtain an efficient PCG algorithm, we need the q@mditioner M to satisfy two require-
ments. First M/ ~'Q should have a better spectral distribution tlanso that the preconditioned system

can be solved faster than the original system. Second, uldhze inexpensive to solv&/x = z, since

we need to solve a system of this form at each step of the pd@@red algorithm. Therefore, a natural
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Fig. 3. The parameters;, z;, andz;, for : = 1,..., ¢ at four iterations of the interior-point method for an LP grdblem
of MALP decoding withn = 1920, p = 627, ¢ = 2547. The variable indices;, (horizontal axis) are permuted to sa#t in

increasing order.

approach is to design a preconditioner which, in additioprimviding a good approximation @, has

an underlying structure that makes it possible to sdlfe = ~ using a direct method in linear time.
One important application of the PCG algorithm is in inteqpoint implementations of LP for minimum-

cost network flow (MCNF) problems. For these problems, thestaint matrixA in the primal LP

corresponds to the node-arc adjacency matrix of the netwoakh. In other words, the LP primal

variables represent the edges, each constraint is defin¢ief@edges incident to a node, and the diagonal

elementsd;, ..., d,, of the diagonal matrixD can be interpreted as weights for thedges (variables).

A common method for designing a preconditioner #o0D2A” is to select a set of p columns of A

edges) with large weights, and fortd = A D3, AL, where the subscri for a matrix denotes a
g g g M
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Algorithm 4 Preconditioned Conjugate Gradient (PCG)
1: Compute an initial guess® for the solution;

20 =w— QY

3: Solve M 20 = »9;

4: B0 =20
5. for i+ =0,..., until convergencelo
6: 1" = Qhn’;

7. a; = (2T (BT

8 o't =2zl 4 otk

9 il =yl — ol

10:  Solve M zi*! = pitl

11: v = (Tt (T,
12 pitl = il 4 g

13: end for

matrix consisting of the columns of the original matrix witidices in M.

It is known that at a non-degenerate solution to an MCNF mmblthe nonzero variables (i.e., the
basic variables) correspond to a spanning tree in the grijpis. means that, when the interior-point
method approaches such a solution, the weights of all thess@gxcept those defining this spanning tree,
will go to zero. Hence, a natural selection {6 would be the set of indices of the spanning tree with
the maximum total weight, which results in the maximum-virtigpanning tree (MST) preconditioner.
Finding the maximum-weight spanning tree in a graph can I @dficiently in linear time, and besides,
due to the tree structure of the graph represented fy, the matrix M can be inverted in linear time
as welll The MST has been observed in practice to be very effectiyecdally at the latter iterations

of the interior-point method, when the operating point issel to the final solution.

V. PRECONDITIONERDESIGN FORLP DECODING

Our framework for designing an effective preconditioner & decoding, similar to the MST pre-

conditioner for MCNF problems, is to find preconditioning setM C {1,...,q}, corresponding tg

3Throughout the paper, we refer to solving a system of lingaations with coefficient matrid/, in loose terms, as inverting

M, although we do not explicitly computif —*.
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columns of A and D, resulting inp x p matricesAx; and Dy, such thatM = AMDEMATM is both
easily invertible and a good approximation @f= AD?A”. To satisfy these requirements, it is natural
to selectM to include the variables with the highest weightd;}, while keepingA . and D, full
rank and invertible inO(q) time. Then, the solution®*! to Mzi*! = ri*! in the PCG algorithm can
be found by sequentially solving v fi = ritt, D3, f, = f1, and ALzt = f,, for fi1, fo, and 21,
respectively.

We are interested in having a graph representation for thetints and variables of a linear program
of the form [16) in the LP decoding problem, such that thediele of a desirableM can be interpreted
as searching for a subgraph with certain combinatoriakgires.

Definition 2: Consider an LP of the forni_(16) with constraints ang variables, where:,, 11, ...,z
are slack variables. Thextended Tanner grapbf this LP is a bipartite graph consisting gfvariable
nodesandp constraint nodessuch that variable nodeis connected to constraint nodd z; is involved
in the jth constraint; i.e.A; ; is nonzero.

For the linear programs in the MALP decoding algorithmscsireach constraint is derived from
a unique check node of the original Tanner graph, the exted@ner graph will be a subgraph of
the Tanner graph, with the addition gfdegree-1 (slack) variable nodes, each connected to onesof th
constraint nodes. In general, for an iteration of MALP deogdf a code with ann x n parity-check
matrix, the extended Tanner graphs would contaif m constraint nodes; variable nodes corresponding
to the standard variables (bit positions), anslack variable nodes. As extended Tanner graphs are special
cases of Tanner graphs, they inherit all the combinatooalcepts defined for Tanner graphs, such as

stopping sets. A small example of an extended Tanner gragives in Fig.[4.

A. Preconditioning via Triangulation

For a sparse constraint matri, a sufficient condition ford », and A%, to be invertible inO(g) time
is that A4 can be made upper or lower triangular, with nonzero diagelehents, using column and/or
row permutations. We call a preconditioning set that satisfies this property taangular set Once an
upper- (lower-) triangular formﬁlfvl of A, is found, we start from the last (first) row otﬁ, and, by
taking advantage of the sparsity, solve for the variableesponding to the diagonal element of each
row recursively inO(1) time. It is not difficult to see that there always exists asteane triangular set
for any LP decoding problem; one example is the set of colucamsesponding to the slack variables,
which results in a diagonal 4.

As a criterion for finding the best approximatietn,D?%, A%, of AD2AT, we search for the triangular
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Fig. 4. An extended Tanner graph for an LP problem witk- 4, p = 3, andq = 7.

set that contains the columns with the highest weigtifs,One can consider different strategies of
scoring a triangular set from the weights of its members,, élg¢ sum of the weights, or the largest
value of minimum weight. It is interesting to study as a fetuvork whether given any such metric, the
“maximum-weight” (or optimal) triangular set can be foundgolynomial time. However, in this work,
we propose a (suboptimal) greedy approach, which is metivay the properties of the LP decoding
problem.

The problem of bringing a parity-check matrix into (approaie) triangular form has been studied by
Richardson and Urbanke [20] in the context of the encoding@PC codes. The authors proposed a
series of greedy algorithms that are similar to the peeliggrahm for decoding in the binary erasure
channel: repeatedly select a nonzero entry (edge) of thexn{gtaph) lying on a degree-1 column or
row (variable or check node), and remove both the column andaf this entry from the matrix. They
showed that parity-check matrices that are optimized fas@te decoding can be made almost triangular
using this greedy approach. It is important to note that dasbinatorial approach only relies on the
placement of the nonzero entries of the matrix, rather thair values.

The fact that the constraint matrices of the LP problems inLAAlecoding have structure similar to
the corresponding parity-check matrix motivates the use gfeedy algorithm analogous to those in [20]
for triangulating the matrix4d. However, this problem is different from the encoding pewsb] in that we
are not merely interested in making triangular, but rather, we look for the triangular submatsiith
the maximum weight. In fact, as mentioned earlier, finding efangular form ofA is trivial, due to

the presence of the slack variables. Here, we present tiheeglyalgorithms to search for the MTS, one
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of which is related to the algorithms of Richardson and UKearmThroughout this section, we will also
refer to the outputs of these (suboptimal) greedy algosthim loose terms, as the MTS, although they
may not necessarily have the maximum possible weight.

1) Incremental Greedy Search for the MTAlthough an ideal preconditioning set would contain the
g columns of the matrix that have thehighest weights, in reality, the square submatrixdofomposed
of theseq columns is often neither triangular nor full rank. In the rieimental greedy search for the
MTS, we start by selecting the highest-weight column, agddrexpand the set of selected columns by
giving priority to the columns of higher weights, while m&iming the property that the corresponding
submatrix can be made lower-triangular by column and rownpéations.

Let S be a set of selected columns fraf) where|S| < p. In order to check whether the submatrix
As can be made lower-triangular by column and row permutatiaves can treat the variable nodes
corresponding taS in the Tanner graph as erased bits, and use the peelingthlgot® decode them
in O(q) time. For completeness, this process, which we call thengutation Step, is described in

Algorithm 5.

Algorithm 5 Triangulation Step
1: Input: The setS with |S| = s < p, and the matrixA;

2: Output: An s x s lower-triangular submatrixs, if possible;

3: Initialization: A « Ag, and initializecol androw as zero-length vectors;

4. for k=110 s do

5. if the minimum row degree i is not onethen As cannot be made lower-triangular by
permutation; Declar&ailure and exit the algorithm;

6: Select any degree-1 roy from A, and leti be the index of the column that contains the only
nonzero entry of rowj;

7 col + [Cﬂ , TOW <— [N;w];

8. Set all the entries in columhand row;j of A to zero;

9: end for

10: Form Aﬁ by settingAﬁij = Ascolirow; ¥ 1, € {1,... 8}

Using the Triangulation Step as a subroutine, the increahgmeedy search method, given by Algo-
rithm [, first sorts the columns according to their corresog weights,d; (or, alternatively,z;), and

initializes the preconditioning setM, as an empty set. Starting with the highest-weight columth an
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going down the sorted list of column indices, it adds eachirool to M if the submatrix corresponding

to the resulting set can be made lower triangular using thengulation Step.

Algorithm 6 Incremental Greedy Search for the MTS
1: Input: p x ¢ constraint matrix4, and the set of column weights, . .. d;

2: Output: A triangular setM and thep x p lower-triangular matrixA’,;

3: Initialization: M « 0, i < 0;

4: Sort the column indice$l, ..., ¢} according to their corresponding weighdts, in decreasing order,
to obtain the permuted sequencg . ..,y such thatd,, > ... >d, ;

5: while i < ¢ and|M| < p do

6: i<+ i+1, M+ MU{m};

7. if the Triangulation Step can bring the submatdix into the lower-triangular form4§ then

8: M S, Aﬁ — Aﬁ;

9: endif

10: end while

We claim that, due to the presence of the slack columnd,irlgorithm [@ will successfully find a
triangular setM of p columns; i.e., it exits the while-loop (lines 5-10) only whgM| = p. Assume,
on the contrary, that the algorithm ends whijlet| < p, so that the matrixd is ap x |[M| lower-
triangular matrix. This means that if we add any columg {1,...,¢}\\M to M, it cannot be made
lower triangular, since otherwise, coluntnwould have already been added|tot| whenn; = & in the
While—loop|jJ However, this clearly cannot be the case, since we can peoducx p lower-triangular
matrix Aﬁ, simply by adding the columns corresponding to the slaclatsées of the lasp — | M| rows
of Axr¢. Hence, we conclude that | = p.

2) Column-wise Greedy Search for the MTAtgorithm [7 is a column-wise greedy search for the
MTS. It successively adds the index of the maximum-weiglgree-1 column ofA to the setM, and
eliminates this column and the row that shares its only naneatry. Matrix A initially contains p
degree-1 slack columns, and at each iteration, one suclmoolill be erased. Hence, there is always
a degree-1 column in the residual matrix, and the algorithatgeds untip columns are selected. The

resulting preconditioning set will correspond to an upjpmgular submatrix4 4.

“Note that if any setS of columns can be made lower triangular, any subset of thelsenns can be made lower triangular,

as well.
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Algorithm 7 Column-wise Greedy Search for the MTS
1: Input: p x g constraint matrixA, and the set of column weights, . .., d,;

2: Output: A triangular setM and the upper-triangular matrit’,;

3 Initialization: A «+ A, M « (), and initializecol androw as zero-length vectors;

4. Define and formDEG1 as the index set of all degree-1 columnsAn

5. for k=1to p do

6. Leti e DEG1 be the index of the (degree-1) column &fwith the maximum weightd;, and let
j be the index of the row that contains the only nonzero entrihisf column;

7. M <+— MU, col [c;l] , TOW 4— [m.w};

8. Set all the entries in row of A (inclujding the only nonzero entry of columipto zero;

9: UpdateDEG1 from the residual matrixA;

10: end for

11: Form A/AVI by settingAﬁi’j = Acol, row,» ¥V 1,5 € {1,...p};

3) Row-wise Greedy Search for the MTAIgorithm[8 uses a row-wise approach for finding the MTS.
In this method, we look at the set of degree-1 rows, addUothe indices of all the columns that
intersect with these rows at nonzero entries, and elimittegee rows and columns fromh. Unlike the
column-wise method, it is possible that, at some iteratibase is no degree-1 row in the matrix. In this
case, we repeatedly eliminate the lowest-weight columtii| there is one or more degree-1 rows.

In addition to this difference, the number of columns.fi by the end of this procedure is often
slightly smaller thatp. Hence, we perform a “diagonal expansion” step at the enderevh — | M|
columns corresponding to the slack variables are addedttowhile keeping it a triangular set. A
problem with this expansion method is that, since the algoridoes not have a choice in selecting the
slack variables added in this step, it may add columns tha kiary small weights.

Let Aﬁ] be the triangular submatrix obtained before the expanségm és an alternative to diagonally
expandingAf,l1 by adding slack columns, we can apply a “triangular expansim this method, we
form a matrix A consisting of the columns aft that do not share any nonzero entries with the rows
in vectorrow, and apply a column-wise or row-wise greedy search to thigixna order to obtain a

high-weight lower-triangular submatriA/AVlz. This requirement for formingd ensures that the resulting
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Algorithm 8 Row-wise Greedy Search for the MTS
1: Input: p x g constraint matrixA, and the set of column weights, . .., d,;

2: Output: A triangular setM and the lower-triangular matrid% ;

3 Initialization: A «+ A, M « ), and initializecol androw as zero-length vectors;

4. Define and formDEG1 as the index set of all degree-1 rows An

5. while A is not all zeroeslo

6: if |[DEGL| > 0 then

7 Let j € DEG1 be any degree-1 row afl, andi be the index of the column that contains the
only nonzero entry of this row;

8: M — MU, col +— {Cﬂ , TOW — [m_w} :

J

9: Set all the entries in columhof A (including the only nonzero entry of roy) to zero, and
updateDEG1;

10: €else

11; Let i be the index of the nonzero column dfwith the minimum weightd;. Set all the entries

in columni to zero, and updat®£GT,
12:  endif
13: end while
14: Diagonal Expansion: For each row;j of A that is not represented irow, append; to row, and
appendi = j +n, i.e., the index of the corresponding slack column, to hethand M;

A . A . .
15: Form A';, by settmgAMm = Acol, row;» ¥ 1,5 €{1,...p};

triangular submatriceﬁf/h and A/A\A2 can be concatenated as
A 0 | (36)
B A%,
to form a larger triangular submatrix of. This process can be continued, if necessary, until a square
p x p triangular matrifoA is obtained, although our experiments indicate that oneaesipn step is
often sufficient to provide such a result. It is easy to see thia approach is potentially stronger than

the diagonal expansion in Algorithii 8, since it has the dij@xpansion as a special case.

October 27, 2018 DRAFT



30

B. Implementation and Complexity Considerations

To compute the running time of Algorithfd 6, note that while®#% hasO(qlog q) complexity, the
computational complexity of the algorithm is dominated hg fTriangulation Step. This subroutine has
O(q) complexity, and is called)(q) times in Algorithm[®, which makes the overall complexii(q?).

An interesting problem to investigate is whether we can §ifjnghe triangulation process in line 7 to
have sublinear complexity by exploiting the results of thievjipus round of triangulation, as stated in
the following open problem concerning erasure decoding:

Open Problem:Consider the Tanner graph corresponding to an arbitrary @.@Bde of lengthn.
Assume that a sef of bits are erased, antl does not contain a stopping set in the Tanner graph. Thus,
the decoder successfully recovers these erased bits usnpeeling algorithm (i.e., the triangulation
Algorithm [5). Now, we add a bit to the set of erased bits. Givgin &, and the complete knowledge of
the process of decoding, such as the order in which the bits are decoded, and the clumtds used,
is there am(n) scheme to verify if€ U {i} can be decoded by the peeling algorithm?

In addition this potential simplification, it is possible noake a number of maodifications to Algorithm
in order to reduce its complexity. Letbe the size of the smallest stopping set in the extended Tanne
graph of A, which means that the submatrix formed by any- 1 columns can be made triangular.
Then, instead of initializingM to be the empty set, we can immediately add the 1 highest-weight
columns toM, since we are guaranteed thé&i, can be made triangular. Moreover, at each iteration of
the algorithm, we can considér> 1 column to be added t@1, in order to reduce the number of calls
to the triangulation subroutine. The valuefotan be adaptively selected to make sure that the modified
algorithm remains equivalent to Algorithimh 6.

To assess the complexity of Algorithim 7, we need to examimepsS8 and 11 that involve column
or row operations, as well as Steps 4, 6, and 9 that deal wiHigh of degree-1 columns. Since there
is anO(1) number of nonzero entries in each column or rowdgfrunning Step & times (due to the
for-loop), and derivingAf,l from A in Step 11 each také®(q) time. However, one should be careful in
selecting a suitable data structure for storing theI3€¢ 1, since, in each cycle of the for-loop, we need
to extract the element with the maximum weight, and add toramtbve from this set a®(1) number
of elements. By using a binary heap data structure [21], wiscimplementable as an array, all these
(Steps 6 and 9) can be donednlog q) time in the worst case. Also, the initial formation of the pea
(Step 4) hasD(q) complexity. As a result, the total complexity of AlgoritHmhbécomesD(qlogq).

Similarly, in Algorithm[8, we need a mechanism to extract thmimum-weight member of the set
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of remaining columns. While the heap structure mentionea/@alworks well here, since no column is
added to the set of remaining columns, we can alternativatytbe set of all columns by their weights
as a preprocessing step withq log ¢) complexity, thus making the complexity of the while-loopdar.
Since the complexity of steps 15 (diagonal expansion) andré&@inear, as well, the total running time
of Algorithm [8 will be O(qlogq).

The process of finding a triangular preconditioner is penkd at each iteration of the interior-point
algorithm. Since the values of primal variablds;}, do not substantially change in one iteration, we
expect the maximum-weight triangular set at each iteratiohe relatively close to that in the previous
iteration. Consequently, an interesting area for futurekwi® to investigate modifications of the proposed
algorithms, where the knowledge of the MTS in the previoesation of the interior-point method is

exploited to improve the complexity of these algorithms.

VI. ANALYSIS OF THEMTS PRECONDITIONING ALGORITHMS
A. Performance Analysis

It is of great interest to study how the proposed algorither$qum as the problem size goes to infinity.
We expect that a number of asymptotic results similar todghafsRichardson and Urbanke in [20] can
be derived, e.g., showing that the greedy preconditionsigds perform well for capacity-approaching
LDPC ensembles. However, since one of the main advantagé® afecoding over message-passing
decoding is its geometrical structure that facilitates dnalysis of its performance in the finite-length
regime, in this work we focus on studying the proposed alfyors in this regime.

We will study the behavior of the proposed preconditionethia later iterations of the interior-point
algorithm, when the iterates are close to the optimum. Téigistified by the fact that, as the interior-
point algorithm approaches the boundary of the feasibléoreduring its later iterations, many of the
primal variables;z;, and the dual slack variables;,, approach zero, thus deteriorating the conditioning
of the matrixQ = AD?AT. This is when a precoditioner is most needed. In addition,cas obtain
some information about the performance of the preconditiam the later iterations by focusing on the
optimal point of the feasible set.

Consider an LP problem in the augmented fofm (16) as part & ALMALP decoding, and assume
that it has a unique optimal solution (although parts of awalygsis can be extended to the case with
non-unique solutions). We denote by the triplet, y*, z*) the primal-dual solution to this LP, and by

(z,y,z) an intermediate iterate of the interior-point method. Wa partition the set of the columns
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of A into thebasic set
B = {i|lz] > 0} (37)

and thenonbasic set
N = {i|z} = 0}. (38)

For brevity, we henceforth refer to the columns of the caistrmatrix A corresponding to the basic
variables as the “basic columns.” It is not difficult to shdvat, for an LP with a unique solution, the
number of basic variables, i.d13|, is at mostp. To see this, assume thatf the standard variables
x] ...z, are nonzero, which means that— [ box constraints of the formx; > 0 are active atz*.
Sincez* is a vertex defined by at leastactive constraints in the LP, we conclude that at légsarity
inequalities must be active af, thus leaving at mosp — [ nonzero slack variables. We call the LP
nondegeneraté |B| = p, anddegeneratef |B| < p.

It is known that the unique solutiofw*, y*, 2*) is “strictly complementary” [22], meaning that for
anyi € {1,...,q} eitherz} = 0 andz > 0, or zf > 0 and z; = 0. Remembering from[(27) that

d; = \/x;/z;, as the iterates of the interior-point algorithm approdeh dptimum, i.e.u given in (28)

oo if ieB,
lim d; = { (39)
=0 0 if ieN,

Therefore, towards the end of the algorithm, the maf}ix AD?AT will be dominated by the columns

goes to zero, we will have

of A and D corresponding to the basic set. Hence, it is highly desérédlselect a preconditioning set
that includes all the basic columns, i.8.C M, in which cased (D3 ,A%, becomes a better and better
approximation ofQ), as we approach the optimum of the LP. In the rest of this sitioge we will show
that, when the solution to the LP is integral amds sufficiently small, this property can be achieved by
low complexity algorithms similar to Algorithnig 7 andl 8.

Lemma 2:Consider the extended Tanner graph for an LP subprobleni.P* of MALP decoding.
If the primal solution toL P* is integral, the set of variable nodes corresponding to tiséchset, whose
definition is based on the augmented fofm] (16) of the LP, do¢€ontain any stopping set.

Proof: Consider an erasure decoding probléti®C on 7%, where the basic variable nodes are
erasures. We prove the lemma by showing that the peelingRddecoder can successfully correct these
erasures.

We denote byu* andz* the solutions to the primal LP in the (original) standardhiofd) and in the
augmented form[(16). From part ¢) of Theoréin 2, we know tfats also the solution to a full LP
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decoding probleni.PD* with the LLR vectory and the Tanner graph comprising the standard variable
nodes and the active check nodgs,;.

We patrtition the basic sdf into B, and By, the sets of basic standard variables and basic slack
variables, respectively. We also partition the set of cheottes in7* into J7,.; and Jnac, the sets of
check nodes that generate the active and inactive parityuaiigies of LP*, respectively. Clearly, the
neighbors of the slack variable nodes i, are the check nodes if;,..t, Since an inactive parity
inequality has, by definition, a nonzero slack.

Step 1:We first show that, even if we remove the check nodegin,: from 7, the set of basic
standard variable nodeB,,;, does not contain a stopping set.

Remembering the conversion of the LP in the standard féimw{) inequality constraints to the

augmented form_(16), we can write
Baa={i€Z|(v>0,u=1)or(y <0, u =0)}. (40)

Using, as in Theorerl 4, the notatianfor the result of bit-based hard decision gnone can see that
Bgq is identical to&, the set of positions wherg* and« differ. Hence, knowing that* is the solution
to an LP decoding problem, and using Theolem 4, we concludettie set,;; does not contain a
stopping set in the Tanner graph that only includes the chedes in7,.;.

Step 2:Now we return to7*, and consider solving®?¥¢, where all the basic variables are erasures,
using the peeling algorithm. Since the slack variables Wwhice basic are connected only to the inactive
check nodes, we know from Step 1 that the erased varighlgsan be decoded by only using the active
check nodeg7,.:. Once these variable nodes are peeled off the graph, we fangitle the basic slack
variable nodes, each of which is connected to a distinctlcihmede in 7;,..:. Therefore, the peeling
algorithm can proceed by decoding all of these variablegs €¢bmpletes the proof. |

Lemmal2 shows that, under proper conditions, the submatriaf A formed by only including
the columns corresponding to the basic variables can be roagsr triangular by column and row
permutations. This suggests that looking for a maximungieiriangular set is a natural approach for
designing a preconditioner in MALP decoding. In particuldwe following theorem shows that, under
the conditions of Lemmal 2, the incremental greedy Algorifiimdeed finds a preconditioning set that
includes all such columns.

As the interior-point algorithm progresses, the basicaldes approach 1, while the nonbasic variables
approach zero. Hence, referring {01(39), we see that aftarge lenough number of iterations, tH#

highest-weight columns afl will correspond to the basic s&. The following theorem shows that two
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of the proposed algorithms indeed find a preconditioningts&t includes all such columns.

Theorem 5:Consider an LP subproblemP* of an MALP decoding problem. If the primal solution
to LP* is integral, at the iterates of the interior-point methodttare sufficiently close to the solution,
both the Incremental Greedy Algorithm and the Row-wise @yeAlgorithm can successfully find a
triangular set that includes all the columns corresponttintipe basic set.

Proof: As the interior-point algorithm progresses, the weightsorresponding to the basic variables
approachoo, while the weights of nonbasic variables approach zerocklewhenu becomes sufficiently
small, the columns corresponding to the basic Betyill be the |B| highest-weight columns oft, and
according to Lemma@]2, the matriz consisting of these columns can be made triangular, prdviaiet
the solution toL P* is integral.

In view of this result, the proof of the claim for the increm@ngreedy algorithm becomes straigh-
forward: The preconditioning se¥! continues to grow by one member at each iteration, at leastiun
includes all thel 3| highest-weight (i.e., basic) columns.

To prove that the triangular se¥! given by the row-wise greedy algorithm includes the basi¢c se
as well, it is sufficient to show that none of the basic columiisbe erased fromA (i.e., become all
zeroes) in line 11 of Algorithrhl8. Assume that, at some itergta column; is selected in line 11 to be
erased. Column has the minimum weight among the nonzero columns currently.iTherefore, ifi is
a basic column ang is small enough, all the other nonzero columns are basimuwdy as well, since
the basic columns are th8| highest-weight columns ofl. This means thatl could be made triangular,
without running out of degree-1 rows and having to erasemnli So, columni cannot be basic. B

Remark 2: The proof above suggests that Theofdem 5 can be stated in reoexaj terms. For any
s € {1,...,q}, let S be a set consisting of the highest-weight columns ofi. Then, if the set of
variable nodes corresponding &in the (extended) Tanner graph does not contain a stoppinghse
is, As can be made triangular by row and column permutations, therpteconditioning sets found by
Algorithms[6 and B both contaif.

The assumption that the solution is integral does not hotdafoLPs that we solve in adaptive LP
decoding. On the other hand, in practice, we are often istedein solving the LP exactly, only when LP
decoding finds an integral solution (i.e., the ML codewofid)is, of course, does not mean that in such
cases every LP subproblem solved in the adaptive method mastegral solution. However, one can
argue heuristically that, if the final LP subproblem has dagral solution, the intermediate LPs are also
very likely to have an integral solution. To see this, rememipom Theoreni ]2 that each intermediate

LP problem that is solved in adaptive LP decoding is equivatie a full LP decoding that uses a subset
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of the check nodes in the Tanner graph. Now, if LP decodindp Wit complete Tanner graph has an
integral solution, it is natural to expect that, after retingva subset of check nodes, which can also

reduce the number of cycles, the LP decoder still very likelyind an integral solution.

B. Performance Simulation

We simulated the LP decoding 63, 6)-regular LDPC codes on the AWGN channel using the MALP-
A algorithm and our sparse implementation of the path-Waithy interior-point method. We have shown
earlier that, as interior-point progresses, the ma#iR?A” that needs to be inverted to compute the
Newton steps becomes more and more ill-conditioned. We loéigerved that this problem becomes
more severe in the later iterations of the MALP-A algorithmhere the LP problem is larger and more
degenerate due to the abundance of active constraints aptmeum of the problem.

In Figs.[BE8, we present the performance results of the PCéhaudefor four different systems of
linear equations in the form of_(24), solved in the infeasiptimal-dual path-following interior-point
algorithm, using the preconditioners designed by greedjoAthms In these simulations, we used
a randomly-generate(®, 6)-regular LDPC code of length 2000, where the cycles of lerigthr were
removed. The performance of the PCG algorithm is measurethdoypehavior of the relative residual
error ||r?||3/||w||3, wherer! andw are defined in Algorithnil4, as a function of the iteration nembof
the PCG algorithm.

In Figs.[B and B, we considered solviig|(24) in two differgatations of the interior-point algorithm
for solving an LP problem. This LP problem was selected at@theiteration of an MALP decoding
problem at SNR = 1.5 dB, and the solution to the LP wasgral The constraint matrix4 for this LP
had 713 rows and 2713 columns, and we used the PCG algorittoonpute the Newton step. Figl 5
corresponds to finding the Newton step at &tteiteration of the interior-point algorithm. In this sceita
the duality gapgy = =7 2 was equal to 48.6, and the condition numbé€)) of the problem was equal
to 3.46 x 10*. We have plotted the residual error of the CG method witheetgnditioning, as well as
the PCG method using the three proposed preconditionegriesi-or this problem, except during the
first 10-15 iterations, the behaviors of the three precdmmtid implementations are very similar, and all
significantly outperform the CG method.

In Fig.[8, we solved[(24) at th&sth iteration of the same LP, where the interior-point is matdser

to the solution, withg; = 0.22 and x(Q) = 2.33 x 108. In this problem, the convergence of the CG

®In all the simulations of the Row-wise Greedy Search (Algomi[@) that we present in this section, we have used a diagonal

expansion, rather than a triangular expansion, as desciib8ubsection V-A.
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Fig. 5. The progress of the residual error for different P@fplementations, solving (24) in ttgth iteration of the interior-
point algorithm, in an LP with amntegral solution. The constraint matri¥ has 830 rows and 3830 columng, = 48.6, and
R(Q) = 3.46 x 10

method is very slow, so that in 200 iterations, the residuedredoes not get belov.07. The PCG
method with incremental greedy preconditioning, reactdangsidual error of0~* in 40 iterations, has
the fastest convergence, followed by the column-wise gregdconditioner.

To study the performance of the algorithms when the LP swiuis not integral, we considered an
LP from the 6th iteration of an MALP-A decoding problem at SNRL.0 dB, where the solution was
fractional. The matrix A had 830 rows and 3830 columns. Hg. 7 corresponds toStheteration of
the interior-point algorithm, withy; = 46.4 and k(Q) = 2.03 x 10%, while Fig.[8 corresponds to the
18th (penultimate) iteration, withy; = 0.155 and x(Q) = 2.61 x 10%. These parameters are chosen
such that the scenarios in these two figures are respecsieliar to those in Figd.]5 arld 6, the main
difference being that the decoding problem now has a fraatisolution. We can observe that, while the
performance of the CG method is very similar in Hi§j. 5 and Higas well as in Fig.16 and Figl 8, the
preconditioned implementations have slower convergerawhe LP solution is fractional. In particular,
in Fig.[8, the row-wise greedy preconditioner does not imprthe convergence of the CG method, and

is essentially ineffective.
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Fig. 6. The progress of the residual error for different P@fplementations, solving_(24) in thgth iteration of the interior-
point algorithm, in an LP with amntegral solution. The constraint matrixd has 830 rows and 3830 columng;, = 0.22, and
K(Q) = 2.33 x 10°.
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Fig. 7. The progress of the residual error for different P@plementations, solving (P4) in ti&ih iteration of the interior-
point algorithm, in an LP with dractional solution. The constraint matrid has 830 rows and 3830 columng, = 46.4, and
K(Q) = 2.03 x 10*.
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Fig. 8. The progress of the residual error for different P@fplementations, solving (24) in thgth iteration of the interior-
point algorithm, in an LP with dractional solution. The constraint matriX has 830 rows and 3830 columng, = 0.155, and
R(Q) = 2.61 x 10%.

C. Discussion

Overall, we have observed that in very ill-conditioned peofs, the incremental and the column-wise
greedy algorithms are significantly more effective than tbw-wise greedy algorithm in speeding up
the solution of the linear system. The better performancéhefcolumn-wise approach relative to the
row-wise approach can be explained by the fact that the fiormieich searches for degree-1 columns,
has more choices at each stage, since the columns lnéive lower degrees on average than its rows.
Besides, while the column-wise is always able to find a coteptgangular preconditioning set, the
row-wise algorithm needs to expand the preconditioningasehe end by adding some slack columns
that may have very low weights. Considering both the conigleend performance, the column-wise
search (Algorithni]7) seems to be a suitable choice for a ipeldmplemetation of LP decoding.

A second observation that we have made in our simulatiortsaisthe convergence of the PCG method
cannot be well characterized just by the condition numbehefpreconditioned matrix. In fact, we have
encountered several situations where the preconditiorsdxihad a much higher condition number than

the original matrix, yet it resulted in a much faster conesrce. For instance, in the scenario studied
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in Fig.[8, the condition number of the preconditioned matvix '@ for both the column-wise and the

incremental algorithms was higher than that(@ty factor of 50-100, while these preconditioners still
improved the convergence compared to the CG method. Indeisdbelieved in the literature that the

speed of convergence of the CG can typically be better engadaby the number of distinct clusters of
eigenvalues.

While we studied the interior-point method in the contexMALP decoding, the proposed algorithms
can also be applied to the LPs that may have more than onaam$tom each check node. For instance,
we have observed that the proposed implementation is atsoeffective for ALP decoding. However, in
the absence of the single-constraint property, some of ilagytical results we presented may no longer

be valid.

VIlI. CONCLUSION

In this paper, we studied various elements in an efficieniémpntation of LP decoding. We first
studied the adaptive LP decoding algorithm and two vaniatiand demonstrated a number of properties
of these algorithms. Specifically, we proposed modificaiohthe ALP decoding algorithm that satisfy
the single-constraint property; i.e., each LP to be soh@uains at most one parity inequality from each
check node of the Tanner graph.

We later studied a sparse interior-point implementationliméar programming, with the goal of
exploiting the properties of the decoding problem in ordemthieve lower complexity. The heart of
the interior-point algorithm is the computation of the Newtstep via solving an (often ill-conditioned)
system of linear equations. Since iterative algorithmsdolving sparse linear systems, including the
conjugate-gradient method, converge slowly when the sy&aéll-conditioned, we focused on finding a
suitable preconditioner to speed up the process.

Motivated by the properties of LP decoding, we studied a rrawéwork for desiging a preconditioner.
Our approach was based on finding a square submatrix of theohBtraint matrix which contains the
columns with the highest possible weights, and at the same, tan be made lower- or upper-triangular
by column and row permutations, making it invertible in lingime. We proposed a number of greedy
algorithms for designing such preconditioners, and prdbed when the solution to the LP is integral,
two of these algorithms indeed result in effective precboders. We demonstrated the performance of
the proposed schemes via simulation, and we observed that¢iconditioned systems are most effective
when the current LP has an integral solution.

One can imagine various modifications and alternativesagtbposed greedy algorithms for designing
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preconditioners. It is also interesting to investigatepbssibility of finding other adaptive or nonadaptive
formulations of LP decoding that result in solving the feti@wallest possible number of LPs, while
maintaining the single-constraint property. Moreoveeréhare several aspects of the implementation of
LP decoding that are not explored in this work. These pakmatieas for future research include the
optimum selection of the stopping criteria and step sizestie interior-point algorithm and the CG
method, as well as the theoretical analysis of the effecre€gnditioning on the condition number and

the eigenvalue spectrum of the linear system, similar testhdy done in [23] for network flow problems.

APPENDIX |

PROOF OFTHEOREM[Z

Proof:

a) To prove the claim, we show that the solution to any lineagmmLP* consisting of the: initial
(single-sided) box inequalities given byl (8) and any numifeparity inequalities of the forn{6)
satisfies all the double-sided box constraints of the formu;, <1, i € Z={1,...,n}.

For simplicity, we first transform each variablg, i € Z, and its coefficienty; in the objective

function, respectively, into a new variable and a new coefficienk;, where

v = U and\; = ; if v >0,
{ (41)
v;=1—wu; and\; = —Yi if v < 0.

By this change of variables, we can rewrife®* in terms ofwv. In this equivalent LP, all the
variablesy; will have nonnegative coefficients in the objective function, and the box constraints
(8) will all be transformed into inequalities of the formy > 0. However, the transformed parity
inequalities will still have the form

Z(l—vi)—FZUiZl, (42)

i€A; i€B;
although here some of the setls may have even cardinality. To prove the claim, it suffices to
show that the unique solutiost to this LP satisfies? <1, Vi € 7.
Assume, on the contrary, that for a subset of indices Z, we havevz’-C >1, Vie L, and
0 <ok <1, VieZ\L We define a new vectdr* as

=1 if ieL,
(43)
o =oF it ieT\L.
Remembering thak; > 0, V i € Z, we will have \T3F < ATv*. Moreover,7* clearly satisfies all

the double-sided box constrairis< ¢ < 1, V i € Z. We claim that any parity inequality of the
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form (42) in the LP, which is by assumption satisfied/at is also satisfied ai*. To see this, note
that the first sum in{42) can only either increase or remaistant by moving from* to #*, and
it will be nonnegative at*. Moreover, the second sum will remain constanfifi B; = @, or will
decrease but remain greater than or equal to o if8; # (). In both cases, inequality_(42) will
be satisfied at*. Hence, we have shown that there is a feasible pginvhich has a cost smaller
than or equal to that of*. This contradicts the assumption thdt is the unique solution to the
LP. Consequently, the solution to the LP should satisfytedl double-sided box constraints.

b) We need to show that’u* < 4Tu*+1 for any0 < k < K. This is obvious for ALP decoding, as
the feasible set of P* contains the feasible set &fP*+!. For MALP-A and MALP-B, letLP**
be the problem obtained by removing frabiP* a subset (or all) of the parity inequalities that are
inactive at its solutiony*. As discussed earlier, these inactive inequalities arehioding, so the
solution to LP** must beu”, as well. Now,LP**! is obtained by adding some new (violated)
constraints taL P**. Hence, the feasible set &fP** strictly contains that of.P**!, which yields
ATk < ATy,

¢) Similar to the proof of [9, Theorem 2].

d) Similar to part b), letL.P** be the LP problem obtained by removing frab@* all of the parity
inequalities that are inactive af, and remember that* is the solution taL P**, as well. Clearly,
all the parity inequalities i, P** are from check nodes with indices i, thus the feasible space
of LP** contains that ofLPD*. Hence, it remains to show thaf’, the optimum feasible point
for LP**, is also in the feasible space 6P D",

Let I* C {1,...,n} be the set of indices of variable nodes that are involved ite@st one of
the parity inequalities irL P** (or, equivalently, check nodes ifi*), and let/* be the set of the
remaining indices. According to Corollary 2, all the paiitgqualities from check nodes ifi* are
satisfied at.*. In addition, we can conclude from Corolldry 1 that the borstaaints for variables
with indices inI* are satisfied, as well.

Now, for anyi € I*, the variableu; will be decoupled from all other variables, since it is only
constrained by a box constraint according[ib (8). Hencehénsblutionu*, such a variable will
take the valueu® = 0 if v; > 0 or u¥ = 1 if 4; < 01 Consequentlyy* satisfies all the parity

inequalities and box constraints 6P D*, and hence is the solution to this LP decoding problem.

®We assume that; # 0, since otherwiseu? will not have a unique optimum value, which contradicts thgqueness

assumption on:* in the theorem.
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