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Abstract—Interior-point methods are state-of-the-art al-
gorithms for solving linear programming (LP) problems
with polynomial complexity. Specifically, the Karmarkar
algorithm typically solves LP problems in time O(n3.5),
wheren is the number of unknown variables. Karmarkar’s
celebrated algorithm is known to be an instance of the
log-barrier method using the Newton iteration. The main
computational overhead of this method is in inverting
the Hessian matrix of the Newton iteration. In this
contribution, we propose the application of the Gaussian
belief propagation (GaBP) algorithm as part of an efficient
and distributed LP solver that exploits the sparse and
symmetric structure of the Hessian matrix and avoids the
need for direct matrix inversion. This approach shifts the
computation from realm of linear algebra to that of proba-
bilistic inference on graphical models, thus applying GaBP
as an efficient inference engine. Our construction is general
and can be used for any interior-point algorithm which
uses the Newton method, including non-linear program
solvers.

I. INTRODUCTION

In recent years, considerable attention has been
dedicated to the relation between belief propagation
message passing and linear programming schemes.
This relation is natural since the maximum a-
posteriori (MAP) inference problem can be trans-
lated into integer linear programming (ILP) [1].

Weisset al. [1] approximate the solution to the
ILP problem by relaxing it to a LP problem using
convex variational methods. In [2], tree-reweighted
belief propagation (BP) is used to find the global
minimum of a convex approximation to the free
energy. Both of these works apply discrete forms

of BP. Globersonet al. [3], [4] assume convexity
of the problem and modify the BP update rules
using dual-coordinate ascent algorithm. Hazanet
al. [5] describe an algorithm for solving a general
convex free energy minimization. In both cases the
algorithm is guaranteed to converge to the global
minimum as the problem is tailored to be convex.

In the present work we take a different path. Un-
like most of the previous work which uses gradient-
descent methods, we show how to use interior-point
methods which are shown to have strong advantages
over gradient and steepest descent methods. (For a
comparative study see [6,§9.5,p. 496].) The main
benefit of using interior point methods is their
rapid convergence, which is quadratic once we are
close enough to the optimal solution. Their main
drawback is that they require heavier computational
effort for forming and inverting the Hessian ma-
trix, needed for computing the Newton step. To
overcome this, we propose the use of Gaussian BP
(GaBP) [7], [8], which is a variant of BP applicable
when the underlying distribution is Gaussian. Using
GaBP, we are able to reduce the time associated
with the Hessian inversion task, fromO(n2.5) to
O(nplog(ǫ)/log(γ)) at the worst case, wherep < n
is the size of the constraint matrixA, ǫ is the
desired accuracy, and1/2 < γ < 1 is a parameter
characterizing the matrixA. This computational
saving is accomplished by exploiting the sparsity
of the Hessian matrix.

An additional benefit of our GaBP-based ap-
proach is that the polynomial-complexity LP solver
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can be implemented in a distributed manner, en-
abling efficient solution of large-scale problems.

We also provide what we believe is the first
theoretical analysis of the convergence speed of the
GaBP algorithm.

The paper is organized as follows. In Section
II, we reduce standard linear programming to a
least-squares problem. Section III shows how to
solve the least-squares problem using the GaBP
algorithm. In Section IV, we extend our construction
to the primal-dual method. We give our convergence
results for the GaBP algorithm in Section V, and
demonstrate our construction in Section VI using
an elementary example. We present our conclusions
in Section VII.

II. STANDARD L INEAR PROGRAMMING

Consider the standard linear program

minimizex cTx (1a)

subject to Ax = b, x ≥ 0 (1b)

whereA ∈ R
n×p with rank{A} = p < n. We

assume the problem is solvable with an optimal
x∗ assignment. We also assume that the problem
is strictly feasible, or in other words there exists
x ∈ R

n that satisfiesAx = b andx > 0.
Using the log-barrier method [6,§11.2], one gets

minimizex,µ cTx− µΣn
k=1 log xk (2a)

subject to Ax = b. (2b)

This is an approximation to the original problem
(1a). The quality of the approximation improves as
the parameterµ→ 0.

Now we would like to use the Newton method
in for solving the log-barrier constrained objective
function (2a), described in Table I. Suppose that we
have an initial feasible pointx0 for the canonical
linear program (1a). We approximate the objective
function (2a) around the current point̃x using a
second-order Taylor expansion

f(x̃+∆x) ≃ f(x̃) + f ′(x̃)∆x+1/2∆xTf ′′(x̃)∆x.
(3)

Finding the optimal search direction∆x yields the
computation of the gradient and compare it to zero

∂f

∂∆x
= f ′(x̃) + f ′′(x̃)∆x = 0, (4)

∆x = −f ′′(x̃)−1f ′(x̃). (5)

Denoting the current point̃x , (x, µ,y) and
the Newton step∆x , (x,y, µ), we compute the
gradient

f ′(x, µ,y) ≡ (∂f(x, µ,y)/∂x, ∂f(x, µ,y)/∂µ,

, ∂f(x, µ,y)/∂y)

The Lagrangian is

L(x, µ,y) = cTx−µΣk log xk +yT (b−Ax), (7)

∂L(x, µ,y)

∂x
= c− µX−11− yTA = 0, (8)

∂2L(x, µ,y)

∂x
= µX−2, (9)

whereX , diag(x) and 1 is the all-one column
vector. Substituting (8)-(9) into (4), we get

c− µX−11− yTA+ µX−2x = 0, (10)

c− µX−11+ xµX−2 = yTA, (11)

∂L(x, µ,y)

∂y
= Ax = 0. (12)

Now multiplying (11) byAX2, and using (12) to
eliminatex we get

AX2ATy = AX2c− µAX1. (13)

These normal equations can be recognized as gen-
erated from the linear least-squares problem

min
y

||XATy −Xc− µAX1||22. (14)

Solving fory we can compute the Newton direction
x, taking a step towards the boundary and compose
one iteration of the Newton algorithm. Next, we will
explain how to shift the deterministic LP problem to
the probabilistic domain and solve it distributively
using GaBP.



TABLE I
THE NEWTON ALGORITHM [6, §9.5.2] .

Given feasible starting pointx0 and toleranceǫ > 0, k = 1
Repeat 1 Compute the Newton step and decrement

∆x = f ′′(x)−1f ′(x), λ2 = f ′(x)T∆x

2 Stopping criterion. quit ifλ2/2 ≤ ǫ
3 Line search. Choose step size t by backtracking line search.
4 Update.xk := xk−1 + t∆x, k = k + 1

III. FROM LP TO PROBABILISTIC INFERENCE

We start from the least-squares problem (14),
changing notations to

min
y

||Fy − g||22, (15)

whereF , XAT , g , Xc+µAX1. Now we define
a multivariate Gaussian

p(x̂) , p(x,y) ∝ exp(−1/2(Fy − g)T I(Fy − g)).
(16)

It is clear thatŷ, the minimizing solution of (15),
is the MAP estimator of the conditional probability

ŷ = argmax
y

p(y|x) =

= N ((FTF)−1FTg, (FTF)−1). (17)

Recent results by Bickson and Shentalet al. [7]–
[9] show that the pseudoinverse problem (17) can
be computed efficiently and distributively by using
the GaBP algorithm.

The formulation (16) allows us to shift the least-
squares problem from an algebraic to a probabilistic
domain. Instead of solving a deterministic vector-
matrix linear equation, we now solve an inference
problem in a graphical model describing a certain
Gaussian distribution function. Following [9] we
define the joint covariance matrix

C ,

(

−I F

FT 0

)

(18)

and the shift vectorb , {0T , gT}T ∈ R
(p+n)×1.

Given the covariance matrixC and the shift
vector b, one can write explicitly the Gaussian
density function,p(x̂) , and its corresponding graph
G with edge potentials (‘compatibility functions’)

ψij and self-potentials (‘evidence’)φi. These graph
potentials are determined according to the follow-
ing pairwise factorization of the Gaussian distribu-
tion p(x) ∝

∏n

i=1 φi(xi)
∏

{i,j} ψij(xi, xj), resulting
in ψij(xi, xj) , exp(−xiCijxj), and φi(xi) ,

exp
(

bixi − Ciix
2
i /2

)

. The set of edges{i, j} cor-
responds to the set of non-zero entries inC (18).
Hence, we would like to calculate the marginal
densities, which must also be Gaussian,

p(xi) ∼ N (µi = {C−1g}i, P
−1
i = {C−1}ii),

∀i > p,

whereµi andPi are the marginal mean and inverse
variance (a.k.a. precision), respectively. Recall that,
according to [9], the inferred meanµi is identical
to the desired solution̂y of (17). The GaBP update
rules are summarized in Table II.

It is known that if GaBP converges, it results in
exact inference [10]. However, in contrast to con-
ventional iterative methods for the solution of sys-
tems of linear equations, for GaBP, determining the
exact region of convergence and convergence rate
remain open research problems. All that is known is
a sufficient (but not necessary) condition [11], [12]
stating that GaBP converges when the spectral ra-
dius satisfiesρ(|IK −A|) < 1. A stricter sufficient
condition [10], determines that the matrixA must
be diagonally dominant (i.e., |aii| >

∑

j 6=i |aij |, ∀i)
in order for GaBP to converge. Convergence speed
is discussed in Section V.

IV. EXTENDING THE CONSTRUCTION TO THE

PRIMAL -DUAL METHOD

In the previous section we have shown how to
compute one iteration of the Newton method using
GaBP. In this section we extend the technique for



TABLE II
COMPUTINGx = A

−1
b VIA GABP [7].

# Stage Operation
1. Initialize ComputePii = Aii andµii = bi/Aii.

SetPki = 0 andµki = 0, ∀k 6= i.
2. Iterate PropagatePki andµki, ∀k 6= i such thatAki 6= 0.

ComputePi\j = Pii +
∑

k∈N(i)\j Pki andµi\j = P−1
i\j (Piiµii +

∑

k∈N(i)\j Pkiµki).
ComputePij = −AijP

−1
i\jAji andµij = −P−1

ij Aijµi\j .
3. Check If Pij andµij did not converge, return to #2. Else, continue to #4.
4. Infer Pi = Pii +

∑

k∈N(i) Pki , µi = P−1
i (Piiµii +

∑

k∈N(i) Pkiµki).
5. Output xi = µi

computing the primal-dual method. This construc-
tion is attractive, since the extended technique has
the same computation overhead.

The dual problem ( [13]) conforming to (1a) can
be computed using the Lagrangian

L(x,y, z) = cTx + yT (b−Ax)− zTx, z ≥ 0,

g(y, z) = inf
x
L(x,y, z), (19a)

subject to Ax = b,x ≥ 0. (19b)

while
∂L(x,y, z)

∂x
= c−ATy − z = 0. (20)

Substituting (20) into (19a) we get

maximizey bTy

subject to ATy + z = c, z ≥ 0.

Primal optimality is obtained using (8) [13]

yTA = c− µX−11. (22)

Substituting (22) in (21a) we get the connection
between the primal and dual

µX−11 = z.

In total, we have a primal-dual system (again we
assume that the solution is strictly feasible, namely
x > 0, z > 0)

Ax = b, x > 0,

ATy + z = c, z > 0,

Xz = µ1.

The solution[x(µ),y(µ), z(µ)] of these equations
constitutes the central path of solutions to the log-
arithmic barrier method [6, 11.2.2]. Applying the
Newton method to this system of equations we get




0 AT I
A 0 0
Z 0 X









∆x

∆y

∆z



 =





b−Ax

c−ATy − z

µ1−Xz



 .

(24)
The solution can be computed explicitly by

∆y = (AZ−1XAT )−1·
(AZ−1X(c− µX−11−ATy) + b−Ax),

∆x = XZ−1(AT∆y + µX−11 = c+ATy),
∆z = −AT∆y + c−ATy − z.

The main computational overhead in this method
is the computation of(AZ−1XAT )−1, which is
derived from the Newton step in (5).

Now we would like to use GaBP for computing
the solution. We make the following simple change
to (24) to make it symmetric: sincez > 0, we can
multiply the third row byZ−1 and get a modified
symmetric system




0 AT I
A 0 0
I 0 Z−1X









∆x

∆y

∆z



 =





b−Ax

c−ATy − z

µZ−11−X



 .

Defining Ã ,





0 AT I
A 0 0
I 0 Z−1X



 , and b̃ ,





b−Ax

c−ATy − z

µZ−11−X



 . one can use GaBP iterative

algorithm shown in Table II.



In general, by looking at (4) we see that the
solution of each Newton step involves inverting the
Hessian matrixf ′′(x). The state-of-the-art approach
in practical implementations of the Newton step
is first computing the Hessian inversef ′′(x)−1 by
using a (sparse) decomposition method like (sparse)
Cholesky decomposition, and then multiplying the
result by f ′(x). In our approach, the GaBP al-
gorithm computes directly the result∆x, without
computing the full matrix inverse. Furthermore, if
the GaBP algorithm converges, the computation of
∆x is guaranteed to be accurate.

V. NEW CONVERGENCERESULTS

In this section we give an upper bound on the
convergence rate of the GaBP algorithm. As far as
we know this is the first theoretical result bounding
the convergence speed of the GaBP algorithm.

Our upper bound is based on the work of Weiss
et al. [10, Claim 4], which proves the correctness
of the mean computation. Weiss uses the pairwise
potentials form1, where

p(x) ∝ Πi,jψij(xi, xj)Πiψi(xi),

ψi,j(xi, xj) ≡ exp(−1/2(xi xj)
TVij(xi xj)),

Vij ≡

(

ãij b̃ij
b̃ji c̃ij

)

.

Assuming the optimal solution isx∗, for a desired
accuracyǫ||b||∞ where||b||∞ ≡ maxi |bi|, andb is
the shift vector, we need to run the algorithm for at
mostt = ⌈log(ǫ)/log(β)⌉ rounds to get an accuracy
of |x∗ − xt| < ǫ||b||∞ whereβ = maxij |b̃ij/c̃ij|.

The problem with applying Weiss’ result directly
to our model is that we are working with different
parameterizations. We use theinformation form
p(x) ∝ exp(−1/2xTAx+bTx). The decomposition
of the matrix A into pairwise potentials is not
unique. In order to use Weiss’ result, we propose
such a decomposition. Any decomposition from
the canonical form to the pairwise potentials form
should be subject to the following constraints [10]

b̃ij = Aij, Σj c̃ij = Aii.

We propose to initialize the pairwise potentials as
following. Assuming the matrixA is diagonally

1Weiss assumes scalar variables with zero means.

dominant, we defineεi to be the non negative gap

εi , |Aii| − Σj |Aij| > 0.

and the following decomposition

b̃ij = Aij , c̃ij = Aij + εi/|N(i)|,

where |N(i)| is the number of graph neighbors of
nodei. Following Weiss, we defineγ to be

γ = max
i,j

|b̃ij |

|c̃ij|
=

|aij|

|aij|+ εi/|N(i)|
=

= max
i,j

1

1 + (εi)/(|aij||N(i)|)
< 1. (25)

In total, we get that for a desired accuracy ofǫ||b||∞
we need to iterate fort = ⌈log(ǫ)/log(γ)⌉ rounds.
Note that this is an upper bound and in practice
we indeed have observed a much faster convergence
rate.

The computation of the parameterγ can be easily
done in a distributed manner: Each node locally
computesεi, and γi = maxj 1/(1 + |aij |εi/N(i)).
Finally, one maximum operation is performed glob-
ally, γ = maxi γi.

A. Applications to Interior-Point Methods

We would like to compare the running time of
our proposed method to the Newton interior-point
method, utilizing our new convergence results of
the previous section. As a reference we take the
Karmarkar algorithm [14] which is known to be
an instance of the Newton method [15]. Its running
time is composed ofn rounds, where on each round
one Newton step is computed. The cost of comput-
ing one Newton step on a dense Hessian matrix is
O(n2.5), so the total running time isO(n3.5).

Using our approach, the total number of Newton
iterations,n, remains the same as in the Karmarkar
algorithm. However, we exploit the special structure
of the Hessian matrix, which is both symmetric
and sparse. Assuming that the size of the constraint
matrix A is n × p, p < n, each iteration of
GaBP for computing a single Newton step takes
O(np), and based on our new convergence analysis
for accuracyǫ||b||∞ we need to iterate forr =
⌈log(ǫ)/log(γ)⌉ rounds, whereγ is defined in (25).
The total computational burden for a single Newton
step isO(nplog(ǫ)/log(γ)). There are at mostn
rounds, hence in total we getO(n2plog(ǫ)/log(γ)).
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Fig. 1. A simple example of using GaBP for solving linear
programming with two variables and eleven constraints. Each red
circle shows one iteration of the Newton method.

VI. EXPERIMENTAL RESULTS

We demonstrate the applicability of the proposed
algorithm using the following simple linear program
borrowed from [16]

maximize x1 + x2

subject to 2px1 + x2 ≤ p2 + 1 ,

p = 0.0, 0.1, · · · , 1.0 .

Fig. 1 shows execution of the affine-scaling al-
gorithm [17], a variant of Karmarkar’s algorithm
[14], on a small problem with two variables and
eleven constraints. Each circle is one Newton step.
The inverted Hessian is computed using the GaBP
algorithm, using two computing nodes. Matlab code
for this example can be downloaded from [18].

Regarding larger scale problems, we have ob-
served rapid convergence (of a single Newton step
computation) on very large scale problems. For
example, [19] demonstrates convergence of 5-10
rounds on sparse constraint matrices with several
millions of variables. [20] shows convergence of
dense constraint matrices of size up to150, 000 ×
150, 000 in 6 rounds, where the algorithm is run in
parallel using 1,024 CPUs. Empirical comparison
with other iterative algorithms is given in [8].

VII. CONCLUSION

In this paper we have shown how to efficiently
and distributively solve interior-point methods using

an iterative algorithm, the Gaussian belief propaga-
tion algorithm. Unlike previous approaches which
use discrete belief propagation and gradient descent
methods, we take a different path by using con-
tinuous belief propagation applied to interior-point
methods. By shifting the Hessian matrix inverse
computation required by the Newton method, from
linear algebra domain to the probabilistic domain,
we gain a significant speedup in performance of
the Newton method. We believe there are numerous
applications that can benefit from our new approach.
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