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Abstract— The feasibility of physical-layer-based security ap-
proaches for wireless communications in the presence of one
or more eavesdroppers is hampered by channel conditions.
In this paper, cooperation is investigated as an approach to
overcome this problem and improve the performance of secure
communications. In particular, a decode-and-forward (DF)based
cooperative protocol is considered, and the objective is todesign
the system for secrecy capacity maximization or transmit power
minimization. System design for the DF-based cooperative proto-
col is first studied by assuming the availability of global channel
state information (CSI). For the case of one eavesdropper, an
iterative scheme is proposed to obtain the optimal solutionfor the
problem of transmit power minimization. For the case of multiple
eavesdroppers, the problem of secrecy capacity maximization or
transmit power minimization is in general intractable. Subopti-
mal system design is proposed by adding an additional constraint,
i.e., the complete nulling of signals at all eavesdroppers,which
yields simple closed-form solutions for the aforementioned two
problems. Then, the impact of imperfect CSI of eavesdroppers
on system design is studied, in which the ergodic secrecy capacity
is of interest.

I. I NTRODUCTION

Due to the broadcast nature of wireless channels, the issues
of privacy and security in wireless networks have taken on an
increasingly important role, especially in military and home-
land security applications. Physical (PHY) layer based security
using an information-theoretic point of view is attracting
much attention in this context. The basic idea of PHY-based
security is to exploit the physical characteristics of the wireless
channel. In the real world, signals transmitted over physical
channels experience impairments such as channel fading and
additive noise. While channel fading and thermal noise have
traditionally been viewed as impediments, PHY layer security
approaches can exploit these channel characteristics in order
to enhance the security of digital communication systems.
This line of work was pioneered by Wyner, who introduced
the wiretap channel and established the possibility of creating
almost perfectly secure communication links without relying
on private (secret) keys [1]. Wyner showed that when the
eavesdropper channel is a degraded version of the main
channel, the source and destination can exchange perfectly
secure messages at a non-zero rate, while the eavesdropper
can learn almost nothing about the messages from its ob-
servations. The maximal rate of secrecy information from
the source to its intended destination is defined by the term
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secrecy capacity. Follow-up work by Leung-Yan-Cheong and
Hellman characterized the secrecy capacity of scalar Gaussian
wire-tap channel [2]. In a further paper, Csiszár and Körner
generalized Wyner’s approach by considering the transmission
of confidential messages over broadcast channels [3]. Recently,
there have been considerable efforts devoted to generalizing
these studies to the wireless channel and multi-user scenarios
(see [4]-[6] and references therein).

The feasibility of traditional PHY-based security approaches
based on single antenna systems is hampered by channel
conditions: if the channel between source and destination is
worse than the channel between source and eavesdropper, the
secrecy capacity is typical zero [1],[2]. Some recent work
has been proposed to overcome this limitation by taking
advantage of multiple antenna systems, e.g., multiple-input
multiple-output (MIMO) [7],[8], single-input multiple-output
(SIMO) [9] and multiple-input single-output (MISO) [10],[11].
However, due to cost and size limitations, multiple antennas
may not be available at network nodes. Under such scenarios,
node cooperation is an effective way to enable single-antenna
nodes to enjoy the benefits of multiple-antenna systems [12].

In this paper, we consider a situation in which each network
node is equipped with only a single omni-directional antenna
and there are one or more eavesdroppers in the network.
Secure communication is achieved via node cooperation in a
decode-and-forward (DF) fashion. We assume that source and
relays are located in the same cluster, while destination and
eavesdropper(s) are at faraway locations outside this cluster.
We propose a two-stage cooperative protocol. In Stage 1, the
source node broadcasts its message locally to other nodes
within the cluster. These local transmissions typically require
a small amount of power only, and the information rate at
faraway eavesdropper(s) can be ignored. Thus, transmissions
in Stage 1 can be considered to be secure. In Stage 2, relay
nodes decode the received messages. Then, the source node
and relay nodes cooperatively transmit a weighted version of
the message signal to the destination.

Our focus is on secret communications in Stage 2. We
are interested in two optimization problems: (1) design node
weights to maximize the secrecy capacity for a fixed transmit
power; and (2) design node weights to minimize the transmit
power for a fixed secrecy capacity. We assume that the
global channel state information (CSI) is available for weight
design. Cooperation is here used in place of multiple transmit
antennas in MISO systems. Since there is a step involved
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before transmission, during which the information is made
available to the relays, the corresponding secrecy capacity
is half of that corresponding to a MISO system. We should
also point out that existing results for system design for a
centralized MISO system can be also applied in system design
for DF-based cooperative protocols. For example, in the case
of one eavesdropper, the closed-form expression for weights
that maximize the secrecy capacity subject to a transmit power
constraint has been studied in [10], [11]. Beyond existing
results in [10],[11], we here propose the following new results
for the DF-based cooperative protocol: (1) For the case of
one eavesdropper, we study system design to minimize the
transmit power for a fixed secrecy capacity. We propose an
iterative algorithm to reach the optimal solution, by usingthe
solution for the problem of maximizing the secrecy capacity
for a fixed transmit power. (2) Prior work considered the
presence of one eavesdropper only. For the case of multiple
eavesdroppers, the aforementioned optimization problemsare
in general intractable. We obtain a suboptimal (in terms of
secrecy capacity or transmit power) but simple closed-form
solution, by introducing an additional constraint, i.e., complete
nulling of signals at all eavesdroppers. (3) Prior work assumed
either complete knowledge of the eavesdroppers’ channels,
or only the channel statistics. In this paper, we investigate
the weight design for the more practical case in which only
imperfect estimates of eavesdroppers’ channels are available.

This paper is organized as follows. In Section II, the system
model and the DF-based cooperative protocol is described.
In Section III, single and multiple eavesdroppers cases are
investigated for the secrecy capacity maximization problem
and the power minimization problem. The case of imperfect
CSI of eavesdroppers is also studied. Simulations are described
in Section IV, and conclusions are drawn in Section V.

We adopt the following notation. Bold uppercase letters
denote matrices and bold lowercase letters denote column
vectors. Transpose and conjugate transpose are represented
by (·)T and (·)† respectively;IM is the identity matrix of
size M × M ; diag{a} denotes a diagonal matrix with the
elements of vectora along its diagonal;0M×N denotes an
all-zero matrix of sizeM ×N ; CN (µ, σ2) denotes circularly
symmetric, complex Gaussian distribution with meanµ and
varianceσ2; E{·} denotes expectation.

II. SYSTEM MODEL AND COOPERATIVE PROTOCOL

A. System Model

We consider a wireless network model consisting of one
source node (node index: 0),N − 1 (N > 1) trusted relay
nodes (node index1, 2, . . . , N − 1), a destination node, andJ
(J ≥ 1) eavesdroppers. We assume that the source and relays
are located within the same cluster, while the destination and
eavesdropper(s) are at faraway locations from this cluster. Each
node is equipped with a single omni-directional antenna and
operates in half-duplex mode.

A narrowband message signals0 is to be transmitted from
the source to the destination. The power of the message signal
s0 is normalized to one, i.e,E{|s0|2} = 1. All channels are
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Fig. 1. System model in the presence of eavesdroppers.

flat fading. Lethi denote the baseband complex channel gain
between theith cluster node and the destination, andgi,j
denote the channel gain between theith cluster node and the
jth eavesdropper. Thermal noise at all nodes is assumed to
be zero-mean white complex Gaussian, i.e.,CN (0, σ2). The
configuration is illustrated in Fig. 1.

We assume that the global CSI is available for system
design (the same assumption as in most of PHY-based security
literature). In practice, destination-related CSI can be obtained
by periodic pilots, and eavesdroppers-related CSI and the
number of eavesdroppers may be obtained by monitoring the
behavior of eavesdroppers. A cluster head (CH) then collects
the global CSI, executes the weight computation algorithm
and sends the weights back to cluster nodes for cooperative
transmissions.

A DF-based cooperative protocol will be used. The number
of relays with successful decoding is assumed to be known
a priori (rather than being a random variable). To implement
this in practice, each relay with successful decoding can send
a non-interfering notification message to the CH.

B. Cooperative Protocol

In this subsection, we describe the DF-based cooperative
transmission protocol based on our system model.

Stage 1: The source broadcasts its message signals0 locally
to its trusted relays within the cluster. The transmit poweris
chosen so that the signals0 can be decoded at the relays with
high probability. In this paper, for simplicity we assume that
the transmit power in Stage 1 is known a priori.

This stage usually requires a small amount of power only,
and the information rate at the faraway eavesdropper(s) can
be ignored. Thus, transmissions in Stage 1 can be considered
to be secure.

Stage 2:
All the trusted relays that successfully decode the message

s0, together with the source, cooperatively transmit signals0



to the destination. For convenience, we assume that all the
N − 1 relays successfully decode the message signal1. Then,
totally N nodes (N − 1 relays plus one source), indexed by
i = 0, . . . , N − 1, participate in cooperative transmissions in
Stage 2. Specifically, theith node transmits a weighted signal
of s0, i.e.,wis0, i = 0, . . . , N − 1, wherewi is the weight of
the ith node.

Let us define theN × 1 vectorsw = [w0, . . . , wN−1]
H ,

h = [h0, . . . , hN−1]
H andgj = [g0,j, . . . , gN−1,j]

H , and the
N ×N matricesRh = hhH andRj

g = gjg
H
j .

At the destination, the received signalyd equals

yd = wHhs0 + nd , (1)

where nd represents white complex Gaussian noise at the
destination. Then, the capacity at the destination is

Cd =
1

2
log2

(
1 +

wHRhw

σ2

)
(2)

where the scalar factor1/2 is due to the fact that two time
units are required in the two-stage cooperative protocol.

At the jth eavesdropper, the received signalyje equals

yje = wHgjs0 + nj
e , (3)

wherenj
e represents white complex Gaussian noise at thejth

eavesdropper. The capacity at thejth eavesdropper is then

Cj
e =

1

2
log2

(
1 +

wHRj
gw

σ2

)
. (4)

Our objective is to design the node weights to maximize
secrecy capacity for a fixed transmit power, or minimize
transmit power for a fixed secrecy capacity. The secrecy
capacity forJ eavesdroppers is defined as [5]:

Cs = max{0, Cd −max(C1
e , . . . , C

J
e )} . (5)

III. SYSTEM DESIGN FORSECURE WIRELESS

COMMUNICATIONS

In this section, we discuss the weight design for the DF-
based cooperative protocol to achieve secure wireless com-
munications, for the cases of one eavesdropper and multiple
eavesdroppers, respectively.

A. One Eavesdropper

We first discuss the simple scenario of one eavesdropper.
For notational convenience, the index of the eavesdropper is
dropped. As long ash 6= g, we can always find a set of weights
so that the secrecy capacity is non-zero. For example, one can
completely null out the received signal at the eavesdropper.
Thus, from (2) and (4), Eq. (5) can be written as

Cs = Cd − Ce =
1

2
log2

(
σ2 +wHRhw

σ2 +wHRgw

)
. (6)

1the case in whichM < N − 1 relays successfully decode the message is
equivalent to the case in which the total number of relays isM .

1) Maximizing Secrecy Capacity for Fixed Transmit Power:
The problem of maximizing the secrecy capacityCs for a fixed
transmit powerwHw = P0 can be formulated as

argmax
w

σ2+w
H
Rhw

σ2+wHRgw
(7)

s.t. wHw = P0 .

The solution of this Rayleigh quotient problem, reported in
[10],[11], is the scaled eigenvector corresponding to the largest
eigenvalue of the symmetric matrix̃R−1

g R̃h, where

R̃h ,
σ2

P0
IN +Rh (8)

and

R̃g ,
σ2

P0
IN +Rg . (9)

Also, the equality power constraint in (7) is equivalent to the
inequality power constraintwHw ≤ P0 [10],[11]. As we will
show in the next subsection, the solution of the problem in (7)
can help solve another optimization problem of minimizing
transmit power under a fixed secrecy capacity.

2) Minimizing Transmit Power for Fixed Secrecy Capacity:
The problem of minimizing the transmit powerwHw for a
fixed secrecy capacityC0

s > 0 can be formulated as

argmin
w

wHw (10)

s.t. σ2+w
H
Rhw

σ2+wHRgw
= 4C

0
s .

However, the conventional method of Lagrange multipliers
does not work for (10), as it yields a zero solution ofw.
To solve (10), we first propose the following.

Proposition 1: The solutions of the following two optimiza-
tion problems are identical:

(i) Find the weights that maximizeCs for a fixed transmit
powerP0.

(ii) Find the weights that minimize the transmit power for
a fixedCmax

s , whereCmax
s is the maximalCs of problem (i).

Proof: We prove Proposition 1 by contradiction. We
assume thatw(1) is the optimal solution that yieldsC(1)

s =
Cmax

s for fixed transmit powerP0, while a different weight
vectorw(2) 6= w(1) minimizes the transmit power for fixed
C

(2)
s = Cmax

s . Thus, the transmit power(w(2))Hw(2) must
be smaller than(w(1))Hw(1) = P0. We can always find a
scalarρ > 1 such that the weight vectorρ ·w(2) also achieves
ρ2(w(2))Hw(2) = P0.

Now, we prove thatCs based on the weight vectorρ ·w(2)

is greater thanCmax
s . Let us define the function

F (z) =
σ2 + z2(w(2))HRhw

(2)

σ2 + z2(w(2))HRgw(2)
. (11)

We can equivalently proveF (ρ) > F (1) for ρ > 1. Taking
the derivative ofF (z) with respect toz, we obtain

dF (z)

dz
∝ (w(2))HRhw

(2) − (w(2))HRgw
(2). (12)



As Cs > 0, dF (z)
dz

> 0. Thus, F (z) is a monotonically
increasing function ofz and it follows thatF (ρ) > F (1) for
ρ > 1. Hence, we have proved thatCs based on the weight
vector ρ · w(2) is greater thanCmax

s . In other words,Cmax
s

is not the maximal value ofCs for transmit powerP0, which
contradicts our assumption. Therefore,w(1) must be equal to
w(2), and thus Proposition 1 is proved.

Based on Proposition 1, we now propose the following
iterative algorithm for finding the optimal solution of (10).

• Initialization:
S0) Set an initial value for the weightsρ(0)w(0), where
ρ(0) is a scalar such thatCs for w(0) equalsC0

s . Note that
w(0) can be arbitrarily chosen but its corresponding se-
crecy capacity must be greater than zero. Then, compute
the transmit powerP (0) = (ρ(0))2(w(0))Hw(0).

• Iteration:
S1) In thekth iteration, compute the weight vectorw(k)

that maximizes the secrecy capacity for fixed transmit
powerP (k−1), based on the method discussed in Section
III-A.1.
S2) Compute the scalarρ(k), such thatCs underρ(k)w(k)

equalsC0
s . Calculate the updated transmit powerP (k) =

(ρ(k))2(w(k))Hw(k).
S3) Iterate untilP (k−1) − P (k) is smaller than a pre-
defined threshold.

The objective function of (10) is convex and the updated
power with each iteration is nonincreasing. Thus, the above
algorithm eventually converges to the global minimum. In our
simulations, the iteration always converged very rapidly.

B. Multiple Eavesdroppers

In this subsection we discuss the scenario ofJ > 1
eavesdroppers. From (5), the secrecy capacity for multiple
eavesdroppers is related to the capacity at all eavesdroppers.
Determining the weights that maximize secrecy capacity for
fixed power, or minimize power for fixed secrecy capacity
is in general intractable. In the following, we consider an
additional constraint, i.e., completely nulling out signals at all
eavesdroppers. The resulting secrecy capacity (transmit power)
represents a lower (upper) bound of the optimal one.

1) Minimizing Transmit Power for Fixed Secrecy Capacity:
Let us define theN ×J matrix G = [g1, . . . ,gJ ]. To null the
signals at all eavesdroppers, we need

wHG = 01×J . (13)

To satisfy the fixed secrecy capacityC0
s , we also need

C0
s = Cd =

1

2
log2

(
1 +

wHRhw

σ2

)
. (14)

Eq. (14) can also be written as

wHh =

√
(4C

0
s − 1)σ2 · ejθ (15)

whereθ is an arbitrary angle within[0, 2π).

Defining the(J+1)×N matrix G̃ = [h,G]H and the(J+
1) × 1 vectore = [1,01×J ]

T , we can rewrite the constraints
in (13) and (15) as

G̃w = (
√
(4C

0
s − 1)σ2 · ejθ)e . (16)

To guarantee a non-zero solution forw, we needN ≥ J +1,
which usually can be easily satisfied.

The optimal solutionwopt that minimizes the transmit
power corresponds to the least-squares solution of (16) pro-
duced by the pseudo-inverse ofG̃ [13],[14], i.e.,

wopt = (
√
(4C

0
s − 1)σ2ejθ)G̃H(G̃G̃H)−1e . (17)

From (17), the transmit power(wopt)Hwopt is independent
of the selection ofθ. For convenience we can takeθ = 0.

2) Maximizing Secrecy Capacity for Fixed Transmit Power:
The optimization problem can be formulated as

argmax
w

wHRhw (18)

s.t. wHw = P0 andwHG = 01×J .

The conventional method of Lagrange multipliers does not
yield an insightful closed-form solution of (18). To solve (18),
we propose the following.

Proposition 2: The solutions of the following two optimiza-
tion problems are identical:

(i) Find the weights that maximizeCs for fixed transmit
power P0, and also meets the constraint that signals at all
eavesdroppers are completely nulled. Let us denote the maxi-
mal Cs by Cmax

s .
(ii) Find the weights that minimize the transmit power for

a fixedCmax
s and also meets the constraint that signals at all

eavesdroppers are completely nulled.
Proof: We follow arguments similar to those used in

the proof of Proposition 1. We assume that weight vector
w(1) achievesCmax

s for the fixed transmit powerP0, while a
different weight vectorw(2) 6= w(1) achieves minimal transmit
power for fixedCmax

s . Thus, it holds that(w(2))Hw(2) < P0.
We can always find a scalarρ > 1 such that under the
weightsρ ·w(2) the transmit power isρ2(w(2)

ℓ )Hw
(2)
ℓ = P0.

However, the weight vectorρ·w(2) achieves a secrecy capacity
greater thanCmax

s . In other words,w(1) does not achieve the
maximum ofCs for fixed powerP0, which contradicts our
assumption. Therefore,w(1) must be equal tow(2).

From Proposition 2, the optimization problem of (18) is
equivalent to finding the weights that minimize the transmit
power for fixed Cmax

s . From (17), the transmit power is
proportional to4C

0
s − 1. Thus, the solution of (18) is

wopt = βG̃H(G̃G̃H)−1e (19)

whereβ is a scalar and equals

β =

√
P0

eH(G̃G̃H)−1e
. (20)

Substituting (19) into the objective function of (18), one
can see that the secrecy capacity is a monotonically increasing



function of the power budgetP0. Thus, the equality power con-
straint in (18) is equivalent to the inequality power constraint
wHw ≤ P0.

C. Impact on Imperfect CSI of Eavesdroppers

The channels between cluster nodes and the destination can
be estimated accurately, since they are trusted nodes. However,
in practice there will be some certain estimation errors forthe
channels between cluster nodes and the eavesdroppers. In this
subsection, we discuss weight design for such cases.

We model the perfect channels of thejth eavesdropper as
gj = ĝj + ∆j , where ĝj is the imperfect channel estimate
available for weight computation, and∆j corresponds to the
channel error. We further assume that the entries of∆j are
zero-mean random variables, andR∆ , E{∆j∆

H
j } is known

a priori and is independent ofj. Thus, we obtain

Rj
g , E{gjg

H
j } = R̂j

g +R∆ (21)

whereR̂j
g = ĝj ĝ

H
j .

Note that we still assume the availability of perfect CSI of
the destination.

1) One Eavesdropper: For one eavesdropper, the ergodic
secrecy capacity is given by

Cs =
1

2
log2

(
1 +

wHRhw

σ2

)

−E

{
1

2
log2

(
1 +

wHggHw

σ2

)}
. (22)

The optimization problem of maximizing ergodic secrecy
capacity under a fixed power is in general difficult. To simplify
the problem, we use Jensen’s inequality to obtain

Cs ≥ 1

2
log2

(
1 +

wHRhw

σ2

)

−1

2
log2

(
1 +

wHRgw

σ2

)
(23)

in which the eavesdropper index is omitted for notational
convenience. We now consider the problem of maximizing the
lower bound on ergodic secrecy capacity in (23) under a fixed
power wHw = P0. It is easy to see that this optimization
problem is the same as (7), while the matrixRg is now given
by (21). Also, the problem of minimizing the transmit power
under a fixed lower bound on ergodic secrecy capacity can be
solved by the iterative algorithm in section III-A.2.

2) Multiple Eavesdroppers: For J eavesdroppers (J > 1),
the lower bound on ergodic secrecy capacity is given by

Cs ≥ 1

2
log2

(
1 +

wHRhw

σ2

)

−max
j

{
1

2
log2

(
1 +

wHRj
gw

σ2

)}
(24)

whereRj
g is given by (21).

To form nulls at all eavesdroppers, we needwHRj
gw = 0

for j = 1, . . . , J . A non-zero solution exists only ifR∆

is semi-positive definite. In case for whichR∆ is strictly
positive definite, nulls cannot be formed at eavesdroppers,and
wHRj

gw is always greater than zero. To cover all cases, here
we still consider the constraintwHR̂j

gw = 0 or equivalently
wH ĝj = 0. The optimization problem of maximizing the
lower bound on the ergodic secrecy capacity in (23) under
a fixed power can be formulated as

argmax
w

σ2+w
H
Rhw

σ2+wHR∆w
(25)

s.t. Ĝw = 0J×1 andwHw = P0

where Ĝ , [ĝ1, . . . , ĝJ ]
H . Let us define the matrixT

containing all of the right singular vectors correspondingto
zero singular values of̂G. To satisfy the first constraint in
(25),w shall be a linear combination of basis in the null space
of Ĝ, i.e., w = Tv, wherev is a column vector. Then, the
optimization problem in (25) is equivalent to

argmax
v

σ2+v
H
T

H
RhTv

σ2+vHTHR∆Tv
(26)

s.t. vHv = P0

which is a Rayleigh quotient problem similar to (7). The
final solution of (25) is thenw =

√
P0Tqunit where

qunit is the unit-norm eigenvector of the matrixTH [R∆ +
(σ2/P0)I]

−1[Rh + (σ2/P0)I]T corresponding to its largest
eigenvalue.

Due to the similarity between (26) and (7), and the duality
as shown in Proposition 1, the problem of minimizing the
transmit power under a fixed lower bound on secrecy capacity
can be solved by the iterative algorithm in section III-A.2.

D. Discussion

In the above analysis, for convenience we have assumed that
the transit power in Stage 1 is much smaller than the transmit
power in Stage 2, and thus the information rates in Stage 1
at the faraway destination and eavesdropper(s) are ignored. In
this subsection, we discuss the effects on weight design when
the information rates in Stage 1 are also taken into account.

When both stages are taken into account, the destination
or an eavesdropper combines the two received signal in
both stages using maximal ratio combining (MRC) in order
to maximize the signal-to-noise ratio (SNR). Suppose that
transmit power in Stage 1 is̃P0. The capacity at the destination
is given by

Cd =
1

2
log2

(
α+

w†Raw

σ2

)
(27)

where α , 1 + P̃0|h0|2/σ2. Note that P̃0|h0|2/σ2 is the
received SNR in Stage 1 at the destination. Similarly, the
capacity at thejth eavesdropper is

Cj
e =

1

2
log2

(
µ+

w†R
j
bw

σ2

)
(28)

whereµ , 1 + P̃0|g0,j|2/σ2. Note thatP̃0|g0,j|2/σ2 is the
received SNR in Stage 1 at thejth eavesdropper. Here,α and
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Fig. 2. Transmit power vs. number of eavesdroppers. Secrecycapacity is
fixed atC0

s
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µ are considered to be constants, asP̃0 is assumed to be a
priori.

Therefore, the only change on the capacity of the destination
or eavesdropper is to replace the constant one in (2) or (4)
by α or µ. It is easy to show that most of the proposed
analysis (when ignoring Stage 1) can still be applied here,
subject to minor changes only. The only exception is the
power minimization problem for the case of one eavesdropper
(see Section III-A.2). For this case, in order to guarantee the
validation of Proposition 1, the fixed secrecy capacityC0

s

should be chosen to satisfyµwHRhw > αwHRgw for every
possiblew.

IV. SIMULATIONS

In this section, we investigate the performance of weight
design algorithms via simulations. In these simulations, the
carrier frequency is 900 MHz and the signal wavelength is
λ = 0.33 m. The noise powerσ2 is −60 dBm. The cluster is
a disk with radiusR = 5λ. The cluster nodes are uniformly
located in the disk. For convenience, a simple line-of-sight
channel model is used:hi = d

−α

2

i ejφi wheredi is the distance
between theith node and the destination,α = 4 is the path
loss exponent andφi denotes the phase offset.gij is defined in
a similar way. All channel estimates are assumed to be perfect.

We try to compare the performance of DF-based cooperation
with direct transmission (without cooperation). Based on the
line-of-sight channel model, when the distance between any
eavesdropper and the source is smaller than the distance
between the destination and the source, the secrecy capacity
of direct transmission without cooperation is always zero no
matter how large the transmit power is. Thus, under such
scenarios, cooperation always outperforms direct transmission.
In the following simulations, we will focus on the case in
which the distances between eavesdroppers and the source
are greater than the distance between the destination and the
source. The distances between the source and destination is
20R. The distances between the source and eavesdroppers are
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Fig. 3. Transmit power vs. number of cooperating nodes. Secrecy capacity
is fixed atC0

s
= 3 b/s/Hz.

uniformly distributed within[40R, 100R], and the azimuthal
directions of eavesdroppers are uniformly distributed within
[0, 2π). We perform a Monte-Carlo experiment consisting of
1000 independent trials to obtain the average results. Locations
of cluster nodes and eavesdroppers in one trial are chosen
independently from those in other trials.

A. Fixed Secrecy Capacity

We first fix the secrecy capacity atC0
s = 3 b/s/Hz and

investigate the performance of transmit power. Fig. 2 shows
the transmit power versus number of eavesdropperJ . The
number of cooperating nodesN is 10, 30 or 50. For a
single eavesdropper, the transmit power with cooperation is
obtained based on the iterative algorithm in Section III-A.2.
For multiple eavesdroppers, the transmit power with cooper-
ation is computed from (17). As observed, As observed, for
both cooperation and direct transmission, more transmit power
would be needed as the number of eavesdroppers increases.
When the number of cooperating nodes is small, cooperation
may not outperform direct transmission (see the curve for
N = 10 in Fig. 2), as its transmission time is longer. When
the number of cooperating nodes is large, cooperation requires
much less transmit power than direct transmission (see the
curves forN = 30, 50 in Fig. 2). Fig. 2 shows the transmit
power versus number of cooperating nodesN . The number
of eavesdroppersJ is one, three or six. As expected, the
transmit power for cooperation decreases as the number of
cooperating nodesN increases, while the transmit power of
direct transmission is independent ofN .

B. Fixed Transmit Power

In this subsection, we investigate the performance of se-
crecy capacity by fixing the transmit power atP0 = 5
dBm. Fig. 4 shows the secrecy capacity versus number of
eavesdroppers. For a single eavesdropper, the secrecy capacity
with cooperation is obtained based on the result in Section
III-A.1. For multiple eavesdroppers, the secrecy capacitywith
cooperation is computed based on the nulling weights of (19).
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As expected, the secrecy capacity decreases as the number
of eavesdroppers increases. A larger number of cooperating
nodes yields higher secrecy capacity. Fig. 5 shows the secrecy
capacity versus number of cooperating nodesN . The secrecy
capacity for cooperation increases asN increases, while the
secrecy capacity of direct transmission is independent ofN .

V. CONCLUSIONS

In this paper, we have considered a DF-based cooperative
protocol to improve the performance of secure wireless com-
munications in the presence of one or more eavesdroppers.
For the case of one eavesdropper, we have considered the
design problem of transmit power minimization and have
proposed an iterative algorithm to reach the solution, by the
help of existing results for another problem of secrecy capacity
maximization. For the case of multiple eavesdroppers, we
have derived suboptimal and closed-form solutions for the
problems of transmit power minimization and secrecy capacity
maximization by adding an additional constraint, i.e., the
complete nulling of signals at all eavesdroppers. We have also
investigated the impact of imperfect CSI of eavesdroppers on
system design.
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