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Abstract—Interior-point methods are state-of-the-art al-
gorithms for solving linear programming (LP) problems
with polynomial complexity. Specifically, the Karmarkar
algorithm typically solves LP problems in time O(n??),
wheren is the number of unknown variables. Karmarkar’s
celebrated algorithm is known to be an instance of the
log-barrier method using the Newton iteration. The main
computational overhead of this method is in inverting
the Hessian matrix of the Newton iteration. In this
contribution, we propose the application of the Gaussian
belief propagation (GaBP) algorithm as part of an efficient
and distributed LP solver that exploits the sparse and
symmetric structure of the Hessian matrix and avoids the
need for direct matrix inversion. This approach shifts the
computation from realm of linear algebra to that of proba-
bilistic inference on graphical models, thus applying GaBP
as an efficient inference engine. Our construction is geneta
and can be used for any interior-point algorithm which
uses the Newton method, including non-linear program
solvers.

. INTRODUCTION

of BP. Globersonet al. [3], [4] assume convexity
of the problem and modify the BP update rules
using dual-coordinate ascent algorithm. Hazan
al. [5] describe an algorithm for solving a general
convex free energy minimization. In both cases the
algorithm is guaranteed to converge to the global
minimum as the problem is tailored to be convex.

In the present work we take a different path. Un-
like most of the previous work which uses gradient-
descent methods, we show how to use interior-point
methods which are shown to have strong advantages
over gradient and steepest descent methods. (For a
comparative study see [69.5,p. 496].) The main
benefit of using interior point methods is their
rapid convergence, which is quadratic once we are
close enough to the optimal solution. Their main
drawback is that they require heavier computational
effort for forming and inverting the Hessian ma-
trix, needed for computing the Newton step. To
overcome this, we propose the use of Gaussian BP

In recent years, considerable attention has be@aBP) [7], [8], which is a variant of BP applicable
dedicated to the relation between belief propagatiarhen the underlying distribution is Gaussian. Using
message passing and linear programming schen®aBP, we are able to reduce the time associated
This relation is natural since the maximum awith the Hessian inversion task, fro@(n*5) to
posteriori (MAP) inference problem can be transd(nplog(e)/log(~)) at the worst case, whege< n

lated into integer linear programming (ILP) [1].

is the size of the constraint matriA, € is the

Weiss et al. [1] approximate the solution to thedesired accuracy, ant/2 < v < 1 is a parameter
ILP problem by relaxing it to a LP problem usingcharacterizing the matrixA. This computational
convex variational methods. In [2], tree-reweighteshving is accomplished by exploiting the sparsity
belief propagation (BP) is used to find the globalf the Hessian matrix.
minimum of a convex approximation to the free An additional benefit of our GaBP-based ap-
energy. Both of these works apply discrete fornmoach is that the polynomial-complexity LP solver
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can be implemented in a distributed manner, en- Ax = —f"(x)7 f(%). (5)
abling efficient solution of large-scale problems.

We also provide what we believe is the first Denoting the current poink = (x,u,y) and
theoretical analysis of the convergence speed of e Newton stepAx £ (x,y, i), we compute the
GaBP algorithm. gradient

The paper is organized as follows. In Section
M we reduce standard linear programming to A(x, i, y) = (0f(x, pu,y)/0x, 0f (%, 11,y)/Ou,
least-squares problem. Sectionl Ill shows how to ,0f (%, 11,y)/0y)
solve the least-squares problem using the GaBP
algorithm. In Section IV, we extend our construction The Lagrangian is
to the primal-dual method. We give our convergence
results for the GaBP algorithm in Sectidn V, and£(x, u,y) = ¢"x — uX; log 2 +y* (b — Ax), (7)
demonstrate our construction in Section VI using
an elementary example. We present our conclusions

in Section VII. OL(X, 11, y) . T
[I. STANDARD LINEAR PROGRAMMING T ox XLy ASD )
Consider the standard linear program PL(X, 1Y)
minimize, c'x (12) # X ®

subjectto Ax=b, x>0 (1b)
where X = diagx) and 1 is the all-one column

where A € R™? with rank{A} = p < n. We yector. Substituting{8)=(9) intd{4), we get
assume the problem is solvable with an optimal

x* assignment. We also assume that the problem c—puX M1 —yTA+ X% =0, (10)
is strictly feasible, or in other words there exists
x € R" that satisfiesAx = b andx > 0.

- -1 -2 _ T
Using the log-barrier method [6,11.2], one gets ¢ = pX LA xuX y A, (11)
minimize, , ¢’x — pX7_, logzy (2a)
subjectto  Ax=bh. 2b) w N — (12)
y

This is an approximation to the original problem
(@3). The quality of the approximation improves aow multiplying (11) by AX?, and using[(12) to

the parameter, — 0. eliminatex we get
Now we would like to use the Newton method ) )
in for solving the log-barrier constrained objective AX"A'y = AXc — pAX1. (13)

function (2&), described in Table I. Suppose that we . .

have an initial feasible point, for the canonical These normal equations can be recognized as gen-
linear program[{da). We approximate the objectigiated from the linear least-squares problem
function (2&) around the current poist using a ) T N

second-order Taylor expansion min XAy — Xc — pAX1];. (14)

f(x+Ax) ~ f(%) + f(X)Ax +1/2Ax" f"(%) Ax. Solving fory we can compute the Newton direction
o . . . x, taking a step towards the boundary and compose

Finding the optimal search directiolx yields the gne jteration of the Newton algorithm. Next, we wil

computation of the gradient and compare it 10 Z€gp|ain how to shift the deterministic LP problem to

of o . the probabilistic domain and solve it distributively
AL = f'(x) + f'(x)Ax =0, (4)  using GaBP.



TABLE |
THE NEWTON ALGORITHM[6, §9.5.2] .
Given feasible starting pointy and tolerance > 0, k =1
Repeat 1 Compute the Newton step and decrement
Ax = f"(x)"1f'(x), A= f(x)TAx
2 Stopping criterion. quit if\?/2 < e
3 Line search. Choose step size t by backtracking line search
4 Update.xk = Xg_1+ tAX, k=k+1

IIl. FROM LP TO PROBABILISTIC INFERENCE  %;; and self-potentials (‘evidenced);. These graph
We start from the least-squares problem] (1430tentials are determined according to the follow-

changing notations to ing pairwise fgctorization of the Gaussian di§tribu-
' ) tion p(x) o< [T,y di(@i) [Ty ;) ¢is(wi, ), resulting
H;Hl ||Fy - g||27 (15) in @Dij(xi,xj) = exp(—xiCijxj), and QSZ(ZUZ) =

. . ~exp (b, — Cyx?/2). The set of edgedi, j} cor-
whereF = XAT g = Xc+pAX1. Now we define responds to the set of non-zero entriesGn(I8).
a multivariate Gaussian Hence, we would like to calculate the marginal

p(R) 2 p(x,y) o exp(—1/2(Fy — g)"1(Fy — g)). densities, which must also be Gaussian,
(16) p(xi) ~ N(pi = {C7'ghi, Pt = {C'}a),

It is clear thaty, the minimizing solution of[(15), _

is the MAP estimator of the conditional probability Vi > p,

A wherey; and P; are the marginal mean and inverse
y = argmax p(y|x) = variance (a.k.a. precision), respectively. Recall that,
y . . LT .
according to [9], the inferred meam; is identical
=N(F'F)'Flg, (FTF)™). (17) to the desired solution of (I7). The GaBP update

, rules are summarized in Takle II.
Recent results by Blckspn and Sheraéhl. [7]- It is known that if GaBP converges, it results in
[9] show that the pseudoinverse probleim](17) cay

b 4 efficientl 4 distributivelv b .~‘exact inference [10]. However, in contrast to con-
e computed efiiciently and distributively by usingeniional iterative methods for the solution of sys-
the GaBP algorithm.

tems of linear equations, for GaBP, determining the

The formulation (16) allows us to shift the IeaStéxact region of convergence and convergence rate

squares problem from an algebraic to _a_pr_obabilispgmain open research problems. All that is known is
domain. Instead of solving a deterministic Vecto g icient (but not necessary) condition [11], [12]
matrix I|n.ear equatpn, we now solvg an Inferenc&ating that GaBP converges when the spectral ra-
pmb'em In a g_raph|cal model descnbmg a certay, satisfies(|Ix — A|) < 1. A stricter sufficient
Gal.JSS'an Q|_str|but|on_ function. _FoIIowmg [©] WEcondition [10], determines that the matrix must
define the joint covariance matrix be diagonally dominanti.e., [a;| > Zj;éi lag], Vi)
ca < -1 F ) (18) in order for GaBP to converge. Convergence speed

FT 0 is discussed in Sectidnl V.
and the shift vectob £ {07, g7}T € RP+m)x1, V. EXTENDING THE CONSTRUCTION TO THE
Given the covariance matrixXC and the shift PRIMAL -DUAL METHOD

vector b, one can write explicitly the Gaussian In the previous section we have shown how to
density functionp(x) , and its corresponding graphcompute one iteration of the Newton method using
G with edge potentials (‘compatibility functions’)GaBP. In this section we extend the technique for



TABLE I
COMPUTINGx = A~ 'b VIA GABP [7].

Stage | Operation
Initialize | ComputeP;; = A; and p; = b; /A
Set P,; = 0 and uy; = 0, Vk # .
2. | lterate | PropagateP,; and pu,;, Yk # i such thatd,; # 0.
Computel;; = Pj; + EkEN(i)\j Py and piy; = Pi(jl(Pz’z'/iii + EkeN(i)\j Priftri)-
ComputeP;; = —AijPi‘leji and yi;; = — P ' Aijpa-
Check | If P,; and;; did not converge, return to #2. Else, continue to #4.
Infer | Pi= P+ yeniy Pri o 1t = P (Puattii + 2 peng) Prabini)-
5. Output | x; =

[l I+

w

B

computing the primal-dual method. This construdhe solution|x(u),y (1), z(p)] of these equations
tion is attractive, since the extended technique hesnstitutes the central path of solutions to the log-

the same computation overhead. arithmic barrier method [6, 11.2.2]. Applying the
The dual problem ( [13]) conforming td_(1a) camNewton method to this system of equations we get
be computed using the Lagrangian 0 AT Ax b— Ax
Lx,y,z)=c'x+y'(b—-Ax) -z"x, z>0, A 0 0 Ay | =| c— ATy —z
Z 0 X Az uwl — Xz
(24)
g(y,z) = inf L(x,y,2), (19a) The solution can be computed explicitly by
subjectto Ax=Db,x> 0. (19b)
_ Ay = (AZ7'XAT)"L
while (AZ"'X(c — pX'1 — ATy) + b — Ax),
0L(x,y,z) T B Ax = XZ ' ATAy +uX "1 =c+ ATy),
ox —c-Ay-z=0 (20) Az= —ATAy+c— ATy —z.
Substituting [(2D) into[(192) we get The main computational overhead in this method
maximize, b’y is the computation oflAZ='XAT)~!, which is

derived from the Newton step inl(5).
Now we would like to use GaBP for computing
Primal optimality is obtained usin@l(8) [13] the solution. We make the following simple change
TA 1 to (24) to make it symmetric: since > 0, we can
y A=c—pX 1. (22) multiply the third row byZ~! and get a modified
Substituting [(2R) in[(21a) we get the connectiogymmetric system
between the primal and dual

subjectto ATy +z=c, z>0.

0 AT I Ax b — Ax
X1 =z A 0 0 Ay | = c— ATy -z
—1 —-119 _
In total, we have a primal-dual system (again w Lo z=X Az p1-X
assume that the solution is strictly feasible, namely o AT T
x >0,z > 0) Defining A 2 [ A 0 0 ,andb £
Ax=b, x>0, I 0 727X
b — Ax
AT = . .
ytz=c z>0, c— ATy —z | . one can use GaBP iterative
XZ = ,ul. ,uz—ll _ X

algorithm shown in TablE]Il.



In general, by looking at[{4) we see that thdominant, we define,; to be the non negative gap
solution of each Newton step involves inverting the e 2 Ayl — T5Au] > 0
Hessian matrixf”(x). The state-of-the-art approach ! " Ji '
in practical implementations of the Newton stepnd the following decomposition
is first computing the Hessian invergé(x)~' by T AL A :
using a (sparse) decomposition method( Ii)ke (sparse) i = Aigs G = Aig T/ IN G,
Cholesky decomposition, and then multiplying thehere [N (i) is the number of graph neighbors of
result by f/(x). In our approach, the GaBP alhodei. Following Weiss, we define to be

gorithm computes directly the resultfx, without ‘gi,‘ )]

computing the full matrix inverse. Furthermore, if 7 = max ‘57“ =T +54J/|N(i)\ =

the GaBP algorithm converges, the computation of 7 1% " ‘

Ax is guaranteed to be accurate. — max 1 <1.  (25)

i 1+ () /(Jag | IN (D))
_ . . In total, we get that for a desired accuracypb||.

In this section we give an upper _bound on thge need to iterate fot — Mog(e)/log(~)] rounds.
Convergence rate Of the GaBP algonthm As far %te that th|s |S an upper bound and in prac“ce
we knOW th|S |S the fII’St theoret|cal I’esu|'[ boundin@e |ndeed have Observed a much faster Convergence
the convergence speed of the GaBP algorithm. ate.

Our upper bound is based on the work of Weiss The computation of the parametecan be easily
et al. [10, Claim 4], which proves the correctnesgone in a distributed manner: Each node locally
of the mean computation. Weiss uses the pairwiggmputess;, andy; = max; 1/(1 + |as;|e:/N ().

V. NEwW CONVERGENCERESULTS

potentials ford, where Finally, one maximum operation is performed glob-
p(x) o< I t(ai, wp) ki (@), ally, 7 = max; 5.
Vij(xi ) = exp(—=1/2(z; ;)" Vi(ay x;)), A Applications to Interior-Point Methods
sy gij We would like to compare the running time of
Vi = ( b ) our proposed method to the Newton interior-point
J )

method, utilizing our new convergence results of
Assuming the optimal solution ig*, for a desired the previous section. As a reference we take the
accuracy||b||. where||b|| = max; |b;|, andbis Karmarkar algorithm [14] which is known to be
the shift vector, we need to run the algorithm for &fn instance of the Newton method [15]. Its running
mostt = [log(e)/log(3)] rounds to get an accuracytime is composed of, rounds, where on each round
of [2* — x;| < ¢||b||«c Wheres = max;; |b;;/¢;;|.  one Newton step is computed. The cost of comput-
The problem with applying Weiss’ result directlying one Newton step on a dense Hessian matrix is
to our model is that we are working with differentD(n%%), so the total running time i©®(n?®).
parameterizations. We use theformation form  Using our approach, the total number of Newton
p(x) o< exp(—1/2x" Ax+b”x). The decomposition iterations,n, remains the same as in the Karmarkar
of the matrix A into pairwise potentials is notalgorithm. However, we exploit the special structure
unique. In order to use Weiss’ result, we propossf the Hessian matrix, which is both symmetric
such a decomposition. Any decomposition frorand sparse. Assuming that the size of the constraint
the canonical form to the pairwise potentials formatrix A is n x p, p < n, each iteration of
should be subject to the following constraints [10]JGaBP for computing a single Newton step takes
- _ O(np), and based on our new convergence analysis
bij = Aijy  2jCij = A for accuracye||b|| We need to iterate for =
We propose to initialize the pairwise potentials ados(€)/log(v)] rounds, wherey is defined in[(25).

following. Assuming the matrixA is diagonally The t(_)tal computational burden for a single Newton
step is O(nplog(e)/log(y)). There are at most

Weiss assumes scalar variables with zero means. rounds, hence in total we gét(n?plog(¢)/log(7)).




x2

12 an iterative algorithm, the Gaussian belief propaga-
tion algorithm. Unlike previous approaches which
1= use discrete belief propagation and gradient descent
methods, we take a different path by using con-
tinuous belief propagation applied to interior-point
methods. By shifting the Hessian matrix inverse
computation required by the Newton method, from
linear algebra domain to the probabilistic domain,
we gain a significant speedup in performance of
the Newton method. We believe there are numerous
applications that can benefit from our new approach.
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