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The Capacity Region of Large Wireless Networks

Urs Niesen, Piyush Gupta, and Devavrat Shah

Abstract

The capacity region of a wireless network wittnodes is the set of all simultaneously achievable ratesdmrw
all possiblen? node pairs. In this paper, we consider the question of dét@rmthe scaling with respect to the
number of nodes, of the capacity region when the nodes are placed uniformhadom in a square region of
arean and they communicate over Gaussian fading channels. Weifidéinis scaling of the capacity region in
terms of©(n), out of 2" total possible, cuts. Our results are constructive andigeooptimal (in the scaling sense)
communication schemes. In the case of a restricted clasafti€ requirementgermutation traffig, we determine
the precise scaling in terms of a natural generalizatiomefttansport capacity. We illustrate the strength of these
results by computing the capacity scaling in a number of @&ies with non-uniform traffic patterns for which no
such results have been available before.

I. INTRODUCTION

Characterizing the capacity region of wireless networks lisng standing open problem in information
theory. The exact capacity region is, in fact, not known fegresimple networks like a three node relay
channel or a four node interference channel. In this papercensider the question of approximately
determining the capacity region of wireless networks byidgng its scaling in terms of the number of
nodes in the network.

A. Related Work

In the last decade or so, exciting progress has been madedwapproximating the capacity region of
wireless networks. We shall briefly recall a small subset ofkarelated to this paper. In [1], Gupta and
Kumar proposed a simpler but insightful question. Firsstéad of asking for the entire?-dimensional
capacity region of a wireless network withnodes, attention was restricted to the scenario where each
node is source and destination for exactly one communitgt@ir (calledpermutation trafficin the
following). All these source-destination pairs want to coomicate at the same rate, and the interest is
in finding the maximal achievable such rate. Second, instdadsisting on finding this maximal rate
exactly, they focused on its asymptotic behavior as the murobnodesn grows to infinity.

This setup has indeed turned out to be more amenable to adlyq1], it was shown that under
random placement of nodes in a given region and under cemattels of communication motivated by
current technology (calledombinatorial channel modeh the following), the per-node rate for random
permutation traffic can scale at most@&»~'/?) and this can be achieved (within poly-logarithmic factor
in n) by a simple scheme based on multi-hop communication. Masrksvsince then have broadened the
channel and communication models under which similar tesan be proved (for example, see [2]-[12]).
In particular, under th&aussian fading channel modelith a power-loss of-—* for signals sent over
a distance ofr, [11], [12] have shown that irextended wireless networKse., n nodes are randomly
located in a region with are@®(n)) the largest per-node rate achievable by all source-dg&im pairs
under random permutation traffic scales essentially e~ {3/2).,
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It can be shown that determining the scaling of the maximalexable per-node rate under random
permutation traffic as considered above is equivalent tarfgndhe scaling of the maximal achievable
per-node rate undemniform traffig in which each node wants to send data at equal rate to alt othe
nodes (see [13]). That is, analyzing random permutatioffidrgields a one dimensional projection of
the n? dimensional capacity region. Hence, the results in [1] anflLl], [12] mentioned above provide
a complete characterization of the scaling of this one dsiweral projection for the combinatorial and
Gaussian fading channel models, respectively. It is theeefiatural to ask if the scaling of the entiré
dimensional capacity region can be characterized. To tidls we describe two related approaches taken
in recent works.

One approach, taken by Madan, Shah, and Lévéque [13Hsupon the celebrated works of Leighton
and Rao [14] and Linial, London, and Rabinovich [15] on thpragimate characterization of the capacity
region of capacitated wireline networks. For such wirelnetworks, the scaling of the capacity region
is determined (within poly-logarithmic factor im) by the minimum weighted cut of the network graph.
As shown in [13], this naturally extends to wireless netvgotknder the combinatorial channel model,
providing an approximation of the capacity region in thisea

Another approach, first introduced by Gupta and Kumar [1lizes geometric properties of the wireless
network. Specifically, the notion of thteansport capacityof a network, which is the rate-distance product
summed over all source-destination pairs, was introducéd]i It was shown that in an extended wireless
network withn nodes and under the combinatorial channel model, the toainsgpacity can scale at most
asO(n). This bound on the transport capacity provides a hypereplaich has the capacity region and
origin on the same side. Through a repeated applicationi®frdnsport capacity bound at different scales,
together with the traditional cut-set bound, [16], [17]aibed an implicit characterization of the capacity
region under the combinatorial channel model.

For the Gaussian fading channel model, asymptotic uppendsodor the transport capacity were
obtained in [2], [3], and for arbitrary weighted sum-rataq18].

B. Our Contributions

Despite the long list of results, the question of approxetyatharacterizing the capacity region under
Gaussian fading channel model for general power-loss resifar from being resolved. As the main result
of this paper, we resolve this question successfully foemateéd networks under random node placement.

Our approximate characterization of the capacity regicexjgressed as the minimum ov@fn), of all
2™ total possible, cuts. The upper bound (converse) followsuiph consideration of appropriate cut-set
bounds. The lower bound (achievability) is establishedugh a novel scheme that routes data on a virtual
tree constructed using either cooperative or multi-hop roaimication. Information is sent along an edge
towards the root of this tree by distributing it over more esdn the network, and information is sent
along an edge towards the leaves of this tree by concergraton fewer nodes.

As mentioned above, the approximate characterization efcdpacity region is expressed as a min-
imization problem, and hence does not admit a succinct doadxpression. Such an expression can,
however, be found in the case of general (i.e., not necégssaridom) permutation traffic. To this end,
we identify a generalization of the notion of transport aafya resulting in a clean analytic formula for
the scaling for this kind of traffic.

C. Organization

The remainder of this paper is organized as follows. Sedfibintroduces the channel model and
notations. Sectioh lll presents our main results and iaiss them with a few example scenarios. Section
[Vldescribes at a higher level the proposed communicatiberses. Sectioris|V-VIIl contain proofs, and
SectionIX contains concluding remarks.



II. MODEL

ConsiderA(n) = [0,/n]? and letV(n) C A(n) be a set ofV(n)| = n nodes onA(n). We use the
same channel model as in [11]. Namely{if,[t]}.. are the (sampled) signals sent by the nodes (n),
then the (sampled) received signal at nedend timet is

Yolt] = Z hupltlzult] + 20 t] 1)
ueV (n)\{v}

for all v € V(n),t € N. Here{z,[t|}.. are i.i.d. circularly symmetric complex Gaussian randomiakdes
with mean(0 and variancel, and

huwlt] = r;g/z exp(V —10,.[t]),

for path-loss exponehty > 2, and wherer, ,, is the Euclidean distance betweerandv. {6, ,[t]}... iS
assumed to be i.i.d. with uniform distribution ¢ 27). We either assume th4#,, ,[t]}: is stationary and
ergodic as a function af which is calledfast fadingin the following, or we assumé/,, , [t]}; is constant
as a function oft, which is calledslow fadingin the following. In either case, we assume full channel
state information is available at all nodes, i.e., each riodmvs all{%, ,[t]}.. at timet. We also impose
an average power constraint 6fon the signalz,|[t]}; for every nodeu € V(n).

Let A(n) C RI*" be the capacity region of the wireless network, ik.€ A(n) if and only if
every source-destination pdit, v) € V?(n) can reliably communicate independent messages at\rate
Partition A(n) into squares{A,;(n)}X, of sidelength2~‘/n, and letV,;(n) be the nodes iM,;(n).
Define

{(w,v) € V3(n): Vi <y < 20/},
{(u,v) € VZ(n): 27/n < ry, <27/},
for ¢ > 0. Finally, e .
L(n) = 3 log(n)(l — log_l/Q(n)),
and note that.(n) is chosen such that

L)y, = plog™/2(m).

and hence
lim E(‘AL(HM(n)‘) = lim 47 Mp = o
n—oo n—00
while at the same time
E(| Aguya(m)]) = 47500 < o),

asn — o0.

Throughout,{ K;};, K, K, ..., indicate strictly positive finite constants independof n and ¢. To
simplify notation, we assume, when necessary, that frastare integers and omit| and |- | operators.
For the same reason, we also suppress dependencavithin proofs whenever this dependence is clear
from the context.

Y1t is worth pointing out that recent results [19] seem to ssgdhat fora € (2,3) and very large values of, the channel model becomes
invalid.
2All logarithms are with respect to bage



[11. M AIN RESULTS
A. Permutation Traffic
Define thegeneralized transport capacitys

Ta (TZ) e sup Z )\u,vfa (Tu,v>7

AEA(n) (u,0)EVZ(n)
where ,
Tmm{S,a}—Z if r > 1,
fa(r) £ 41 if0<r<l,
0 if r=0.

Theorem 1. Under either fast or slow fading, for any > 2, ¢ > 0,
T.(n) = O(n'*)
with probability 1 — o(1) asn — oo.

We say thatll(n) C V?(n) is a permutation trafficif for every « € V(n) there is exactly one €
V(n) \ {u} such that(u,v) € II(n) and exactly on& € V' (n) \ {u} such that(v,u) € II(n).

Theorem 2. Under either fast or slow fading, for any > 2, and any sequence of permutation traffics

{IL(n) }nz1,

by min )‘uv alTuw) = n_o(l)
AeA?n) (uw)€ll(n) Jalruw) =

with probability 1 — o(1) asn — cc.
Corollary 3. Under either fast or slow fading, for any > 2,
To(n) > ni=o®
with probability 1 — o(1) asn — cc.
Together with Theoreril 1, Theordrh 2 and its corollary show tha

L log(Tu(n))

~ 1.
n—oolog(n)

However, Theoreni]2 proves a much stronger result than jast thdeed, it shows that the scaling of
T.(n) is achievable even if we are restricted to an arbitrary péatian traffic and provides a pointwise
lower bound on how the rate achievable depends on the desdmetween the source-destination pairs.
More precisely, Theorei 2 guarantees a rate of

n=W fo(ruw) !

for any source-destination pa(r, v) of the permutation traffic. It is worth pointing out that gaatees
of this sortcannotbe made when considering the standard transport capacity

T(n) £ sup Z Ao
AEA(n) (u,0)EV2(n)

Indeed, the arguments in [11], [12] show that under our chhmodel, the transport capacity is upper
bounded by
T(n) — O(n(5—min{3,o¢})/2-i-a)7

and that forrandompermutation traffic a transport rate of at least

n(5—min{3,a})/2—o(1)



is achievable with probability — o(1) asn — oo. However, if we are restricted to a permutation traffic
where all source-destination pairs are at a disfame®), then it is easy to show that we can at most

achieve a transport rate of
nl—i—o(l) < n(5—min{3,a})/2—o(1)

for o € (2,3). In other words, the choice of, in the definition of the generalized transport capacity
T.(n) is crucial to obtain a tight characterization for all (as opgd to just random) permutation traffics.
For o > 3, the generalized transport capacity essentially coiscidiéh the traditional transport capacity,

as defined in [1].

B. General Traffic
A traffic matrixis an element\ € R*". For any traffic matrix\, let

py =sup{b>0:b\ € A(n)}.

The next theorem shows hop{ can be asymptotically computed for anye R"*". By convexity of
A(n), this yields an asymptotic characterization of the entigacity regiom\(n) of the wireless network.
For traffic matrix\, define

1
oi(n) = min W(47%n) min @ ————
() ¢e{1,...,L(n)}U{log(n)} ( >ie{1 ..... 4y Dy(Vi(n))
1
= min min o(47n) min ——m——,
{ee{1 ..... L(n)}g< )ie{l ..... 4y D\(Vii(n))
1
-1 .
ga(n™7) min }, (2)
i€{l,..,n?}: D)\(Vlog(nm(n))

[Viog(n).i(n)|>0

( ) N r?—min{?:,a}/? if r > 1,
a\T") =
g 1 else,

where

and, for anyU C V' (n),
DAU) 2 ) Mo+ Avw)-

ueUwelc

Note that the second minimization inl (2) is over at mesierms, since there are at mostvalues ofi
such that| Vieg(n),i(n)| > 0. Henceg¢}(n) can be computed as a minimum ov@fn) terms.

Theorem 4. Under either fast or slow fading, for any > 2, ¢ > 0, and any sequencé\(n)},>; of
traffic matrices,

n_o(l)ﬁb;(n) (n) < pimy(n) = O(naﬁb:(n) (n)),
with probability 1 — o(1) asn — cc.

TheorenT# provides a tight scaling characterization of thiéres capacity region\(n) of the wireless
network. Note that\(n) is an® dimensional set. On the other hand, noting that the miniticiman the
definition of ¢5(n) for ¢ = log(n) can be restricted to at mostnon-empty square§V;;}; (see [(2)), the
characterization of\(n) is given in terms of a minimization problem of dimensiérin). In other words,
Theoren# provides &(n) parameter description of(n).

Since Theorer]4 characterizes the entire capacity redi@ertainly subsumes the results in Theorem
[ and Theorerh]2. This is, however, at the expense of a morelerrdescription. Indeed let be a traffic
matrix corresponding to a permutation traffic (i.e., them@ @nly » non-zero entries ir\), and those\,, ,,

®Note that a permutation traffic of this form has, indeed, phility o(1) of resulting from choosing a permutation traffic at random.



that are positive take a value that depends onlyrpn As we have argued in the last paragraph, to
check if A € A(n) (asymptotically) using Theorefd 4, we have to chéxf) conditions. To check the
same using Theorerh$ 1 and 2, we only need to compute one irodhiqp, i.e., only one condition needs
to be checked. Thus Theorefs 1 and 2 provide a one params@iptien of A(n) when restricted to
permutation traffics of this form.

C. Example Scenarios

We next illustrate the strength of the above results by deteng achievable rates of a few specific
wireless network scenarios with non-uniform traffic patserWhile most of these scenarios consider
permutation traffic, it is easy to show that the same resuwitd hlso if the source-destination pairing
is chosen at random (possibly with non-uniform distribnjioFor example, if each source chooses its
destination uniformly at random then the resulting paircan be decomposed into at mdsg?(n)
permutation traffics with probabilith — o(1) asn — oo, and time sharing between thosez’(n)
permutation traffics yields only an additional facte¥! loss in rate.

Example 1. Multiple Classes of Source-Destination Pairs

There areK classes of source-destination pairs, for some fixedEach source node in clasgenerates
traffic at the same rat@;(n) for a destination node that is chosen at distaf¢e’:), for some fixed
pi € [0,0.5] and such that the resulting source-destination pairiniglyia permutation traffic. Each node
picks the class it belongs to in an arbitrary fashion. ThéredreniIL provides the following upper bound
on the rates obtained by different classes:

Ai(n) = O(n=Fiete),

for anye > 0, and where
a = min{3,a} — 2.

The achievability of essentially the same order followsrfréheoreniD, i.e.,
)\Z(n) 2 n‘ﬁio_‘_o(l).

Hence, for a fixed number of class&s the K dimensional projection of the capacity region considered
here is rectangular (in the scaling sense), with sourceswodeach class obtaining rates as a function of
only the source-destination separation in that class. O

Example 2. Traffic Variation with Source-Destination Separation

Pick a permutation traffic at random, as in the traditiondtisg However, instead of all sources
generating traffic at the same rate, source nodenerates traffic at rate that is a function of its separation
from destinatior, i.e., the traffic matrix is given by, , = ¢ (r,,) for some functiony. In particular,

let us consider
5
a7 ifr>1,
(r) = {1 else

for some fixed3 € R. The traditional setting corresponds/o= 0. Then, Theorerhll gives the following
upper bound on the capacity scaling for this traffic matrix

(n) = O(n~@t8)/2+ey if B> —a — 2,
O(n!*e) else.

Applying Theoreni R shows that

‘() > n=(@t0)/2=e) jf 5> _q,
PAT) =9 =oln) else.



The two bounds coincide order wise f6r> —a, yielding the capacity scaling in this case. Fbk —a,
the above upper bound is loose and we need to utilize Thelortaredtablish the capacity scaling as

§ B @(n—(d—i-ﬁ)/%:e) if 3> —a,
(n) = {@(nﬁ) else.

For 5 = 0, and noting tha) > —a, this recovers the results from [11], [12] for random peration
traffic with uniform rate. O

Example 3. Source-Destination Separation Variation
Each source generates traffic at the same pat&Ve consider a sequence of permutation traffics
{II(n) }n>1 such that for any > 0 and0 <r <1 —9,

r+

lim e |(u,v) € I(n) : ruu/v/n € [r,r+0)| = Y(z)de,

n—oo M, T=r

for some functiony). In particular, lety(r) oc ° for some fixed3 € R. Note that the traditional setup of

choosing a permutation traffic at random corresponds ealigrib 5 = 1. Then, an upper bound gnis
given by Theoreni]l as

O(n=0/%+) if 6> —1,
pi(n) = O(n~@FB+h/2+e) if 1 —a <3< 1,
O(n®) else.
The achievability of essentially the same order followsrfrdheoreni . Fo3 = 1 this coincides again
with the results from [11], [12] for random permutation frafwith uniform rate. O

Example 4. Sources with Multiple Destinations

All the example scenarios so far are concerned with permoatétaffic. Here we consider more general
traffic patterns. There ar& classes of source nodes, for some fi¥édEach source node in clasdhas
O(n”) destination nodes for some fixet] € [0,1] and generates independent traffic at the same rate
Ai(n) for each of them. Each of these destination nodes is choséormiy at random among the
nodes. Every node picks the class it belongs to indeperndand uniformly at random. Then, Theorém 4
provides the following bounds on the rates obtained by wdhffe classes:

nPi—a/2—o(1) < \i(n) = O(n_ﬁi_a/z"'&)’

for anye > 0 asn — oo. In other words, time sharing between &llclasses and then (within each class)
between all©(n?) destination nodes is order optimal in this scenario. O

IV. COMMUNICATION SCHEMES

In this section, we provide a high-level description of th@menunication schemes used to prove
achievability in Theoreni]2 (see Sectibn 1V-B below) and inedtem[# (see Sectidn IVFC below). We
start off in Sectio IV-A by recalling results from prior wothat will be used as building blocks in the
following.

A. Hierarchical Relaying and Multi-Hop Schemes

Here we discuss (asymptotically) optimal communicatidmesaes for permutation traffic with uniform
rate on A(n) in which most source-destination pairs are at a distanc®(gfn). Permutation traffics
of this sort occur with high probability if they are genexhteniformly at random. We shall use these
communication schemes as building blocks in the following.

The type of optimal communication scheme depends drastioal the path loss exponent. For
a € (2,3], i.e., the path loss exponent is small, cooperative comeation on a global scale is necessary



to achieve optimal performance. For> 3, i.e., the path loss exponent is large, only local commuiuna
between neighboring nodes is necessary, and traffic isdanta multi-hop fashion from the source to
the destination. We will refer to the optimal scheme foe (2, 3] as hierarchical relaying scheme, and
to the optimal scheme far > 3 as multi-hop scheme.

Given a permutation traffic o' (n). For o € (2, 3], hierarchical relaying achieves a per-node rate of
nl=e/2=o() For o« > 3, multi-hop communication achieves a per-node rate:0f/2. By choosing the
appropriate scheme, we can thus achieve a per-node rate®f{32}/2, We provide a short description
of the hierarchical relaying scheme in the following. Theailse can be found in [12].

Considern nodes placed independently and uniformly at randomA¢n). Divide A(n) into

n 2 log™/3(n)

squarelets of equal size. Call a squarelense if it contains a number of nodes proportional to its area.
For each source-destination pair, choose such a denseebrjuas arelay, over which it will transmit
information (see Figurgl 1).

Fig. 1.  Sketch of one level of the hierarchical relaying soheHere{(u;, v;)};_, are three source-destination pairs. Groups of source-
destination pairs relay their traffic over relay squareletsich contain a number of nodes proportional to their astaded). We time share
between the different relay squarelets. Within all relayasglets the scheme is used recursively to enable jointditeg@nd encoding at
each relay.

Consider now one such relay squarelet and the nodes thataasmitting information over it. If we
assume for the moment that the nodes within the relay sqarebuld cooperate then between the source
nodes and the relay squarelet we would have a multiple actessel (MAC), where each of the source
nodes has one transmit antenna, and the relay squareleiy(astone node) has many receive antennas.
Between the relay squarelet and the destination nodes, wédwave a broadcast channel (BC), where
each destination node has one receive antenna, and theseplayelet (acting again as one node) has
many transmit antennas. The cooperation gain from usirg kimd of scheme arises from the use of
multiple antennas for this MAC and BC.

To actually enable this kind of cooperation at the relay sejes local communication within the relay
squarelets is necessary. It can be shown that this local coneation problem is actually the same as
the original problem, but at a smaller scale. Indeed, we awe considering a square of size

nl—% log~/3(n)

with equal number of nodes (at least order wise). Hence weausarthe same scheme recursively to solve
this subproblem. We terminate the recursion after

log'*(n)



iterations, at which point we use simple TDMA to bootstrap #theme.
Observe that at the final level of the scheme, we have divitled into

(n%log—l/:‘s(n))logl/g’(n) nQ/a

squarelets. A sufficient condition for the scheme to sucdsdtiat all these squarelets are dense (i.e.,
contain a number of nodes proportional to their area). Hewewch weaker conditions are sufficient as
well (see [12]). The per-node rate achievable with this sehés at least

nl—a/2—o(1)7
and for traffic matrices where a constant fraction of sowutestination pairs are at distané/n) (as

is the case with probability — o(1) asn — oo if the source-destination traffic is chosen uniformly at
random), this is asymptotically the best uniformly achideaper-node rate.

B. Permutation Traffic

As pointed out in the last section, for permutation traffierarchical relaying and multi-hop commu-
nication achieve a per-node rate of ™in{3.2}/2=2(1)  Thjs rate is independent of the distance between
source-destination pairs. It is shown in [11], [12] that fandom source-destination pairing (in which
most of the source-destination pairs are at a distance @&r@d,/n)) no communication scheme can
uniformly over all such pairs achieve a per-node rate of nbaa O (n!~™{3}/2+¢) for any s > 0. In
other words, for any communication scheme, there existeagt lone source-destination pair whose rate
is upper bounded by (n!~™int3e}/2+=) On the other hand, one suspects that certain source-aléstin
pairs should be able to communicate at a rate that is comdéiyehigher than that.

As an example, consider a situation where half of the sodestation pairs are at a distance of
order®©(y/n) and the other half are at a distance@(l). By operating the network in a “long-distance”
and a “short-distance” mode, one should be able to achieeamen!—™»{3}/2-0() per-node rate for
those source-destination pairs at distafge/n), while being able to communicate at much higher rates
between source-destination pairs at dista@¢e) (see Figurél2). Theorem 2 shows that this is indeed the
case. In fact, it shows that those source-destination paidéstanced (1) can communicate at a per-node
rate of n=°), This is within an°®) factor of the best scheme possible even without having tpup
the source-destination pairs at distarteg,/n).

/ . ) /o
— : . -~

"~ N " .
\ \ .

Fig. 2.  Sketch of the decomposition of a permutation trafito isub-traffics with roughly equal source-destinatiortatises.

The proof of Theoreni]2 formalizes this idea of decomposing plermutation traffic into source-
destination pairs at different scales. More preciselyhgemrmutation traffic is decomposed into subtraffics
at©(log(n)) different distance scales, and the scheme operates bystiar#ag between those subtraffics.
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C. General Traffic

So far, we have only considered permutation traffic. In otherds, each node is source and destination
exactly once. Moreover, transmission rates were only atbto depend on the distance between source-
destination pairs. While useful, this is still a rather rigsive setup. In the most general form, we would
like to answer the following question. Given a traffic mattixc R"*", is it possible to simultaneously
transmit independent messages between each nodéupaire V?*(n) at rate),,? Or, in other words,
isAeAn)?

Theorem# provides an asymptotic answer to this questisnpribof relies on the construction of a
communication grapliz. This graph is a tree, whose leaf nodes represent the riogesin the wireless
network. The intermediate nodes 6f represent larger clusters of nodes (i.e., subset® (@f)) in the
wireless network (see Figuié 3).

=0
(=1

0= L(n)
{=L(n)+1

Fig. 3. Communication grapt¥ constructed in the proof of Theordm 4. Nodes on levets{0, ..., L(n) — 1} have each four children,

nodes on level = L(n) have eacl‘@(nl"gfl/z(")) children. The total number of terminal nodesrisone representing each node in the
wireless network/ (n). A non-terminal node irG at levelZ € {0, ..., L(n)} represents the collection of nodesVin;(n) for somesi.

Messages are sent from source to destination by routingeit Gv To send information from a child
node to its parent i (i.e., towards the root node @f), the message at the clusterlif{n) represented
by the child node is distributed evenly among all nodes inkigger cluster inV/'(n) represented by the
parent node. To send information from a parent node to a clutte inG (i.e., away from the root node
of G3), the message at the clusterlifin) represented by the parent node is concentrated on thercluste
in V(n) represented by the child node. This distribution and coimatan of messages in the wireless
network is performed by either using hierarchical relay{f@ « € (2, 3]) or multi-hop communication
(for a > 3).

V. AUXILIARY LEMMAS

In this section, we provide auxiliary results, which will beed several times in the following. Lemmas
and[6 describe regularity properties exhibited with higbbability by the random node placement.
LemmadV andl8 provide auxiliary upper bounds on the perfoceaf any scheme in terms of cut-set
bounds. Finally, Lemma&a]9 describes auxiliary results onpgbgformance of hierarchical relaying and
multi-hop communication as described in Secfion IV-A.

Lemma 5. For anyd > 0, let

% log(n)(1—0 log_l/Q(n)) .

(Lﬁn N {IVei(n)] € (4 4—“1n]}) =1-o0(1)

(=1 i=1

Ls(n) £
Then
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asn — oo. In particular, this holds forL(n) = L (n).

Proof. Consider thej-th node and le3; be the indicator random variable of the event that this noete |
in A,; for fixed ¢,i. Note that
Z Bj = |Vil,

and that
P(B;=1)=47"

Hence using the Chernoff bound
IP’(Z B; &[4~ n, 4-f+1n]> < exp(—K47n),
j=1

for some constank’ > 0. From this, we obtain fof = Ls(n),

4Ls(n) 4Ls(n)

P( M A Veseal € [4‘“(”)‘17%4‘““”“%]}) > 1= % B([Vigna| & 47700 0,470 )
=1

i=1
> 1 — 455M) exp(— K47 Ls(Mp)

=1-o0(1).
_ _ 3)
Since the{A4,,},, are nested as a function 6f we have
Ls(n) 4 4Ls(n)
ﬂ ﬂ{|Vez| 6 4 —f— 1n 4—z+1 }_ ﬂ {}VL(;(n ‘ E 4 Ls(n n,4_L5(")+1n]},
=1 i=1
which, combined with[{3), proves the lemma. O

Lemma 6. For anyd > 0,

IP’( min Tuw > n_1/2_6> =1-o0(1),
ueV(n),veV(n)\{u}

asn — oQ.

Proof. Foru,v € V let
By, =S {ru, <r}.

Fix a nodeu € V, then

7’27'('

PBuv <—7
(Buslu) < =

(the inequality being due to boundary effects). Moreovhg events{B, ,}.cv\(,; are independent
conditioned onu, and thus

2

rem\ "
P(Muerpn Biulu) =TI BB = (1-7F)"

veV\{u}



12

From this,

IP’( min = 7y,, < T) =P
ueVweV\{u}

/N

UuEVﬂ)EV\{u} Bu,v)

P( veV\{u} Bu v)

( (Moo B2.))
(1 E(P( Muevg Bl )))
> (1 (1 =)
(-5

which converges to zero for= n=1/279, O

IN

I
Hlagiiing M ilng

IN

I

3
VS

—

Lemma 7. Under either fast or slow fading, for any > 2 ande > 0, there existsk; > 0 such that for
all X e A(n),

P( m ﬂ Bz(Vz,i(n))) >1-o0(1), (4)
te{l

..... L(n)}ie{l,...,4¢}
P( N N Bg(vz,,-(nf)) >1—o(1), (5)
el

asn — oo, and where for any/ C V(n)

BZ(U) AL { Z )\u,v < K1n6(4—én)2—min{3,a}/2}.
uelUvelc
Proof. For anylUy, U, C V, denote byC'(Uy, Us) the MIMO capacity between nodesin and nodes itt/;.
The arguments of [11, Theorem 5.2] show that in the fast tadase for every > 0 there existd{, K > 0
and a collection of node placementqeach of cardinality:) such that for any € V. ¢ € {0,..., L(n)},

C(Vis, Vecz) < Kn? Z Tuos (6)
uGVg,i,veVefi

C(‘/Zw ‘/Z,Z> S Kn€/2 Z T;?)‘? (7)
uEVZi,UEVg,Z‘

and for adjacent square$;, A, j,

Z Tu_,% < Ena/2(4—én)2—min{3,a}/2‘ (8)
u€Vy ;,veEVy, .
For the slow fading case, the two statements hold with priibali — o(n~!) asn — co. Moreover, in

both cases
P(VeV)>1-o0(1) (9)

asn — oo. Consider now two diagonal squares;, A, ;, and choose, j such thatA,; U 4,; and
AM U A,; are adjacent rectangles. Using the same arguments to tbets@gles and suitably redeflnlng

K andV shows that[(B) and19) hold for diagonal squares as well. bae by Lemmdl5 we can
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assume without loss of generality that for evéfyc V all V,; have cardinality at most=“*'n for each
te{l,...,L(n)},ie{1,... 4.

Using this, we now compute the summation[ifh (6). Considergsi of squares around, ;. The first
such “ring” contains the (at mos§)squares neighboring, ;. The next “ring” contains at most squares.
In general, “ring”k contains at mos8k squares. Let

{Aé,i}ielk
be the squares in “ringk. Then
dDoomE=200 >y (10)
UE‘/@’Z’,UGV& k>1 jely UE‘/(’Z',UGVLJ'

By ) and the arguments in the last paragraph,
Z Z T’_?; < 8[?”8/2(4_Zn)2_min{3’a}/2. (11)

u7
JEIL ueVy ;,vEV, ;

Now note that fork > 1 andj € I, nodes inV,; andV,, are at least at distandg — 1)(27“\/n).
Moreover, sincé/ € V, each{V,,},, has cardinality at most=**'n. Thus

Z Z Z Tue < ng(4—£+1n)2((k —1)(27/n)) "

E>1 €l u€Vy ;,vEV, k>1
= 128(47n) Y k(k — 1)
k>1
— K'(47'n)* ", (12)
for someK’ > 0, and where we have used that> 2. Substituting[(I1) and_(12) int@_(1L0) yields
ST s < 8KnA(atn) i Gel/2 o g (470) P70, (13)

uGVM ,erci

for Ve V.
Combining [18) with[(6) and using the cut-set bound shows tha

P(Bi(Vii(n)|V € V) > 1 —o(nY),

for every? € {1,...,L(n)},i € {1,...,4%}, and under either fast or slow fading (the probability is, in
fact, equal tol in the fast fading case). Hence, usihgn)4*™ < n for n large enough,

P<g non BiVisn) )

..... L(n)}ie{l,....4%}

> P<z NN e V)R e )

..... L(n)} i€{L,...4%}

> (1 - ZG{IZ > (1 — P(By(Via(n))|V € V)))IP’(V €V)

This shows|[(#);[(5) follows from a similar argument aad (7). O
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Lemma 8. Under either fast or slow fading, for any > 2, there existd{, > 0 such that for all\ € A(n),
u € V(n),

IP’( > M < Kalog(n) Vu € V(n)) >1—o(1), (14)
veV (n)\{u}

IP’( Z Ao < Ky log(n) Yu € V(n)) >1-o0(1), (15)
veV (n)\{u}

asn — oQ.

Proof. The argument follows the one in [11, Theorem 3.1]. As befdenote byC (U, U,) the MIMO
capacity between nodes In and nodes iri/y, for Uy, U, C V. Consider first[(14). By the cut-set bound,

S A < C({u}, 1)),

vFu
Here C({u}, {u}¢) is the SIMO capacity betweem and the nodes ifu}°, i.e.,
C({u}, {u}) =log (1+ PY, 4, lhual*)
<log(l+ P(n — 1)n%),

where for the first inequality we have used Lemma 6, whichréssbatr, , > n=/27% > n~! for all
u,v € V with probability 1 — o(1) asn — oc.

Similarly, for (18),
> Mo < C({u)’, {u}).
v#u
Here C({u}, {u}¢) is the MISO capacity between the nodes{in}“ andu, i.e.,
C{uy {u}) <log (14 (n = DPL,, ol )
<log(1+ P(n—1)*n%).

[
Lemma 9. For eachn € N, let{(n) € {0,..., L(n)} and letIL;(n) be any permutation traffic oFiy) ;(n)
for everyi € {1,...,4‘™}. Then under either fast or slow fading, and for amy> 2,
sup min min = A\, , > n_o(l)(4—€(n)n)1—min{3,a}/2’

AEA(n) ie{l,...,4¢m)} (u,v)€ll;(n)
with probability 1 — o(1) asn — oc.

Proof. We shall use either hierarchical relaying (ferc (2, 3]) or multi-hop (fora. > 3) to communicate
within each squaré’ ;. See Sectiof IV-A for a description of these communicaticimesnes. We operate
every fourth of theV,; simultaneously, and show that the added interference dukidospatial reuse
results only in a constant factor loss in rate.

Consider firsta € (2,3]. The squaresi,; at level? have an area of‘n. In order to be able to use
hierarchical relaying within each of the4, ; },, it is sufficient to show that we can partition eadh; into
(4=*n)%* squarelets, each of which contains a number of nodes piopalto the area. In other words,
we partition A into squarelets of size

(4_gn)1—2/a Z (4_L(n)n)1—2/a
_ (1-2/a) l0g"/2(n)

— 4_L5(n)/n[’
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where
§21-2/a>0.

Hence Lemma&l5 shows that with probability- o(1) asn — oo, all

{Az é}ée{o ..... L(n)}ie{l,...,.4¢}

are simultaneously regular enough for hierarchical relgyo be successful. This achieves a per-node rate
of

)\u,v Z n—o(l)(4—£n)1—a/2 (16)
for any (u,v) € I;(n)

That the additional interference from spatial reuse resuily in a constant loss in rate, follows from
the same arguments as in the proof of [12, Theorem 1] (withajyeropriate modifications for slow
fading as described there). Intuitively, this is the caseesithe interference from a square at distance
is attenuated by a factor“, which, sincea > 2, is summable. Hence the combined interference has
power on the order of the receiver noise, resulting in onlyastant factor loss in rate.

For o > 3, the argument is similar — instead of hierarchical relayig now use multi-hop commu-
nication. This achieves a per-node rate of

Auw > n oW (470)71/2 (17)
for any (u,v) € II;(n). Combining [(I6) and.(17) yields the desired result. O

VI. PROOF OFTHEOREM[I]
Note that for anyu,v € V' with u # v,

e Jw
>0

Thus we can upper bourit,(n) as

—supz Z )\uvfa Tuv

ACA €20 (u,w)eVy?
< supz fa(2770/n) Z Auw
A =y (um)ev
> f2n) ) sup > v+ fal2 Vi) sup Y A (18
0<t<L(n) X (uwyev? €A 0> L(n) (uw)ev?

We now upper bound each of the terms

sSup Z )\uv

)\EA (u,v) 6\/2

for 0 < ¢ < L(n). Let (u,v) € V2; by definition this implies,, > 27%/n. Now picki € {1,...,4"}
such thatu € V,, ;. Observe that for any € V.., ;, we haver,,, < 27*\/n. Thereforev € V¢, ;, and

hence
4€+1

V2 C Y (Virwa x Vi),

i=1
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Using this observation and Lemrha 7

4l+1

sup Z Ao < supz Z Auw

AEA
(u v)eV? €N =1 ueViyr, VEVE 1

4l+1

< ZKlna/2(4—€—ln)2—d/2
1=1
S K 45(5[/2—1)4‘1”2—&/24-8/2’ (19)

for 0 < ¢ < L(n) and with probabilityl — o(1) asn — oo, and where we have defined
& = min{3, a}.
Consider now’ > L(n). By Lemmal8,

sup E Aup < Ko log(n)
AEA
veV\{u}

with probability 1 — o(1) asn — co. Hence

sup Z Z )\M<Zsup Z Auw

AEA AEA

0>L(n) (up)eV? ueV veV\{u}
< Kynlog(n). (20)
Substituting [(IB) and(20) int@_(1L8), we obtain
L(n)
To(n) <> fu@ W sup D Ao+ fu@7FM VR sup Y Y A
£=0 ACA (uw)eVy? AEA £>L(n) (u,w)eV?
L(n)
< 8K, Z 4=/ 21) & /21 0G/2=1) p2-6/242/2 | |, (2_L(”)n)a/2_lnlog(n)
=0
:L( )O( 1+a/2) _I_O(nl—i-a)
_ O( 1+e)

with probability 1 — o(1) asn — oc.

VII. PROOF OFTHEOREM[Z
We construct a communication scheme and lower bound thefate) that it achieves for anyu, v) €
I1. Define
I, £ 1NV
Consider the partitiod A,_ 12}21“11 of A. For each/ > 3, construct bigger squares by joinidgsquares

in {A;_q Z}Z . - There are four different ways of doing this, yielding "sbd” versions of bigger squares

(see Figuré 14). CaI{AZ ifi for j € {1,...,4} the resulting bigger squares.
Define

H%,i £10,N (A%_u X Az—u)-

Let (u,v) € Hijl, thenr, , < 271/n. Thusifu € A,_,,; thenv is in eitherA,_, ; or one of its neighbors.
Hence there exist8 and j’ such that(u,v) € Az 1+ Therefore

_ J
]
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Fig. 4. Two of the four ways of defining the bigger squa{egfl’i}i (bold lines) forj € {1,...,4} from the smaller square{mg,l,i}?sl
(dashed lines).

For ¢ = 2 the number of ways to define bigger squares is smaller, andairee approach used in the
following for general? will work as well. For? € {0,1}, it is not necessary to define bigger squares,
essentially the same approach as for the general case il agrk in this case.

We time share betweehe {0, ..., L(n)+ 1} and between € {1,...,4}. For eact¥ € {0,...,L(n)}
andj € {1,...,4}, we communicate between the source-destination pairsnvtach of the squares
{A )i (Wlth the exception off € {0 1} where construction of blgger squares is not necessary). A
sketch of this traffic decomposition is shown in Figiite 2 it IV-Bl This time-sharing results in a
total rate loss of a factor ]

WL +2) =

Using hierarchical relaying (fom € (2, 3]) or multi-hop (fora > 3) within each squaréﬁ_l,i according
to the traffic matrix given bﬂ@,i yields by LemmdD a per-node rate of

n—o(l) )

pu,v(n) > n—o) (4_én)1_d/2’ (21)

ey,
Now note that each source-destination gairv) € H;Z is at least at distancg‘,/n, and hence

Mo fa(Tuw) > pun(n) fa(274/n) > n=oW (22)

simultaneously for all

forany? € {0,...,L(n)}.
For ¢ > L(n), we use the multi-hop scheme to communicate between sdest@ation pairs in

U Um.
{>L(n) @

time sharing between € {1,...,4} and the four ways of defining bigger squares at leével L(n). By
Lemmal9, this achieves a per-node rate of

pu,v(n) > n—o(l) (4—L(n)n)—1/2—0(1) > n—o(l)

e U Um.

{>L(n) 1

simultaneously for all
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From this and usingf(r) > 1 for » > 0, we obtain

Mo foa(Tuw) > pun(n) > noW (23)

for any ¢ > L(n) and (u,v) € Il,.
Combining [22) and[{23), and using that

=1,

shows the desired result.

VIIl. PROOF OFTHEOREM[]

We start with some definitions and auxiliary results conicgrmouting over capacitated tree graphs. Let
G = (Vg, Eg) be a tree graph, with edge capaciti¢s) in both directions foe € E. For a non-terminal
nodew in G, let D(u) be the descendants afin G (including v itself, i.e.,u € D(u)), and letL(u)
denote the leaf nodes if?(u). Let e = (u,v) € Eg, and assume that is the parent ofu in G; with
slight abuse of notation, defir@(e) = D(u).

Denote byA ¢ R“"4l the set of feasible rate matrices f6r (i.e., the set of flow rates that can
be routed througlty). For a matrix of flow rates\ RLYG'X‘VG‘, define

v = sup{b>0: b\ € Ag}.

Fore € Eg, let

da(e) = Y uw + Aow).
ueD(e)
vgD(e)

Lemma 10. Let G = (V, E¢) be an undirected capacitated tree graph, akhd R‘XG‘X'VG' a matrix of
flow rates. Then

Proof. Let e € E, and consider. € D(e), v ¢ D(e). SinceG is a tree, the only way to route data from
u to v and fromwv to u is throughe. Therefore

for all e € Eg, and thus

Conversely, suppose

Then the load over every edgec E is strictly less tharc(e), and hence it is possible to increase the
flow for each(u,v) pair by a strictly positive amount. This contradicts the migébn of ~5, and hence
shows that

We are now ready to embark on the proof of Theotém 4. Set

A2 pi(n)A,



and note th&t\* € A. Thus by Lemmal7, we have for arye {1,...,L(n)} andi € {1,...

max {Zuew,i7ve\% )‘va Zuev;i,vew,i AZW} < Kln5(4_én)2—min{3,a}/2.

Noting that 1
max {ZUEVZ,@',UEV({:Z— )\u,vv ZUEV(Z,@UEVZC’/L_ )\v7u} Z §D)\(‘/Z,i)7
yields
. 1
n) < min Kne 4—£n 2—min{3,a}/2 min
pA( ) ¢e{l,...,.L(n)} ( ) ie{l,...,4%} D)\(‘/Z z)
1
= min Knfg,(47‘n) min ,
0e{1,...,.L(n)} 9ol )ie{l ----- 4y Dx(Vi4)

for some constani > 0.
For ¢ > L(n) and anyi € {1,...,4‘}, Lemmal8 shows that

PORIPYES B PP
uew,i,ve\/& ueVy ; v#u

< Ky |Vii| log(n)

< K, }VL(n),i} log(n)

< n0(1)7

where we have assumed without loss of generality thatC V7, ;. Therefore
o(1)
n

pa(n) < 5 T

u€Vy i, vV, T

and by a similar argument
no(l)

ZUEVZ,L-,’UE\/@,Z. )\uvU.
Using [23),
o(1)
n
p)\( )— D)\(‘/Z,z)
no(l)ga (4_571)

sinceg, > 1. Hence

*(n) < min no(l) o 47 min
PA(n) < 0>L(n) ol )ie{l ----- 4ty Dx(Vis)

< min n°Wg, (4 %n) min .
~ t=log(n) g ( )ie{l ..... 4t} D)\(vaﬂ)

Combining this with [(2b) yields
pi(n) = O(n°65(n).
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a4£}1

(24)

(25)

(26)

Now, construct a grapli: = (V, E) as follows.G is a full tree (i.e., all its leaf nodes are on the
same level)G hasn leaves, each of them representing an element.ofo simplify notation, we assume
that V' C Vg, so that the leaves aff are exactly the elements &f C V;. Whenever the distinction is

“To be precise(1 — §)\* € A for any § € (0,1). However, since we are only interested in the scaling behnai A, we can safely

ignore the additiona(l — §) factor.
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relevant, we use, v for nodes inV’ C V; andyu, v for nodes inV; \ V' in the following. The non-terminal
nodes ofG correspond td/,; for all ¢ € {0,...,L(n)}, i € {1,...,4%}, with hierarchy induced by the
one onA(n) (see Figurél3 in Sectidn IVAC). Thus, nodesVia at level? < L(n) have4 children, nodes
at level/ = L(n) have betweed—("~1n and 4~ +1y children (with high probability, by Lemmf 5),
and nodes at levél = L(n) + 1 are the leaves of the tree. To understand the relation batWeandV,
we define theepresentativeR : V; — 2" as follows. For a leaf node € V C V; of G, let

R(u) = {u}.
For € Vi at level L(n), chooseR (i) C L(p) C V such that
[R(u)| =47 ""n.

This is possible with probability — o(1) asn — oo by Lemmab. Finally, for. € Vi at level? < L(n),
and with children{v;}j_,, let

R(p) = | R(v).

We now define an edge capacity, v) for each edgéu, v) € Eq. If 1 is a leaf ofG andv its parent,
set

c(u,v) = c(p,v) = 1. (27)
If 11 is a non-terminal node at levélin G andv its parent, then set
c(p,v) = c(v, p) £ (4~ p)>mintsel/2, (28)

We argue now that if a multicommodity flow corresponding to a traffic matrix of the wireless network
(i.e., only the leaf nodes off are sources or destinations) can be routed thratigthenn°=Y )\ € A
(i.e., almost the same flow can be reliably transmitted olervrireless network). The idea (that will be
made precise) is the following. To transmit informationnfr@ non-terminal node € V;; to its parent
nodev, we split the message at each nodeRfyw) into four parts and send one part to each node in
R(v). In other words, we distribute the message by a factor foer tive wireless network. To transmit
information from a nodeg: € Vi with non-terminal children{v;}_, to one of them, say,, we send
the message parts from ea¢®(v;)}j_, to a corresponding node iR(r;) and combine them there.
In other words, we concentrate the message by a factor foer thhe wireless network. The scheme is
bootstrapped at the leavéscC V of G (where, by our definition of\, all traffic originates and ends) as
follows. To send a message from a leaf nade V' C V(; to its parentv in GG, the message is split at
into |R(v)| equal pieces, and one piece is sent to each nod&(ir) over the wireless network. In other
words, we distribute the message again over the wirelesgorietbut this time by a factor ofR(v)|. To
send a message to a leaf nade V' C V, from its parentv in GG, each node iR (v) sends its piece of
the message ta over the wireless network. Thus, again we concentrate thesage over the network,
but this time by a factor ofR(v)].

We now analyze this scheme in more detail. Note first that e tsharing between thé(n) + 1
non-terminal levels of the tree, and by appropriate spatiase within each level, we only loose a factor

of at most ]

K4(L(n) +1)

for some constank’ > 0 in rate. Hence it is sufficient to consider communicatioaen a non-terminal
node ofG and its children.

We first consider communication up the tree (i.e., towards ribot). Letu € V' C Vi be a leaf
node of G andv be its parent. To send traffic at ratéu, ) from u to v, nodew splits its traffic into
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IR(v)| = 4~E™~1n equal parts and sends each part to one node(in). RecallR(v) C Vi, for some
i. Since
Tuw S 2(4—L(n)n)1/2

for any u,v € Vi), communicating between andv, we incur a power loss of

ro > 2—04(4—L(n)n)—04/2 > 27an~ IOgil/z(")a/Q’

u,v =

and hence we can communicate betweeandv at a rate of at least
lOg (1 + P2~ logfl/Q(n)a/Q) Z n—o(l).

By time sharing between all the destination node®im), and since all message parts are ofyr)| "
of the size of the original message, all message partsazin be transmitted from to R(v) at this rate.
By Lemma[5,

|£(V)‘ < 4—L(n)+1n _ 4nlog71/2(n)7

and hence further time sharing between all source nodeX:if, we can communicate simultaneously
from all leaf nodes: € £(v) to R(v) at a rate at least

g1y~ log™ 2 (n),, —o(1) > n‘o(l)c(u, V).
Let nowv € V; be a node in level < L(n) in G and let{y;};_, be its children. Since
R(uj)| = 47402

for all j € {1,...,4}, we can find a one-to-one correspondence between,) and R (). Choose an
arbitrary such correspondence for eagcth € {1,...,4},5 # k. Now, since the multicommodity flow
corresponds to a traffic matrix for the wireless network, we know that the traffic to be seotrfr,

to v originates at one or several nodesdfy;). Thus by construction of the previous stages, all nodes
in R(u;) possess an equal part of the total message to be transnmitied,f to v. Split each such
message part further into four equal parts and consider angcylar nodeu € R(uy). The first part

of the message stays at The other three parts are to be transmitted to the correlspgmodes in
{R(1;)};+1- Time sharing between all2 possible(j, k) pairs, we only incur a constant loss. Hence we
can focus on communication between a partic(lak) pair. Note that we are now in a situation with
4~4")=2pn nodes inR(1;), each with a message of equal size for the corresponding inoR€.;). This

is a permutation traffic, and by Lemrh& 9 we can therefore uemtuhical relaying (forx € (2,3]) or
multi-hop for ( > 3) to transmit at a total rate up to

n_o(l)(4_5n>2—min{3,a}/2 _ n_o(l)C(M7 1/)_

Consider now communication down the tree (i.e., away froenrtot). Communication betweenand
1 works in the same fashion by concentrating the messagessdine arguments as in the previous
two paragraphs show that any rate up[ial (27)[at (28) are ambliewp to a facton—°"). Time sharing
between the two directions, yields an additional rate Idsa factor 1/2. Together, this shows that if a
multicommodity flow\ corresponding to a traffic matrix for the wireless network te routed through
G thenn—°M ) can be communicated over the wireless network. In other syord

ANeAg = nWxeA,

and we therefore have
px(n) =sup{b>0:0\ € A}

> sup{b>0: R = Ac}
= sup{n~°Wb>0: b\ € Ag}
=n""Wi(n).

(29)
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Now, by LemmdID, we know that by optimally routing ou@&r(which, sinceG is a tree, is trivial),
we can achieve

v ele)
f}/)\(n) - erggg; d)\(6) : (30)
Consider now an edge= (u,v) € Eg, and assume that is the node closer to the root 6f. Let ¢ be
the level ofy in the tree. Then, by construction(e) is only a function of¢ and given by eithe (27) or
(28). Moreoverd, (e) is either equal taD,({u}) for someu € V if £ = L(n) + 1, or equal toD, (V)
for somei if ¢ < L(n). Therefore

. c(e) . . 1 . —¢,_\2—min{3,a}/2 : 1
min = min ¢ min ————, min (47 p)T MM min . 31
ecEg dy(e) { ueV Dy({u}) eeft,..., L(n)}( ) ie{1,..,40y Dy (Vi) (31)

Now, by Lemmd®by,, > n~/27% > n=! for all u,v € V with probability 1 — o(1), and hence we have
for ¢ = log(n) that

max Dy({u}) = max max D,({u})

ucV ie{l,..., 48y ueVy;
= Dy\(Vi,),
e A(Vei)
and thus for/ = log(n) > L(n),
) 1 ) 1
min ——— = min
ueV Dy({u}) ief1,..a Dy(Viy)

. c(e) . . 1 . (4=tn) . 1
min = min min —————=—, min o n min
ecEc dy(e) weV Dy({u}) eefn,.., L(n)}g ie{1,..,a4} Dy (Vi)
1
> o) min o(47%n)  min
- tefl,..., L(n)}U{log(n)}g ( )ie{l ..... 4ty D\(Vi4)
= n"°Wei(n). (32)

Combining [26),[(20),[(30), and_(B2), shows that
n g3 (n) < n=*3(n)
< pa(n)
= 0(n*3(n)),

completing the proof.

IX. CONCLUSIONS

We considered general traffic patterns in wireless netwarikl n nodes uniformly distributed on
0, v/n]? and with a Gaussian fading channel model. We first focusedtan on permutation traffic (i.e.,
every node in the network is source and destination exactbepoand showed that for every source-
destination pair at distance we can guarantee a rate of

,r,2—min{3,a} if 7 > 1,
n~Wf ()t =nW {1 if 0<r<l,
00 if r=0.
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Moreover, this is essentially the best guarantee possliieg the sum of all rates, weighted Kiy(r) for
source-destination pairs at distances upper bounded by (n'*¢) asn — oo for anye > 0.

We then focused on completely general traffic. More pregider A\ € R"*", we asked if\ is an
element of thex? dimensional capacity region(n) of the wireless network. We provided an asymptotic
answer to this question in terms 6f(n) easily computable parameters of the network topology and
traffic demands. This resulted in a complete asymptoticattarization of the capacity regiak(n) of
the wireless network.
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