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Abstract—A fundamental problem in wireless networking is
efficient spectrum sharing. In this paper we study this problem
in the context of decentralized multi-user frequency adaptation,
with the objective of designing protocols that are efficient, agile,
robust, and incentive-compatible. Our approach is based on
the theory of congestion games, a class of games that models
the competition for resources among multiple selfish players.
In a congestion game, when a player unilaterally switches her
strategy, the change in her own payoff is the same as the change
in a global objective known as the potential function. Henceany
sequence of unilateral improvements results in a pure strategy
Nash equilibrium. In other words, the game is such that selfish
behaviors collectively result in a socially desirable outcome.
Motivated by the attractive properties of congestion games, this
paper sets out to understand how this framework can be used
to construct efficient spectrum sharing protocols.

The key challenge in casting spectrum sharing as a congestion
game lies in the proper definition of resources. Simply treating
wireless channels as resources fails to capture the effect of
spatial reuse. We first show how to reformulate two existing
distributed spectrum sharing protocols as congestion games.
Such reformulation is done by introducing virtual resources
that model pair-wise interference. We then provide a new
formulation by treating frequency-space blocks as resources.
We use this formulation to construct practical protocols for
spectrum sharing between multiple base stations/access points.
Different implementation methods based on different signaling
assumptions are discussed. We further demonstrate that the
proposed approach can be readily extended in several aspects,
including the modeling of channel bundling and fractional
frequency reuse.

I. I NTRODUCTION

We consider a wireless communication system with mul-
tiple users, each having access to a common set of channels.
A user can only access one channel at a time, but can switch
between channels. If multiple users access the same channel
at the same time, they will experience potentially degraded
performance. Our principle interest lies in optimizing thesys-
tem wide performance and spectrum efficiency, via effective
user sharing mechanisms.

This and similar problems have recently captured increas-
ing interest from the research community, particularly in
the context of cognitive radio networks (CRN) and soft-
ware defined ratio (SDR) technologies, whereby devices are
expected to have far greater flexibility in sensing channel
availability/condition and moving operating frequencies.

Consider the multi-user multi-channel access system out-
lined above, and if we limit our attention to a fully decen-
tralized scenario where each user observes the system and
makes its own decision, without coordination by a central
controller, e.g., a spectrum manager, then a natural way of
studying such a system is to model it as a noncooperative

game. Examples include [6], [7], [10], some of which will
be discussed further below.

For the problem considered in this paper, of particular
relevance and interest is a class of strategic games known
as congestion games(CG) [1], [2]. A congestion game
Γ is given by the tuple(N ,R, (Σi)i∈N , (gr)r∈R), where
N = {1, 2, · · · , N} denotes a set of players/users,R =
{1, 2, · · · , R} the set of resources,Σi ⊂ 2R the strategy
space of playeri, andgr : N → Z a payoff (or cost) function
associated with resourcer. Specificallygr is a function of
the total number of users of resourcer. A player in this game
aims to maximize (minimize) its total payoff (cost) which is
the sum over all resources its strategy involves. More detailed
and formal description of this class of games are provided in
Section II.

The congestion game framework is well suited to model
resource competition where the resulting payoff (cost) is a
function of the level of congestion (number of active users).
Congestions games are closely related to potential games
[4], and enjoy some remarkable features. In particular, a
congestion game is an exact potential game as it admits
an exact potential function [2]. Finding a solution (Nash
equilibrium or NE) to a congestion game is equivalent to
finding a (local) optimal solution to this potential function. It
is also known that any improvement path is finite (in which
each player’s improvement move also improves the potential)
and leads to a pure strategy NE. In other words, even though
the system is decentralized and all players are selfish, by
seeking to optimize their individual objective they end up
optimizing a global objective, the potential function, anddo
so in a finite number of steps regardless of the updating
sequence. Therefore if the potential function of a particular
congestion game has a meaningul and desirable physical
interpretation, then the solution (an NE) to this decentralized
game has certain built-in performance guarantee1, as it is also
a local optimal solution to a global objective.

Congestion games have been extensively studied within
the context of network routing, see for instance the network
congestion game studied in [5], where source nodes seek
minimum delay path to a destination and the delay of a
link depends on the number of flows going through that
link. However, the standard congestion game fails to capture
two critical aspects of resource sharing in wireless commu-
nication: interferenceand spatial reuse. A key assumption
underlying the congestion game model is that all users have

1It is known that in general an NE can be fairly inefficient withrespect
to a given global objective function.



an equal impact on the congestion, and therefore all that
matters is the total number of users of a resource2. This
however is not true in wireless communication. Specifically,
if we consider bandwidth or channels as resources, then
sharing the same channel is complicated by pair-wise in-
terference; a user’s payoff (e.g., channel quality, achievable
rates, etc.) depends onwho the other users are and how much
interference it receives from them. If all other simultaneous
users are located sufficiently far away, then sharing may
not cause any performance degradation, a feature commonly
known as spatial reuse.

The above consideration poses significant challenge in
using the congestion game model, and in some cases may
render the latter inapplicable. On the other hand, congestion
games possess attractive properties as well as an appealing,
physical interpretation that we would like to exploit. For these
reasons, we set out to see to what extent this framework may
be used in our multi-channel access context. Specifically, we
will examine what types of user objectives would allow us
to formulate the problem as congestion games, while taking
into account the impact of pair-wise interference and spatial
reuse.

The key to our methodology is a novel concept referred
to below asresource expansion, where we introducevirtual
resourcesthat capture the spectral-spatial feature of resources
in wireless communication, which in turn allow us to capture
interference. In what follows we will first demonstrate the
utility of this method by taking from existing literature two
problem scenarios and “reverse-engineering” them to equiva-
lent congestion games, thereby showing that (1) stability and
optimality results can be obtained automatically following
this mapping, and (2) these problems can be made a lot
more general by drawing from known results on congestion
games. The details on this are given in Section III. We then
use the concept of resource expansion to study (“forward-
engineer”) a spectrum allocation problem for base stations.
This is presented in Section IV.

It has to be mentioned that the role of interference in a
wireless system has been studied within the context of other
classes of games, most notably the well-knownGaussian
interference game[6], [12]. In a Gaussian interference game,
a player can spread a fixed amount of power arbitrarily across
a continuous bandwidth, and tries to maximize its total rate
in a Gaussian interference channel over all possible power
allocation strategies. It has been shown [6] that it has a
pure strategy NE, but it can be quite inefficient; playing a
repeated game can improve the performance. In addition [7]
investigated a market based power control mechanism via
supermodularity, while [10] studied the Bayesian form of
the Gaussian interference game in the case of incomplete
information.

By contrast, in our problem the total power of a user is not
divisible, and it can only use it in one channel at a time. This
set up is more appropriate for scenarios where the channels

2This function may be user-specific (see for example the one studied in
[3]), but it remains a function of the total number of active users of that
resource.

have been pre-defined, and the users do not have the ability
to access multiple channels simultaneously (which is the case
with many existing devices). Thus in our problem the set of
admissible user strategies is a subset of that of the Gaussian
interference game. As we will see this difference results in
special properties that allow us to obtain stronger resultsand
more insight compared to the latter.

The organization of the remainder of this paper is as fol-
lows. In Section II we present a brief review of the literature
on congestion games, and motivate the idea behind resource
expansion. We then show how some problems can be con-
verted into equivalent congestion games through resource
expansion in Section III, and present a specific spectrum
sharing problem in Section IV. We discuss extensions of
our approach and conclude the paper in Sections V and VI,
respectively.

II. CONGESTIONGAMES: A REVIEW AND MOTIVATION

FOR RESOURCEEXPANSION

In this section we provide a brief review on the definition
of congestion games, their relation to potential games and
their known properties3. We then discuss why the standard
congestion game does not take into account interference and
spatial reuse, and motivate our resource expansion method-
ology.

A. Congestion games, potential games: a review

Congestion games [1], [2] are a class of strategic games
given by the tuple(N ,R, (Σi)i∈N , (gr)r∈R), whereN =
{1, 2, · · · , N} denotes a set of users,R = {1, 2, · · · , R} a
set of resources,Σi ⊂ 2R the strategy space of playeri,
andgr : N → Z a payoff (or cost) function associated with
resourcer. The payoff (cost)gr is a function of the total
number of users using resourcer and in general assumed to
be non-increasing (non-decreasing). A player in this game
aims to maximize (minimize) its total payoff (cost) which is
the sum total of payoff (cost) over all resources its strategy
involves.

If we denote byσ = (σ1, σ2, · · · , σN ) the strategy profile,
whereσi ∈ Σi, then useri’s total payoff (cost) is given by

gi(σ) =
∑

r∈σi

gr(nr(σ)) (1)

wherenr(σ) is the total number of users using resourcer
under the strategy profileσ.

Rosenthal’s potential functionφ : Σ1×Σ2×· · ·×Σn → Z

is defined as

φ(σ) =
∑

r∈R

nr(σ)
∑

i=1

gr(i) (2)

=

N
∑

i=1

∑

r∈σi

gr(n
i
r(σ)) , (3)

3This review along with some of our notations are primarily based on
references [1], [2], [4].



where the second equality comes from exchanging the two
sums andni

r(σ) denotes the number of players using resource
r whose indices do not exceedi (i.e., in the set{1, 2, · · · , i}).

Now consider playeri, who unilaterally moves from
strategyσi (corresponding to the profileσ) to strategyσ

′

i

(corresponding to the profileσ
′

). The potential changes by

∆φ(σi → σ
′

i)

=
∑

r∈σ
′

i
,r 6∈σi

gr(nr(σ) + 1) −
∑

r∈σi,r 6∈σi
i

gr(nr(σ))

=
∑

r∈σ
′

i

gr(nr(σ
′

)) −
∑

r∈σi

gr(nr(σ))

= gi(σ−i, σ
′

i) − gi(σ−i, σi) , (4)

where the second equality comes from the fact that for
resources that are used by both strategiesσi and σ

′

i there
is no change in their total number of users. The above result
may be obtained either directly from Rosenthal’s potential
definition (2), or more easily, from the change of sums
equation (3) by assuming we are considering theN -th player.

The above result shows that the gain (loss) caused by any
player’s unilateral move is exactly the same as the gain (loss)
in the potential, which may be viewed as a global objective
function. Since the potential of any strategy profile is finite,
it follows that every sequence of improvement steps is finite,
known as the finite improvement property (FIP), and they
converge to a pure strategy Nash Equilibrium. This NE is a
local maximum (minimum) point of the potential functionφ,
defined as a strategy profile where changing one coordinate
cannot result in a greater value ofφ.

To summarize, we see that in this game, any sequence
of unilateral improvement steps converges to a pure strategy
NE, which is also a local optimum point of a global objective
given by the potential function.

Theφ() defined above is called an exact potential function,
where individual payoff (cost) change as a result of a
unilateral move is exactly reflected in this global function:

gi(σ−i, σ
′

i) − gi(σ−i, σi) = φ(σ−i, σ
′

i) − φ(σ−i, σi) . (5)

More generally, a functionP is called an ordinal poten-
tial function if we have gi(σ−i, σ

′

i) ≥ gi(σ−i, σi) ⇔
φ(σ−i, σ

′

i) ≥ φ(σ−i, σi). Games that possess the above prop-
erties are called exact potential games and ordinal potential
games, respectively.

A congestion game is thus an exact potential game. In [4]
it was shown that every potential game may be converted into
an equivalent congestion game. However, this conversion pro-
cess, while powerful in its generality, is rather cumbersome
to follow and insights are easily lost. For this reason, we
will primarily follow the congestion game framework in our
development in the rest of this paper.

B. Resource Expansion

Our objective is to construct efficient distributed spectrum
sharing schemes based on the theory of congestion games.
The key here lies in the proper definition of resources. In
a multi-user, multi-channel access problem, it is natural to

A frequency 
band

A spatial region

Fig. 1. Illustration of a frequency-space block. The(x, y) dimensions
describe a region in space (for visualization purpose we consider space as
two-dimensional) and thez-dimension describes a frequency band.

think of channels/spectrum bands as resources. The unique
feature of spectrum sharing is such that the gain (or cost) of
a particular user is a function of thesetof other simultaneous
users of the same spectrum, rather than the totalnumberof
users, as is the basic assumption underlying a congestion
game. Players’ locality affects the individually perceived
interference; far-way users may share the same spectrum
without any loss in performance. Therefore if we simply
take spectrum as the resource the standard congestion game
framework does not directly apply to our problems.

This motivates us to seek alternative definitions of re-
sources. In essence, the true resource in a wireless system
is certain spectrum-space-time unit, due to the spatial reuse
feature. This is echoed in the way spectrum is traded as
commodities. For example, in FCC’s spectrum auctions,
each spectrum license is the right to use a spectrum band
for a certain geographic region (e.g., a city) for a certain
period of time (e.g., 10 years). Since we aim at designing
decentralized protocols where the users adapt their frequency
bands over time, we will drop the time dimension and treat a
certain spectrum-space unit as the resource. In short, to cast
spectrum adaptation as congestion games, we shall use a set
of resources that capture both spectrum and space, expanding
the set of physical channels.

It is important to note that there are multiple ways to take
space into account when defining the resources. Different
ways of accounting for space will imply different coordina-
tion methods and lead to different spectrum sharing protocols.
As a simple example, we can model the resource consumed
by a transmitter-receiver pair as a spectrum-space block
illustrated in Figure 1, whose spectrum dimension specifies
the spectrum band it is using and the space dimensions
specify the interference range of this pair. In what follows
we will see three definitions of resources and how they lead
to different implementations.

For the rest of this paper, the termplayer or user specif-
ically refers to apair of transmitter and receiver in the
network. Interference in this context is between one user’s
transmitter and another user’s receiver. This is commonly
done in the literature, see for instance [6]. We will also
assume that each player has a fixed transmit power.

III. R ESOURCEEXPANSION: TWO EXAMPLES

In this section we draw from two existing studies, [11]
and [9], respectively, both aimed at designing distributedand
stable mechanisms that minimize interference, and show how
using resource expansion we can transform them into equiv-
alent congestion games, and thereby making immediately



available results such as convergence and local optimality.

A. Example One

In [11] the following multi-user, multi-channel access
problem was studied. The users’ primary interest is to select
a channel such that its total received interference is mini-
mized. Specifically, usersi andj each perceive interference
I(i, j) = Po

(di,j)α , wheredi,j is the distance between the two
and α the passloss exponent, if they happen to select the
same channel, and 0 otherwise. A user’s objective is to select
a channel such that its own total received interference (over
all other users in the system) is minimized. It was shown in
[11] that greedy user update leads to a local optimal solution
to the system objective of total interference.

Below we show how this is indeed a congestion game.
Since interference in this case is pair-wise dependent, we will
consider a link, defined by a pair of users, combined with a
channel, as a (virtual) resource. Specifically, we will define
a resource as the triple(i, j, c) wherei, j denote an ordered
pair of nodes, or equivalently a directed link, andc denotes a
channel. Any time when a useri selects channelc, it counts
as one user of all the resource triples that containi as one
of the two users. With this generalized notion of resource, or
resource expansion, the components of the game are listed
as follows.

• A set of users/playerN = {1, 2, · · · , N}.
• A set of channelsC = {1, 2, · · · , C}.
• A set of resourcesR = {(i, j, c) : i, j ∈ N , i 6= j, c ∈

C}, where(i, j) is anorderedpair of users.
• Pair-wise interference relationship: each pair of user

i, j is associated with an interference parameter (a real
number)di,j , and di,j = dj,i. This may describe the
distance/signal attenuation between the pair of users, or
in the special case ofdi,j ∈ {0, 1}, it may describe a
binary interference relationship wheredi,j = 0 means
the two users do not interfere with each other, and they
do otherwise.

• Strategy space(Σi)i∈N : a player i has C admissible
strategies, each given by the set of resources it con-
sumes:

σi ∈ Σi = {{(i, j, c), (j, i, c) : ∀j ∈ N , j 6= i},

c = 1, 2, · · · , C}. (6)

For convenience, we will usec(σi) to denote the channel
that i uses under strategyσi, i.e., this is the value of the
last element of the resource triple. We have assumed
here that the user is only allowed one channel at a time,
but this assumption can be relaxed.

• Using resource(i, j, c) incurs a payoff (cost) of
g(i,j,c)(n(i,j,c)), where n(i,j,c) is the total number of
users using resource(i, j, c).

• Under the strategy profileσ = (σ1, σ2, · · · , σN ) useri
gets a total payoff (cost) of

gi(σ) =
∑

j∈N ,j 6=i

(g(i,j,c(σi))(n(i,j,c(σi))(σ))

+g(j,i,c(σi))(n(j,i,c(σi))(σ)) (7)

wheren(i,j,c)(σ) is the total number of players using
resource(i, j, c) under the strategy profileσ.

• Each user’s objective is to maximize (minimize) his
individual payoff (cost).

The above description obviously defines a congestion game
(compare to the description in Section II). We now show that
this is the same problem studied in [11].

We define the cost function for each virtual resource
as follows, noting that a resource(i, j, c) has at most 2
simultaneous users since each user can only play one strategy
at a time.

g(i,j,c)(k) =

{ 1
2f(di,j) = 1

2
Po

(di,j)α k = 2

0 otherwise
(8)

Obviously we haveg(i,j,c) = g(j,i,c). Substituting the above
in (7) gives the total cost for useri under the strategy profile
σ:

gi(σ) =
∑

j:j 6=i,c(σj )=c(σi)

(g(i,j,c(σi))(2) + g(j,i,c(σi))(2))

=
∑

j:j 6=i,c(σj )=c(σi)

Po

(di,j)α
(9)

which is user i’s sum interference. Therefore under this
congestion game, the individual users try to minimize their
own perceived sum interference, which is exactly the greedy
update proposed in [11].

By Rosenthal’s definition, the potential function of this
congestion game is given by

φ(σ) =
∑

(i,j,c)∈R

n(i,j,c)(σ)
∑

k=1

g(i,j,c)(k)

=
1

2

N
∑

i=1

∑

j 6=i:c(σi)=c(σj)

(g(i,j,c(σi))(2) + g(j,i,c(σi))(2))

=
1

2

N
∑

i=1

∑

j 6=i

Po

(di,j)α
I(j picks the same channel asi)

which is a constant factor (1/2) of the total amount of
interference in the system . This is obviously equivalent to
the global objective of total interference used in [11].

We therefore have demonstrated that the congestion game
posed above is equivalent to the sum-interference minimiza-
tion problem studied in [11]. Invoking existing results on
congestion games, we immediately have that (1) the above
potential function is reduced each time a unique player
deviates its strategy to reduce its own received interference,
and any updating sequence is finite and converges to an NE
of the game; and (2) greedy user updates in any sequence
stabilize the system and the stable point is a local minimum
of the global objective function: the total interference inthe
system.

In addition, using congestion game theory we can eas-
ily relax two key assumptions adopted in [11]. The first
is that interference is symmetric (i.e.,di,j = dj,i). This
assumption may be relaxed by adoptinguser-specificpayoff



(cost) functions. As was shown in [3], congestion games
with user specific payoff functions in general do not have an
exact potential function or the FIP property, but nevertheless
always possess a pure strategy NE when we limit the number
of resources each strategy can involve to one. A second
assumption that may be relaxed is that users have access to all
channels but can use only one at a time. This assumption can
be immediately removed (i.e., each user may have access to
a different set of channels and can use multiple channels, or
do channel bundling, at a time) within the congestion game
framework, without losing any of the above features and
conclusions (slightly weaker conclusion if the interference
is also assumed to be asymmetric as indicated above).

To summarize, we have reverse-engineered the above prob-
lem as a congestion game and reproduced identical results to
that in [11]. The advantage and power of casting this problem
as a congestion game is that (1) the results follow naturally
and straightforwardly from standard congestion game theory,
and (2) a number of key assumptions are shown to be
easily relaxable as discussed above, therefore generalizing
the orginal problem.

B. Example Two

In [9] the following problem was studied. A number of
stationary mesh routers (802.11 nodes) share a fixed number
of (potentially overlapping) channels in such a way that
each router tries to minimize its sum interference. More
specifically, there is an interference cost functionf(c1, c2) as-
sociated with a pair of channelsc1 andc2, wheref(c1, c2) =
f(c2, c1). A routeri that selects channelc1 pays such a cost if
another routerj who is ini’s interference set (j ∈ Ni) selects
channelc2. Routeri updates its strategy by minimizing over
all possible channel selectionsci the sum

∑

j∈Ni
f(ci, cj)

wherecj is routerj’s selection at the time of update. It was
shown in [9] that this greedy procedure reaches a stable state
within a finite number of updates.

Below we show how this problem may be converted into
an equivalent congestion game.

As before we have a set of playersN and channelsC.
Consider the virtual resource given by the tuple(i, j, ci, cj),
wherei andj (i 6= j) are an ordered pair of users andci and
cj are two channels belonging to the setC. A user i hasC
admissible strategies, each given by a set of resources:

σi ∈ Σi = {{(i, j, c, cj), (j, i, cj , c) : ∀j ∈ Ni, cj ∈ C} : c ∈ C} .

That is, when selecting channelc, a user i uses all the
resource tuples in which it appears as one of the two users
with c being its associated channel. There can be at most2
users of a virtual resource, and its payoff (cost) is given by

g(i,j,ci,cj)(k) =

{

1
2f(ci, cj) k = 2
0 otherwise

. (10)

This specifies a congestion game, in which a useri tries

to minimize its total cost (interference) given by

gi(σ) =
∑

j 6=i,j∈Ni

(g(i,j,c(σi),c(σj))(2) + g(j,i,c(σj),c(σi))(2))

=
∑

j 6=i,j∈Ni

f(c(σi), c(σj)) , (11)

over all possible choices ofσi. This is exactly the same user
objective as given in [9]. The potential function is given by

φ(σ) =
∑

(i,j,ci,cj)∈R

n(i,j,ci,cj)(σ)
∑

k=1

g(i,j,ci,cj)(k)

=
1

2

∑

(i,j):j 6=i,j∈Ni

(g(i,j,c(σi),c(σj))(2)

+g(j,i,c(σj),c(σi))(2))

=
1

2

N
∑

i=1

∑

j 6=i,j∈Ni

f(c(σi), c(σj)) , (12)

a constant factor of the total interference in the system. The
same convergence and local optimality results follow as in
the previous example. The same discussion on generalization
also applies here and is thus not repeated.

IV. FORWARD ENGINEERING: CLIENT-DRIVEN

DISTRIBUTED SPECTRUM SHARING PROTOCOLS

We showed in the previous section how to reformulate
two existing distributed spectrum sharing protocols as con-
gestion games, by introducing virtual resources to model pair-
wise interference. This exercise indicates that we can obtain
different spectrum sharing protocols by defining resources
differently. In this section we examine a scenario of channel
adaptation for base stations/access points and provide a new
formulation based on a new resource definition. We will then
discuss how to construct spectrum sharing protocols based on
this.

As illustrated in Figure 2, consider multiple base stations
with partially overlapping coverage areas. Each base station
has a set of clients associated with it and it needs to select a
good channel to operate in. We assume that a base station and
its associated clients always operate on the same channel.

BS1

BS2 BS3

Fig. 2. Channel selection at base-stations. The dots indicate the clients.
The circles indicate the coverage ranges of the base stations.



Recall the spectrum-space block mentioned in Section II-B
as an example defintion of a resource. We see that in this
case the spectrum-space block is a natural and intuitive
choice. By using a channel, a base station consumes a
number of spectrum-space blocks, with the space dimension
characterizing the coverage of the base station and the
spectrum dimension characterizing the channel used by the
base station. Then the spectrum-space blocks associated with
the overlapping areas may be subject to congestion if multiple
overlapping base stations choose the same frequency band.
Below we define this congestion game more precisely.

We first note that within a base station’s coverage area,
congestion or interference is only perceived when a client
exists at a particular location. In other words, it is not
necessary to consider the entire space covered by a base
station, but only where clients are located. Consequently,the
spectrum-space block reduces to the following definition of
resources: the set of all (client, channel) pairs. The resulting
congestion game consists of the following.

• The players are the set of base stationsN =
{1, 2, . . . , N}.

• There are a set of clientsU . Each base stationi has
a coverage area; the set of clients ini’s coverage is
denoted byUi. Conversely, for a clientu, let Bu denote
the set of base stations whose coverage ranges include
u. Two base stationsi and j are said to be neighbors
if there is a client in bothi’s coverage range andj’s
coverage range.

• There are a set of channelsC = {1, . . . , C}.
• The set of resources is the Cartesian product ofU and

C, R = {(u, c) : u ∈ U , c ∈ C}.
• A player/base station hasC strategies, each given by

the set of resources it consumes:

σi ∈ Σi = {{(u, c) : u ∈ Ui}, c = 1, . . . , C}. (13)

As before, we will usec(σi) to denote the channel that
i uses under strategyσi. In essence, a base stationi can
choose amongC channels. When it is using channelc,
it consumes resources(u, c) for each clientu within its
coverage range.

• Using resource (u, c) incurs a payoff (cost) of
g(u,c)(n(u,c)), wheren(u,c) is the total number of base
stations using resource(u, c).

• Each base station’s objective is to maximize (minimize)
its individual payoff (cost). Under the strategy profile
σ = (σ1, . . . , σN ), base stationi’s payoff is:

gi(σ) =
∑

u∈Ui

g(u,c(σi))(n(u,c(σi))(σ)). (14)

As this is now a congestion game, we have a stable system,
in which any updating sequence (of frequency adaptation
by the base stations) will lead to a local optimum of the
potential function. We also note that our particular definition
of resource suggests aclient-drivenapproach, in which the
clients measure their respective RF conditions and provide
feed back to the base stations, who in turn make channel
selections to optimize the above local payoff based on client

reports and possibly information collected from other base
stations.

Note that the local payoff a base station receives for using
channelc (given in (14)) takes into accountall clients within
its coverage area, including possibly clients associated with
other base stations. This local payoff function suggests that a
player (base station) is also concerned with the harm it causes
to other players (base stations). Such “socially-responsible”
behavior may seem at odds with the notion of a selfish player
in a non-cooperative game. This is a direct consequence of
our definition of resource, or resource expansion, whereby a
client becomes a part of the resource. We see that in order
to model mutual interference and at the same time to attain
stability, resource expansion necessitates this type of socially-
responsible behavior on the players’ part; this is also the
reason why we can align individual interests with a social
objective. More discussion on the implementation of this is
provided toward the end of this section.

We also note that each physical clientu corresponds
to C resources,{(u, c) : c = 1, . . . , C}, one for each
channel. The payoff for resource(u, c) appears in the local
optimization objectives of all base stations whose coverage
area includeu. This may seem a bit odd since clientu can
only physically be in one of the channels, and thus it may
seem that we should only be concerned with one resource
(u, cu) wherecu is the channel thatu is on. If the channels of
the clients are fixed a priori, then it is indeed sensible to just
consider one spectrum-space resource(u, cu) for each client
u. However, in our present setup this is not fixed. Instead,
u’s associated base station is adapting the channel decision
for all its clients. Without knowing which channelu will
use, our congestion game formulation considers all possible
spectrum-space resources{(u, c) : c = 1, . . . , C}.

Next we turn to practical protocols that implement the
above game. From (14) we see that in order to make a channel
switch decision, a base station needs to know for every
channel the number of other base stations using it that also
cover one or more of its clients. We describe two possible
methods to implement this. The first method assumes that a
client can directly communicate with all base stations whose
coverage range includes it. In this method, clients switch
channels from time to time and report for each channel the
number of base stations it hears on the channel to the base
stations. That would directly provide the payoff term for each
resource(u, c).

The second method assumes that neighboring base stations
can communicate with each other via an inter-BS communi-
cation protocol, which can be supported by either over-the-
air signaling or out-of-band signaling (e.g., through a wired
infrastructure where the BSs are attached to). In this case,
the clients can listen on the channels for base station IDs
and possibly other parameters (e.g., signal strength). Buteach
client reports only to its own base station the set of all base
stations it sees. The base stations then communicate with
each other via the inter-BS communication protocol, such
that each base stationi learns:

• the set of clientsUi in i’s coverage area



• for each clientu ∈ Ui, the set of base stationsBu whose
coverage includesu

• the current operating channels of its neighbors.
We see that under this implementation the base stations

essentiallycooperateto stalize the system and reach a local
optimal point, even though the congestion game framework
is a non-cooperative one. As noted earlier this is a conse-
quence of both resource expansion and the need to obtain
sufficient information to play the game. This implementation
is reasonable if we assume that all base stations belong to the
same system (or administrative domain) and therefore may be
assumed to follow the same protocol (user behavior). In this
sense the congestion game model serves as a distributed way
of reaching an equilibrum in a global system objective, which
may be a much simpler implementation than adopting a
centralized manager with centralized information collection.
However, if these base stations belong to different systems,
then it’s questionable whether they are willing to cooperate,
and whether the information they provide each other may be
assumed true. In this latter case the congestion game may not
be the most appropriate model and one may need to resort
to mechanisms like pricing to enforce truth revelation.

V. EXTENSIONS

In this section we outline several possible extensions to
the main results.

A. Channel bundling

Even though throughout the paper we have assumed the
model that each user/player is limited to one channel at a
time, the congestion framework can easily accommodate the
more general model of allowing access to multiple channels
simultaneously, or channel bundling. Indeed, in a congestion
game, each user’s strategy space is modeled as a set of
strategies, where each strategy is a set of resources. We
can model a user using multiple channels by defining their
strategy spaces accordingly. In particular, we can also allow
the bundling to be different for different users, and/or to be
within a contiguous block.

However, what this framework does not immediately cap-
ture is the advantages and disadvantages of this type of
channel bundling, e.g., by using two neighboring channels
together one may get a higher rate than simply adding two
individual rates. How to take this into account remains an
interesting problem.

B. Fractional frequency reuse

In Section IV, we assumed that each base station chooses
one channel for all its clients. A possible extension is to
consider the technology of fractional frequency reuse, a
technique currently considered by cellular standards suchas
802.16. The concept is that in OFDMA systems different
clients may be assigned different sets of sub-channels. Clients
near the cell edge can be assigned fewer sub-channels that
are carefully chosen to avoid interference from neighboring
cells; in contrast, clients close to the cell center can makeuse
of more sub-channels because they are less susceptible to co-
channel interference. Similar as in the previous subsection,

the congestion game framework can easily incorporate the
technique of fractional frequency reuse, by allowing a base
station to use different sets of bands for communicating with
different clients.

C. Modeling clients as players

In Section IV, we modeled the base stations as players.
We have assumed that client association is done independent
of the base station’s choice of channel, and that both the base
station and its associated clients operate on the same channel.
The problem there was for the base station to select a good
channel given a fixed set of clients. A more sophisticated
and more interesting scenario is to allow the clients freely
choose which base station to associate with, depending on
the latter’s channel selection and perceived interference. In
this case, presumably we will need to model the clients as
strategic players as well. This will be further studied in a
future work.

D. User specific payoffs

We have mentioned earlier that by using user-specific
payoff functions one can model asymmetric interference
relationship. This type of congestion games do not in general
admit an exact potential function, and known results are
weaker than the standard, non-user-specific payoff congestion
games [3]. It would be interesting to see whether in the
context of channel access our interference congestion games
have better properties that may lead to stronger conclusions.

VI. CONCLUSION

In this paper we have used the congestion game framework
to study a number of problems that arise in spectrum sharing,
in particular, in reducing the interference in such systems.
Through two examples, we demonstrated that by using the
notion of resource expansion we are able to better understand
and generalize existing work. Specifically, for the problems
studied in [11] and [9], we showed that they are fundamen-
tally equivalent to a congestion game. As a result, known
features of its solution immediately apply. In addition, they
can be generalized and certain assumptions may be relaxed in
a relatively straightforward way. We then showed that using
the same methodology we can solve a base station channel
adaptation problem.
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