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Abstract— The capacity region of a multiple-input-multiple- 21
output interference channel (MIMO IC) in which the channel H, y
matrices are square and invertible is studied. The capacityegion 1 + 1
for strong interference is established where the definitionof
strong interference parallels that of scalar channels. Moeover, H3
the sum-rate capacity for Z interference, noisy interfererce, and H,
mixed interference is established. These results generadi known o y
results for the scalar Gaussian IC. + 2

H,
I. INTRODUCTION 2z

The |_nterference channel (IC) m_odels the_snua‘uo_n |n_wh|ch Fig. 1. The MIMO IC.
transmitters communicate with their respective receivdrite
generating interference to all other receivers. This cklnn
ins’losctzliﬁl ;veanser:;(lelntt):lfr?olvr;rgl, Section 14] and its capacity regio v, = Hizy + Hozy + 2

4 . Yy = Hazy + Hyzy + 22, (1)

In [2] Carleial showed that interference does not reduce
capacity when it is very strong. This result follows becausgherez;,i = 1,2, is the transmitted signal of uséwhich is
the interference can be decoded and subtracted at eachstthject to an average block power constraitit z;,7 = 1,2
ceiver before decoding the desired message. Later Han #c Gaussian random vector with zero mean and identity
Kobayashi [3] and Sato [4] showed that the capacity regi@ovariance matrix; andd;,; = 1,...,4, are the channel
of the strong interference channel is the same as the cgpapiatrices. For simplicity, we assume that tEE’'s are real
region of a compound multiple access channel. In both aboyed thatH; andH, are invertible. However we remark that
cases, the interference is fully decoded at both receivers. one can generalize our results to non-invertible or reatkng
When the interference is not strong, the capacity region daannel matrices (see Remark 1).
unknown. The best inner bound is by Han and Kobayashi [3], For the MIMO IC Telatar and Tse [8] showed that Han
which was later simplified by Chong al. in [S], [6]. Etkin and Kobayashi’s region is within one bit per receive antenna
et al. and Telatar and Tse showed that Han and Kobayashithe capacity region. Some upper bounds were discussed in
inner bound is within one bit of the capacity region of17]and some lower bounds on the sum-rate capacity based on
scalar Gaussian ICs [7], [8]. Various outer bounds have bedan and Kobayashi’s region were discussed in [18]. However
developed in [7]-[12]. capacity results for the MIMO IC are still lacking. In our vkor
Special ICs such as the degraded IC and the ZIC have begsuming the channel matrices are invertible, we derive the
studied in [13], [14]. The sum-rate capacity for the ZIC wasum-rate capacity with noisy-interference, strong imterhce
established in [13], [15], and Costa proved the equivalenaad mixed interference, as well as one-sided interferefive.
of the ZIC and the degraded IC for the scalar Gaussigapacity region of the MIMO IC with strong interference is
case [14]. A recent result in [10]-[12] has shown that if also obtained.
simple condition is satisfied, then treating interferereaa@ise ~ The rest of the paper is organized as follows: we present
can achieve the sum-rate capacity. [11] and [16] derived tbar main results and proofs in Section Il and Ill; numerical
sum-rate capacity for mixed interference, i.e., one remeivresults are given in Section IV, and we conclude in Section V.
experiences strong interference and the other experievems  Before proceeding we introduce some notation which will

interference. be used in the paper.

In this paper, we study the sum-rate capacity of the two-user, |talic font X denotes a scalar; and the bold fomtsand
Gaussian multiple-input-multiple-output (MIMO) IC shovm X denote vectors and matrices respectively.
Fig.[d. The received signals are defined as « A > B means thatA — B is positive semi-definite.

0 . . . _ « I denotes the identity matrix and denotes the zero
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terminant, transpose, conjugate transpose, inverse, antemark 3: Theorenl is also valid by replacing the power

transpose inverse of the matrk. constraint with the covariance matrix constraint. Thiseext
e 2" = [z7 2], ... ’me is a long vector which consists sion applies to all the following theorems.

of a sequence of vectons,i =1,...,n. Theorem 2: For the MIMO IC defined in[{ll), and where
« ||S|| denotes the size of the s&t the channel matrice¥l; and H, are square and invertible,
« abs(-) denotes the absolute value. the sum-rate capacity is achieved by treating interferersce

« z ~ N (0,X) means that the random vecteris Gaus- nhoise at both receivers, if for any covariance matriggs =
sian distributed with zero mean and covariance matril 2, with tr(S;) < P;, there exist symmetric positive definite
3. matricesX; and X, satisfying the following conditions

. E[] derlotes expectation; (_:()V den(_)te§ covariance ma- S <I1-A.3;'A7  and (11)
trix; I(-;-) denotes mutual informatior;(-) denotes dif- ST
ferential entropy with the logarithm bageandlog(-) = Yy 2 1-AE A (12)
log, (+). whereA; and A, are defined in Theorefd 1.

Theoren{® is another description of a sufficient condition
. ) for single-user detection to be sum-rate optimal. It can be

Theorem 1: For the MIMO IC defined in[{1), and where ghown that for the scalar casg (11) ahd (12) reducETo (10).
the channel matriceHl; andH, are square and invertible, the  Thegrem 3: For the MIMO IC defined in[{lL) with; = 0

sum-rate capacity is achieved by treating interferenceo&en 59 H, and H, square and invertible, the sum-rate capacity
at both receivers if for any covariance matricgsi = 1,2, g

with tr(S;) < P;, the following conditions are satisfied:
1

II. MAIN RESULTS

1 -
C*= max -log I+H,;SH{ (I+H,S;HY) 1‘

1 _1 tr(S1) <P
a%‘i‘@il abs (aHl\/I *WiM 2a) = 2’ 2) t:ES;kP; 1
and +§ log ‘I +H,S.H! |, (13)
max abs (aHM*%WQM*%a) < %, (3) if the following condition is satisfied
afoa=1
where HJH, < HI H,. (14)
M=1-A AT — A,AT, @) Furthermore,
_ ATAT C* =
Wi=Ai Ay, ®) "(Sl)Sgll%f)((sz)sz
W2 = AJAT, (6) | . .,
Al — (I + HQSQH%) H;Tﬂg and (7) min X 5 log |I + HlSlHll + H282H2 | ) (15)
A, = (I+H;8,HY)H,"H]. (8) 51ogyI+HlslH§f + 51ogyI+H432H4T\
The sum-rate capacity is the solution of the following optif
mization problem T .
H2 HQ E H4 H4- (16)

1 .
max - log ‘I +H, S HY (14 HyS,HY) 1‘

1 1 TheoremB gives the sum-rate capacity of a MIMO ZIC.
+5log ‘I + HySHy (T4 H;S,Hy) ’ Specifically, wherH2 H, < HX H, we consider the interfer-
subject to tS1) < Py, tr(S2) < Po, ence to be weak and the sum-rate capacity can be achieved

S, = 0,S, = 0. ) by treating the interference as noise. WHdA H, = HI H,
we consider the interference to be strong and the sum-rate
capacity can be achieved by fully decoding the interference

Remark 1: Theorenill can be generalized to the MIMO ICs Theorem 4: For the MIMO IC defined in[{l), and where the
with the channel matriceH; andH, being non-invertible or channel matrices are square and invertibl&§fH, = HI H,
rectangular. In those cases, two additional conditionstines andH: H; = HY H;, then the sum-rate capacity is
satisfied such that the matricéss; and A, exist. This result

will be reported in a subsequent paper. B tr(sl)sgll,&t?((&)g%
Remark 2: In the scalar case, if we had; = H; = 1, 1 . .
H, = a, Hs = v/b, from (@) and [B) we obtain S log [T+ H;S:H] + HyS:HT |,
Va(l+bP) +Vb(1 +aPp) < 1. (10) min 5 log T+ H3S:HE + HiSHT |, (17)
1 1
Therefore Theorern 1 is an extension of the noisy-interi@gen 3 log [T+ H;S:HY| + 3 log |+ H4S,HT |

sum-rate capacity of the scalar IC [10]-[12] to the MIMO IC.



Theoreni# shows that HZH, = HIH, and H3TH3 > optimal solution of the following optimization problem
HTH, is satisfied, then the receivers experience strong inter- . )
ference. Thus the channel acts as a compound MIMO multiple max 1 Z [log (1 n hi;Pri )
access channel and the sum-rate capacity is achieved ly full 2 P 1+ h3; Py

decoding the interference at both users. h2.Py;

Theorem 5. For the MIMO IC defined in[{l1), and where the +log (1 + W)}
channel matrices are square and invertibl#{H, < H} H, , . st
andHIH; = HTH,, then the sum-rate capacity is subject to ZPM <P, ZP% <P

c* = max 1=1 =1
t(S1)< Py tr(S2) < Ps Py >0, Py >0. (19)
1
3 log [T+ HsS HY + H4SoHT | Then the sum-rate capacity is
. 1 -1

min{ = 1lo ‘I+HSHT I+ H,S,HY ‘ . (18) ‘

) g 192187 f 292 2) C* = Zcz(Pl*pPQ*Z) (20)
+§log’I+H4S2H4T‘ i=1

Theorenfb gives the sum-rate capacity of the MIMO IC with ~ 3 Z [Og < + HTM) +log < + Hhigzpﬂﬂ
mixed interferencddlH, < HI H, and HIH; = HTH;. =t
The sum-rate capacity is achieved by treating interferesceif
noise at the receiver that experiences weak interferende an

. . 2 p* . . 2 p*
fully decoding the interference at the receiver that exqrerés abs (h1;hai) (1 + hglph) + abs (hs;ha;) (1 + hQZPm)

strong interference. < abs (hyihai) , (21)
Theorem 6: For the MIMO IC defined in[{(L) withH; =0 5.
and all other channel matrices being square and inveriible, .
HIH, = HI'H,, then the capacity region is .
2z = Mt pacty reg (N OC:(Pr, P5,) # o, (22)
1 i=
Ry < S log|I+H,SHT| '
forall: =1,...,t, wheredC;(Py;, P;;) denotes the subdiffer-
U Ry < 3 log [T+ H4S,HT | ential of C;(-,-) at point(Py;, P;;), and¢ denotes the empty

tr(51 )SP]

1 . i i i i .
TS | Ryt Ry < : log |I +H S HT + H282H2T| set. The notion of subdifferential follows that in [20]

Theoreni B illustrates that if each sub-channel (each aatenn

Theorem 7: For the MIMO IC defined in[{1), and wherePair in MIMO IC) satisfies the noisy-interference condition
the channel matriceHl, and ., are square and invertible, if thén independent decoding at each sub-channel with single-
HIH, =~ HTH, and H'H; » HTH;, the capacity region USer detection achieves the sum-rate capacity. Thegdem 8
is shows the conditions foindependent coding and single-user
detection across sub-channels to be optimal.

1
Ry < —log [T+ H;SHT
b= g‘ PR ‘ I1l. PROOF OF THEMAIN RESULTS
U Ry < §1Og‘1+ H,S,H] | A. Preliminaries
wsn<p, | Ri+Re < llog T+ H;S:H + HyS,HY | We introduce some lemmas that we use to prove our main
tr(S2)<Ps . . results.
R+ Ry < 5log T+ H3S:HY + HiSHY | Lenma 1: [21, Lemma 1] Letz,,...,z, be zero-mean

(5andom vectors and denc%te the covariance matrix of the
Stacked vectorz],...,zl]" asK. Let S be a subset of
él, 2,...,n} andS be its complement. Then we have

Theoremdg 6 and]7 give the capacity region of the MIM
ZIC and MIMO IC under strong interference.

Finally we connect the MIMO IC with the parallel Gaussia
interference channel (PGIC), which is a special case bf (1) h(zs|rs)<h (mg |;1;:';—,) , (23)
with all H;’s being diagonal matrices. In [19] we present
conditions for which single user detection for each subacleh where [z], ... z]] TN (0,K).
is sum-rate optimal under the assumption that the codingLemma 2: Let ! = [a;fl,...7xfn]T,z‘ =1,...,k, bek
and decoding is independent across sub-channels. The #hcked random vectors each of which consists ofectors.
lowing theorem proves that independent coding and decodingt y™ = [y1T7 o 7y£]T be n Gaussian random vectors with
is indeed sum-rate optimal under noisy-interference if sorgovariance matrix
conditions are satisfied. &

Theorem 8. For the MIMO IC defined in[{1) withH; = ZMCOV(GI?) = Cov(y"), (24)
diag (hi1,...,hit),2 = 1,...,4, let P and P;; be the P



where> [, A = 1,); > 0. LetS be asubset of1,2,...,n} Lemma 7: { . A } = 0 if and only if B = ATA.

andS be its complement. Then we have AT B
k The proof is omitted.
Z/\ih (@is|ris) <h(yslys)- (25) Lemma 8: [23, Theorem 5.2] Suppos® is nonsingular
i=1 andM is positive definite. Then the matrix equation
The proof of Lemmdl2 is given in the appendix. Lemma X+ WEX W =M (33)

shows the concave-like property of the conditional entro
h(zs |zs) over the covariance matrix C@x™).
Consider a special case of Lemida 2 with= 1, S being Hypr_1 _1 1
the empty set and; = 1/k. We obtain the following lemma. a%%’;l abs (a M™*WM 20‘) < 9" (34)
Lemma 3: Let z* be a set ofc random vectors. Then

F%as a positive definite solutioK if and only if

k A~k
h(z®) <k-h(z), (26) B. Proof of Theorem([]
wherez” is a Gaussian vector with the covariance matrix ~ Suppose the channel is usedtimes. The transmit and
1k receive vector sequences are denotedbyandy; for useri,
Cov(z") = Z Z Cov(z;). (27) i =1,2. For thejth use of the channel, the covariance matrix
i=1 of z; ; is denoted a8, ;, j = 1,...,n, and we use the power
_ ~constraints
Letn = 2,||S]| = ||S]] = 1 and A\; = 1/k. We obtain N
another special cakse of Lelzcmrﬁla 2. Ztr (Sij) < nP.. (35)
Lemma 4: Let ¥ and y* be two sequences of random P ’

vectors. Then we have

o1k - From Fano’s inequality we have that the achievable sum
h(y*[=") <k-h(y

z"), (28) rate R, + R, must satisfy

wherez™ andy™ are Gaussian vectors with the joint covariance n(Ry + Ra) — ne
matrix

. . < T(xys7) + 1 (x553)
COV[ z7 ] _ %ZCOV[ zi } _ (29) < I (afy}, Haa +n}) + I (25:y5, Hoa} +n3)
y i Y = h(Hsz| +nf) — h(n) + b (y] [Hsz! +n7)

The proof is straightforward from Lemrfiz 2 by noticing that —h (Hozy + 27 |ny) + h (Hox3 +n3) — hing)
h(y®|zh) < S5 by, |z). +h (y3 [Hoxy +ny) — h (Hszy +25[n3)  (36)

Lemma 5 [22, Lemma I1.2] Letz* ~ A (0,K,), and let
z andz* be real random vectors (independentcéj with the
same covariance matriK,. If z* ~ N (0,K,), andz has
any other distribution with covariance matik, then

%

where 2z = [2]),2],,... ,zfn]T ,i = 1,2, with all
the z;;,7 = 1,...,n independent of each othen] =
[nl,,nl,,...,n], ], andn, ; are ii.d. Gaussian vectors with
zero mean and covariance matricgs. We further letn; to
I(x*z* +2)>1 ("2 +2%). (30) be correlated withe;, and E [z;n] | = A;. We can write the

o . . . joint distribution of z; andn; as
If K, = 0, then equality is achieved if and only # ~

N(0,K.). z; I A, o
IEemma)G: Let z" be a sequence of zero mean random { n; ] ~N (0’ [ Al 3 ]) ’ =Lz (87

vectors. Letz and z be two independent Gaussian randorglnd we have

vectors and:™ and z" be two sequences of random vectors

each independent and identically distributed (i.i.d.pamdz Cov(zin;) =1— Aizi—lAf, (38)

respectively, then

Let
h(x"+2z")—h(@E"+2"+2") i

<nh(z"+2)—nh(@ +z+2), (31) Y1 =1-A3"A3; (39)
where z* is a zero mean Gaussian random vector with® W€ have
covariance matrix Cov(n1) = Cov(zs |ns) . (40)

1L . . .
Cov(z") = — ZCov(zi). (32) Sincen, ; is independent ofi; ;, and z, ; is independent of
[t ny, for any j # k, we have

The proof is given in the Appendix. Cov(n?) = Cov(zj [nj ). (41)



Therefore we have

h (Hszt +n7) — h (Hsz] + 25 [ny ) = 0.
Similarly, let
B2 =1- A AT;
so we have

h (Hyzh +nf5) — h (Hozh 4+ 27 [nf) = 0.

Therefore if [39) and[{43) hold[_(4#2) and_{44) are ¢
regardless of the distribution af andx%. Then we can
h (Hazt +n7) — h (Ha2! + 25 ny)
= nh (H3Z] +n1) — nh (HsZ] + 22 ny)
h (Hozh +nb) — h (Hozh + 27 [n])
=nh (HQE; + ’ILQ) —nh (HQ?E\; + 21 |n1) y

1 .
—5 log ‘Hgs’;HgT FI- A222_1A2T’

1 ~ ~ ~
(42) +§1og}H4s;H4T +HSHL 41— (H4S§H2T +A2)
~ -1 ~
. st11T *1yT T
) (H282H2 + 22) (H282H4 n AQ)
(i) 1 Qx117 1
= §log H3;STH; + 34| — 510g|21|
1 - 1
(44) g 1+ H.S;HE | - 5 log |1 — Hy THI =, "AT |
onstants |, 1 ‘ Syl G T’ 1
log |1+ H,STHT + HLSHT| + S log I
Write +2 og | I+ H.STH; + HoSoH, | + 5 og |
~ -1 ~
~H;TH] (H,SiHY + 37)  (HSiH] + A7)
(45) 4.
1 - 1
w2 log ‘HgSTHg + 21’ ~3 log | 3]
(46)

1 ~ 1
— 5 log |1+ HaS5Ha| — 5 log[1- 37 ' ATH; TH] |

wherez| andz; are zero mean Gaussian vectors with respec- 2

tive covariance matrices
1 n
sk A Q
Cov(z;) = - Z S1,; = ST,
=1
and
1 n
~ A QS
COV(:L';) = E Zl Sgﬂ' = S;
im

Next by Lemmd# we have

h(yy [Hszy +nt)

= h (Hz? + Hozy + 27 [Hsx! +nl')

S nh (Hli/i;'j + HQ:/E\; + 21 }Hgi/l;'\y{ —|—n1)

- glog ‘HS’;H{ FH,SHT 41— (H1§;H3T TA,

~ -1 ~
- (Hg,S’{HgT + 21) (Hg,S’{HlT + AlT)

Similarly, we obtain
h(y3 [Hozy +n3 )
< 5 log | HUSHT + HaSTHY +1— (FLS;HT + A,

- (H2§§H2T + 22)71 (H2§§H4T + AzT)

On substituting[(45)E(80) intd (B6) we have
Ri+ Ry — ¢

1 ~ 1
< 3 log ’H3S*{H§F n 21’ ~ 5 log|Z4|

1 .
~ 5 log [HuS;HY +1 - Alz:;lAﬂ

2
~ -1 ~
(mSH] +x)  (HSiHT + AT)

1 - 1
+5 log [HuS;H + 22‘ — 5 log ||

+ g log 27 (49)

2 = . A
+5 log[HiS{HT + HS;HT +1— (HLS{H + A,)

1 ~ ~ 1
+5log ‘1 +H,STHT + stgﬂg‘ + 5 log|I

@4n  _ (H3§*;H§§ n z:lT) B (H3§;H1T + AlT) H;THT

1 . - —1
= 5 log |+ H,S{H] (1 + HQS;HQT)

(48)
1 QxryT axprT -1
+5 log |1+ H,S;H] (I+H381H3)

© 1 _
< 51og\1+Hls>{H§f (1+H,S5HE)

1 _
+5 log |1+ HuS3HT (I + H,STHY) !

, (51)
) where in (a) we let

A= (I +H,S;HT ) H,THT, (52)
and

Az = (1+H;8{H] ) HHE. (53)

) Equality (b) is from the facfl — UV| = |I — VU]. Inequality
(c) is from the assumption th&] and S3 optimize @) and

+ glog or(50) the equality holds wheS; = S} andS; = S3.

The above sum rate im_(b1) is also achievable by treating
interference as noise at each receiver, therefore the atem-r
capacity is[(Bll), if there exist Gaussian vectersandn, with
distribution in [3T) that satisfie§ (B9], (43], {52) and](53)

We consider the existence af. From Lemmadl7n; exists
if and only if

21 t A{Alv (54)

with A; defined in [GR).
From [43) and Woodbury identity [24]:

(A+CBC”) ™
=A-A'C(B'+CTA'C) CTA T, (55)



we have © 5 (10 ‘ng’{HlT + z‘ —log ‘H2§§H2T +I- AZ)*AT‘

-1 -1 ~ ~ ~
Byt =T- A (T +ATAY) AL (56)  tlog [HLS;H + 1| + log |HiSTHT + H,S;H] +1

On substituting[(56) intd (39) we have ~ ~ -1 ~
- (Hls;H{ + A) (Hls;‘HlT + 2) (Hls;‘H{ n AT)

By =T1— AsAL + AsA, (ATA, — =) ATAL. (57)
—log|X])

-2 (108 ]1 + HS;H{A*\ +log ‘1 + H4§§H4TD
X=%-ATA, (58)
<1og

Define
_n
and substitutd{4) anfll(5) into (57). We then have the folgwi 2

matrix equation: +log ‘I + H4§§H4TD
X+ WIX='w, =M. (59)

~ —~ —1
I+H,S;HT (1 + stgﬂg)

<2 max (log|l+HiSiH (I+ HaS:H]) |
Equation [[5D) is a special case of a discrete algebraic tRicat 2 gg;gé%
equation [23]. From Lemnid 8, wifhI symmetric and positive B
definite, [59) has symmetric positive definite solutidn if

and only if [2) holds. Therefore; exists with condition[(R). where, (a) is from Lemmas] 3 aid 4, amd is zero mean

+ log ‘I + H4SgH4T|) (61)

Similarly, n, exists with condition[(]3). Gaussian vector with Ca}) = & > Cov(zij),i=1,2;
Therefore if [2) and(3) hold for any; satisfying the power in (b) we let
constraint, for any choice o8;;,i = 1,2,j = 1,...,n, the T 1 AT er T
sum rate must satisfy (b1). This completes our proof. H'H;' =H;'(I-AS'A")H,", (62)
C. Proof of Theorem[2 and thus
In the proof of Theorer]1, we lef (B9) arld [43) hold, and —h (Hozh + 27 |n) + h (Hazh + 25)
obtain [4%) and[{46). On the other hand, by Lenirha €_if (11) = —nlog (abs |Ha|) + nlog (abs |Hy|)

and [I2) hold then we can still obtain_{45) and](46). The rest
of the proof of Theoreml2 is the same as the proof of Theorem
[ Therefore, treating interference as noise is sum-ratad®y in (c) we let
achieving if there exiskE; and X, that satisfy [(Tll) and (12).

D. Proof of Theorem[3
We provide two proofs of the first part of Theoréin 3, i.e.

= —nh (HoZ5 + 21 [n) + nh (H4Z5 + 22) ; (63)

A =1+ H,S}H,. (64)

In order that all the equalities ib_(61) hold, there must &xis
HIH, < HIH,. The first proof applies the same genie-aide such that the covariance matrix inh_{60) satisfies] (62) and

method we used in the proof of Theoréin 1. The second proo ). From [62) and({§4) we have

does not need a genie and is based on Leima 6. »=AT (I-HH,;'H;"H]) A. (65)
1) Genie-aided proof: This proof is similar to the proof of o )

TheoremL but much simpler. Assume a Gaussian veetor! Nereforen exists if and only if

which has joint distribution withe; as I- H,H;'H;"H? - 0, (66)
[ ‘;1 ] ~N <0, { AIT ‘g D , (60) which is equivalent to
Letn™ be a sequence af column random vectors with each H; H, < HiH,. (67)
n; being i.i.d. Then from Fano’s inequality we have 2) Proof based on Lemma[@ Starting from Fano’s inequal-
n(Ry + Re) — ne ity we have
< I(xy597) +1(x3:93) n(Ry + Rp) —ne
< 1@yl Hazy +n") + 1 (23:95) < T(@hyt) + 1 (x53y3)
=h(Hz? +n") + h (Hiz] + Hoxl + 27 |Hi27 +n") = h (Hi2" + Hozhy + 27) — h (Hoz5 + 27)
—h (Hozh + 21 [n") + h (Hazh + 25) — h (n") — h(23) +h (Hazy +25) — h(25)
© nh (HLE; +n) + nh (HLE, + nHo®; + 21 [HLE, +n) b (HL& + Ho5 + 7))
—h (Hoxlh + 27 [n™) + h (Hyzh + 23) — nh (n) — nh (22) —h (zh + Hy'27) + h (28 + H'25) — h(25)
®) —nlog (abs Ha|) + nlog (abs [Ha|)

< nh (HiZ] +n) 4+ nh (HiZ] + nHoZ; + 21 |[H1Z] +n) »
—nh (HaZy + 21 [n) + nh (H4Z5 + 22) — nh (n) — nh(22) < nh (H1Z] + HoZy + 27) — nh (5 + H;lzl)



+nh (5 + Hy '22) — h(22) F. Proof of Theoremd

—nlog (abs |Hs|) + nlog (abs [Hy) The achievability part is straightforward by letting user
P e\ L first decode message from uskerand then decode its own
I+H,SH; (I + H282H2) message, and useértreat signals from use® as noise.
To prove the converse, we first [Bf; = 0 and use the first
part of Theoreni]3, and then |&1, = 0 and use the second

n
-
9 &

+glog‘I+H4§§H4T‘

St max {g log ‘I—i— H,S,HT (I n HgSgHQT)_l‘ part of TheoreniI3. We obtain
t:ES;;gP; Ri+ Ry < max min

n tr(Sl)SPl,tr(S2)§P2
+ 2 1og |1+ H,S,HT } 68 1

3 log |1+ HaSHi| (68) 5 log |L+ HySi HY + H,S;H] |,
where (a) is from Lemmal3 ang} is zero mean Gaussian 11 ’ T T 71‘

‘ n b : = I+ H;S;H; (I+ HyS.H

vector with Covz;) = 13" Cov(z;); (b) is from g o8t HSIHY ( 4; 25:H3)
Lemmal®. += log |I + HyS,HY

Next we prove the second part of Theoremm 3. The achiev-| 1 r 21 r
ability of the sum rate is straightforward by letting the §1°g‘I+HlslH1 | +§1Og’I+H4S2H4’
Pr:Zt égﬁig’g;d%ig?te f?oor;h gisos,sgii; tﬁ?it;e:r? dorr:ziég ?L\R)@ complete the proof by pointing out that the last line of

‘ ) is redundant because of the second line.

H,'H,;” < H,;'H,;”, then the second and third terms o )

(73)

)

(b) in (68) become G. Proof of Theorems[G, [7] and [8
—h (=} + Hglz?) +h(a) + H;lzg) Theo_rem{B andl 7 are consequences of TheoEéms B].and 4
B " i " n em respectively. The proof is straightforward and hence istt@ui
=—h(a} +Hy '27) + h (25 + Hy 27 +2") The proof of Theorerfil8 is also omitted due to the lack of
=1 (2" +H;'20 +2") space.
n, —1.n ~n
<T(2"Hy 2! +2") IV. NUMERICAL RESULT
—1_n —-1_n
=-h (Hz 21) +h (H4 22) J (69) Consider a symmetric MIMO IC with two transmit antennas
where 3 ~ N(07H21HZT _ H;ngT). On substituting and tvxo receive antennas. LEf; = Hy = I, H, = H3 =
(69) back into[(6B) we have Va pl /\p ] wherea varies from0 to 1. Fig.[2 shows
2
1 QxpgT & 197 the noisy-interference sum-rate capacity ws.for different
—e< = . . L .
Bit Ry —esglog ’I +HISH, A+ HoS:H, ’ (70) A1, A2 andp. There is a range af, within which the channel
On the other hand, we have has noisy interference. Fifll 2 shows that the range ahd
the sum-rate capacity decrease as the nornHefand Hs
n(Ry + R2) — ne increases.

< n, N n n, . n
= 11(1’1 Sy s )j‘ 1(3’27?!12) - V. CONCLUSION
< ilog’I‘FHlSTHﬂ + §1Og‘I+H4S§H4T’- (71)  We have extended the capacity results on scalar ICs to
MIMO ICs and have obtained the sum-rate capacity of the
From (70) and[(71) we have MIMO IC with noisy-interference, strong interference, aftd
Ry + Ry —¢ interference, and the capacity region of the MIMO IC with

1 P P strong interference.
5 log ‘I +H,S,HT + H,S,H] ‘

<minq 4 s | 1 P— ACKNOWLEDGMENT
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1 Theorem$ 1l anfd] 2.
3 log ‘I +H;S:HT + H232H§F|
1 1 . . (72) APPENDIX
E. Proof of Theoremdl Define a discrete random variahte with the distribution
The achievability is straightforward by letting both raeeis Pg(E=i)=X\, i=1,...,k. (74)

decode both messages. We need only to show the conveyse, . o n
which can be shown by settingl, — 0 and Hs — 0, [¥'the conditional distribution af” be
respectively, and using Theordm 3. Pen|p (" |E =) = per (x}'). (75)



Then the probability density function af* is

k

i=1

(76)

Therefore

k
Cov(z") = > ;Cov(z}') = Cov(y"). (77)
i=1

Then from Lemmall we have

hzslrs) <h(yslys). (78)

From [75) we have

Therefore we have

B. Proof of Lemma[@

h(zsl|zs, E)

k
= ZPE(E =1i)h (-Ti,S ‘%S)
i=1

k
= Z Aih (:171',3 ’xi,S)
i=1 (8]
<h(xzslzs). (79)
[

k [10]
S Nh (mis|s) <hyslys)- (80)

i=1
(11]

h(z"+2")—h(z"+2"+2")

12
—I(Z"%z" +2" +3") (2

(a)
< —I(ZM ™ 42" 4 2")

13
—h(EZ")+h(E" 2" +2"4+2") 03]

®) [14]
< —nh(z)+nh(Z[E"+2+2)

—nl (22" 4+ 2+ 2)
:nh(§*+z) —nh(§*+z+2),

[15]

(81) [16]

where (a) is from Lemm@l 5 angt™ has the same covarianceﬁn
matrix asz”, and (b) is from Lemmal4.
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