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The Capacity Region of Large Wireless Networks
Urs Niesen, Piyush Gupta, and Devavrat Shah

Abstract

The capacity region of a wireless network withn nodes is the set of all simultaneously achievable rates between
all possiblen2 node pairs. In this paper, we consider the question of determining thescaling, with respect to the
number of nodesn, of the capacity region when the nodes are placed uniformly at random in a square region of
arean and they communicate over Gaussian fading channels. We identify this scaling of the capacity region in
terms ofΘ(n), out of 2n total possible, cuts. Our results are constructive and provide optimal (in the scaling sense)
communication schemes. In the case of a restricted class of traffic requirement (permutation traffic), we determine
the precise scaling in terms of a natural generalization of the transport capacity. We illustrate the strength of these
results by computing the capacity scaling in a number of scenarios with non-uniform traffic patterns for which no
such results have been available before.

I. INTRODUCTION

Characterizing the capacity region of wireless networks isa long standing open problem in information
theory. The exact capacity region is, in fact, not known for even simple networks like a three node relay
channel or a four node interference channel. In this paper, we consider the question of approximately
determining the capacity region of wireless networks by identifying its scaling in terms of the number of
nodes in the network.

A. Related Work

In the last decade or so, exciting progress has been made towards approximating the capacity region of
wireless networks. We shall briefly recall a small subset of work related to this paper. In [1], Gupta and
Kumar proposed a simpler but insightful question. First, instead of asking for the entiren2-dimensional
capacity region of a wireless network withn nodes, attention was restricted to the scenario where each
node is source and destination for exactly one communication pair (calledpermutation trafficin the
following). All these source-destination pairs want to communicate at the same rate, and the interest is
in finding the maximal achievable such rate. Second, insteadof insisting on finding this maximal rate
exactly, they focused on its asymptotic behavior as the number of nodesn grows to infinity.

This setup has indeed turned out to be more amenable to analysis. In [1], it was shown that under
random placement of nodes in a given region and under certainmodels of communication motivated by
current technology (calledcombinatorial channel modelin the following), the per-node rate for random
permutation traffic can scale at most asO(n−1/2) and this can be achieved (within poly-logarithmic factor
in n) by a simple scheme based on multi-hop communication. Many works since then have broadened the
channel and communication models under which similar results can be proved (for example, see [2]–[12]).
In particular, under theGaussian fading channel modelwith a power-loss ofr−α for signals sent over
a distance ofr, [11], [12] have shown that inextended wireless networks(i.e., n nodes are randomly
located in a region with areaΘ(n)) the largest per-node rate achievable by all source-destination pairs
under random permutation traffic scales essentially likeΘ

(
n1−min{3,α}/2

)
.
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It can be shown that determining the scaling of the maximal achievable per-node rate under random
permutation traffic as considered above is equivalent to finding the scaling of the maximal achievable
per-node rate underuniform traffic, in which each node wants to send data at equal rate to all other
nodes (see [13]). That is, analyzing random permutation traffic yields a one dimensional projection of
the n2 dimensional capacity region. Hence, the results in [1] and in [11], [12] mentioned above provide
a complete characterization of the scaling of this one dimensional projection for the combinatorial and
Gaussian fading channel models, respectively. It is therefore natural to ask if the scaling of the entiren2

dimensional capacity region can be characterized. To this end, we describe two related approaches taken
in recent works.

One approach, taken by Madan, Shah, and Lévêque [13], builds upon the celebrated works of Leighton
and Rao [14] and Linial, London, and Rabinovich [15] on the approximate characterization of the capacity
region of capacitated wireline networks. For such wirelinenetworks, the scaling of the capacity region
is determined (within poly-logarithmic factor inn) by the minimum weighted cut of the network graph.
As shown in [13], this naturally extends to wireless networks under the combinatorial channel model,
providing an approximation of the capacity region in this case.

Another approach, first introduced by Gupta and Kumar [1], utilizes geometric properties of the wireless
network. Specifically, the notion of thetransport capacityof a network, which is the rate-distance product
summed over all source-destination pairs, was introduced in [1]. It was shown that in an extended wireless
network withn nodes and under the combinatorial channel model, the transport capacity can scale at most
asΘ(n). This bound on the transport capacity provides a hyper-plane which has the capacity region and
origin on the same side. Through a repeated application of this transport capacity bound at different scales,
together with the traditional cut-set bound, [16], [17] obtained an implicit characterization of the capacity
region under the combinatorial channel model.

For the Gaussian fading channel model, asymptotic upper bounds for the transport capacity were
obtained in [2], [3], and for arbitrary weighted sum-rates in [18].

B. Our Contributions

Despite the long list of results, the question of approximately characterizing the capacity region under
Gaussian fading channel model for general power-loss remains far from being resolved. As the main result
of this paper, we resolve this question successfully for extended networks under random node placement.

Our approximate characterization of the capacity region isexpressed as the minimum overΘ(n), of all
2n total possible, cuts. The upper bound (converse) follows through consideration of appropriate cut-set
bounds. The lower bound (achievability) is established through a novel scheme that routes data on a virtual
tree constructed using either cooperative or multi-hop communication. Information is sent along an edge
towards the root of this tree by distributing it over more nodes in the network, and information is sent
along an edge towards the leaves of this tree by concentrating it on fewer nodes.

As mentioned above, the approximate characterization of the capacity region is expressed as a min-
imization problem, and hence does not admit a succinct analytic expression. Such an expression can,
however, be found in the case of general (i.e., not necessarily random) permutation traffic. To this end,
we identify a generalization of the notion of transport capacity, resulting in a clean analytic formula for
the scaling for this kind of traffic.

C. Organization

The remainder of this paper is organized as follows. SectionII introduces the channel model and
notations. Section III presents our main results and illustrates them with a few example scenarios. Section
IV describes at a higher level the proposed communication schemes. Sections V-VIII contain proofs, and
Section IX contains concluding remarks.
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II. M ODEL

ConsiderA(n) , [0,
√
n]2 and letV (n) ⊂ A(n) be a set of|V (n)| = n nodes onA(n). We use the

same channel model as in [11]. Namely, if{xu[t]}u,t are the (sampled) signals sent by the nodes inV (n),
then the (sampled) received signal at nodev and timet is

yv[t] =
∑

u∈V (n)\{v}

hu,v[t]xu[t] + zv[t] (1)

for all v ∈ V (n), t ∈ N. Here{zv[t]}v,t are i.i.d. circularly symmetric complex Gaussian random variables
with mean0 and variance1, and

hu,v[t] = r−α/2
u,v exp(

√
−1θu,v[t]),

for path-loss exponent1 α > 2, and whereru,v is the Euclidean distance betweenu andv. {θu,v[t]}u,v is
assumed to be i.i.d. with uniform distribution on[0, 2π). We either assume that{θu,v[t]}t is stationary and
ergodic as a function oft which is calledfast fadingin the following, or we assume{θu,v[t]}t is constant
as a function oft, which is calledslow fadingin the following. In either case, we assume full channel
state information is available at all nodes, i.e., each nodeknows all{hu,v[t]}u,v at timet. We also impose
an average power constraint ofP on the signal{xu[t]}t for every nodeu ∈ V (n).

Let Λ(n) ⊂ R
n×n
+ be the capacity region of the wireless network, i.e.,λ ∈ Λ(n) if and only if

every source-destination pair(u, v) ∈ V 2(n) can reliably communicate independent messages at rateλu,v.
PartitionA(n) into squares{Aℓ,i(n)}4ℓi=1 of sidelength2−ℓ

√
n, and letVℓ,i(n) be the nodes inAℓ,i(n).

Define

V 2
0 (n) ,

{
(u, v) ∈ V 2(n) :

√
n ≤ ru,v ≤ 2

√
n
}
,

V 2
ℓ (n) ,

{
(u, v) ∈ V 2(n) : 2−ℓ

√
n ≤ ru,v < 2−ℓ+1

√
n
}
,

for ℓ > 0. Finally, let2

L(n) ,
1

2
log(n)

(
1− log−1/2(n)

)
,

and note thatL(n) is chosen such that

4−L(n)n = nlog−1/2(n),

and hence
lim
n→∞

E(
∣∣AL(n),i(n)

∣∣) = lim
n→∞

4−L(n)n = ∞

while at the same time
E(

∣∣AL(n),i(n)
∣∣) = 4−L(n)n ≤ no(1),

asn→ ∞.
Throughout,{Ki}i, K, K̃, . . . , indicate strictly positive finite constants independent of n and ℓ. To

simplify notation, we assume, when necessary, that fractions are integers and omit⌈·⌉ and⌊·⌋ operators.
For the same reason, we also suppress dependence onn within proofs whenever this dependence is clear
from the context.

1It is worth pointing out that recent results [19] seem to suggest that forα ∈ (2, 3) and very large values ofn, the channel model becomes
invalid.

2All logarithms are with respect to base2.
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III. M AIN RESULTS

A. Permutation Traffic

Define thegeneralized transport capacityas

Tα(n) , sup
λ∈Λ(n)

∑

(u,v)∈V 2(n)

λu,vfα(ru,v),

where

fα(r) ,





rmin{3,α}−2 if r ≥ 1,
1 if 0 < r < 1,

0 if r = 0.

Theorem 1. Under either fast or slow fading, for anyα > 2, ε > 0,

Tα(n) = O(n1+ε)

with probability 1− o(1) as n→ ∞.

We say thatΠ(n) ⊂ V 2(n) is a permutation trafficif for every u ∈ V (n) there is exactly onev ∈
V (n) \ {u} such that(u, v) ∈ Π(n) and exactly onẽv ∈ V (n) \ {u} such that(ṽ, u) ∈ Π(n).

Theorem 2. Under either fast or slow fading, for anyα > 2, and any sequence of permutation traffics
{Π(n)}n≥1,

sup
λ∈Λ(n)

min
(u,v)∈Π(n)

λu,vfα(ru,v) ≥ n−o(1)

with probability 1− o(1) as n→ ∞.

Corollary 3. Under either fast or slow fading, for anyα > 2,

Tα(n) ≥ n1−o(1)

with probability 1− o(1) as n→ ∞.

Together with Theorem 1, Theorem 2 and its corollary show that

lim
n→∞

log(Tα(n))

log(n)
= 1.

However, Theorem 2 proves a much stronger result than just that. Indeed, it shows that the scaling of
Tα(n) is achievable even if we are restricted to an arbitrary permutation traffic and provides a pointwise
lower bound on how the rate achievable depends on the distances between the source-destination pairs.
More precisely, Theorem 2 guarantees a rate of

n−o(1)fα(ru,v)
−1

for any source-destination pair(u, v) of the permutation traffic. It is worth pointing out that guarantees
of this sortcannotbe made when considering the standard transport capacity

T (n) , sup
λ∈Λ(n)

∑

(u,v)∈V 2(n)

λu,vru,v.

Indeed, the arguments in [11], [12] show that under our channel model, the transport capacity is upper
bounded by

T (n) = O
(
n(5−min{3,α})/2+ε

)
,

and that forrandompermutation traffic a transport rate of at least

n(5−min{3,α})/2−o(1)
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is achievable with probability1− o(1) asn → ∞. However, if we are restricted to a permutation traffic
where all source-destination pairs are at a distance3 no(1), then it is easy to show that we can at most
achieve a transport rate of

n1+o(1) ≪ n(5−min{3,α})/2−o(1)

for α ∈ (2, 3). In other words, the choice offα in the definition of the generalized transport capacity
Tα(n) is crucial to obtain a tight characterization for all (as opposed to just random) permutation traffics.
For α ≥ 3, the generalized transport capacity essentially coincides with the traditional transport capacity,
as defined in [1].

B. General Traffic

A traffic matrix is an elementλ ∈ R
n×n
+ . For any traffic matrixλ, let

ρ∗λ = sup{b ≥ 0 : bλ ∈ Λ(n)}.
The next theorem shows howρ∗λ can be asymptotically computed for anyλ ∈ R

n×n. By convexity of
Λ(n), this yields an asymptotic characterization of the entire capacity regionΛ(n) of the wireless network.

For traffic matrixλ, define

φ∗
λ(n) , min

ℓ∈{1,...,L(n)}∪{log(n)}
gα(4

−ℓn) min
i∈{1,...,4ℓ}

1

Dλ(Vℓ,i(n))

= min

{
min

ℓ∈{1,...,L(n)}
gα(4

−ℓn) min
i∈{1,...,4ℓ}

1

Dλ(Vℓ,i(n))
,

gα(n
−1) min

i∈{1,...,n2}:

|Vlog(n),i(n)|>0

1

Dλ(Vlog(n),i(n))

}
, (2)

where

gα(r) ,

{
r2−min{3,α}/2 if r ≥ 1,
1 else,

and, for anyU ⊂ V (n),
Dλ(U) ,

∑

u∈U,v∈Uc

(λu,v + λv,u).

Note that the second minimization in (2) is over at mostn terms, since there are at mostn values ofi
such that

∣∣Vlog(n),i(n)
∣∣ > 0. Henceφ∗

λ(n) can be computed as a minimum overΘ(n) terms.

Theorem 4. Under either fast or slow fading, for anyα > 2, ε > 0, and any sequence{λ(n)}n≥1 of
traffic matrices,

n−o(1)φ∗
λ(n)(n) ≤ ρ∗λ(n)(n) = O

(
nεφ∗

λ(n)(n)
)
,

with probability 1− o(1) as n→ ∞.

Theorem 4 provides a tight scaling characterization of the entire capacity regionΛ(n) of the wireless
network. Note thatΛ(n) is a n2 dimensional set. On the other hand, noting that the minimization in the
definition ofφ∗

λ(n) for ℓ = log(n) can be restricted to at mostn non-empty squares{Vℓ,i}i (see (2)), the
characterization ofΛ(n) is given in terms of a minimization problem of dimensionΘ(n). In other words,
Theorem 4 provides aΘ(n) parameter description ofΛ(n).

Since Theorem 4 characterizes the entire capacity region, it certainly subsumes the results in Theorem
1 and Theorem 2. This is, however, at the expense of a more complex description. Indeed letλ be a traffic
matrix corresponding to a permutation traffic (i.e., there are onlyn non-zero entries inλ), and thoseλu,v

3Note that a permutation traffic of this form has, indeed, probability o(1) of resulting from choosing a permutation traffic at random.
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that are positive take a value that depends only onru,v. As we have argued in the last paragraph, to
check if λ ∈ Λ(n) (asymptotically) using Theorem 4, we have to checkΘ(n) conditions. To check the
same using Theorems 1 and 2, we only need to compute one inner product, i.e., only one condition needs
to be checked. Thus Theorems 1 and 2 provide a one parameter description ofΛ(n) when restricted to
permutation traffics of this form.

C. Example Scenarios

We next illustrate the strength of the above results by determining achievable rates of a few specific
wireless network scenarios with non-uniform traffic patterns. While most of these scenarios consider
permutation traffic, it is easy to show that the same results hold also if the source-destination pairing
is chosen at random (possibly with non-uniform distribution). For example, if each source chooses its
destination uniformly at random then the resulting pairingcan be decomposed into at mostlog2(n)
permutation traffics with probability1 − o(1) as n → ∞, and time sharing between thoselog2(n)
permutation traffics yields only an additional factorno(1) loss in rate.

Example 1. Multiple Classes of Source-Destination Pairs
There areK classes of source-destination pairs, for some fixedK. Each source node in classi generates

traffic at the same rateλi(n) for a destination node that is chosen at distanceΘ(nβi), for some fixed
βi ∈ [0, 0.5] and such that the resulting source-destination pairing yields a permutation traffic. Each node
picks the class it belongs to in an arbitrary fashion. Then, Theorem 1 provides the following upper bound
on the rates obtained by different classes:

λi(n) = O(n−βiᾱ+ε),

for any ε > 0, and where
ᾱ , min{3, α} − 2.

The achievability of essentially the same order follows from Theorem 2, i.e.,

λi(n) ≥ n−βiᾱ−o(1).

Hence, for a fixed number of classesK, theK dimensional projection of the capacity region considered
here is rectangular (in the scaling sense), with source nodes in each class obtaining rates as a function of
only the source-destination separation in that class. ♦

Example 2. Traffic Variation with Source-Destination Separation
Pick a permutation traffic at random, as in the traditional setting. However, instead of all sources

generating traffic at the same rate, source nodeu generates traffic at rate that is a function of its separation
from destinationv, i.e., the traffic matrix is given byλu,v = ψ(ru,v) for some functionψ. In particular,
let us consider

ψ(r) ,

{
rβ if r ≥ 1,

1 else

for some fixedβ ∈ R. The traditional setting corresponds toβ = 0. Then, Theorem 1 gives the following
upper bound on the capacity scaling for this traffic matrix

ρ∗λ(n) =

{
O(n−(ᾱ+β)/2+ε) if β ≥ −ᾱ− 2,
O(n1+ε) else.

Applying Theorem 2 shows that

ρ∗λ(n) ≥
{
n−(ᾱ+β)/2−o(1) if β ≥ −ᾱ,
n−o(1) else.
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The two bounds coincide order wise forβ ≥ −ᾱ, yielding the capacity scaling in this case. Forβ < −ᾱ,
the above upper bound is loose and we need to utilize Theorem 4to establish the capacity scaling as

ρ∗λ(n) =

{
Θ(n−(ᾱ+β)/2±ε) if β ≥ −ᾱ,
Θ(n±ε) else.

For β = 0, and noting that0 ≥ −ᾱ, this recovers the results from [11], [12] for random permutation
traffic with uniform rate. ♦

Example 3. Source-Destination Separation Variation
Each source generates traffic at the same rateρ. We consider a sequence of permutation traffics

{Π(n)}n≥1 such that for anyδ > 0 and0 < r ≤ 1− δ,

lim
n→∞

1

n

∣∣(u, v) ∈ Π(n) : ru,v/
√
n ∈ [r, r + δ)

∣∣ =
∫ r+δ

x=r

ψ(x)dx,

for some functionψ. In particular, letψ(r) ∝ rβ for some fixedβ ∈ R. Note that the traditional setup of
choosing a permutation traffic at random corresponds essentially to β = 1. Then, an upper bound onρ is
given by Theorem 1 as

ρ∗λ(n) =






O(n−ᾱ/2+ε) if β ≥ −1,

O(n−(ᾱ+β+1)/2+ε) if −1− ᾱ ≤ β < −1,
O(nε) else.

The achievability of essentially the same order follows from Theorem 4. Forβ = 1 this coincides again
with the results from [11], [12] for random permutation traffic with uniform rate. ♦

Example 4. Sources with Multiple Destinations
All the example scenarios so far are concerned with permutation traffic. Here we consider more general

traffic patterns. There areK classes of source nodes, for some fixedK. Each source node in classi has
Θ(nβi) destination nodes for some fixedβi ∈ [0, 1] and generates independent traffic at the same rate
λi(n) for each of them. Each of these destination nodes is chosen uniformly at random among then
nodes. Every node picks the class it belongs to independently and uniformly at random. Then, Theorem 4
provides the following bounds on the rates obtained by different classes:

n−βi−ᾱ/2−o(1) ≤ λi(n) = O(n−βi−ᾱ/2+ε),

for anyε > 0 asn→ ∞. In other words, time sharing between allK classes and then (within each class)
between allΘ(nβi) destination nodes is order optimal in this scenario. ♦

IV. COMMUNICATION SCHEMES

In this section, we provide a high-level description of the communication schemes used to prove
achievability in Theorem 2 (see Section IV-B below) and in Theorem 4 (see Section IV-C below). We
start off in Section IV-A by recalling results from prior work that will be used as building blocks in the
following.

A. Hierarchical Relaying and Multi-Hop Schemes

Here we discuss (asymptotically) optimal communication schemes for permutation traffic with uniform
rate onA(n) in which most source-destination pairs are at a distance ofΘ(

√
n). Permutation traffics

of this sort occur with high probability if they are generated uniformly at random. We shall use these
communication schemes as building blocks in the following.

The type of optimal communication scheme depends drastically on the path loss exponentα. For
α ∈ (2, 3], i.e., the path loss exponent is small, cooperative communication on a global scale is necessary
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to achieve optimal performance. Forα > 3, i.e., the path loss exponent is large, only local communication
between neighboring nodes is necessary, and traffic is routed in a multi-hop fashion from the source to
the destination. We will refer to the optimal scheme forα ∈ (2, 3] as hierarchical relaying scheme, and
to the optimal scheme forα > 3 as multi-hop scheme.

Given a permutation traffic onV (n). For α ∈ (2, 3], hierarchical relaying achieves a per-node rate of
n1−α/2−o(1). For α > 3, multi-hop communication achieves a per-node rate ofn−1/2. By choosing the
appropriate scheme, we can thus achieve a per-node rate ofn1−min{3,α}/2. We provide a short description
of the hierarchical relaying scheme in the following. The details can be found in [12].

Considern nodes placed independently and uniformly at random onA(n). Divide A(n) into

n
2
α
log−1/3(n)

squarelets of equal size. Call a squareletdense, if it contains a number of nodes proportional to its area.
For each source-destination pair, choose such a dense squarelet as arelay, over which it will transmit
information (see Figure 1).

u1

u2

u3

MAC

BC

v1

v2

v3

Fig. 1. Sketch of one level of the hierarchical relaying scheme. Here{(ui, vi)}
3
i=1 are three source-destination pairs. Groups of source-

destination pairs relay their traffic over relay squarelets, which contain a number of nodes proportional to their area (shaded). We time share
between the different relay squarelets. Within all relay squarelets the scheme is used recursively to enable joint decoding and encoding at
each relay.

Consider now one such relay squarelet and the nodes that are transmitting information over it. If we
assume for the moment that the nodes within the relay squarelets could cooperate then between the source
nodes and the relay squarelet we would have a multiple accesschannel (MAC), where each of the source
nodes has one transmit antenna, and the relay squarelet (acting as one node) has many receive antennas.
Between the relay squarelet and the destination nodes, we would have a broadcast channel (BC), where
each destination node has one receive antenna, and the relaysquarelet (acting again as one node) has
many transmit antennas. The cooperation gain from using this kind of scheme arises from the use of
multiple antennas for this MAC and BC.

To actually enable this kind of cooperation at the relay squarelet, local communication within the relay
squarelets is necessary. It can be shown that this local communication problem is actually the same as
the original problem, but at a smaller scale. Indeed, we are now considering a square of size

n1− 2
α
log−1/3(n)

with equal number of nodes (at least order wise). Hence we canuse the same scheme recursively to solve
this subproblem. We terminate the recursion after

log1/3(n)
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iterations, at which point we use simple TDMA to bootstrap the scheme.
Observe that at the final level of the scheme, we have dividedA(n) into

(
n

2
α
log−1/3(n)

)log1/3(n)
= n2/α

squarelets. A sufficient condition for the scheme to succeedis that all these squarelets are dense (i.e.,
contain a number of nodes proportional to their area). However much weaker conditions are sufficient as
well (see [12]). The per-node rate achievable with this scheme is at least

n1−α/2−o(1),

and for traffic matrices where a constant fraction of source-destination pairs are at distanceΘ(
√
n) (as

is the case with probability1 − o(1) asn → ∞ if the source-destination traffic is chosen uniformly at
random), this is asymptotically the best uniformly achievable per-node rate.

B. Permutation Traffic

As pointed out in the last section, for permutation traffic hierarchical relaying and multi-hop commu-
nication achieve a per-node rate ofn1−min{3,α}/2−o(1). This rate is independent of the distance between
source-destination pairs. It is shown in [11], [12] that forrandomsource-destination pairing (in which
most of the source-destination pairs are at a distance of order Θ(

√
n)) no communication scheme can

uniformly over all such pairs achieve a per-node rate of morethanO(n1−min{3,α}/2+ε) for any ε > 0. In
other words, for any communication scheme, there exists at least one source-destination pair whose rate
is upper bounded byO(n1−min{3,α}/2+ε). On the other hand, one suspects that certain source-destination
pairs should be able to communicate at a rate that is considerably higher than that.

As an example, consider a situation where half of the source-destination pairs are at a distance of
orderΘ(

√
n) and the other half are at a distance ofΘ(1). By operating the network in a “long-distance”

and a “short-distance” mode, one should be able to achieve the samen1−min{3,α}/2−o(1) per-node rate for
those source-destination pairs at distanceΘ(

√
n), while being able to communicate at much higher rates

between source-destination pairs at distanceΘ(1) (see Figure 2). Theorem 2 shows that this is indeed the
case. In fact, it shows that those source-destination pairsat distanceΘ(1) can communicate at a per-node
rate ofn−o(1). This is within ano(1) factor of the best scheme possible even without having to support
the source-destination pairs at distanceΘ(

√
n).

= +

Fig. 2. Sketch of the decomposition of a permutation traffic into sub-traffics with roughly equal source-destination distances.

The proof of Theorem 2 formalizes this idea of decomposing the permutation traffic into source-
destination pairs at different scales. More precisely, each permutation traffic is decomposed into subtraffics
atΘ(log(n)) different distance scales, and the scheme operates by time-sharing between those subtraffics.
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C. General Traffic

So far, we have only considered permutation traffic. In otherwords, each node is source and destination
exactly once. Moreover, transmission rates were only allowed to depend on the distance between source-
destination pairs. While useful, this is still a rather restrictive setup. In the most general form, we would
like to answer the following question. Given a traffic matrixλ ∈ R

n×n, is it possible to simultaneously
transmit independent messages between each node pair(u, v) ∈ V 2(n) at rateλu,v? Or, in other words,
is λ ∈ Λ(n)?

Theorem 4 provides an asymptotic answer to this question. Its proof relies on the construction of a
communication graphG. This graph is a tree, whose leaf nodes represent the nodesV (n) in the wireless
network. The intermediate nodes ofG represent larger clusters of nodes (i.e., subsets ofV (n)) in the
wireless network (see Figure 3).

ℓ = 0

ℓ = 1
...

ℓ = L(n)

ℓ = L(n) + 1

Fig. 3. Communication graphG constructed in the proof of Theorem 4. Nodes on levelsℓ ∈ {0, . . . , L(n)− 1} have each four children,
nodes on levelℓ = L(n) have eachΘ

`
nlog−1/2(n)

´
children. The total number of terminal nodes isn, one representing each node in the

wireless networkV (n). A non-terminal node inG at level ℓ ∈ {0, . . . , L(n)} represents the collection of nodes inVℓ,i(n) for somei.

Messages are sent from source to destination by routing it over G. To send information from a child
node to its parent inG (i.e., towards the root node ofG), the message at the cluster inV (n) represented
by the child node is distributed evenly among all nodes in thebigger cluster inV (n) represented by the
parent node. To send information from a parent node to a childnode inG (i.e., away from the root node
of G), the message at the cluster inV (n) represented by the parent node is concentrated on the cluster
in V (n) represented by the child node. This distribution and concentration of messages in the wireless
network is performed by either using hierarchical relaying(for α ∈ (2, 3]) or multi-hop communication
(for α > 3).

V. AUXILIARY LEMMAS

In this section, we provide auxiliary results, which will beused several times in the following. Lemmas
5 and 6 describe regularity properties exhibited with high probability by the random node placement.
Lemmas 7 and 8 provide auxiliary upper bounds on the performance of any scheme in terms of cut-set
bounds. Finally, Lemma 9 describes auxiliary results on theperformance of hierarchical relaying and
multi-hop communication as described in Section IV-A.

Lemma 5. For any δ > 0, let

Lδ(n) ,
1

2
log(n)

(
1− δ log−1/2(n)

)
.

Then

P

( Lδ(n)⋂

ℓ=1

4ℓ⋂

i=1

{
|Vℓ,i(n)| ∈ [4−ℓ−1n, 4−ℓ+1n]

})
= 1− o(1)
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as n→ ∞. In particular, this holds forL(n) = L1(n).

Proof. Consider thej-th node and letBj be the indicator random variable of the event that this node lies
in Aℓ,i for fixed ℓ, i. Note that

n∑

j=1

Bj = |Vℓ,i| ,

and that
P(Bj = 1) = 4−ℓ.

Hence using the Chernoff bound

P

( n∑

j=1

Bj 6∈ [4−ℓ−1n, 4−ℓ+1n]

)
≤ exp(−K4−ℓn),

for some constantK > 0. From this, we obtain forℓ = Lδ(n),

P

( 4Lδ(n)⋂

i=1

{ ∣∣VLδ(n),i

∣∣ ∈ [4−Lδ(n)−1n, 4−Lδ(n)+1n]
})

≥ 1−
4Lδ(n)∑

i=1

P
( ∣∣VLδ(n),i

∣∣ 6∈ [4−Lδ(n)−1n, 4−Lδ(n)+1n]
)

≥ 1− 4Lδ(n) exp(−K4−Lδ(n)n)

= 1− o(1).
(3)

Since the{Aℓ,i}ℓ,i are nested as a function ofℓ, we have

Lδ(n)⋂

ℓ=1

4ℓ⋂

i=1

{
|Vℓ,i| ∈ [4−ℓ−1n, 4−ℓ+1n]

}
=

4Lδ(n)⋂

i=1

{ ∣∣VLδ(n),i

∣∣ ∈ [4−Lδ(n)−1n, 4−Lδ(n)+1n]
}
,

which, combined with (3), proves the lemma.

Lemma 6. For any δ > 0,

P

(
min

u∈V (n),v∈V (n)\{u}
ru,v ≥ n−1/2−δ

)
= 1− o(1),

as n→ ∞.

Proof. For u, v ∈ V let
Bu,v , {ru,v < r}.

Fix a nodeu ∈ V , then

P(Bu,v|u) ≤
r2π

n
,

(the inequality being due to boundary effects). Moreover, the events{Bu,v}v∈V \{u} are independent
conditioned onu, and thus

P

(
∩v∈V \{u} B

c
u,v

∣∣u
)
=

∏

v∈V \{u}

P(Bc
u,v|u) ≥

(
1− r2π

n

)n

.
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From this,

P

(
min

u∈V,v∈V \{u}
ru,v < r

)
= P

(
∪u∈V,v∈V \{u} Bu,v

)

≤
∑

u∈V

P

(
∪v∈V \{u} Bu,v

)

=
∑

u∈V

(
1− P

(
∩v∈V \{u} B

c
u,v

))

=
∑

u∈V

(
1− E

(
P

(
∩v∈V \{u} B

c
u,v

∣∣u
)))

≤
∑

u∈V

(
1−

(
1− r2π

n

)n)

= n
(
1−

(
1− r2π

n

)n)
,

which converges to zero forr = n−1/2−δ.

Lemma 7. Under either fast or slow fading, for anyα > 2 and ε > 0, there existsK1 > 0 such that for
all λ ∈ Λ(n),

P

( ⋂

ℓ∈{1,...,L(n)}

⋂

i∈{1,...,4ℓ}

Bℓ(Vℓ,i(n))

)
≥ 1− o(1), (4)

P

( ⋂

ℓ∈{1,...,L(n)}

⋂

i∈{1,...,4ℓ}

Bℓ(Vℓ,i(n)
c)

)
≥ 1− o(1), (5)

as n→ ∞, and where for anyU ⊂ V (n)

Bℓ(U) ,

{ ∑

u∈U,v∈Uc

λu,v ≤ K1n
ε(4−ℓn)2−min{3,α}/2

}
.

Proof. For anyU1, U2 ⊂ V , denote byC(U1, U2) the MIMO capacity between nodes inU1 and nodes inU2.
The arguments of [11, Theorem 5.2] show that in the fast fading case for everyε > 0 there existsK, K̃ > 0
and a collection of node placementsV (each of cardinalityn) such that for anyV ∈ V, ℓ ∈ {0, . . . , L(n)},

C(Vℓ,i, V
c
ℓ,i) ≤ Knε/2

∑

u∈Vℓ,i,v∈V
c
ℓ,i

r−α
u,v , (6)

C(V c
ℓ,i, Vℓ,i) ≤ Knε/2

∑

u∈V c
ℓ,i,v∈Vℓ,i

r−α
u,v , (7)

and for adjacent squaresAℓ,i, Aℓ,j,
∑

u∈Vℓ,i,v∈Vℓ,j

r−α
u,v ≤ K̃nε/2(4−ℓn)2−min{3,α}/2. (8)

For the slow fading case, the two statements hold with probability 1 − o(n−1) asn → ∞. Moreover, in
both cases

P(V ∈ V) ≥ 1− o(1) (9)

as n → ∞. Consider now two diagonal squaresAℓ,i, Aℓ,j, and choosẽi, j̃ such thatAℓ,i ∪ Aℓ,̃i and
Aℓ,j ∪Aℓ,j̃ are adjacent rectangles. Using the same arguments to these rectangles and suitably redefining
K̃ and V shows that (8) and (9) hold for diagonal squares as well. Moreover, by Lemma 5 we can
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assume without loss of generality that for everyV ∈ V all Vℓ,i have cardinality at most4−ℓ+1n for each
ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ}.

Using this, we now compute the summation in (6). Consider “rings” of squares aroundAℓ,i. The first
such “ring” contains the (at most)8 squares neighboringAℓ,i. The next “ring” contains at most16 squares.
In general, “ring”k contains at most8k squares. Let

{Aℓ,i}i∈Ik
be the squares in “ring”k. Then

∑

u∈Vℓ,i,v∈V
c
ℓ,i

r−α
u,v =

∑

k≥1

∑

j∈Ik

∑

u∈Vℓ,i,v∈Vℓ,j

r−α
u,v . (10)

By (8) and the arguments in the last paragraph,
∑

j∈I1

∑

u∈Vℓ,i,v∈Vℓ,j

r−α
u,v ≤ 8K̃nε/2(4−ℓn)2−min{3,α}/2. (11)

Now note that fork > 1 and j ∈ Ik, nodes inVℓ,i and Vℓ,j are at least at distance(k − 1)(2−ℓ
√
n).

Moreover, sinceV ∈ V, each{Vℓ,j}ℓ,j has cardinality at most4−ℓ+1n. Thus
∑

k>1

∑

j∈Ik

∑

u∈Vℓ,i,v∈Vℓ,j

r−α
u,v ≤

∑

k>1

8k
(
4−ℓ+1n

)2(
(k − 1)(2−ℓ

√
n)
)−α

= 128
(
4−ℓn

)2−α/2
∑

k>1

k(k − 1)−α

= K ′
(
4−ℓn

)2−α/2
, (12)

for someK ′ > 0, and where we have used thatα > 2. Substituting (11) and (12) into (10) yields
∑

u∈Vℓ,i,v∈V
c
ℓ,i

r−α
u,v ≤ 8K̃nε/2(4−ℓn)2−min{3,α}/2 +K ′

(
4−ℓn

)2−α/2
, (13)

for V ∈ V.
Combining (13) with (6) and using the cut-set bound shows that

P
(
Bℓ(Vℓ,i(n))

∣∣V ∈ V
)
≥ 1− o(n−1),

for every ℓ ∈ {1, . . . , L(n)}, i ∈ {1, . . . , 4ℓ}, and under either fast or slow fading (the probability is, in
fact, equal to1 in the fast fading case). Hence, usingL(n)4L(n) ≤ n for n large enough,

P

( ⋂

ℓ∈{1,...,L(n)}

⋂

i∈{1,...,4ℓ}

Bℓ(Vℓ,i(n))

)

≥ P

( ⋂

ℓ∈{1,...,L(n)}

⋂

i∈{1,...,4ℓ}

Bℓ(Vℓ,i(n))
∣∣∣V ∈ V

)
P(V ∈ V)

≥
(
1−

∑

ℓ∈{1,...,L(n)}

∑

i∈{1,...,4ℓ}

(
1− P

(
Bℓ(Vℓ,i(n))

∣∣V ∈ V
)))

P(V ∈ V)

≥
(
1− no(n−1)

)(
1− o(1)

)

≥ 1− o(1).

This shows (4); (5) follows from a similar argument and (7).
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Lemma 8. Under either fast or slow fading, for anyα > 2, there existsK2 > 0 such that for allλ ∈ Λ(n),
u ∈ V (n),

P

( ∑

v∈V (n)\{u}

λu,v ≤ K2 log(n) ∀u ∈ V (n)

)
≥ 1− o(1), (14)

P

( ∑

v∈V (n)\{u}

λv,u ≤ K2 log(n) ∀u ∈ V (n)

)
≥ 1− o(1), (15)

as n→ ∞.

Proof. The argument follows the one in [11, Theorem 3.1]. As before,denote byC(U1, U2) the MIMO
capacity between nodes inU1 and nodes inU2, for U1, U2 ⊂ V . Consider first (14). By the cut-set bound,

∑

v 6=u

λu,v ≤ C({u}, {u}c).

HereC({u}, {u}c) is the SIMO capacity betweenu and the nodes in{u}c, i.e.,

C({u}, {u}c) = log
(
1 + P

∑
v 6=u |hu,v|

2
)

≤ log(1 + P (n− 1)nα),

where for the first inequality we have used Lemma 6, which asserts thatru,v ≥ n−1/2−δ ≥ n−1 for all
u, v ∈ V with probability 1− o(1) asn→ ∞.

Similarly, for (15), ∑

v 6=u

λv,u ≤ C({u}c, {u}).

HereC({u}, {u}c) is the MISO capacity between the nodes in{u}c andu, i.e.,

C({u}c, {u}) ≤ log
(
1 + (n− 1)P

∑
v 6=u |hv,u|

2
)

≤ log(1 + P (n− 1)2nα).

Lemma 9. For eachn ∈ N, let ℓ(n) ∈ {0, . . . , L(n)} and letΠi(n) be any permutation traffic onVℓ(n),i(n)
for everyi ∈ {1, . . . , 4ℓ(n)}. Then under either fast or slow fading, and for anyα > 2,

sup
λ∈Λ(n)

min
i∈{1,...,4ℓ(n)}

min
(u,v)∈Πi(n)

λu,v ≥ n−o(1)(4−ℓ(n)n)1−min{3,α}/2,

with probability 1− o(1) as n→ ∞.

Proof. We shall use either hierarchical relaying (forα ∈ (2, 3]) or multi-hop (forα > 3) to communicate
within each squareVℓ,i. See Section IV-A for a description of these communication schemes. We operate
every fourth of theVℓ,i simultaneously, and show that the added interference due tothis spatial reuse
results only in a constant factor loss in rate.

Consider firstα ∈ (2, 3]. The squaresAℓ,i at level ℓ have an area of4−ℓn. In order to be able to use
hierarchical relaying within each of the{Aℓ,i}i, it is sufficient to show that we can partition eachAℓ,i into
(4−ℓn)2/α squarelets, each of which contains a number of nodes proportional to the area. In other words,
we partitionA into squarelets of size

(
4−ℓn

)1−2/α ≥
(
4−L(n)n

)1−2/α

= 2(1−2/α) log1/2(n)

= 4−Lδ(n)n,
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where
δ , 1− 2/α > 0.

Hence Lemma 5 shows that with probability1− o(1) asn→ ∞, all

{Ai,ℓ}ℓ∈{0,...,L(n)},i∈{1,...,4ℓ}
are simultaneously regular enough for hierarchical relaying to be successful. This achieves a per-node rate
of

λu,v ≥ n−o(1)(4−ℓn)1−α/2 (16)

for any (u, v) ∈ Πi(n)
That the additional interference from spatial reuse results only in a constant loss in rate, follows from

the same arguments as in the proof of [12, Theorem 1] (with theappropriate modifications for slow
fading as described there). Intuitively, this is the case since the interference from a square at distancer
is attenuated by a factorr−α, which, sinceα > 2, is summable. Hence the combined interference has
power on the order of the receiver noise, resulting in only a constant factor loss in rate.

For α > 3, the argument is similar — instead of hierarchical relayingwe now use multi-hop commu-
nication. This achieves a per-node rate of

λu,v ≥ n−o(1)(4−ℓn)−1/2 (17)

for any (u, v) ∈ Πi(n). Combining (16) and (17) yields the desired result.

VI. PROOF OFTHEOREM 1

Note that for anyu, v ∈ V with u 6= v,

(u, v) ∈
⋃

ℓ≥0

V 2
ℓ

Thus we can upper boundTα(n) as

Tα(n) = sup
λ∈Λ

∑

ℓ≥0

∑

(u,v)∈V 2
ℓ

λu,vfα(ru,v)

≤ sup
λ∈Λ

∑

ℓ≥0

fα(2
−ℓ+1

√
n)

∑

(u,v)∈V 2
ℓ

λu,v

≤
∑

0≤ℓ≤L(n)

fα(2
−ℓ+1

√
n) sup

λ∈Λ

∑

(u,v)∈V 2
ℓ

λu,v + fα(2
−L(n)

√
n) sup

λ∈Λ

∑

ℓ>L(n)

∑

(u,v)∈V 2
ℓ

λu,v. (18)

We now upper bound each of the terms

sup
λ∈Λ

∑

(u,v)∈V 2
ℓ

λu,v

for 0 ≤ ℓ ≤ L(n). Let (u, v) ∈ V 2
ℓ ; by definition this impliesru,v ≥ 2−ℓ

√
n. Now pick i ∈ {1, . . . , 4ℓ+1}

such thatu ∈ Vℓ+1,i. Observe that for anyw ∈ Vℓ+1,i, we haveru,w < 2−ℓ
√
n. Thereforev ∈ V c

ℓ+1,i, and
hence

V 2
ℓ ⊂

4ℓ+1⋃

i=1

(
Vℓ+1,i × V c

ℓ+1,i

)
.



16

Using this observation and Lemma 7

sup
λ∈Λ

∑

(u,v)∈V 2
ℓ

λu,v ≤ sup
λ∈Λ

4ℓ+1∑

i=1

∑

u∈Vℓ+1,i,v∈V
c
ℓ+1,i

λu,v

≤
4ℓ+1∑

i=1

K1n
ε/2(4−ℓ−1n)2−α̃/2

≤ K14
ℓ(α̃/2−1)+1n2−α̃/2+ε/2, (19)

for 0 ≤ ℓ ≤ L(n) and with probability1− o(1) asn→ ∞, and where we have defined

α̃ , min{3, α}.
Consider nowℓ > L(n). By Lemma 8,

sup
λ∈Λ

∑

v∈V \{u}

λu,v ≤ K2 log(n)

with probability 1− o(1) asn→ ∞. Hence

sup
λ∈Λ

∑

ℓ>L(n)

∑

(u,v)∈V 2
ℓ

λu,v ≤
∑

u∈V

sup
λ∈Λ

∑

v∈V \{u}

λu,v

≤ K2n log(n). (20)

Substituting (19) and (20) into (18), we obtain

Tα(n) ≤
L(n)∑

ℓ=0

fα(2
−ℓ+1

√
n) sup

λ∈Λ

∑

(u,v)∈V 2
ℓ

λu,v + fα(2
−L(n)

√
n) sup

λ∈Λ

∑

ℓ>L(n)

∑

(u,v)∈V 2
ℓ

λu,v

≤ 8K1

L(n)∑

ℓ=0

4−ℓ(α̃/2−1)nα̃/2−14ℓ(α̃/2−1)n2−α̃/2+ε/2 +K2

(
2−L(n)n

)α/2−1
n log(n)

= L(n)O
(
n1+ε/2

)
+O

(
n1+ε

)

= O
(
n1+ε

)
,

with probability 1− o(1) asn→ ∞.

VII. PROOF OFTHEOREM 2

We construct a communication scheme and lower bound the rateρu,v(n) that it achieves for any(u, v) ∈
Π. Define

Πℓ , Π ∩ V 2
ℓ .

Consider the partition{Aℓ−1,i}4ℓ−1

i=1 of A. For eachℓ ≥ 3, construct bigger squares by joining4 squares
in {Aℓ−1,i}4ℓ−1

i=1 . There are four different ways of doing this, yielding ”shifted” versions of bigger squares
(see Figure 4). Call{Ãj

ℓ−1,i}i for j ∈ {1, . . . , 4} the resulting bigger squares.
Define

Πj
ℓ,i , Πℓ ∩ (Ãj

ℓ−1,i × Ãj
ℓ−1,i).

Let (u, v) ∈ Πj
ℓ,i, thenru,v < 2−ℓ+1

√
n. Thus ifu ∈ Aℓ−1,i thenv is in eitherAℓ−1,i or one of its neighbors.

Hence there existsi′ and j′ such that(u, v) ∈ Ãj′

ℓ−1,i′ . Therefore

Πℓ =
⋃

i,j

Πj
ℓ,i.
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Fig. 4. Two of the four ways of defining the bigger squares{ eAj
ℓ−1,i}i (bold lines) forj ∈ {1, . . . , 4} from the smaller squares{Aℓ−1,i}

4ℓ−1

i=1

(dashed lines).

For ℓ = 2 the number of ways to define bigger squares is smaller, and thesame approach used in the
following for generalℓ will work as well. For ℓ ∈ {0, 1}, it is not necessary to define bigger squares,
essentially the same approach as for the general case will again work in this case.

We time share betweenℓ ∈ {0, . . . , L(n)+ 1} and betweenj ∈ {1, . . . , 4}. For eachℓ ∈ {0, . . . , L(n)}
and j ∈ {1, . . . , 4}, we communicate between the source-destination pairs within each of the squares
{Ãj

ℓ−1,i}i (with the exception ofℓ ∈ {0, 1} where construction of bigger squares is not necessary). A
sketch of this traffic decomposition is shown in Figure 2 in Section IV-B. This time-sharing results in a
total rate loss of a factor

1

4(L(n) + 2)
≤ n−o(1).

Using hierarchical relaying (forα ∈ (2, 3]) or multi-hop (forα > 3) within each squarẽAj
ℓ−1,i according

to the traffic matrix given byΠj
ℓ,i yields by Lemma 9 a per-node rate of

ρu,v(n) ≥ n−o(1)
(
4−ℓn

)1−α̃/2
, (21)

simultaneously for all
(u, v) ∈

⋃

i

Πj
ℓ,i.

Now note that each source-destination pair(u, v) ∈ Πj
ℓ,i is at least at distance2−ℓ

√
n, and hence

λu,vfα(ru,v) ≥ ρu,v(n)fα(2
−ℓ
√
n) ≥ n−o(1) (22)

for any ℓ ∈ {0, . . . , L(n)}.
For ℓ > L(n), we use the multi-hop scheme to communicate between source-destination pairs in

⋃

ℓ>L(n)

⋃

i

Πj
ℓ,i,

time sharing betweenj ∈ {1, . . . , 4} and the four ways of defining bigger squares at levelℓ = L(n). By
Lemma 9, this achieves a per-node rate of

ρu,v(n) ≥ n−o(1)(4−L(n)n)−1/2−o(1) ≥ n−o(1),

simultaneously for all
(u, v) ∈

⋃

ℓ>L(n)

⋃

i

Πj
ℓ,i.
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From this and usingf(r) ≥ 1 for r > 0, we obtain

λu,vfα(ru,v) ≥ ρu,v(n) ≥ n−o(1) (23)

for any ℓ > L(n) and (u, v) ∈ Πℓ.
Combining (22) and (23), and using that

Π =
⋃

ℓ≥0

Πℓ,

shows the desired result.

VIII. PROOF OFTHEOREM 4

We start with some definitions and auxiliary results concerning routing over capacitated tree graphs. Let
G = (VG, EG) be a tree graph, with edge capacitiesc(e) in both directions fore ∈ EG. For a non-terminal
nodeu in G, let D(u) be the descendants ofu in G (including u itself, i.e., u ∈ D(u)), and letL(u)
denote the leaf nodes inD(u). Let e = (u, v) ∈ EG, and assume thatv is the parent ofu in G; with
slight abuse of notation, defineD(e) , D(u).

Denote byΛG ⊂ R
|VG|×|VG|
+ the set of feasible rate matrices forG (i.e., the set of flow rates that can

be routed throughG). For a matrix of flow ratesλ ∈ R
|VG|×|VG|
+ , define

γ∗λ , sup{b ≥ 0 : bλ ∈ ΛG}.
For e ∈ EG, let

dλ(e) ,
∑

u∈D(e)
v/∈D(e)

(λu,v + λv,u).

Lemma 10. Let G = (VG, EG) be an undirected capacitated tree graph, andλ ∈ R
|VG|×|VG|
+ a matrix of

flow rates. Then

γ∗λ = min
e∈EG

c(e)

dλ(e)
.

Proof. Let e ∈ EG, and consideru ∈ D(e), v /∈ D(e). SinceG is a tree, the only way to route data from
u to v and fromv to u is throughe. Therefore

γ∗λdλ(e) ≤ c(e)

for all e ∈ EG, and thus

γ∗λ ≤ min
e∈EG

c(e)

dλ(e)
.

Conversely, suppose

γ∗λ < min
e∈EG

c(e)

dλ(e)
.

Then the load over every edgee ∈ EG is strictly less thanc(e), and hence it is possible to increase the
flow for each(u, v) pair by a strictly positive amount. This contradicts the definition of γ∗λ, and hence
shows that

γ∗λ ≥ min
e∈EG

c(e)

dλ(e)
.

We are now ready to embark on the proof of Theorem 4. Set

λ∗ , ρ∗λ(n)λ,
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and note that4 λ∗ ∈ Λ. Thus by Lemma 7, we have for anyℓ ∈ {1, . . . , L(n)} and i ∈ {1, . . . , 4ℓ},

max
{∑

u∈Vℓ,i,v∈V
c
ℓ,i
λ∗u,v,

∑
u∈V c

ℓ,i,v∈Vℓ,i
λ∗u,v

}
≤ K1n

ε(4−ℓn)2−min{3,α}/2.

Noting that

max
{∑

u∈Vℓ,i,v∈V
c
ℓ,i
λu,v,

∑
u∈Vℓ,i,v∈V

c
ℓ,i
λv,u

}
≥ 1

2
Dλ(Vℓ,i), (24)

yields

ρ∗λ(n) ≤ min
ℓ∈{1,...,L(n)}

Knε(4−ℓn)2−min{3,α}/2 min
i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)

= min
ℓ∈{1,...,L(n)}

Knεgα(4
−ℓn) min

i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)
, (25)

for some constantK > 0.
For ℓ > L(n) and anyi ∈ {1, . . . , 4ℓ}, Lemma 8 shows that

∑

u∈Vℓ,i,v∈V
c
ℓ,i

λ∗u,v ≤
∑

u∈Vℓ,i

∑

v 6=u

λ∗u,v

≤ K2 |Vℓ,i| log(n)
≤ K2

∣∣VL(n),i
∣∣ log(n)

≤ no(1),

where we have assumed without loss of generality thatVℓ,i ⊂ VL(n),i. Therefore

ρ∗λ(n) ≤
no(1)

∑
u∈Vℓ,i,v∈V

c
ℓ,i
λu,v

,

and by a similar argument

ρ∗λ(n) ≤
no(1)

∑
u∈V c

ℓ,i,v∈Vℓ,i
λu,v

.

Using (24),

ρ∗λ(n) ≤
no(1)

Dλ(Vℓ,i)

≤ no(1)gα(4
−ℓn)

Dλ(Vℓ,i)
,

sincegα ≥ 1. Hence

ρ∗λ(n) ≤ min
ℓ>L(n)

no(1)gα(4
−ℓn) min

i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)

≤ min
ℓ=log(n)

no(1)gα(4
−ℓn) min

i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)
.

Combining this with (25) yields
ρ∗λ(n) = O

(
nεφ∗

λ(n)
)
. (26)

Now, construct a graphG = (VG, EG) as follows.G is a full tree (i.e., all its leaf nodes are on the
same level).G hasn leaves, each of them representing an element ofV . To simplify notation, we assume
that V ⊂ VG, so that the leaves ofG are exactly the elements ofV ⊂ VG. Whenever the distinction is

4To be precise,(1 − δ)λ∗ ∈ Λ for any δ ∈ (0, 1). However, since we are only interested in the scaling behavior of Λ, we can safely
ignore the additional(1− δ) factor.
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relevant, we useu, v for nodes inV ⊂ VG andµ, ν for nodes inVG \V in the following. The non-terminal
nodes ofG correspond toVℓ,i for all ℓ ∈ {0, . . . , L(n)}, i ∈ {1, . . . , 4ℓ}, with hierarchy induced by the
one onA(n) (see Figure 3 in Section IV-C). Thus, nodes inVG at levelℓ < L(n) have4 children, nodes
at levelℓ = L(n) have between4−L(n)−1n and4−L(n)+1n children (with high probability, by Lemma 5),
and nodes at levelℓ = L(n) + 1 are the leaves of the tree. To understand the relation between VG andV ,
we define therepresentativeR : VG → 2V as follows. For a leaf nodeu ∈ V ⊂ VG of G, let

R(u) , {u}.
For µ ∈ VG at levelL(n), chooseR(µ) ⊂ L(µ) ⊂ V such that

|R(µ)| = 4−L(n)−1n.

This is possible with probability1− o(1) asn→ ∞ by Lemma 5. Finally, forµ ∈ VG at levelℓ < L(n),
and with children{νi}4j=1, let

R(µ) ,
4⋃

j=1

R(νj).

We now define an edge capacityc(µ, ν) for each edge(µ, ν) ∈ EG. If µ is a leaf ofG andν its parent,
set

c(µ, ν) = c(µ, ν) , 1. (27)

If µ is a non-terminal node at levelℓ in G andν its parent, then set

c(µ, ν) = c(ν, µ) , (4−ℓn)2−min{3,α}/2. (28)

We argue now that if a multicommodity flowλ corresponding to a traffic matrix of the wireless network
(i.e., only the leaf nodes ofG are sources or destinations) can be routed throughG, thenno(−1)λ ∈ Λ
(i.e., almost the same flow can be reliably transmitted over the wireless network). The idea (that will be
made precise) is the following. To transmit information from a non-terminal nodeµ ∈ VG to its parent
nodeν, we split the message at each node inR(µ) into four parts and send one part to each node in
R(ν). In other words, we distribute the message by a factor four over the wireless network. To transmit
information from a nodeµ ∈ VG with non-terminal children{νj}4j=1 to one of them, sayν1, we send
the message parts from each{R(νj)}4j=2 to a corresponding node inR(ν1) and combine them there.
In other words, we concentrate the message by a factor four over the wireless network. The scheme is
bootstrapped at the leavesV ⊂ VG of G (where, by our definition ofλ, all traffic originates and ends) as
follows. To send a message from a leaf nodeu ∈ V ⊂ VG to its parentν in G, the message is split atu
into |R(ν)| equal pieces, and one piece is sent to each node inR(ν) over the wireless network. In other
words, we distribute the message again over the wireless network, but this time by a factor of|R(ν)|. To
send a message to a leaf nodeu ∈ V ⊂ VG from its parentν in G, each node inR(ν) sends its piece of
the message tou over the wireless network. Thus, again we concentrate the message over the network,
but this time by a factor of|R(ν)|.

We now analyze this scheme in more detail. Note first that by time sharing between theL(n) + 1
non-terminal levels of the tree, and by appropriate spatialreuse within each level, we only loose a factor
of at most

K̃
1

4(L(n) + 1)
≤ n−o(1)

for some constant̃K > 0 in rate. Hence it is sufficient to consider communication between a non-terminal
node ofG and its children.

We first consider communication up the tree (i.e., towards the root). Let u ∈ V ⊂ VG be a leaf
node ofG and ν be its parent. To send traffic at ratec(u, ν) from u to ν, nodeu splits its traffic into
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|R(ν)| = 4−L(n)−1n equal parts and sends each part to one node inR(ν). RecallR(ν) ⊂ VL(n),i for some
i. Since

ru,v ≤ 2(4−L(n)n)1/2

for any u, v ∈ VL(n),i, communicating betweenu andv, we incur a power loss of

r−α
u,v ≥ 2−α(4−L(n)n)−α/2 ≥ 2−αn− log−1/2(n)α/2,

and hence we can communicate betweenu andv at a rate of at least

log
(
1 + P2−αn− log−1/2(n)α/2) ≥ n−o(1).

By time sharing between all the destination nodes inR(ν), and since all message parts are only|R(ν)|−1

of the size of the original message, all message parts ofu can be transmitted fromu to R(ν) at this rate.
By Lemma 5,

|L(ν)| ≤ 4−L(n)+1n = 4nlog−1/2(n),

and hence further time sharing between all source nodes inL(ν), we can communicate simultaneously
from all leaf nodesu ∈ L(ν) to R(ν) at a rate at least

4−1n− log−1/2(n)n−o(1) ≥ n−o(1)c(u, ν).

Let now ν ∈ VG be a node in levelℓ < L(n) in G and let{µj}4j=1 be its children. Since

|R(µj)| = 4−ℓ(n)−2n

for all j ∈ {1, . . . , 4}, we can find a one-to-one correspondence betweenR(µj) andR(µk). Choose an
arbitrary such correspondence for eachj, k ∈ {1, . . . , 4}, j 6= k. Now, since the multicommodity flow
corresponds to a traffic matrixλ for the wireless network, we know that the traffic to be sent from µj

to ν originates at one or several nodes inL(µj). Thus by construction of the previous stages, all nodes
in R(µj) possess an equal part of the total message to be transmitted from µj to ν. Split each such
message part further into four equal parts and consider one particular nodeu ∈ R(µk). The first part
of the message stays atu. The other three parts are to be transmitted to the corresponding nodes in
{R(µj)}j 6=k. Time sharing between all12 possible(j, k) pairs, we only incur a constant loss. Hence we
can focus on communication between a particular(j, k) pair. Note that we are now in a situation with
4−ℓ(n)−2n nodes inR(µj), each with a message of equal size for the corresponding nodein R(µk). This
is a permutation traffic, and by Lemma 9 we can therefore use hierarchical relaying (forα ∈ (2, 3]) or
multi-hop for (α > 3) to transmit at a total rate up to

n−o(1)(4−ℓn)2−min{3,α}/2 = n−o(1)c(µ, ν).

Consider now communication down the tree (i.e., away from the root). Communication betweenν and
µ works in the same fashion by concentrating the messages. Thesame arguments as in the previous
two paragraphs show that any rate up to (27) or (28) are achievable up to a factorn−o(1). Time sharing
between the two directions, yields an additional rate loss of a factor 1/2. Together, this shows that if a
multicommodity flowλ corresponding to a traffic matrix for the wireless network can be routed through
G thenn−o(1)λ can be communicated over the wireless network. In other words,

λ ∈ ΛG ⇒ n−o(1)λ ∈ Λ,

and we therefore have
ρ∗λ(n) = sup{b ≥ 0 : bλ ∈ Λ}

≥ sup{b ≥ 0 : bno(1)λ ∈ ΛG}
= sup{n−o(1)b ≥ 0 : bλ ∈ ΛG}
= n−o(1)γ∗λ(n).

(29)
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Now, by Lemma 10, we know that by optimally routing overG (which, sinceG is a tree, is trivial),
we can achieve

γ∗λ(n) = min
e∈EG

c(e)

dλ(e)
. (30)

Consider now an edgee = (µ, ν) ∈ EG, and assume thatν is the node closer to the root ofG. Let ℓ be
the level ofµ in the tree. Then, by construction,c(e) is only a function ofℓ and given by either (27) or
(28). Moreover,dλ(e) is either equal toDλ({u}) for someu ∈ V if ℓ = L(n) + 1, or equal toDλ(Vℓ,i)
for somei if ℓ ≤ L(n). Therefore

min
e∈EG

c(e)

dλ(e)
= min

{
min
u∈V

1

Dλ({u})
, min
ℓ∈{1,...,L(n)}

(4−ℓn)2−min{3,α}/2 min
i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)

}
. (31)

Now, by Lemma 6,ru,v ≥ n−1/2−δ > n−1 for all u, v ∈ V with probability 1− o(1), and hence we have
for ℓ = log(n) that

max
u∈V

Dλ({u}) = max
i∈{1,...,4ℓ}

max
u∈Vℓ,i

Dλ({u})

= max
i∈{1,...,4ℓ}

Dλ(Vℓ,i),

and thus forℓ = log(n) > L(n),

min
u∈V

1

Dλ({u})
= min

i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)

≥ 1

gα(4−L(n)n)
gα(4

−ℓn) min
i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)

≥ n−o(1)gα(4
−ℓn) min

i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)
.

Together with (31), this yields

min
e∈EG

c(e)

dλ(e)
= min

{
min
u∈V

1

Dλ({u})
, min
ℓ∈{1,...,L(n)}

gα(4
−ℓn) min

i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)

}

≥ n−o(1) min
ℓ∈{1,...,L(n)}∪{log(n)}

gα(4
−ℓn) min

i∈{1,...,4ℓ}

1

Dλ(Vℓ,i)

= n−o(1)φ∗
λ(n). (32)

Combining (26), (29), (30), and (32), shows that

n−o(1)φ∗
λ(n) ≤ n−o(1)γ∗λ(n)

≤ ρ∗λ(n)

= O
(
nεφ∗

λ(n)
)
,

completing the proof.

IX. CONCLUSIONS

We considered general traffic patterns in wireless networkswith n nodes uniformly distributed on
[0,

√
n]2 and with a Gaussian fading channel model. We first focused attention on permutation traffic (i.e.,

every node in the network is source and destination exactly once) and showed that for every source-
destination pair at distancer, we can guarantee a rate of

n−o(1)fα(r)
−1 = n−o(1)






r2−min{3,α} if r ≥ 1,

1 if 0 < r < 1,

∞ if r = 0.
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Moreover, this is essentially the best guarantee possible,since the sum of all rates, weighted byfα(r) for
source-destination pairs at distancer, is upper bounded byO(n1+ε) asn→ ∞ for any ε > 0.

We then focused on completely general traffic. More precisely, for λ ∈ R
n×n, we asked ifλ is an

element of then2 dimensional capacity regionΛ(n) of the wireless network. We provided an asymptotic
answer to this question in terms ofΘ(n) easily computable parameters of the network topology and
traffic demands. This resulted in a complete asymptotic characterization of the capacity regionΛ(n) of
the wireless network.
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