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Abstract— This paper considers a sensor network where
single or multiple sensors amplify and forward their measure-
ments of a common linear dynamical system (analog uncoded
transmission) to a remote fusion centre via noisy fading wireless
channels. We show that the expected error covariance (with
respect to the fading process) of the time-varying Kalman filter
is bounded and converges to a steady state value, based on
some general earlier results on asymptotic stability of Kalman
filters with random parameters. More importantly, we provide
explicit expressions for sequences which can be used as upper
bounds on the expected error covariance, for specific instances
of fading distributions and scalar measurements (per sensor).
Numerical results illustrate the effectiveness of these bounds.

I. INTRODUCTION

Due to a recent steady growth of activity in sensor
networks with a large number of nodes monitoring an en-
vironment/object in various applications, multi-sensor based
estimation of random processes under limited resources and
communication constraints have led to new challenging filter-
ing problems. In particular, estimation of dynamical systems
based on multiple sensors under these constraints is known to
be a potentially hard problem. Motivated by the asymptotic
optimality of analog forwarding based communication [1] for
a Gaussian sensor network, we focus on a similar amplify
and forward strategy based sensor network estimating a
linear dynamical system. In this scenario, the sensors simply
amplify and forward their measurements of the linear system
to a remote fusion centre via fading channels, where they are
received in noise. Assuming perfect phase synchronization,
the fading channel power gains are modelled as positive
random ergodic processes with continuous distributions with
an independent and identically distributed nature from one
transmission time to the next. The optimal state estimation
filter at the fusion centre is still a (time-varying) Kalman
filter. Using some rather general asymptotic stability results
for linear systems with ergodic parameters from [2], [3], we
show that the expected (with respect to the fading process)
error covariance matrix of the Kalman filter remains bounded
and converges to a steady state matrix from arbitrary positive
semidefinite matrices as initial conditions. This result is
in contrast with recent results in [4] which show that the
expected error covariance matrix for unstable systems in a
situation where measurements can be lost with a non-zero
probability can become unbounded if this loss probability
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exceeds a certain threshold. While this observation may
not be surprising from the results and discussions in [3]
and [5], we believe that this observation needs to be made
(some partial results for the scalar case for Rayleigh fading
were reported in [6]) in a general sense. In addition, for
special cases of vector state and scalar measurements, and
scalar state and measurements (for both single sensor and
multiple sensor scenarios), and specific fading distributions,
we provide explicit bounding matrix (or scalar) sequences
that overbounds the expected error covariance matrix and
also converges to a steady state value. These bounds provide
a simple way to compute realistic (and often quite tight)
bounds on the expected error covariance, and can be quite
useful in situations when one wants to minimize the expected
error covariance for such sensor network based estimation
problems to optimally allocate resources across multiple
sensors. When an exact recursive expression for the average
error covariance is not available, one can minimize its
upper bound instead for which we provide exact recursive
formulas. Problems of this nature can be solved by dynamic
programming techniques and will be addressed elsewhere.

II. SYSTEM MODEL

We consider a discrete-time linear time invariant system
that represents a phenomenon of interest (for example, the
trajectory of a moving object) given by

xk+1 = Axk + wk (1)

where xk ∈ IRn, wk ∈ IRn, A ∈ IRn×n and wk follows a
Gaussian distribution with zero mean and variance Σw ≥ 0.
Note here that a matrix V ≥ 0 implies that V is a positive
semidefinite matrix. Similarly, V > 0 implies V is a positive
definite matrix. We also assume that the initial distribution
of x0 is Gaussian with mean zero and covariance matrix
P0 ≥ 0. Note that in this work, we allow A to be an
unstable matrix. In fact the results presented in this paper
are interesting only when A is unstable, just as in [4].

This system is observed by a sensor or a number of sensors
which yield discrete-time measurements of the state of the
system. These measurements are then sent over a wireless
medium to a central processing unit called the Fusion Centre
(FC). We assume that the sensors use analog forwarding
[1] to send the measurements to the FC, i.e, they simply
amplify and forward their measurements to the FC. Due to
the randomly time-varying nature of the wireless medium,
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the FC then receives faded versions of all the measurements
in additive noise either separately (orthogonal access) or as a
sum of all received measurements in noise (non-orthogonal
access). We consider the single sensor and multiple sensor
case separately.

Single sensor case

In this case, the linear time invariant system (1) is ob-
served by a single sensor which produces a discrete-time
measurement yk which is given by

yk = Cxk + vk (2)

where yk ∈ IRm, vk ∈ IRm, C ∈ IRm×n. We assume
that vk is Gaussian distributed with zero mean and variance
Σv > 0. Denoting the i-th element of the measurement
and measurement noise vectors as yi

k and vi
k respectively

where i = 1, 2, . . . ,m, we assume that the sensor transmitter
amplifies the component yi

k by a factor αi
k and sends it to the

FC over a fading channel with channel gain hk,i. We assume
that the channel undergoes slow fading such that the phase
of the complex channel can be estimated and compensated
for at the receiver, so that essentially hk,i represents the
real-valued envelope of the complex channel gain. We also
assume that the channel gain remains constant over the time
interval to send the i-th component, i = 1, 2, . . . ,m but one
can have hk,i �= hk,j , i �= j, i, j ∈ {1, 2, . . . ,m}. This
assumption is valid when each measurement interval is much
larger than the coherence time of the fading channel, which
is likely to be the case in low bandwidth sensor network
applications. Denoting hk = (hk,1 hk,2 . . . hk,m), we also
assume that hk is independently and identically distributed
according to a continuous fading distribution f(h) such that
P (hk,i > 0) = 1, ∀k, i.

The FC receives a scaled version of each component of
the measurement vector added with measurement noise in
additive noise at the FC, which represents the channel noise
in the communication channel between the sensor and the
FC. We assume that all the measurement components are
sent separately to the FC via orthogonal channels within the
measurement time interval. The received signal vector at the
FC then can be written as

zk = HkCxk + Hkvk + nk (3)

where Hk = diag(α1
khk,1 α2

khk,2 . . . αm
k hk,m) and nk =

(n1
k n2

k . . . nm
k )′ represents the channel noise vector. For

simplicity, we assume that ni
k, nj

k are mutually independent
for i �= j and ni

k is Gaussian distributed with zero mean and
variance σ2

i . Thus, nk is Gaussian distributed with zero mean
and variance Σn = diag(σ2

1 σ2
2 . . . σ2

m). We also assume that
nk is white.

For simplicity, in this paper we will also assume that αi
k =

1 for all i = 1, 2, . . . ,m and for all k = 1, 2, . . . . As a result,
we now have Hk = diag(hk,1 hk,2 . . . hk,m). The overall
state-space model for this system can now be written as

xk+1 = Axk + wk, zk = HkCxk + v̄k (4)

where v̄k = Hkvk + nk. Since Hk is a diagonal matrix, it is
easy to see that v̄k is Gaussian distributed with zero mean
and time-varying covariance matrix Rk = HkΣvHk + Σn.

Assumption 2.1: We make the standard assumption that
the pair (A,Σw) is stabilizable and the pair (A,C) is
detectable.
For technical reasons, in order to use some results from [3]
later, we will also make the assumption:

Assumption 2.2: (i) A is invertible, and (ii)
max(0, log ||H0C||) is integrable. (iii) {Hk} is stationary
and ergodic.
For discrete time systems which are obtained by discretizing
a continuous time system, Assumption 2.2 (i) will be satis-
fied. Assumption 2.2 (ii) is also satisfied by common fading
distributions such as Rayleigh and Nakagami. Assumption
(iii) is automatically satisfied since we assumed {Hk} to be
i.i.d., though the results of [3] can also hold in more general
cases where the channel has memory.

In what follows, we will also consider several special cases
of the above general model (4). In particular, we will consider
the following scalar state/scalar measurement model:

xk+1 = axk + wk, zk = hkxk + hkvk + nk (5)

where xk, zk, wk, vk, nk are all scalar random processes
(with wk ∼ N(0, σ2

w), vk ∼ N(0, σ2
v), nk ∼ N(0, σ2

n)).
We have taken c = 1 without loss of any generality, as
both sides can be scaled by c to obtain the model described
above. Just as before, we assume that {hk} is a sequence of
i.i.d random variables distributed according to a continuous
fading distribution f(h) such that P (hk > 0) = 1, ∀k.

In addition, we will consider a vector state/scalar measure-
ment model for the single-sensor case given by

xk+1 = Axk + wk, zk = hk c̄xk + hkvk + nk (6)

where c̄ ∈ IR1×n is given by c̄ = (c̄1, c̄2, . . . , c̄n) and vk, nk

are scalars, where xk, wk follow the same model as in (4),
and nk, {hk} are described by the same models as in (5).

Multisensor case

In the multisensor case, we assume that the dynamical
process (1) is observed by M sensors each producing a scalar
measurement. While the general results on convergence and
bounds derived in the next section for the single sensor
case can be extended to the multisensor case, for simplicity,
we stick to a scalar state and scalar measurement (per
sensor) model. The sensors can then communicate their
measurements to the FC via either a multi-access chan-
nel [1] (where all sensors transmit simultaneously without
the time/frequency division multiplexing) or via orthogonal
channels [7]. In the multi-access case, we assume that the
phase shift in each channel is compensated by distributed
transmit beamforming so that the measurements from all
sensors add up coherently at the FC. Mathematically, the
signal model for the multisensor multi-access case is given
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by

xk+1 = axk + wk, zk =
M∑
i=1

hk,i(cixk + vi
k) + nk. (7)

We assume that vi
k ∼ N(0, σ2

vi), nk ∼ N(0, σ2
n) and vi

k, vj
k

are mutually independent for i �= j, i, j ∈ {1, 2, . . . ,M}.
Similarly, {hk,i}, {hk,j} are statistically independent for
i �= j, i, j ∈ {1, 2, . . . ,M}. Note that hk,i may not be
identically distributed for all i. Due to the distributed transmit
beamforming assumption, note that hk,i,∀i denotes the non-
negative channel fading amplitude. We also assume here that
ci > 0 for all sensors without loss of generality. Note that if
cl for sensor l is negative, one can choose the amplification
factor for this sensor as −1 instead of 1. This assumption
is there to ensure that the distributed transmit beamforming
scheme works effectively.

In the orthogonal access case, the FC simply receives a
vector consisting of the individual faded measurements from
all the sensors. We can write the signal model as

xk+1 = axk+wk, zi
k = hk,icixk+hk,iv

i
k+ni

k, i = 1, . . . ,M
(8)

where zi
k denotes the received signal (at the FC) from

the i-th sensor and ni
k is the channel noise for the i-th

sensor’s channel. In this case, the FC observation consists
of the vector (z1

k, z2
k, . . . , zM

k )′ and the other modelling
assumptions regarding {hk,i}, vi

k remain the same as in (7).
Note that unlike (7) however, there is no need to assume
ci > 0,∀i in this case.

III. CONVERGENCE RESULTS AND BOUNDS ON THE

EXPECTED ERROR COVARIANCE MATRIX

In this section, we present some convergence and bounded-
ness results on the average (over the channel fading distribu-
tion) error covariance matrix for the optimal one step ahead
predictor for the vector state vector measurement system
(4). Later we will specialise these results for specific fading
distributions. Using the knowledge of these distributions and
inequalities involving some special functions, we derive more
specific bounds for these cases.

We assume that the FC has full knowledge of the system
matrices and noise covariances including the time-varying
channel fading matrices Hk. The above state-space model
(4) is a linear time-varying system and the optimal predictor
(filter) for this system is a time-varying Kalman predictor
(filter), that can be constructed at the FC. Denote Zk =
(z1, z2, . . . , zk) and Hk = (H1,H2, . . . ,Hk), and define the
one step ahead optimal predictor and its error covariance as

x̂k+1|k = E[xk+1|Zk,Hk]

Pk+1|k = E[(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)′|Zk,Hk] (9)

where ′ denotes the transpose operation. In the following,
we will use the shorthand notation Pk+1 for Pk+1|k. Using
the time-varying Kalman filtering equations, one can easily
derive that the prediction error covariance matrix Pk satisfies

the following discrete-time time-varying Riccati equation:

Pk+1 =APkA′ + Σw

− APkC ′Hk(HkCPkC ′Hk + Rk)−1HkCPkA′

(10)

with Rk = HkΣvHk +Σn. It is straightforward to show that
the above equation can be rewritten as

Pk+1 = A[Pk −PkC ′(L−1
k +CPkC ′ +Σv)−1CPk]A′ +Σw

(11)
where Lk = HkΣ−1

n Hk. It should be obvious that
EHk

[Pk+1] = EHk−1
[G(Pk)] where the expectation is

taken with respect to the channel realization history Hk =
{H1,H2, . . . , Hk}, and

G(Pk)

=EHk

[
A[Pk−PkC ′(L−1

k +CPkC ′+Σv)−1CPk]A′+Σw|Pk

]
=A[Pk−PkC ′EHk

[(L−1
k +CPkC ′+Σv)−1]CPk]A′+Σw

(12)

where the second line in the above equation follows due to
the fact that Pk is adapted to Hk−1 and {Hk} is a sequence
of i.i.d random matrices. Below, for notational simplicity,
we will drop the subscript from the expectation operator
whenever the random process over which the expectation
is taken is obvious from the context. Define the space of
n × n positive semidefinite matrices as Sn. Then we have
the following property for G : Sn → Sn, whose proof can
be found in Appendix A.

Lemma 3.1: The matrix-valued function G(X) is a con-
cave non-decreasing function of X ∈ Sn.

Now given (A,C) is a detectable pair, it is easy to show
that so is (A,HkC) for Hk invertible, i.e. hk,i > 0,∀i. Then
(A,HkC) is a detectable pair almost surely, and intuitively
we would expect Pk to be bounded almost surely for all k.
For A invertible, a rigorous argument can be given by using
results from [3], also see [8]. Now, we present a convergence
result for E[Pk] as k → ∞.

Lemma 3.2: Staring with any P0 ∈ Sn, E[Pk] converges
to a bounded matrix Γ∗ ∈ Sn, where Pk satisfies the discrete-
time Riccati equations (11).

Proof: We can easily verify that the notions of “weakly
stabilizable and weakly detectable almost surely” introduced
in [3] are satisfied. Then by Theorem 5.1 of [3], we know
that there exists a unique stationary process {P̄k}, with
E[P̄k] constant ∀k. That E[P̄k] ≡ Γ∗ is bounded follows
from equation (9) of [3], by setting e.g. n = 0 to give a
bound on P̄0. Furthermore, Theorem 5.3 of [3] shows that
{Pk} starting from any initial condition P0 is exponentially
convergent to the stationary process {P̄k}. Hence E[Pk]
starting from any P0 will also converge to E[P̄k] = Γ∗ as
k → ∞.

In general, analytically evaluating E[Pk] is difficult. Fur-
thermore, even though E[Pk] will be bounded, it is not clear
how one can obtain explicit upper bounds for arbitrary fading
distributions. We now provide a result on a sequence of
deterministic positive semidefinite matrices that overbounds
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E[Pk], ∀k, and also converges to a limit as k → ∞. Note
that we can write

E[Pk+1] = EHk
[E[APkA′

−APkC ′(L−1
k +CPkC ′+Σv)−1CPkA′+Σw|Hk]].

Denote Vk = E[Pk]. By concavity

Vk+1 ≤EHk
[AVkA′

− AVkC ′(L−1
k + CVkC ′ + Σv)−1CVkA′ + Σw].

Then we have:
Theorem 3.3: For the state space model (4), let {Zk} be

defined by

Zk+1 =EHk
[AZkA′

− AZkC ′(L−1
k + CZkC ′ + Σv)−1CZkA′ + Σw]

(13)

where Z0 = E[P0], Lk = HkΣ−1
n Hk, and the components

of the diagonal matrix Hk are identically and independently
distributed with continuous distributions. Then E[Pk] =
Vk ≤ Zk, and Zk → Z∗ as k → ∞. E[Pk] starting from
E[P0] = V0 converges to a limiting value Γ∗ such that
Γ∗ ≤ Z∗.
The proof can be found in [9]. The bounding matrix sequence
{Zk} mentioned above is still difficult to compute in general
due to the difficulty of explicitly evaluating the expectation
(with respect to the fading gain matrix Hk) of the nonlinear
term in the right hand side of equation (13) above. In the
next few sections we show how one can calculate (where
evaluating the above expectation is possible) precise bounds
for particular cases of systems (e.g, scalar systems, systems
with vector states and scalar measurements and in case of
multisensor systems - scalar state and scalar measurements)
along with given fading distribution(s) for the channel(s)
connecting the sensor(s) to the FC.

A. Single sensor: scalar state and measurement

In this section, we consider the scalar state and measure-
ment model for a single sensor, given by (5). Specializing
the error-covariance notation Pk to pk for the scalar case,
it is straightforward to show that pk satisfies the following
scalar discrete-time Riccati equation

pk+1 = σ2
w +

a2pk(h2
kσ2

v + σ2
n)

h2
k(pk + σ2

v) + σ2
n

. (14)

Denoting h2
k by r, where the time index k has been removed

as {hk} is a sequence of i.i.d. random variables, we have

γk+1 ≤ σ2
w + a2Er

[
γk(rσ2

v + σ2
n)

r(γk + σ2
v) + σ2

n

]
(15)

where γk = E[pk]. In order to establish explicit upper
bounds on E[pk] as k → ∞, we consider two specific fading
distributions, namely Rayleigh fading and Nakagami fading.

Rayleigh fading: In this case r is exponentially distributed
with mean 1

λ
such that r ∼ λ exp(−λr). It can then be easily

shown that

Er

[
γk(rσ2

v + σ2
n)

r(γk + σ2
v) + σ2

n

]
=

γkσ2
v

γk + σ2
v

Er

⎡
⎣ r +

σ2

n

σ2
v

r +
σ2

n

γk+σ2
v

⎤
⎦

=
γk

γk + σ2
v

[
σ2

v +
λσ2

nγk

γk + σ2
v

emkE1(mk)

]

where mk =
λσ2

n

γk+σ2
v

and exE1(x) =
∫ ∞
0

e−u

u+x
du, with E1(x)

being the exponential integral E1(x) =
∫ ∞

x
e−t

t
dt. Hence

γk+1 ≤ σ2
w +

a2γk

γk + σ2
v

[
σ2

v +
λσ2

nγk

γk + σ2
v

emkE1(mk)

]
.

Using the inequality exE1(x) < ln
(
1 + 1

x

)
, one can then

write

γk+1 ≤ σ2
w +

a2γk

γk + σ2
v

[
σ2

v +
λσ2

nγk

γk + σ2
v

ln

(
1 +

γk + σ2
v

λσ2
n

)]

≤ σ2
w + a2

[
σ2

v + λσ2
n ln

(
1 +

γk + σ2
v

λσ2
n

)]
.

We will now define two new sequences {sk}, {qk} such that

sk+1=σ2
w+

a2sk

sk+σ2
v

[
σ2

v+
λσ2

nsk

sk+σ2
v

exp

(
λσ2

n

sk+σ2
v

)
E1

(
λσ2

n

sk+σ2
v

)]
(16)

qk+1 = σ2
w + a2

[
σ2

v + λσ2
n ln

(
1 +

qk + σ2
v

λσ2
n

)]
(17)

with s0 = E[p0], q0 = E[p0]. It is obvious that sk ≤ qk, ∀k.
One can now provide bounds on E[pk] in terms of the
limiting values of the above sequences as follows:

Theorem 3.4: The sequences {sk}, {qk} defined above by
(16), (17) converge to their individual limiting values s∗ and
q∗, respectively as k → ∞. It is also true that E[pk] ≤ sk ≤
qk, ∀k. E[pk] starting from E[p0] converges to a limiting
value γ∗ where γ∗ ≤ s∗ ≤ q∗.

Proof: See Appendix B.
The sequence {sk} is obviously a tighter bound than {qk}.
The reason why we use both sequences is that it is easier
to prove convergence using the qk iterations. In Figure 1,
the average error covariance computed via simulations by
averaging over 50000 randomly generated sample paths of
length 100 is plotted against the various bounding sequences
derived above.
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Fig. 1. Average error covariance and bounds for Rayleigh fading, with
a = 1.25, c = 1.0, σw = 1.0, σn = 2.0, λ = 100
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Nakagami Fading: It is well known that the Nakagami-
m distribution provides a very good model for land-
mobile and indoor-mobile multipath propagation [10]. In
this case, the channel power gain r is distributed ac-
cording to the following probability distribution pR(r) =
mmrm−1λm

Γ(m) exp(−λmr) where m ∈ [12 ,∞) is a parameter
depicting the severity of fading, 1

λ
is the mean channel

power gain and Γ(.) denotes the gamma function. Note
that Rayleigh fading is a special case of Nakagami fading
with m = 1. As m increases beyond 1, the severity of
fading decreases. Here we consider m = 1

2 which denotes
fading that is more severe than Rayleigh fading. In this case,

r ∼
√

λ
2πr

exp(−λr
2 ).

Denoting γk = E[pk] as before, we can show from (15)
that

γk+1 ≤ σ2
w+

a2γk

γk + σ2
v

(
σ2

v +
σ2

nγk

γk + σ2
v

λ
√

π

2u
exp(u2)erfc(u)

)
(18)

where u =
√

σ2
nλ

2(σ2
v+γk) and π

2u
exp(u2)erfc(u) =∫ ∞

0
e−t2

t2+u2 dt. Here erfc(x) denotes the complementary er-
ror function defined as 2√

π

∫ ∞
x

exp(−t2)dt. Noting that
√

π

2 exp(u2)erfc(u) ≤ 1

u+
√

u2+ 4

π

[11], one can then easily

show that

γk+1 ≤ σ2
w +

a2γk

γk + σ2
v

⎛
⎝σ2

v +
σn

√
2λγk√

γk + σ2
v

1

u +
√

u2 + 4
π

⎞
⎠ .

We can now define two sequences {s̃k}, {q̃k} as follows:

s̃k+1 =σ2
w+

a2s̃k

s̃k + σ2
v

(
σ2

v+
σ2

ns̃k

s̃k + σ2
v

λ
√

π

2ũ
exp

(
ũ2

)
erfc (ũ)

)
(19)

q̃k+1 = σ2
w+a2

⎛
⎝σ2

v +
σn

√
2λq̃k√

σ2
nλ

2 +
√

σ2
nλ

2 + 4
π
(q̃k+σ2

v)

⎞
⎠ (20)

with s̃0 = E[p0], q̃0 = E[p0], and ũ =
√

σ2
nλ

2(σ2
v+s̃k) . We then

similarly have the following theorem which states:
Theorem 3.5: For the case of Nakagami( 1

2 ) fading, the
sequences {s̃k}, {q̃k} defined above by (19), (20) converge
to their individual limiting values s̃∗ and q̃∗, respectively as
k → ∞. It is also true that E[pk] ≤ s̃k ≤ q̃k, ∀k. E[pk]
starting from E[p0] converges to a limiting value γ̃∗ where
γ̃∗ ≤ s̃∗ ≤ q̃∗.
The proof is similar to that of Theorem 3.4 and is omitted.

Figure 2 shows the simulated average error covariance for
Nakagami( 1

2 ) fading for the same set of parameter values
as in Figure 1. The interpretation of the graphs is similar
to that of Figure 1. Note that as expected, the average error
covariance performance and the corresponding bounds are
generally worse than those for Rayleigh fading.

B. Single sensor: vector state and scalar measurement model
and Rayleigh fading

Considering now the vector state scalar measurement
model (6), it is easy to show that the corresponding time-
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Fig. 2. Average error covariance and bounds for Nakagami( 1

2
) fading,

with a = 1.25, c = 1.0, σw = 1.0, σn = 2.0, λ = 100

varying discrete-time Riccati equation is given by

Pk+1 = Σw + A

[
Pk − Pk c̄′c̄Pk

c̄Pk c̄′ + σ2
v

r

r + βk

]
A′ (21)

where r = h2
k and βk =

σ2

n

c̄Pk c̄′+σ2
v

. Note that c̄Pk c̄′ + σ2
v is

clearly a scalar quantity. Taking expectations on both sides
and using the concavity of the right hand side in the above
equation (Lemma 3.1), one can then write (by using V̄k =
E[Pk])

V̄k+1 ≤ Σw + AV̄kA′ − AV̄k c̄′c̄V̄kA′

c̄V̄k c̄′ + σ2
v

Er

[
1 − β̄k

r + β̄k

]

where β̄k =
σ2

n

c̄V̄k c̄′+σ2
v

. In the case of the channel being

Rayleigh faded with mean 1
λ

, we can then derive the fol-
lowing upper bounding sequence of positive semidefinite
matrices {Z̄k}:

Z̄k+1 =Σw + AZ̄kA′

− AZ̄k c̄′c̄Z̄kA′

c̄Z̄k c̄′ + σ2
v

[1 − m̄k exp(m̄k)E1(m̄k)]

with Z̄0 = V0 and m̄k =
λσ2

n

c̄Z̄k c̄′+σ2
v

. Following Theorem 3.3,

we can now conclude that E[Pk] = V̄k ≤ Z̄k, and Z̄k → Z̄∗

as k → ∞. E[Pk] starting from E[P0] = V̄0 converges to
a limiting value Γ̄∗ such that Γ̄∗ ≤ Z̄∗. Note that similar
results can be obtained for other types of continuous fading
disributions, however explicit bounding sequences for these
fading distributions are not provided here to avoid repetition.

C. Multiple sensors

In this section, we consider the case of multiple sensors
where each sensor observes a scalar state process and makes
a scalar measurement. Both the multi-access (7) and the
orthogonal access (8) schemes will be considered. Although
these results can be extended to the vector state and scalar
measurement (per sensor) case in a similar manner to the
previous section, we do not include such results to maintain
simplicity. We only consider the case of Rayleigh fading.

1) Multi-access case: Recall the signal model (7). The
error covariance pk satisfies the recursion

pk+1 = σ2
w +

a2pk(
∑M

i=1 h2
k,iσ

2
i + σ2

n)

(
∑M

i=1 hk,ici)2pk +
∑M

i=1 h2
k,iσ

2
i + σ2

n

.
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Denoting γk = E[pk] and letting ri = h2
i (dropping the time

subscript k), it follows similar to before that

γk+1 ≤ σ2
w + Er

[
a2γk(

∑M

i=1 riσ
2
i + σ2

n)

(
∑M

i=1

√
rici)2pk +

∑M

i=1 riσ2
i + σ2

n

]

≤ σ2
w + Er

[
a2γk(

∑M

i=1 riσ
2
i + σ2

n)∑M

i=1 ric2
i γk +

∑M

i=1 riσ2
i + σ2

n

]

where r = (r1, . . . , rM ), and the second inequality follows
since the ci’s are assumed to be positive. Since we are dealing
with Rayleigh fading, ri ∼ λi exp(λiri).

Assume without loss of generality that the sensors are
ordered such that

c2
1

σ2
1

≥ c2
2

σ2
2

≥ · · · ≥ c2
M

σ2
M

. (22)

We have

Er

[ ∑M

i=1 riσ
2
i + σ2

n∑M

i=1 ric2
i γk +

∑M

i=1 riσ2
i + σ2

n

]

=
σ2

1

c2
1γk + σ2

1

Er2,...,rM

[
1 + (A1 − B1)e

B1E1(B1)
]

where A1 = λ1

σ2

1

(∑M

i=2 riσ
2
i + σ2

n

)
, and B1 =

λ1

c2

1
γk+σ2

1

(∑M

i=2 ri(c
2
i γk + σ2

i ) + σ2
n

)
. By assumption (22),

A1 − B1 ≥ 0. Using the inequality exE1(x) < ln(1 + 1
x
)

would result in very complicated expressions which are
difficult to work with for M > 2. For a simpler expression,
we will instead use the looser inequality exE1(x) < 1

x
. Then

Er

[ ∑M

i=1 riσ
2
i + σ2

n∑M

i=1 ric2
i γk +

∑M

i=1 riσ2
i + σ2

n

]

≤ σ2
1

c2
1γk + σ2

1

Er2,...,rM

[
1 +

A1 − B1

B1

]

= Er2,...,rM

[ ∑M

i=2 riσ
2
i + σ2

n∑M

2=1 ri(c2
i γk + σ2

i ) + σ2
n

]

=
σ2

2

c2
2γk + σ2

2

Er3,...,rM

[
1 + (A2 − B2)e

B2E1(B2)
]

where A2 = λ2

σ2

2

(∑M

i=3 riσ
2
i + σ2

n

)
, and B2 =

λ2

c2

2
γk+σ2

2

(∑M

i=3 ri(c
2
i γk + σ2

i ) + σ2
n

)
. By assumption (22),

we also have A2 − B2 ≥ 0. Continuing this process, we
eventually arrive at

Er

[ ∑M

i=1 riσ
2
i + σ2

n∑M

i=1 ric2
i γk +

∑M

i=1 riσ2
i + σ2

n

]

≤ σ2
M

c2
Mγk + σ2

M

[
1 + (AM − BM )eBM E1(BM )

]
where AM = λM

σ2

M

σ2
n,BM = λM

c2

M
γk+σ2

M

σ2
n. We can define the

sequence

sk+1 = σ2
w +

a2skσ2
M

c2
Msk + σ2

M

[
1 + (ÃM − B̃M )eB̃M E1(B̃M )

]

with ÃM = λM

σ2

M

σ2
n, B̃M = λM

c2

M
sk+σ2

M

σ2
n, and convergence

properties of this sequence can be proved similar to Theorem
3.4. Recalling assumption (22), we thus see that we are
bounded by the result assuming just the “worst” sensor in
terms of the sensor SNR c2

i /σ2
i .

An alternative bound:
Consider the following inequality for xi ≥ 0,

1∑M

i=1 xi

≤ 1

M2

M∑
i=1

1

xi

, (23)

which is a consequence of the well-known result that the
arithmetic mean is greater than or equal to the harmonic
mean. We will use this inequality to derive an alternative
bound. A more attractive feature of this bound is that the
parameters for all of the sensors will appear in the expression
obtained. Applying the inequality (23), we have

Er

⎡
⎢⎢⎣

M∑
i=1

riσ
2
i + σ2

n

M∑
i=1

ri(c2
i γk+σ2

i )+σ2
n

⎤
⎥⎥⎦ = Er

⎡
⎢⎢⎣

M∑
i=1

riσ
2
i + σ2

n

M∑
i=1

(ri(c2
i γk+σ2

i )+
σ2

n

M
)

⎤
⎥⎥⎦

≤ 1

M2
Er

[
M∑
i=1

∑M

j=1 rjσ
2
j + σ2

n

ri(c2
i γk + σ2

i ) +
σ2

n

M

]
.

We can evaluate

Er

[ ∑M

j=1 rjσ
2
j + σ2

n

ri(c2
i γk + σ2

i ) +
σ2

n

M

]
= Eri

⎡
⎣riσ

2
i +

∑
j �=i

σ2

j

λj
+ σ2

n

ri(c2
i γk + σ2

i ) +
σ2

n

M

⎤
⎦

=
σ2

i

c2
i γk + σ2

i

[1 + (Ci −Di)e
DiE1(Di)]

with Ci = λi

σ2

i

(∑
j �=i

σ2

j

λj
+ σ2

n

)
,Di =

λiσ
2

n

M(c2

i
γk+σ2

i
)
. Hence

an alternative bounding sequence is

tk+1 =σ2
w+a2tk

1

M2

M∑
i=1

σ2
i

c2
i tk+σ2

i

[
1+(C̃i−D̃i)e

D̃iE1(D̃i)
]

where C̃i = λi

σ2

i

(∑
j �=i

σ2

j

λj
+ σ2

n

)
, D̃i =

λiσ
2

n

M(c2

i
tk+σ2

i
)
.

2) Orthogonal access case: Recalling the orthogonal ac-
cess model (8), it can be shown using the matrix inversion
lemma that the error covariance satisfies

pk+1 = σ2
w +

a2pk

1 + pk

∑M

i=1

h2

k,i
c2

i

h2

k,i
σ2

i
+σ2

n

.

Letting γk = E[pk], ri = h2
i , we have

γk+1 ≤ σ2
w + Er

⎡
⎣ a2γk

1 + γk

∑M

i=1
ric

2

i

riσ
2

i
+σ2

n

⎤
⎦ .

We can compute

Er

⎡
⎣ 1

1 + γk

∑M

i=1
ric

2

i

riσ
2

i
+σ2

n

⎤
⎦

=
σ2

1Er2,...,rM

[
1 + (A1 − B1)e

B1E1(B1)
]

σ2
1(1 + γk

∑M

i=2
ric

2

i

riσ
2

i
+σ2

n

) + c2
1γk
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where

A1 =
λ1σ

2
n

σ2
1

,B1 =
λ1σ

2
n(1 + γk

∑M

i=2
ric

2

i

riσ
2

i
+σ2

n

)

σ2
1(1 + γk

∑M

i=2
ric

2

i

riσ
2

i
+σ2

n

) + c2
1γk

.

We note that here A1 − B1 is always positive, unlike the
multi-access case where we needed the extra assumption
(22). Again using the inequality exE1(x) < 1

x
, we obtain

Er

⎡
⎣ 1

1 + γk

∑M

i=1
ric

2

i

riσ
2

i
+σ2

n

⎤
⎦

≤ Er2,...,rM

⎡
⎣ 1

1 + γk

∑M

i=2
ric

2

i

riσ
2

i
+σ2

n

⎤
⎦ ≤ . . .

≤ σ2
M

c2
Mγk + σ2

M

[1 + (AM − BM )eBM E1(BM )]

where AM =
λM σ2

n

σ2

M

,BM =
λM σ2

n

σ2

M
+c2

M
γk

. Note however that
since no ordering of the sensors is assumed, we could have
taken the expectations over (r1, . . . , rM ) in any order. We
can thus define an upper bounding sequence

sk+1 = σ2
w + min

i=1,...,M

a2skσ2
i

c2
i sk + σ2

i

[
1 + (Ãi − B̃i)e

B̃iE1(B̃i)
]

with Ãi =
λiσ

2

n

σ2

i

, B̃i =
λiσ

2

n

σ2

i
+c2

i
sk

. Convergence properties of
the sequence can be proved similar to before.

An alternative bound:
Similar to the multi-access case, we can derive an alternative
bound, again using the inequality (23). For the orthogonal
case, we get:

tk+1 = σ2
w +

a2tk
M2

M∑
i=1

Mσ2
i

[
1 + (C̃i − D̃i)e

D̃iE1(D̃i)
]

Mc2
i tk + σ2

i

where C̃i =
λiσ

2

n

σ2

i

, D̃i =
λiσ

2

n

Mc2

i
tk+σ2

i

.
3) Simulation Results: In Figure 3 we plot the simulated

average error covariance for the multi-access scheme with
two sensors, for different values of λ1 and λ2. We will plot
the two general bounds sk and tk. We see that sometimes
both sk will be better than tk, but sometimes the alternative
bound tk will be better. In Figure 4 we similarly plot the
simulated average error covariance and two the different
bounds sk and tk for the orthogonal access scheme with
two sensors. Similar interpretations to Figure 3 apply.

IV. CONCLUSION

In this paper, we considered a linear state estimation
problem when measurements from single or multiple sensors
are received via random fading channels at a remote fusion
centre. Under some mild assumptions, we showed that the
expected (with respect to the fading process) estimation
error covariance at the fusion centre remains bounded and
converges to a steady state value. While explicit expressions
of the expected error covariance are hard to compute exactly,
we provided exact deterministic bounding sequences on the
average error covariance for the system models with scalar
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Fig. 3. Average error covariance and bounds for multi-access scheme, with
a = 1.25, c1 = 1.0, c2 = 1.0, σw = 1.0, σ1 = 1.0, σ2 = 2.0, σn = 2.0.
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Fig. 4. Average error covariance and bounds for orthogonal scheme, with
a = 1.25, c1 = 1.0, c2 = 1.0, σw = 1.0, σ1 = 1.0, σ2 = 2.0, σn = 2.0.

measurements (per sensor) and specific fading distributions.
Numerical illustrations show that these bounds can often be
quite tight.

APPENDIX

A. Proof of Lemma 3.1

Suppose we have a positive semidefinite matrix Qk inde-
pendent of Hk such that Pk ≥ Qk. Note that since Hk is
independent of Pk, one can write

G(Pk) = EHk

[
APkA′ − APkC ′(L−1

k + CPkC ′ + Σv)−1

×CPkA′ + Σw]

= EHk

[
min
Kk

{(A − KkC)Pk(A − KkC)′ + Σw

+Kk(Σv + L−1
k )K ′

k

} ]
= EHk

[ {(A − K∗
kC)Pk(A − K∗

kC)′ + Σw

+K∗
k(Σv + L−1

k )K∗
k
′}]

≥ EHk

[ {(A − K∗
kC)Qk(A − K∗

kC)′ + Σw

+K∗
k(Σv + L−1

k )K∗
k
′}]

≥ EHk

[
min
Kk

{(A − KkC)Qk(A − KkC)′ + Σw

+Kk(Σv + L−1
k )K ′

k

} ]
= G(Qk)

where the second line follows from the fact that the Kalman
filter operates with the optimal time-varying gain K∗

k , and
the fourth line follows since Pk ≥ Qk. This completes the
proof of the non-decreasing property.

In order to prove that G(Pk) is a concave function of Pk,
one needs to show that

G(αP 1
k + (1 − α)P 2

k ) ≥ αG(P 1
k ) + (1 − α)G(P 2

k )
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where P 1
k , P 2

k are both positive semidefinite and 0 < α < 1.
Suppose P̄k = αP 1

k + (1 − α)P 2
k . Then, using the fact that

the Kalman filter operates with the optimal gain, we have

G(P̄k) = EHk

[
min

X
{(A − XC)P̄k(A − XC)′ + Σw

+ X(Σv + L−1
k )X ′}

]
= EHk

[
min

X
{(A−XC)(αP 1

k +(1−α)P 2
k )(A−XC)′

+ Σw + X(Σv + L−1
k )X ′}

]
= EHk

[
min

X

(
α{(A − XC)P 1

k (A − XC)′

+Σw + X(Σv + L−1
k )X ′}

+ (1 − α){(A − XC)P 2
k (A − XC)′

+Σw + X(Σv + L−1
k )X ′}) ]

= EHk

[
min

X

(
αf(X,P 1

k ) + (1 − α)f(X,P 2
k )

)]
where f(X,Pk) = (A−XC)Pk(A−XC)′ +Σw +X(Σv +
L−1

k )X ′. Noting that f(X,Pk) is an affine function in Pk

and pointwise minimum of an affine function is a concave
function, it is clear that

G(P̄k) ≥ EHk

[
α min

X
f(X,P 1

k ) + (1 − α)min
X

f(X,P 2
k )

]
= αG(P 1

k ) + (1 − α)G(P 2
k )

which completes the proof of concavity.

B. Proof of Theorem 3.4

Consider the equations (16) and (17). Note that the right
hand side of (16) and (17) are increasing functions of sk and
qk respectively, which implies that both {sk} and {qk} are
monotonic sequences. Given that γ0 = E[p0] = s0 = q0,
it clearly follows that γ1 ≤ s1 ≤ q1. Using the increasing
property mentioned above, one can then prove by induction
that γk ≤ sk ≤ qk, ∀k = 1, 2, . . .. We know that as a special
case of Theorem 3.2, γk = E[pk] converges to a limit (say
γ∗) as k → ∞.

We now show that qk also converges to a limit (denoted
by q∗) as k → ∞. In order to prove this, we rewrite
(17) as qk+1 = l(qk) where l(qk) represents the right hand
side of (17). It is straightforward to show that the mapping
q = l(q) has a unique fixed point. However, in order to
prove the convergence of the recursion qk+1 = l(qk) we use
the standard function properties of the function l(q) [12],
namely positivity, monotonicity (these two are obvious) and
scalability. In order to show scalability, we have to show that
βl(q) > l(βq) for β > 1. This follows because

ln

(
1+

βqk+σ2
v

λσ2
n

)
< ln

(
1+

β(qk+σ2
v)

λσ2
n

)
<β ln

(
1+

qk+σ2
v

λσ2
n

)
where the first inequality follows since β > 1 and the second
inequality follows since ln(1 + βx) < β ln(1 + x) for x >
0, β > 1. Since l(q) is a standard function, the recursion
qk+1 = l(qk) will converge to the unique fixed point q∗.

Now {sk} is a monotonic sequence sandwiched between
two convergent sequences {qk} and {γk} (the limits of the

two sequences are in general different). Hence {sk} can be
bounded from both above and below, so converges to a limit
s∗. Since γk ≤ sk ≤ qk, ∀k = 1, 2, . . ., we have γ∗ ≤ s∗ ≤
q∗.
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