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Abstract—In this paper, we examine the effect of random
puncturing, expurgating, and shortening on the asymptotic
weight enumerator of certain linear code ensembles. We begin
by discussing the actions of the three alteration methods on
individual codes. We derive expressions for the average resulting
code weight enumerator under each alteration. We then extend
these results to the spectral shape of linear code ensembles
whose original spectral shape is known, and demonstrate our
findings on two specific code ensembles: the Shannon ensemble
and the regular (j, k) Gallager ensemble.

I. INTRODUCTION

Methods of altering linear binary codes such as puncturing,

expurgation, and shortening are important tools for generating

good new codes with desired parameters from old codes. A

desire for such codes arises, for instance, in data storage,

where it is beneficial to construct good codes whose length

is a power of 2. Indeed, Sony Corporation currently utilizes

shortened BCH codes for error correction in USB data

storage devices [9].

Because of these applications, puncturing, expurgation, and

shortening are well-studied in the case of finite—typically,

short—codes. However, little work has been done to char-

acterize their properties for codes of asymptotically large

length n. This topic is of interest since modern iterative

decoding methods allow codes of very long length to be used

efficiently.

In this paper, we approach the subject of codes of asymp-

totically large n by studying linear code ensembles.

Definition I.1. An ensemble of linear codes is a sequence
Cn1 , Cn2 , . . . of sets of linear codes with common rate R,
where Cni is a set of (ni, ki) codes with ki/ni = R [1].

Results proved for code ensembles will imply correspond-

ing results on the existence of codes with certain properties.

For a given characteristic we are guaranteed the existence of

at least one code within the ensemble—and in many cases,

almost all codes—whose characteristics meet or exceed the

ensemble average [2].
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For a linear code C ⊆ (Z/2Z)n, consider the weight
enumerator of C—that is, the collection of values {Aj},

0 ≤ j ≤ n, such that Aj is equal to the number of codewords

in C of weight j. For code ensembles, we consider the

ensemble spectral shape r(δ), where 0 ≤ δ ≤ 1 corresponds

to a fraction of n. The ensemble spectral shape describes the

asymptotic behavior of the weight enumerator; the term is

formally introduced in Section IV.

The weight enumerator and the ensemble spectral shape

provide important characterization information for codes in

the finite and asymptotic cases, respectively. In the finite

case, for instance, the weight enumerator of a binary code

dictates the decoder error probability PE of the code within

a bounded-distance decoder model [7]

PE(h) =
1(
n
h

) t∑
s=0

h+s∑
l=h−s

Al

(
n − 1

1
2 (s + h − l)

)(
l

1
2 (s − h + l)

)
.

For binary code ensembles, a tight bound depending only on

the ensemble spectral shape r(δ) has been demonstrated for

the minimum signal-to-noise ratio at which the codes can

reliably transmit information on a Gaussian channel [4],[10](
Eb

N0

)
min

=
1
R

max
0≤θ≤(1−R)

{(
1 − e−2r(θ)

) 1 − θ

2θ

}
.

For any given binary linear code and a fixed value of p ∈
{1, . . . , n}, there exist several choices of p-puncturings, p-

expurgations, and p-shortenings. For instance, there exist
(
n
p

)
different p-puncturings. Each choice yields a different weight

enumerator in general, dependent on specifics of the code.

Instead of attempting to treat all these cases exhaustively, we

instead consider the average weight enumerator over all such

choices.

We will refer to the action of puncturing, expurgating, or

shortening as altering a code. In this paper, we derive an

expression for the expected spectral shape of a randomly

altered linear code ensemble in terms of the original ensemble

spectral shape. In this process, we first calculate the expected

weight enumerator for randomly altered individual codes.

We then utilize our results on code ensembles to study the

effect of the three alteration methods on the spectral shape
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of two specific ensembles: the Shannon ensemble of random

unrestricted linear codes of a common rate, and the regular

(j, k) Gallager ensemble. We show randomly altering the

Shannon ensemble yields another Shannon ensemble of a

particular rate. Randomly altering the regular (j, k) Gallager

ensemble by different amounts yields new ensembles with

continuously adjustable rates and good distance properties.

II. PUNCTURING, EXPURGATING, AND SHORTENING

LINEAR CODES

We begin by introducing and discussing three common

code alterations: puncturing, expurgation, and shortening.

Each has a different effect on the dimension of the code,

k, and the dimension of the ambient space, n. The three

alterations can be defined in terms of their action on either

the generator or parity-check matrix of the code.

A. Puncturing

Puncturing a code is achieved by removing a collection

of p columns from the code generator matrix G. This will

decrease the dimension of the ambient vector space from n
to n− p. We see that removing rows from G will, in effect,

delete a fixed set of bits from each codeword in the code [3].

Formally, puncturing a code does not decrease the dimen-

sion of the code itself, k. That is, removing the relevant

columns from the generator matrix should not decrease the

rank of the matrix. In order for this to be true, limitations

must clearly be imposed on the number of columns removed

from a code. Indeed, puncturing p bits will decrease the

dimension of a code if there exist two codewords that

vary only within these p bits. Since we are considering the

average weight enumerator over all possible p-puncturings,

this situation will occur precisely when the minimum distance

dmin of the code is less than or equal to p.

The inverse of puncturing is extending a linear code, which

is performed by adding columns to G.

B. Expurgation

A code is expurgated by removing p rows of the generator

matrix G—or, equivalently, introducing p additional parity

constraints by adding p rows to the parity-check matrix H .

Since a linear code is formed as the rowspace of its generator

matrix, removing rows from G will yield a linear subspace

of the original k-dimensional code. Indeed, expurgation de-

creases the number of codewords contained in a code while

leaving the remaining codewords unaffected [3].

For any given (n, k) linear code C, there are several

k × n matrices which generate C. The selection of a single

generator matrix representative G corresponds to a choice of

basis for the code. However, removing rows of this matrix

through expurgation can only generate subspaces spanned by

a subset of those particular basis vectors. Unlike the cases

of the other two code alterations, the average expurgated

weight enumerator is not independent of the choice of G. We

demonstrate this with the following constructed example. Let

G =

⎛
⎝ 1 1 1 1 1

1 0 0 0 0
0 1 0 0 0

⎞
⎠ , G′ =

⎛
⎝ 0 1 1 1 1

1 0 0 0 0
0 1 0 0 0

⎞
⎠

be two generator matrices. Note that G and G′ share the same

rowspace, and thus both represent the same code. Removing

row 1 from each matrix yields the same expurgated code,

since the two matrices will now be identical. Removing

row 3 from each matrix yields the same expurgated code

as well, as the rowspaces of the two matrices are still the

same. However, removing row 2 yields two different codes

with different weight enumerators. This implies the average

expurgated weight enumerator would be different for G and

G′, even though they are generator matrices for the same

code.

To avoid this problem, we instead define a p-expurgated

code to be any of the (k − p)-dimensional linear subspaces

of the code. This definition is intrinsically independent of the

choice of basis.

The inverse of expurgation is augmentation, which can be

performed by adding rows to G or removing rows from H .

In terms of the more general definition, a p-augmentation of

a code C is simply a (k + p)-dimensional linear subspace of

(Z/2Z)n containing C.

C. Shortening

Shortening a code by p bits is achieved by removing p
columns from the parity-check matrix H . Shortening de-

creases both the number of codewords in the code and the

length of the words themselves; that is, both k and n are

decreased [3]. We can deduce properties of shortened codes

by demonstrating the shortening action is a composition of

expurgating and puncturing.

Proposition II.1. Shortening a code by removing p columns
{i1, . . . , ip} from H is equivalent to expurgating to the
subcode of vectors with 0 in bit positions {i1, . . . , ip}, and
then puncturing out these p bits.

Proof: Let C be the original code and C ′ be the short-

ened code. We may assume without loss of generality that

{i1, . . . , ip} are the last p columns in the parity-check matrix

H . Denote the new, smaller parity-check matrix by H ′. The

result is then equivalent to the statement that a (n − p)-
vector x′ = (x1, . . . , xn−p) is contained in C ′ if and only if

the corresponding n-vector x = (x1, . . . , xn−p, 0, . . . , 0) is

contained in the original code C.

Let x′ ∈ C ′. This implies h′ ·x′ = 0 for each row h′ of the

matrix H ′. Then, for any values of the additional columns in

H , we must have h · x = 0, where the additional bits of x
are all 0 as above. Thus, x is in the null space of H , and so

is contained within C.

Suppose x ∈ C is of the form (x1, . . . , xn−p, 0, . . . , 0),
xi ∈ {0, 1}. We have that h · x = 0 for all rows h of the

parity-check matrix H . However, from the form of x, this
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TABLE I
SUMMARY OF ALTERATION TYPES AND THEIR EFFECTS ON n, k, G, AND H

n k G H
Puncture n − p k Remove columns
Expurgate n k − p Remove rows Add rows
Shorten n − p k − p Remove rows and columns Remove columns

implies h′ ·x′ = 0, where each h′ is (n−p)-vector composed

of the first (n− p) entries in h. Thus, x′ is in the null space

of H ′, and so is contained in C ′.

Viewed in terms of this composition of expurgation and

puncturing, p-shortenings can be described by removing

p rows and p columns from an appropriate representative

generator matrix G.

We also note that the shortened code Cshort can be cal-

culated by puncturing the dual code and taking the dual,

(C⊥punct)⊥. The dual code C⊥ of the linear code C is defined

by reversing the roles of the generator matrix, G, and the

parity-check matrix, H . The punctured dual code is then

defined by generator matrix H ′ (with the relevant columns

removed) and parity-check matrix G; the dual of this code is

hence defined by generator matrix G and parity-check matrix

H ′.

C
dual−−−−→ C⊥⏐⏐�short

⏐⏐�punct

Cshort dual←−−−− C⊥punct

The inverse of shortening is lengthening a linear code.

Lengthening can be achieved by adding rows and columns

to G or adding columns to H .

III. RESULTS FOR INDIVIDUAL CODES

In this section we investigate the average weight enumer-

ator of a linear code that has been randomly p-punctured,

p-expurgated, or p-shortened.

Theorem III.1. (Puncture)
Let C be a (n, k) linear code with weight enumerator Ai,
and let p ∈ N such that 0 < p < dmin, where dmin is the
minimum distance of C. Then the average weight enumerator
of the punctured code Cpunct, over all possible p-puncturings,
will be

A
punct
i =

n∑
w=0

(
w
i

)(
n−w

n−p−i

)
(
n
p

) Aw(C).

Proof: Consider a word c of weight w in the original

code C. In order to p-puncture c to a word of weight i, one

must remove w − i ones from the vector and p − (w − i)
zeros. There are precisely(

w

w − i

)(
n − w

p − (w − i)

)
=

(
w

w − i

)(
n − w

n − p − i

)

such choices of p bits. Note that this value is zero if i > w or

i < w − p. Since p is less than the minimum distance dmin

of C, no two codewords in C will puncture to the same

codeword. Thus, the total number of weight i codewords in

Cpunct yielded from codewords of original weight w will be(
w

w−i

)(
n−w

n−p−i

)
Aw. Hence, the average weight enumerator of

the punctured codes is

A
punct

i =
n∑

w=0

(
w
i

)(
n−w

n−p−i

)
(
n
p

) Aw(C).

Theorem III.2. (Expurgate)
Let C be a (n, k) linear code with weight enumerator Ai.
Then the average weight enumerator of the p-expurgated
codes is

A
exp
i =

2k−p − 1
2k − 1

Ai, i �= 0.

Proof: The number of m-dimensional subspaces of the

code C is the Gaussian number

[
k
m

]
2

. Note the 2 subscript

is to denote computations are performed over the field Z/2Z

[11].

Expurgating a code results in a decreased number of code-

words, but those codewords which remain are not changed.

Each nonzero codeword c ∈ C is contained in exactly[
k − 1

(k − p) − 1

]
2

(k − p)-dimensional subspaces. Thus, for each i, there will

be an average of([
k − 1

(k − p) − 1

]
2

/ [
k

(k − p)

]
2

)
Ai =

=
(2k−1 − 1) · · · (2p+1 − 1)
(2k−p−1 − 1) · · · (21 − 1)

(2k−p − 1) · · · (21 − 1)
(2k − 1) · · · (2p+1 − 1)

Ai

=
2k−p − 1
2k − 1

Ai

words of weight i contained in the p-expurgated subcode.

We note that the expression for the expurgated weight

enumerator involves multiplication by a constant independent

of the weight i.

Theorem III.3. (Shorten)
Let C be a (n, k) linear code with weight enumerator Ai.
Then the average weight enumerator of the p-shortened codes
is

A
short
i =

(
n−i

p

)
(
n
p

) Ai, i �= 0.
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Proof: In Proposition II.1, we showed that a p-shortened

code is formed by expurgating to the subcode of vectors with

zeros in the relevant p bits, and then puncturing these bits.

The puncturing action will not affect the weight enumerator,

as we are only deleting bits of zero weight. It remains to

calculate, then, the effect of the code expurgation.

A codeword c ∈ C will appear in the expurgated code if

and only if it has a 0 bit in the corresponding p bit positions.

A codeword of weight i will satisfy this requirement for

precisely
(
n−i

p

)
of the

(
n
p

)
possible bit choices. The result

follows.

IV. MODIFYING LINEAR CODE ENSEMBLES

We now extend our results on altered weight enumerators

from individual codes to ensembles of linear codes. We

investigate the asymptotic behavior of the weight enumerator

of the codes when punctured, expurgated, or shortened by a

constant ratio αn of the overall codeword length n.

Definition IV.1. (1) An ensemble of linear codes is a
sequence Cn1 , Cn2 , . . . of sets of linear codes with common
rate R, where Cni

is a set of (ni, ki) codes with ki/ni = R.
(2) A0(C), . . . , Ani

(C) is the weight enumerator for the
code C ∈ Cni

(3) A
(n)

0 , . . . , A
(n)

n is the average weight enumerator for Cn,

A
(n)

h :=
1

|Cn|
∑

C∈Cn

Ah(C), for h = 0, 1, . . . , n [1].

In code ensembles, the value of n tends to infinity in the

sequence. As it does so, the terms of the weight enumerator

will approach infinity as well. We are interested in studying

how quickly the weight enumerator grows. We do so by

considering the ensemble spectral shape, which we now

define.

Definition IV.2. (1) For a code ensemble with weight enu-
merator Aj , n ∈ N, we define for δ ∈ [0, 1],

rn(δ) :=
1
n

log A
(n)

�δn�.

(2) The ensemble spectral shape of a linear code ensemble
is defined for δ ∈ [0, 1] to be the limit

r(δ) := lim
n→∞ rn(δ).†

We now characterize the expected ensemble spectral shape

of a randomly altered code ensemble in terms of the spectral

shape of the original ensemble.

Theorem IV.3. (Punctured Code Ensemble) Let r(δ) be
the spectral shape of a linear code ensemble with positive
fractional minimum distance δ0. Then randomly puncturing
the ensemble by p = αn, 0 < α < δ0, yields an ensemble
with expected spectral shape

†Technically, there may exist situations where this limit does not exist.
In these situations, one can formally discuss the spectral shape in terms of
lim sup, and everything will follow through in a similar fashion.

rpunct(δ) =
1
c

[
max

0≤λ≤1

{
λH

(
cδ

λ

)

+ (1 − λ)H
(

α + cδ − λ

1 − λ

)
+ r(λ)

}
− H(α)

]

where

H(x) := −x log x − (1 − x) log(1 − x)

is the entropy function and c = (1 − α).

Sketch of Proof. In Theorem III.1 we showed puncturing a

single code C by p = αn yields

A
punct

i =
n∑

w=0

(
w
i

)(
n−w

αn−(w−i)

)
(

n
αn

) Aw(C).

For each n, we define the function

r̃n(δ) =

1
n

log

(
1

|Cn|
∑

C∈Cn

(
n∑

w=0

(
w

�δn�
)(

n−w
αn−(w−�δn�)

)
(

n
αn

) Aw(C)

))
.

Taking the limit of this function as n tends to infinity

yields the ensemble spectral shape, r̃(δ). The only term in

the expression of r̃(δ) that depends on the index C ∈ Cn is

the weight enumerator term Aw(C). We may thus pull the

exterior sum inside, to yield

r̃(δ) = lim
n→∞

1
n

log
( n∑

w=0

(
w

�δn�
)(

n−w
αn−(w−�δn�)

)
(

n
αn

)
(

1
|Cn|

∑
C∈Cn

Aw(C)
))

= lim
n→∞

1
n

log

(
n∑

w=0

(
w

�δn�
)(

n−w
αn−(w−�δn�)

)
(

n
αn

) A
(|Cn|)
w

)
.

Express w as a fraction λn of n, where 0 ≤ λ ≤ 1.

Utilizing Stirling’s Approximation gives
(

a
ca

) → eaH(c) for

each binomial coefficient. Thus, in the limit we have

r̃(δ) =

lim
n→∞

1
n

log

(
n∑

λn=0

eλnH(δ/λ)en(1−λ)H(α+δ−λ
1−λ )

enH(α)
A

(|Cn|)
λn

)
.

Now, the number of terms in the above sum will increase lin-

early in n, while the size of each term will grow exponentially

in n. In the limit, the total value of the sum will go as the

value of its maximal term. Since the logarithm function and

multiplication by 1
n are monotonically increasing functions,

they can be brought inside the maximization expression,
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yielding

r̃(δ) = lim
n→∞ max

0≤λ≤1

{
λH

(
δ

λ

)
+ (1 − λ)H

(
α + δ − λ

1 − λ

)

− H(α) +
1
n

log
(

A
(|Cn|)
λn

)}

= max
0≤λ≤1

{
λH

(
δ

λ

)
+ (1 − λ)H

(
α + δ − λ

1 − λ

)
+ r(λ)

}
− H(α).

Now, this expression is still in terms of the original value

of the codeword length, n. However, we wish to express the

asymptotic weight enumerator in terms of the post-punctured

codeword length, n(1−α). To achieve this, we must introduce

a factor of (1 − α) to each δ term and scale the overall

expression by 1
1−α . Hence, we have our result,

rpunct(δ) =
1

1 − α

[
max

0≤λ≤1

{
λH

(
(1 − α)δ

λ

)

+ (1 − λ)H
(

α + (1 − α)δ − λ

1 − λ

)
+ r(λ)

}
− H(α)

]
.

Theorem IV.4. (Expurgated Code Ensemble) Let r(δ) be the
spectral shape of a linear code ensemble with rate R. Then
randomly expurgating the ensemble by αn, 0 < α < R,
yields an ensemble with expected spectral shape

rexp(δ) = −α log 2 + r(δ).

Proof: By Theorem III.2, expurgating an individual code

C by p = αn results in the average weight enumerator

A
exp

i =
2k−αn − 1

2k − 1
Ai, i �= 0.

Thus, we have

rexp(δ) = lim
n→∞

1
n

log

(
1

|Cn|
∑

C∈Cn

2Rn−αn − 1
2Rn − 1

A�δn�(C)

)

= lim
n→∞

1
n

log
(

2Rn−αn − 1
2Rn − 1

)

+ lim
n→∞

1
n

log
1

|Cn|
∑

C∈Cn

A�δn�(C)

= − α log 2 + r(δ).

Theorem IV.5. (Shortened Code Ensemble) Let r(δ) be
the spectral shape of a linear code ensemble with positive
fractional minimum distance δ0. Then randomly shortening
the ensemble by αn, 0 < α < δ0, yields an ensemble with
expected spectral shape

rshort(δ) =
1
c

[
(1 − cδ) H

(
α

1 − cδ

)
− H(α) + r(cδ)

]
,

where c = (1 − α).

0.2 0.4 0.6 0.8 1.0
Δ

�0.3

�0.2

�0.1

0.1

0.2

0.3

r�Δ�

Fig. 1. Ensemble spectral shape for the rate 1
2

Shannon ensemble.

Proof: By Theorem II.1, shortening an individual code

C by p = αn yields the average weight enumerator

A
short

i =

(
n−i
αn

)(
n

αn

) Ai, i �= 0.

This implies an ensemble spectral shape of

r̃(δ) = lim
n→∞

1
n

log

(
1

|Cn|
∑

C∈Cn

(
n−�δn�

αn

)(
n

αn

) A�δn�(C)

)
.

Stirling’s Approximation gives that
(

a
ca

) → eaH(c) as n tends

to infinity. Utilizing this approximation gives

r̃(δ) = lim
n→∞

1
n

log

(
en(1−δ)H( α

1−δ )

enH(α)

1
|Cn|

∑
C∈Cn

A�δn�(C)

)

= lim
n→∞

[
(1 − δ)H

(
α

1 − δ

)

− H(α) +
1
n

log A�δn�(C)
]

=(1 − δ)H
(

α

1 − δ

)
− H(α) + r(δ).

We again have an expression in terms of the original code-

word length n instead of the desired post-punctured codeword

length, n(1 − α). To make this change, we must again

introduce a factor of (1− α) to each δ and scale the overall

expression by 1
1−α , yielding

rshort(δ) =
1

1 − α

[(
1 − (1 − α)δ

)
H

(
α

1 − (1 − α)δ

)

− H(α) + r
(
(1 − α)δ

)]
.

V. RESULTS ON SPECIFIC CODE ENSEMBLES

We now apply our results from the previous section to

two common code ensembles: the Shannon ensemble and

the regular (j, k) Gallager ensemble.
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(a)

0.2 0.4 0.6 0.8 1.0

�0.2

�0.1

0.1

0.2

0.3

0.4

(b)

0.2 0.4 0.6 0.8 1.0

�0.3

�0.2

�0.1

0.1

0.2

0.3

Fig. 2. Ensemble spectral shape for the rate 1
2

Shannon ensemble (red,
thick) in addition to the spectral shapes for (a) the punctured ensembles
with α = 0.04, 0.08, 0.12, and (b) the shortened ensembles with α =
0.04, 0.08, 0.12.

A. Shannon Ensemble

The rate R Shannon ensemble is composed of the random

linear codes of rate R. The Shannon ensemble is character-

ized by the average weight enumerator

A
(n)

h =
(

n

h

)
2−n(1−R).

This yields an ensemble spectral shape of

rS(δ) = H(δ) − (1 − R) log 2 [1].

The spectral shape for the rate 1
2 Shannon ensemble is shown

in Figure 1.

Corollary V.1. (1) Puncturing the rate R Shannon ensemble
by p = αn yields an ensemble with expected spectral shape
equal to that of the Shannon ensemble of rate R′ = R

1−α .
(2) Expurgating the rate R Shannon ensemble by p = αn

yields an ensemble with expected spectral shape equal to that
of the Shannon ensemble of rate R′′ = R − α.

(3) Shortening the rate R Shannon ensemble by p = αn
yields an ensemble with expected spectral shape equal to that
of the Shannon ensemble of rate R′′′ = R−α

1−α .

Proof: (1) From Theorem IV.3, we know that puncturing

a linear code ensemble by αn takes the ensemble spectral

shape from rS(δ) to

rpunct
S (δ) =

1
c

[
max

0≤λ≤1

{
λH

(
cδ

λ

)

+ (1 − λ)H
(

α + cδ − λ

1 − λ

)
+ rS(λ)

}
− H(α)

]
,

where c = (1 − α). For the Shannon ensemble of rate R,

we have rS(δ) = H(δ) − (1 − R) log 2. In this case, the

expression to be maximized is a smooth function of λ and

can thus be maximized using calculus. Indeed, the partial

derivative with respect to λ is equal to 0 when λ = δ +α/2.

A quick investigation of the function behavior around the

critical point and at the endpoints λ = 0, 1 shows this solution

to be the global maximum. Plugging in λ = δ + α/2 yields

rpunct
S (δ) =

1
c
[−cδ log(cδ) − (1 − α − cδ) log(1 − α − δ)

+ (1 − α) log(1 − α) − (1 − (R + α)) log(2)]

=H(δ) −
(

1 − R

1 − α

)
log(2),

which is equivalent to the spectral shape of the Shannon

ensemble of rate R
1−α .

(2) By Theorem IV.4, expurgating the Shannon ensemble

by αn will result in the ensemble spectral shape

rexp
S (δ) = rS(δ) − α log 2

= H(δ) − (1 − R) log 2 − α log 2
= H(δ) − (1 − (R − α)) log 2.

This is precisely the spectral shape of the Shannon ensemble

of rate R − α.

(3) Theorem IV.5 gives that the αn-shortened Shannon

ensemble will have an ensemble spectral shape of

rshort(δ) =
1
c

[
(1 − cδ) H

(
α

1 − cδ

)
− H(α)

+H(cδ) − (1 − R) log 2
]
,

where c = (1 − α). After substituting H(x) = −x log x −
(1 − x) log(1 − x), algebraic manipulation yields

rshort(δ) =
1

1 − α

[
− (1 − α)(1 − δ) log(1 − δ)

− (1 − α)δ log δ − (1 − R) log 2
]

= −(1 − δ) log(1 − δ) − δ log δ − 1 − R

1 − α
log 2

= H(δ) −
(

1 − R − α

1 − α

)
log 2

These results are as expected, and serve as a check for our

calculations. For a given rate R, the Shannon ensemble shares

its spectral shape with the ensemble of codes of Rni × ni

binary generator matrices whose entries are chosen randomly
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Fig. 3. Ensemble spectral shape for the regular (8, 16) Gallager ensemble.

and independently with equal probability. In this case, we see

clearly that deleting αni columns from the generator matrices

by puncturing will simply leave generator matrices of size

Rni × (1 − α)ni with random entries. That is, we are left

with an identical ensemble of codes with rate

R′ =
Rni

(1 − α)ni
=

R

1 − α
,

which thus possesses an ensemble spectral shape as described

above. Similarly, deleting αni rows from the generator matrix

by expurgating will yield an identical ensemble of codes with

rate

R′′ =
Rni − αni

ni
= R − α,

and deleting αni rows and columns from G by shortening

will yield an identical ensemble with rate

R′′′ =
Rni − αni

ni − αni
=

R − α

1 − α
.

Figure 2(a) depicts the spectral shape of the rate 1
2 Shannon

ensemble along with the spectral shapes for three resulting

punctured ensembles, with α = 0.04, 0.08, and 0.12. From

Corollary V.1, it follows that these correspond to the Shannon

ensembles of rate 0.521, 0.543, and 0.568. The ensembles

with higher rates correspond to the higher spectral shapes in

the plot. Figure 2(b) shows the spectral shape of the rate
1
2 Shannon ensemble against the corresponding shortened

ensembles with α = 0.04, 0.08, and 0.12. It can similarly

be shown that these ensembles exhibit the spectral shape of

Shannon ensembles of rate 0.479, 0.457, and 0.432.

B. Regular (j, k) Gallager Ensemble

The regular (j, k) Gallager ensemble is composed of codes

whose parity check matrices have exactly j ones in each

column and k ones in each row. The spectral shape of

the regular (j, k) Gallager code ensemble can be expressed

parametrically as

δj,k(s) =
1
k

∂μ

∂s
(s, k)

rj,k(s) =
j

k

(
μ(s, k) − s

∂μ

∂s
(s, k) + (k − 1) log 2

)

− (j − 1)H
(

1
k

∂μ

∂s
(s, k)

)
,

0.2 0.4 0.6 0.8 1.0

�0.1

0.1
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0.3

0.4

Fig. 4. Ensemble spectral shape for the regular (8, 16) Gallager ensemble
(red, thick) in addition to the spectral shapes for the punctured ensembles
with α = 0.04, 0.08, 0.12.
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Fig. 5. Ensemble spectral shape for the regular (8, 16) Gallager ensemble
(red, thick) along with the spectral shapes for the shortened ensembles with
α = 0.04, 0.08, 0.12.

where s ranges over all R and μ(s, k) is given by

μ(s, k) := log
(1 + es)k + (1 − es)k

2k
. [1]

The spectral shape of the regular (8, 16) Gallager ensemble

is exhibited in Figure 3.

Note that the regular Gallager ensemble is a generalization

of the classical Gallager ensemble of Low-Density Parity

Check (LDPC) codes, introduced by Robert Gallager in 1963

[5]. It has been demonstrated that both ensembles share

the same spectral shape [6]. These ensembles are also very

closely related to the ensemble of LDPC codes treated by

David MacKay in [8].

By calculating an explicit expression for rj,k(δ) and uti-

lizing the results from the previous section, we were able

to generate a parametric expression for the spectral shape of

the punctured regular Gallager ensemble. Figure 4 depicts

the spectral shape of the regular (8, 16) Gallager ensemble

against those of three of its punctured ensembles, with punc-

turing parameters α = 0.04, 0.08, and 0.12. The ensembles

with greater puncturing parameters have spectral shapes with

a higher maximum value and a smaller minimum intercept.

In a similar fashion, we can use Theorem IV.5 to produce

an expression for the spectral shape of the regular (j, k)
ensemble shortened by αn. An example of the shortened

(8, 16) ensemble is shown in Figure 5. Note that shortening

the ensemble in this case yields a spectral shape that is
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Fig. 6. The spectral shape for the punctured regular (8, 16) Gallager
ensemble with α = 0.22. The calculated parametric expression exhibits
erroneous loops for large values of α.

asymmetric; this is logical, as the parity-check matrices of

the modified ensemble codes will now contain rows of odd

weight.

When the puncturing parameter α for the regular (8, 16)
Gallager ensemble is set to be greater than the approximate

ensemble fractional minimum distance δ ≈ 0.105, the derived

parametric relation breaks down. For large values of α,

the expression for the independent variable δ is no longer

monotonically increasing, and hook-like loops occur in the

parametric plot. Such loops are depicted in Figure 6. A sim-

ilar issue appears when the regular (3, 6) Gallager ensemble

is punctured by α ≥ 0.365. It is interesting to note that the

problem does not occur in this case for values of α between

0.365 and the approximate ensemble fractional minimum

distance δ ≈ 0.025. Further investigation will be required

to assess the mathematical cause for these phenomena.

VI. CONCLUSION

We have successfully expressed the expected spectral

shape of a randomly altered linear code ensemble in terms of

the spectral shape of the original ensemble. In this process,

we derived the average weight enumerator of randomly

altered individual codes. We used our results to characterize

altered Shannon ensembles and to calculate the spectral

shape of altered regular (j, k) Gallager ensembles. Interesting

problems for future work include applying the general re-

sults to additional ensembles, investigating the limitations of

alterations and determining the cause for the observed break-

downs, and analyzing the connection between the calculated

ensemble spectral shapes and the “goodness” of the codes.
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