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Abstract—We present capacity scaling laws for random wire-
less ad hoc networks under all information dissemination modal-
ities (unicast, multicast, broadcast, anycast) when nodes are
endowed with multi-packet transmission (MPT) or multi-packet
reception (MPR) capabilities. Information dissemination modal-
ities are modeled with an (n, m, k)-cast formulation, where
n, m, and k denote the number of nodes in the network,
the number of destinations for each communication group,
and the actual number of communication group members that
receive information (i. e, £ < m < n), respectively. We
show that © (T'(n)y/m/k), © (1/k), and © (T%(n)) bits per
second constitute a tight bound for the throughput capacity
of random wireless ad hoc networks under the protocol model
when £ < m < ©(T7*n)), k < ©(T*(n)) < m, and
(C] (T’Q(n)) < k < m, respectively. This result applies to both
MPR and MPT, where 7'(n) denotes the transceiver range,
which depends on the encoding or decoding complexity of the
nodes. For the minimum transceiver range of © <
guarantee network connectivity, a gain of O(logn) for (n, m,
k)-casting is attained with either MPT or MPR compared to the
capacity attained when transmitters and receivers can encode
and decode at most one transmission at a time (i.e., point-to-
point communication).

log n/n> to

I. INTRODUCTION

Gupta and Kumar [1] studied the capacity' of wireless ad
hoc networks for the case of multi-pair unicasts in which the
nodes are able to encode and decode at most one packet at
a time. This work has motivated a large body of work over
the past few years, which we summarize in Section II. One
important area of the resulting research has focused on the
study of different approaches to “embrace interference” in
order to increase the capacity of wireless ad hoc networks.
Embracing interference consists of increasing the concurrency
with which the channel is accessed. We denote by multi-packet
reception (MPR) [2] the ability of a receiver node to de-
code correctly multiple packets transmitted concurrently from
different nodes, and by multi-packet transmission (MPT) the
ability of a transmitter node to transmit concurrently multiple
packets to different nodes. In practice, MPR and MPT can
be achieved with a variety of techniques. For example, MPR

I'Throughput capacity was first introduced by Gupta and Kumar [1] for
random networks. In this paper, we use throughput capacity or simply capacity
interchangeably.

can be implemented by allowing a node to decode multiple
concurrent packets using multiuser detection (MUD); MPR
or MPT capabilities can be implemented utilizing directional
antennas [3], [4] or multiple input multiple output (MIMO)
techniques.

A complementary approach to embracing interference con-
sists of increasing the amount of information sent per trans-
mission. Network coding (NC) [5] was introduced and shown
to achieve the optimal capacity for single-source multicast
in directed graphs corresponding to wired networks in which
nodes are connected by point-to-point links. Since then, many
attempts have been made to apply NC to wireless ad hoc
networks, and recent work [6]-[10] has shown promising
results on the application of NC in wireless ad hoc networks
subject to multicast traffic. Interestingly, a careful review of
these contributions reveals that analog network coding [6]
and physical-layer network coding [7] implicitly require the
integration of NC with a form of MPR, in that receivers must
be allowed to decode successfully concurrent transmissions
from multiple senders by taking advantage of the modulation
scheme used at the physical layer (e.g., MSK modulation in
ANC [6]). Similarly, [8]-[10] the other recent NC schemes
discussed for wireless networks assume the integration of NC
with MPR and MPT.

The work reported in this paper is motivated by three
aspects of the prior work to date. First, while it is clear from
recent work on NC that MPR and MPT may contribute to the
capacity increase observed when NC is applied to wireless
networks with multicast traffic, prior work does not decouple
the performance gains due to NC (i.e., combining multiple
packets into a single transmission) from those resulting from
MPR or MPT (i.e., allowing multiple transmissions to be
received or sent at the same time). Second, no capacity
results have ever been reported on the benefits of MPT, which
arguably may be easier to attain in practice than MPR. Third,
although Garcia-Luna-Aceves et al. [11] have shown that the
order capacity of wireless ad hoc networks subject to multi-
pair unicast traffic is increased with MPR, no results have been
reported on the order capacity of networks with MPR subject
to broadcast, multicast or anycast traffic.

Section III presents the first contribution of this paper, which
is a modeling framework for the computation of the throughput



capacity of random wireless ad hoc networks with MPT or
MPR subject to any type of information dissemination modal-
ity (unicast, multicast, broadcast, and anycast). We demon-
strate that the throughput capacity of wireless ad hoc networks
with MPT or MPR for any type of information dissemination
can be derived using an (n,m, k)-cast formulation, where n,
m, and k are defined earlier. For example, for the cases of
m =k =1, m =k < n,and m = k = n, the (n,
m, k)-cast is equivalent to unicast, multicast, and broadcast
communications, respectively. The (n, m, k)-cast can also
represent different forms of anycasting.

Sections IV and V present the first results on the ca-
pacity of ad hoc networks with MPT under different forms
of information dissemination, and the first results for the
capacity of networks with MPR for dissemination modalities
other than unicast traffic. In particular, we show that the per
source-destination (n, m, k)-cast throughput capacity Cy, 1 (n)
of a wireless random ad hoc network with MPT or MPR is
tight bounded (upper and lower bounds) by © (T'(n)\/m/k),
O (1/k) and © (T?(n)) w.h.p.2 when k < m < © (T~2(n)),
k< ©(T2n) < m, and ©(T2(n)) < k < m,
respectively. In these results, the transceiver range 7'(n) in
MPT or MPR is different from the transmission range r(n)
used in the capacity results for networks with point-to-point
communication [1]. For comparison purposes, we also show
the (n, m, k)-cast capacity result for point-to-point communi-
cation. Section VII discusses the behavior of the capacity of an
ad hoc network with MPT, MPR, or point-to-point schemes as
a function of the (n,m, k)-cast parameters and as a function
of the transceiver range.

II. RELATED WORK

Due to space limitations we only mention a few of the many
prior contributions and focus on work addressing broadcasting
and multicasting in static networks that we did not mention in
the prior section.

Many papers have extended the results by Gupta and
Kumar [1], which showed a gap between the upper and lower
bounds on capacity under the physical model. Franceschetti et
al. [12] closed this gap using percolation theory, and Zhang
et al. [13] extended this work to networks with unrestricted
bandwidth. It has also been shown that, if bandwidth is allowed
to increase proportionally to the number of nodes in the
network [13], [14], higher transport capacities can be attained
for static wireless networks. Other works demonstrated that
changing physical layer assumptions such as using multiple
channels [15] or MIMO cooperation [16] can change the
capacity of wireless networks. Recently, Ozgur et al. [16]
proposed a hierarchical cooperation technique based on virtual
MIMO to achieve linear capacity.

Tavli [17] was the first to show that ©(n~!) is an upper
bound on the per-node broadcast capacity of arbitrary net-
works. Zheng [18] derived the broadcast capacity of power-
constrained networks, together with another quantity called
“information diffusion rate”. Keshavarz et al. [19] compute the

2An event occurs with high probability (w.h.p.) if its probability tends to
one as n goes to infinity. ©, 2 and O are the standard order bounds.

broadcast capacity of a network for any number of sources. We
use a number of techniques from this work in the derivation
of our results for MPT or MPR. Jacquet and Rodolakis [20]
proved that the scaling of multicast capacity is decreased by
a factor of ©(y/n) compared to the unicast capacity result by
Gupta and Kumar [1]. The work by Shakkottai et al. [21] is
an extension of the work by Gupta and Kumar when there
are n° multicast sources and n'~¢ destinations per flow for
some € > 0. These results are limited in scope, because of
the constraints on the number of sources and destinations. Li
et al. [22] compute the capacity of wireless ad hoc networks
for unicast, multicast, and broadcast applications for point-to-
point communications.

III. NETWORK MODEL AND PRELIMINARIES

We assume a random wireless ad hoc network with n
nodes distributed uniformly in a network of unit square area.
Our analysis is based on dense networks, where the area
of the network is a square of unit value?. Hence, in our
model, as n goes to infinity, the density of the network
also goes to infinity. Our capacity analysis is based on the
protocol model for dense networks introduced by Gupta and
Kumar [1]. Gupta and Kumar defined the protocol model
for point-to-point communications. In that model, a common
transmission range r(n) for all nodes is defined. Node X; can
successfully transmit to node X if for any node X,k # 4,
that transmits at the same time as X, then |X; — X;| < r(n)
and | Xy — X;| > (1+ A)r(n), where X;, X; and X}, are the
cartesian position in the unit square network for these nodes.
We need to define the protocol model for both MPR or MPT,
and in doing so we extend the MPR protocol model in [11].

In wireless ad hoc networks with MPT (or MPR), the
protocol model assumption allows MPT (or MPR) capabil-
ity at nodes as long as they are within a radius of T'(n)
from the transmitter (or receiver) and all other receiving (or
transmitting) nodes have a distance larger than (1 + A)T'(n).
The difference is that we allow the transmitter (or receiver)
node to transmit (or receive) multiple packets to (or from)
different nodes within its disk of radius 7'(n) simultaneously
in MPT (or MPR) scheme. Note that r(n) in Gupta and
Kumar’s model is a random variable while 7'(n) in MPT
(or MPR) is a predefined value which depends on the com-
plexity of the nodes. We assume that nodes cannot transmit
and receive at the same time, which is equivalent to half
duplex communications [1]. The data rate for each transmitter-
receiver pair is a constant value of W bits/second and does
not depend on n. Given that W does not change the order
capacity of the network, we normalize its value to one. The
relationship between transceiver range T'(n) of MPT and MPR
throughout this paper and transmission range in point-to-point
communication is defined as

T(n) = r(n) > O («/(bg n)/n) : (1)

The MPT protocol model is shown in Fig. 1. For the case
of MPR, the only difference is the fact that the center node

3The unit square of the network simplifies the analysis. For different shape
of the network area, the result can be extended similarly.



in each circle receives packets from all the nodes within its
communication range. In general, it is easy to see that MPT
and MPR are dual of each other leading to the same throughput
capacity. However, it may be easier to implement MPT in
practice using directional antennas [3], [4].
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Fig. 1. MPT protocol model

In this paper, we study the case in which each of n nodes
in a network acts as a source with a group of m receivers
(with m < n), with k (where k& < m) of those receivers being
randomly selected to obtain the information from the source.
We call this characterization of information dissemination
from sources to receivers (n,m, k)-casting. The throughput
capacity for an (n,m, k)-cast simply extrapolates the original
definition of feasible throughput capacity for unicasting given
by Gupta and Kumar [1].

Definition 3.1: Feasible Throughput capacity of (n,m,k)-
cast: In a wireless ad hoc network with n nodes in which each
source node transmits its packets to k out of m destinations,
a throughput of C,, x(n) bits per second for each node
is feasible if there is a spatial and temporal scheme for
scheduling transmissions, such that by operating the network
in a multi-hop fashion and buffering at intermediate nodes
when awaiting transmission, every node can send C, ,(n) bits
per second on average to its k out of its m chosen destination
nodes. That is, there is a 7' < oo such that in every time
interval [(i — 1)T, ¢T'], every node can send T' x C,, p(n) bits
to its corresponding destination nodes.

Definition 3.2: Order of throughput capacity: Cp, (n) is
said to be of order O(f(n)) bits per second if there exist
deterministic positive constants ¢ and ¢’ such that

lim Prob (Cy, x(n) = cf(n) is feasible) = 1

nlingo Prob (C), k(n) = ¢’ f(n) is feasible) < 1. @

Definition 3.3: Euclidean Minimum Spanning Tree
(EMST): Consider a connected undirected graph G = (V, E),
where V and E are sets of vertices and edges in the graph G,
respectively. The EMST of G is a spanning tree of G with the
total minimum Euclidean distance between connected vertices
of this tree.

Definition 3.4: (n,m,k)-cast tree: An (n,m, k)-cast tree
is a set of nodes that connects a source node of an (n,m, k)-
cast with all its intended k receivers out of m, in order for the
source to send information to k of those receivers.

By construction, it can be shown that (n, m, k)-cast represents
all forms of communications in wireless ad hoc networks, i.e.,
unicast (¢ = m = 1), broadcast (¢ = m = n), multicast
(k = m < n), anycast (k = 1 < m < n), and all forms

of “manycast” (kK < m < n). We use the term manycast as
a generalization of anycast. In particular, it may suffice to
send information (e.g., a request for data) from a source to
the £ members of a group of m > k members, or to receive
information from the £ members from a group of m members.
The group of m nodes may be a type of servers, or nodes that
maintain copies of specific information objects.

The total Euclidean length of an (n,m,k)-cast tree is a
function of the transceiver range 7'(n). Therefore, the optimum
(n,m, k)-cast tree with minimum Euclidean distance is a
function of T'(n).

Definition 3.5: Maximum Independent Set (MIS (A, r(n))):
An independent set IS(A,r(n)) of a graph G is a set of
vertices in GG such that the distance between any two elements
of this set is greater than r(n). The MIS(A,r(n)) of G is an
IS(A,r(n)) such that, by adding any vertex from G to this
set, there is at least one edge shorter than or equal to 7(n).

We note that MIS(A, r(n)) is unique. Finding such a set
in a general graph G is called the MIS problem and is an
NP-hard problem. Keshavarz et al. [19] use MIS(A, r(n)) to
describe the maximum number of simultaneous transmitters
when nodes use point-to-point communication. For the same
purpose and to account for the use of MPT or MPR, we
define the Maximum MPT or MPR Independent Set (MMIS)
as follows.

Definition 3.6: Maximum MPT (or MPR) Independent Set
(MMIS (A, T(n))): An MPT (or MPR) independent set is a set
of nodes in G that contains one transmitter (or receiver) node
and all receiving (or transmitting) nodes are within a distance
of T'(n) from this transmitter (or receiver) node. A Maximum
MPT (or MPR) Independent Set (MMIS (A, T'(n))) consists
of the maximum number nodes of MPT (or MPR) sets that
simultaneously transmit (or receive) their packets while MPT
(or MPR) protocol model is satisfied for all these MPT (or
MPR) sets. If we add any receiver (or transmitter) node from
G to MMIS(A,T'(n)), there is at least one MPT (or MPR)
set that violates the MPT (or MPR) protocol model.

Definition 3.7: Minimum Connected Dominating Set
(MCDS (r(n))): A dominating set (DS (r(n))) of a graph G
is defined as a set of nodes such that every node in the network
either belongs to this set or it is within a transmission range
of r(n) of one of the elements of DS(r(n)). A Connected
Dominating Set (CDS (r(n))) is a dominating set such that
the subgraph induced by its nodes is connected. A Minimum
Connected Dominating Set (MCDS (r(n))) is a CDS(r(n)) of
G with the minimum number of nodes.

Keshavarz et al. [19] use MCDS(r(n)) to describe the min-
imum rebroadcasting times required to reach the destinations
in a network in which broadcast is assumed. Similarly, to
account for the use of (n, m, k)-cast, we define the Minimum
Euclidean (n,m, k)-cast Tree (MEMKT (T'(n))) as follows.

Definition 3.8: Minimum Euclidean (n,m,k)-cast Tree
(MEMKT (T'(n))): The MEMKT(T'(n)) is an (n,m, k)-cast
tree in which the %k destinations out of m nodes receive
information from the source and this (n,m, k)-cast tree has
the minimum total Euclidean distance. For example, when
k = m, MEMKT(T'(n)) denotes the minimum Euclidean
multicast tree and it is the same as (MEMT (7'(n))) defined



in graph theory.

In the rest of this paper, ||.S|| denotes the total Euclidean
distance of a tree S; #S is used to denote either the total
number of vertices (nodes) in a set or the total number of
relays for a tree depending on whether S is a set or a tree; and
[IS]| is used for the statistical average of the total Euclidean
distance of a tree. Note when S is a tree, #S5 is equivalent
with the channel usage in that tree to transmit information
which is the same order as the number of the relays instead of
the total number of the nodes in that tree (include the source
and the destinations).

To compute the multicast capacity in networks with point-
to-point communication, Li et al. [22] used the total Euclidean
distance of MEMT and its relationship with EMST. We use a
similar approach for networks with MPT or MPR. Steele [23]
determined a tight bound for ||[EMST|| for large values of m,
and for a two-dimensional imples that

[EMST|| = © (v/m) 3)

Given that the distribution of nodes in a random network is
uniform, if there are n nodes in a unit square, then the density
of nodes equals n. Hence, if |S| denotes the area of space
region S, the expected number of the nodes, E(Ng), in this
area is given by E(Ng) = n|S|. Let N, be a random variable
defining the number of nodes in S; . Then, for the family of
variables N;, we have the following standard results known
as the Chernoff bounds [24]:

Lemma 3.9: Chernoff bound

For any 0 < § < 1, we have

P[IN; — n|S;|| > on|S;]] < eI, (4)

where 6 is a variable function of §.

Therefore, for any # > 0, there exist constants such that
deviations from the mean by more than these constants occur
with probability approaching zero as n — co. It follows that,
w.h.p., we can get a very sharp concentration on the number
of nodes in an area, so we can find the achievable lower bound
w.h.p., provided that the upper bound (mean) is given. In the
next section, we first derive the upper bound, and then use the
Chernoff bound to prove the achievable lower bound w.h.p..

IV. UPPER BOUND ON THE THROUGHPUT CAPACITY OF
(n,m, k)-CAST WITH MPT OR MPR

Keshavarz et al. [19] used #MIS(A,r(n)) to express the
maximum possible number of simultaneous transmissions (i.e.
channel usage) for the case of point-to-point communication.
We adopt a similar approach to obtain the maximum number
of concurrent transmissions for the case of MPT or MPR
by using #MMIS(A,T(n)). The following Lemma provides
an upper bound capacity as the ratio of #MIS(A,r(n)) to
#MEMKT(T'(n)). Note that #MEMKT(T'(n)) equals the
minimum number of transmissions required to (n,m, k)-cast
a packet to k£ destinations out of m when MPT or MPR is
used.

Lemma 4.1: In random dense wireless ad hoc networks, the
per-node throughput capacity of (n,m, k)-cast with MPT or

MPR is given by O (% X %)

Proof: We observe that #MEMKT(T'(n)) represents the
total number of channel usage required to transmit information
from a (n,m,k)-cast source to all its k destinations for a
single (n, m, k)-cast group of m nodes using MPT (or MPR).
By definition, the total (n,m, k)-cast throughput capacity in
the network is equal to nC), x(n). Denote by Ny the total
number of generated (n, m, k)-cast bits in [0, 7], then

N
nCri(n) = lim TT (5)

Note that for each bit, we require # MEMKT(T'(n)) channel
usage to (n,m, k)-cast one bit to all destinations. Clearly for
Nr bits, we need to use the channel Ny x #MEMKT(T'(n))
times. Since all (n,m, k)-cast bits are received within a finite
time Ti,ax, at time T+ T}, all transmissions of Nt bits are
finished. Therefore, with the definition of #MMIS(A, T'(n)),
we have

ZMMIS(A, T(0))(T + Tinax) = N x #MEMKT(T(n)).
(6)

By combining the two previous equations we obtain

1 Nr 1  #MMIS(A, T
Cmpk(n) = —x lim I # (A, (”))7
n Tos T 7 n  #MEMKT(T(n))
which proves the lemma. -

Lemma 4.1 provides the upper bound for the (n,m,k)-
cast throughput capacity with MPT or MPR as a function of
#MMIS(A,T'(n)) and #MEMKT(T'(n)). We next compute
the upper bound of #MMIS(A, T'(n)) and the lower bound for
#MEMKT(T'(n)). Combining these results provide an upper
bound for the (n, m, k)-cast throughput capacity with MPT or
MPR.

Lemma 3 gives the average total Euclidean distance for
EMST. To compute the lower bound for #MEMKT(T'(n)), we
find the relationship between #MEMKT(7T(n)) and |[EMST]|.

Lemma 4.2: ITn (n,m, k)-cast applications, the average
number of nodes in MEMKT(7'(n)) has the following lower
bound as a function of the transceiver range T'(n):

O (k(vmT(n))™") for m < © (my)

O (k) for k<O (mp) <m

© (T7*(n)) for © (my) <k <m

(7

where my = T~2(n). Clearly when m = k, the lower bound

for (n,m,m)-cast is given by

O(vmT~*(n)) for m < ©(T2(n))
O(T?%(n)) for m > © (T~3(n))

#MEMKT (T (n)) >

FMEMT(T(n)) > {
®)
Proof: we note here that #MEMKT(T'(n)) denotes the
number of the relays in the (n, m, k)-cast tree, which is equiv-
alent to the channel usage. It means that #MEMKT(T'(n))
can be smaller than k, although the (n,m,k)-cast tree
should connect all k destinations. A similar case holds for
#MEMT(T'(n)), which can be smaller than m.

Let m = k (i.e., assume (n,m,m)-casting). From Eq. (3)
and assuming that the (n,m,m)-cast tree has m + 1 nodes,
then ||[EMST| is equal to © (y/m) when m >> 1. If the
transceiver range 7'(n) is arbitrarily large, then for any node




in this tree, all adjacent nodes in the (n,m,m)-cast tree
are connected in one hop. In this case, #MEMT(T'(n)) is
equal to ©(mp), where my, is the threshold that makes this
set a CDS(T'(n)). Now, if the transceiver range is not large
enough to connect any two adjacent nodes in the (n,m,m)-
cast tree in one hop, then there are some nodes from the other
n — m nodes in the network that must be used to create a
connected (n,m,m)-cast tree. In this case, [MEMT (T'(n)) |
is greater than © (y/m), which is derived by connecting all
the nodes directly to each other in an (n,m,m)-cast tree
(see Fig. 2). Under this condition, #MEMT(T'(n)) is at least
© ((vm)/T(n)).

Now the question is what the threshold for m is between
these two limits. This threshold is derived by computing
the number of destinations in (n, m,m)-cast, my, such that
the two limits are equal, ie., © ((/mp)/T(n)) = O(my).
This equality holds when m;, = © (T~2(n)). The result
implies that, when m < m; or m > my, then the lower
bound of #MEMT (T'(n)) is © (v/mT~*(n)) or © (T2(n)),
respectively, which proves Eq. (8) for the (n, m, m)-cast case.

Let £ < m. Given that there are m destinations for each
tree for the case of an (n,m, k)-cast, the average Euclidean

distance between any two nodes for this tree is @.
Because the assignment of source-destinations groups is com-
pletely random, we do not know where the k destinations
are in advance. However, we have to connect all of the
k destinations. We first construct the multicast tree for m
receivers and then find the k destinations. Then we can say
that, on average, the total Euclidean distance for k destinations

is equal to % because of the random distribution of
k destinations. Using a similar argument as before, we can
say that when the transceiver range is not a very large value,
and so the number of relays in such a tree is lower bounded
by © (\/ﬁﬁ(no This is the top lower bound in Eq. (7).
When the transceiver range is very long, all m destinations
in the (n,m, k)-cast tree are connected. Hence, given that we
only need the closest k£ nodes in the set, then the number of
nodes is ©(k). This is the second lower bound in Eq. (7). In a
similar fashion to the proof for (n,m,m)-cast, the threshold
for T'(n) is derived when the first lower bound in Eq. (7)
is equal to the number of nodes in broadcast when all the
nodes are reachable in one hop, i.e., #MEMKT(T'(n)) = k.
Therefore, it is true that © ((/mk/mT(n)) = O(k), and
the solution to this equality is m; = © (T72(n)). This
means that, when m < my; or m > my, the lower bound
of #MEMKT(T'(n)) is © (ﬁ(n)) or © (k), respectively.
Once k > © (T‘2(n)), then the transceiver range is so large
that we can use © (T~2(n)) as the lower bound similar to the
second lower bound in (8), which is the last lower bound in
Eq. (7). This proves the lemma. |

Note that #MEMKT(T'(n)) and #MEMT(T'(n)) are the
same value for MPR, MPT, or point-to-point communica-
tion and they only depend on the communication range in
the network. The next lemma states the upper bound for
#MMIS (A, T(n)) for a network using MPT or MPR.

Lemma 4.3: The average number of simultaneous transmis-
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Fig. 2. The direct line between any two adjacent nodes in an (n, m, m)-cast
tree is equal to or smaller than the total Euclidean distance in the tree through
multiple relays.

sions, #MMIS(A,T'(n)), has the following upper bound in
networks with MPT or MPR.

#MMIS(A, T(n)) < ©(n) ©)

Proof: We want to find out the maximum number of
simultaneous transmissions in these dense networks. From
the protocol model for MPT shown in Fig. 1, the disk with
radius 7'(n) centered at any transmitter or receiver should
be disjoint from other disks centered at other receivers. For
example, in the case of MPT, if the disks are not disjoint, there
exist a receiver node that is located within the transmission
range of two nodes. Based on the assumption of MPT that
each node can only receive a single packet at a time (no
MPR capability), these nodes in the overlapping areas have
to receive two different packets at any time from different
receivers, which is in contradiction with the assumption that
each node can only receive one packet at a time. This means
that the disk with radius 7'(n) centered at any transmitter
should be disjoint. Similar argument can be given for networks
with MPR capability.

Thus, it is clear that, on average, there are 7712%(n)n
transmissions in one transceiver range 7'(n) consuming an

AT (n)
2

7
area of at least 7 (T(n) + 2 in a dense network.

Using this argument, it follows that the upper bound of
#MMIS(A,T(n)) is ﬁ, which proves the lemma. ®
2

Lemma 4.3 implies that the number of simultaneous trans-
missions with MPT or MPR is upper bounded by ©(n). By
contrast, for the case of point-to-point communication, Ke-
shavarz et al. [19] proved that #MIS(A,r(n)) = O(r—2(n)).
Therefore, the maximum number of simultaneous transmis-
sions cannot scale when neither MPT nor MPR is used.

Combining Lemmas 4.1, 4.2, and 4.3, we can compute the
upper bound of (n,m, k)-cast capacity for MPT or MPR in
the following theorem.

Theorem 4.4: In dense random wireless ad hoc networks
with MPT or MPR, the upper bound per-node throughput



capacity of (n,m, k)-cast is
O (k~'/mT(n)) for m < © (my)
Crmix(n)=1< 0 ( ) for k <O (my) <m,
O (T%(n)) for © (mp) <k <m

(10)

where m; = T~2(n). When k = m, the per node throughput
capacity is upper bounded as

(0T (m)/vm)
Cmim(m) = { (1 (n)

V. LOWER BOUND ON THE THROUGHPUT CAPACITY OF
(n,m, k)-CAST WITH MPT OR MPR

for m < ©(T2(n))

for m > (T~ ?(n)) ()

To derive an achievable lower bound, we use a TDMA
scheme for random dense wireless ad hoc networks similar
to the approach used in [25], [26].

We first divide the network area into square cells. Each
square cell has an area of 7%(n)/2, which makes the diagonal
length of the square equal to T'(n), as shown in Fig. 3. Under
this condition, connectivity inside all cells is guaranteed and all
nodes inside a cell are within transceiver range 7'(n) of each
other. We build a cell graph over the cells that are occupied
with at least one vertex (node). Two cells are connected if
there exist a pair of nodes, one in each cell, that are less than
or equal to T'(n) distance apart. Because the whole network

is connected when T'(n) = r(n) > © (\/log n/n), it follows
that the cell graph is connected [25], [26].

To satisfy the MPT or MPR protocol model, we organize
cells in groups so that simultaneous transmissions within
each group does not violate the conditions for successful
communication in the MPT or MPR protocol model. Let L
represent the minimum number of cell separations in each
group of cells that communicate simultaneously. Utilizing the
protocol model, L satisfies the following condition:

[ T(n)+ (14 A)T(n)
b= [1 MY

If we divide time into L? time slots and assign each
time slot to a single group of cells, interference is avoided
and the protocol model is satisfied. The separation example
can be shown for the upper two transmitter (MPT case) or
receiver (MPR case) circles in Fig. 3. For the MPT or MPR
protocol model, the distance between two adjacent transmitting
(MPT protocol model) or receiving (MPR protocol model)
nodes is (2 + A)T'(n). Because this distance is smaller than
(L—1)T(n), this organization of cells guarantees that the MPT
or MPR protocol model is satisfied. Fig. 3 represents one of
these groups with a cross sign inside those cells for L = 4.

We can derive an achievable (n,m,k)-cast capacity for
MPT or MPR by taking advantage of this cell arrangement and
the following property of the TDMA scheme with parameter
L.

w =[1+V22+A)] (12)

Lemma 5.1: The capacity reduction caused by the TDMA
scheme is a constant factor and does not change the order
capacity of the network.

Proof: The TDMA scheme introduced above requires
cells to be divided into L? groups, such that only nodes in
each group can transmit or receiver simultaneously. Eq. (12)
demonstrates that the upper bound of L is not a function of
n and is only a constant factor. Because the proposed TDMA
scheme requires L? channel uses, it follows that this TDMA
scheme reduces the capacity by a constant factor. |

Next we prove that, when n nodes are distributed uniformly
over a unit square area, no matter in MPR or MPR scheme, we
have simultaneously at least w circular regions (see

LT (n

Fig. 3), each one containing (5) nT<(n)) nodes w.h.p.. The ob-
jective is to find an achievable lower bound using the Chernoff
bound, such that the distribution of the number of edges in this
unit space is sharply concentrated around its mean, and hence
the actual number of simultaneous transmissions occurring in
the unit space in a randomly chosen network is indeed ©(n)
w.h.p..

Lemma 5.2: The circular area of radius T'(n) corresponding
to the transceiver range of a transceiver (transmitter in MPT or
receiver in MPR) j contains ©(nT?(n)) nodes w.h.p., and is
uniformly distributed for all values of j, 1 < 7 < W
Proof: The statement of this lemma can be expressed as

1
(LT(n)/V?2)?

Jim_P ﬂ

IN; — E(Nj)| < 6E(N;)| =1, (13)

where N; and E (N;) are the random variables that represent
the number of nodes in the transceiver circle of radius 7'(n)
centered around node j and the expected value of this random
variable respectively, and ¢ is a positive arbitrarily small value
close to zero.

(From the Chernoff bound in Eq. (4), for any given 0 < 6 <
1, we can find @ > 0 such that P [|[N; — E(N;)| > 6E(N;)] <
e~9E(N;)_ Thus, we can conclude that the probability that the
value of the random variable IN; deviates by an arbitrarily
small constant value from the mean tends to zero as n — oo.
This is a key step in showing that when all the events

ﬂ;LT(")/\F) |N; — E(Nj)| < 0E(N;) occur simultaneously,
then all N;’s converge uniformly to their expected values.

Utilizing the union bound, we arrive at

1
(LT(n)/V?2)?

P () IN; = E(N;)| < 6E(N;)
j=1
1
XL
= 1-P U IN; = E(W)| > §E(N;)

j=1

1
(LT(n)/V2)?

> 1- > P[IN;—E(N;)| > SE(N;)]
_ #efmm
> T wmevrt "
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Fig. 3. Cell construction used to derive a lower bound on capacity

Given that E(N;) = mnT?(n), then we have

1
(LT(n)/V2)?

lim P (1IN, — E(N;)| < 6E(N;)
Jj=1

S i p—— (15)

- e (LT(n)/V2)?
Utilizing the connectivity criterion in Eq. (1),

. 797771,7‘2(71) .
lim,, o0 GT‘W — 0, which completes the proof.
|

The previous lemma proves that, w.h.p., there are indeed
O(n) simultaneous transmissions (receivers in MPT case or
transmitters in MPR case) which are in W circles
of radius T'(n) around the transceivers (transmitters in MPT
case or receivers in MPR case), who can transmit or receive
simultaneously, as shown in Fig. 3. With Lemmas 5.1 and
5.2, we have done the preparation for the following achievable
lower bound.

Let us define #MEMKTC(T'(n)) as the total number of
cells that contain all the nodes in an (n,m,k)-cast group.
Also, #MEMTC(T'(n)) is defined as the total number of cells
that contain all the nodes in an (n, m, m)-cast group. The fol-
lowing lemma establishes the achievable lower bound for the
(n, m, k)-cast throughput capacity of MPR or MPR as a func-
tion of #MEMKTC(T'(n)). Note that #MEMKTC(T'(n))
only depends on the (n, m, k)-cast network parameters regard-
less of using MPR or MPT techniques.

Lemma 5.3: The achievable lower bound for the (n,m, k)-
cast capacity is given by

~1

Cm7k(n):Q((#MEMKTC(T(n))) ) (16)

Proof: There are (T'(n)/+/2)~2 cells in the unit square
network area. From the definition of #MEMKTC(T'(n))
and the fact that our TDMA scheme does not change
the order capacity (Lemma 5.1), it is clear that there are
at most in the order of #MEMKTC(T(n)) interfering
cells for any (n,m,k)-cast communication. For each
cell, the order of nodes in each cell is © (7T2(n)n).

Accordingly, the total lower bound capacity is given by
Q ((T(n) JV2)72 x (xT%(n)n) x (#MEMKTC(T(n)))
Normalizing this value by total number of nodes in the
network, n, proves the lemma. |

Given the above lemma, to express the achievable lower
bound of Cy, x(n) as a function of network parameters, we
need to compute the order of #MEMKTC(T'(n)), which we
do next.

Lemma 5.4: The average number of cells covered by the
nodes in MEMKTC(T'(n)), is tight bounded w.h.p. as follows:

e (k (\/ET(n))”) for m < © (my)
o (k) for k<O (mp) <m

© (T*(n)) for © (my) <k <m
17

#MEMKTC(T'(n)) =

where mp = T~2(n). When m = k for (n, m, m)-cast,

O (Vm(T'(n))™") for m < © (my)
O (T7%(n)) for m > © (my)

#MEMTC(T (n)) = {

(18)
Proof: We first prove Eq. (18) for the case of (n, m, m)-
casting. Because the total number of cells in this network
is equal to © (T72(n)), it is clear that one bound for
#MEMTC (T'(n)) is this value. That is, #MEMTC (T'(n))
cannot exceed the total number of cells in the network. On
the other hand, the total Euclidean distance of the (n, m,m)-
cast tree was shown earlier to be ©(y/m). Because T'(n) is
the transceiver range of the network, the maximum number
of cells for this (n,m,m)-cast tree can be © (v/mT(n)),
ie., #MEMTC (T'(n)) = © (y/mT*(n)). This bound can
be achieved at the worst case when every two adjacent nodes
in the (n,m,m)-cast tree belong to two different cells in
the network. However, in practice, it is possible that some
adjacent nodes in (n, m,m)-cast tree locate in a single cell
which means this bound can be achieved for sure. The actual
achievable bound is clearly the minimum of these two extreme
values in the network, which is a function of the topology of
the network, and this proves Eq. (18).

The proof of Eq. (17) can be derived from the proof of
Eq. (18) and similar steps as those taken to prove Lemma 4.2
straightforwardly. |

Combining Lemmas 5.3 and 5.4, we arrive at the achievable
lower bound of the (n, m, k)-cast throughput capacity in dense
random wireless ad hoc networks with MPT or MPR.

Theorem 5.5: The achievable lower bound of the (n, m, k)-
cast throughput capacity with MPT or MPR is

Q (k~"v/mT(n)) for m < © (my)
Q k™) for k < © (myp) < m,
Q(T%(n)) for © (mp) <k <m

Clearly when m = k, we have

[ e(T(n)/vm)
Cmm() = { o (1°(n)

for m < © (T*(n))

for m >0 (T7%(n)).
(20)



VI. CAPACITY WITH MPT, MPR OR POINT-TO-POINT
COMMUNICATION

From Theorems 4.4 and 5.5, we can provide the tight bound
throughput capacity for the (n, m, k)-cast when the nodes have
MPT or MPR capability in dense random wireless ad hoc
networks as follows.

Theorem 6.1: The throughput capacity of (n,m, k)-cast in
a random dense wireless ad hoc network with MPT or MPR
is
© (k~'v/mT(n)) for m < © (my)
e (k™) for k < O (my) <m .
© (T%(n)) for © (my) <k <m
The transceiver range of MPT or MPR should satisfy T'(n) >
() (\/log n/ n) Note that the thresholds for different values

for m and k provide various capacities for (n,m, k)-cast in
MPT or MPR. Clearly when k& = m, then

Cmom(n) = { © (T(n)/ﬁ) for m < © (T_2(n))

Crnk(n) = 21

O (T%(n)) for m > O (T~?(n)).
(22)

The (n,m, k)-cast throughput capacity of MPT and MPR
can be extended to 3-D easily.

The throughput capacity for networks using point-to-point
communication is given in [22] for the case of multicasting
(i.e., (n, m, m)-cast). However, the results we just derived
for the capacity of (n,m, k)-cast with MPT or MPR can be
extended to address point-to-point communication as stated in
the following theorem. The proof is presented in [27].

Theorem 6.2: The throughput capacity of (n,m, k)-cast in
a random dense wireless ad hoc network with point-to-point
communication is

o (m(nkr(n))—l) for m < © (1my)
S} ((ner(n))A) for k <O (my) <m
© (nfl) for © (my) <k <m

Cm’k(ﬂ) =

(23)
Summary of proof: The proof follows the same approach
used for the case of MPT (or MPR) with two key differences.
First, for point-to-point communication, the transceiver range
T(n) must be changed into the transmission range r(n).
Second, in point-to-point communication, there can be at most
a single successful transmission inside a circle of radius of
r(n) centered around each receiver node.

VII. DISCUSSION OF RESULTS

Our (n,m,k)-cast framework allows us to analyze the
throughput capacity C,, () in dense random wireless ad hoc
networks using MPT, MPR or point-to-point communication
under the protocol model as a function of the number of
receivers k, the group size m of each (n,m, k)-cast, and the
transceiver range 7'(n) for MPT or MPR. In the following,
we compare the order capacity attained when MPT or MPR
is used at each transceiver. Our results clearly indicate that
both MPT and MPR can provide order capacity gains for all
modalities of information dissemination compared to the order
capacity attained with point-to-point communication.

yyyyyyy

©(1) MPT or MPR(optimum)

O(T(n)
e O((1*(n)/m)")
1/2
9((l°g€/") )) MPT or MPR (general)
O(7*(n)
5 1/2
@((nlogn)"’j) @((luyﬁmn) )
©(logn/n) MPT or MPR (at least)
o(1/n) O((mnlogn)" 2)
Point-to-Point communication
o

o(1) O(T?(m) ©(n/logn) ©(n) ™

Fig. 4. Order throughput capacity of (n, m, m)-cast with MPT or MPR and
point-to-point communication as a function of number of destinations m and
transceiver range 71'(n)

A. Chy.m(n) as a Function of Group Size (m)

Fig. 4 shows the throughput capacity of MPT or MPR
in a wireless ad hoc network obtained from Eq. (22) as a
function of the number of destinations for each source node
with different transceiver range 7'(n) when m = k. As the
number of destinations per source (m) is varied from one to
n, the throughput capacity becomes that of unicast, multicast,
and broadcast, correspondingly. The figure clearly shows that
there are two threshold values for m (denoted by m,, and my)
that are critical to the throughput capacity.

If the number of destinations m = k is not a function of n,
then the order of capacity does not change, i.e., m, = O(1).
This result implies that the order capacity for both unicast and
multicast with limited number of destinations is the same! This
is very relevant for large wireless networks in practice, because
the constituency of a multicast group in a large network is
likely much smaller than and independent of the total number
of nodes. The main reason for this result is the fact that, when
the number of destinations is constant, the order of the total
Euclidean distance of a multicast tree does not change.

The second threshold for the values of m is m;, =
O(T~2(n)). If m > my, then the capacity of the wireless
ad hoc network with MPT or MPR converges to the broadcast
capacity of MPT or MPR, regardless of the number of desti-
nations in the network. This is the lowest capacity that can be
attained by the network.

When m,, < m < my, then the capacity of the network
with MPT or MPR decreases as the number of destinations
per communication group increases (see Fig. 4). Note that
the decrease in throughput capacity is by a factor of /m.
The main reason behind this behavior is the fact that when
the number of receiver nodes increases in a two dimensional
space, the size of the Euclidean distance of the (n, m, m)-cast
tree increases by a factor of y/m instead of m.

For the case of point-to-point communication, our result
for m = k = ©(1) equals the well-known capacity result
for multi-pair unicast introduced by Gupta and Kumar [1].
O(1/+/mnlogn) bits per second constitutes a tight bound for
the capacity of multicast communication (i.e., m = k < n)
when m < © (n/logn) and r(n) is chosen as the minimum



value to guarantee the connectivity criterion. The multicast
order capacity of a wireless network equals its capacity
for multi-pair unicast when the number of destinations per
multicast source is not a function of n. It has been shown
[22] that the multicast capacity of a random wireless ad hoc
network is © (1/n), which is the broadcast capacity of the
network [19] when m > ©(n/logn). From these results,
it is clear that our model incorporates and agrees with all
prior results on the capacity of wireless networks for unicast,
multicast, and broadcast when point-to-point communication
is assumed.

B. Cy, 1x(n) as a Function of Group Size (m)

Fig. 5 compares the throughput capacity of MPT or MPR to
that of point-to-point communication when k£ < m. Comparing
the results for both cases when the number of nodes is smaller
than ©(my), it appears that they both have the same term as
/m/k. However, for MPT or MPR this term is multiplied
by T'(n), while for point-to-point communication this term
is divided by r(n). If we assume T'(n) = r(n), it appears
that increasing the transceiver range increases the capacity
for the MPT or MPR scheme, while it decreases the capacity
for point-to-point communication. This fundamental difference
is due to the fact that the MPT or MPR scheme embraces
interference, while point-to-point communication is based on
avoiding it by limiting transmissions around receivers.

Comparing the capacities attained with MPT or MPR and
point-to-point communication for unicast traffic (see Fig. 4),
the ratio is equal to O(T'(n)+/nlogn). The same ratio is equal
to ©(T?%(n)n) for the case of broadcasting. If we choose a
larger value for the communication range for MPT and MPR,
ie, T(n) > © (\/logn/n), then it is easy to show that
the capacity gain for MPT or MPR compared to point-to-
point communication is larger in broadcast communication
than for unicasting. The larger gains attained with MPT or
MPR for broadcast communication are a consequence of the
fact that, as the number of broadcast destinations increases,
more copies of the same packets must be sent to a larger
number of nodes. In a network using MPT or MPR, concurrent
broadcast transmissions can be decoded by the receivers while
at most one broadcast transmission can succeed at a time when
point-to-point communication is assumed.

We note that the capacity of anycast or manycast is greater
than the capacity of unicast if & < ©(y/m), even if each node
requires to transmit its packets to more than one destination.
This result shows that, as long as &k < O(y/m), the total
number of hops required to transmit packet to k destinations is
always, on average, less than sending the packet from the same
source to a single randomly selected destination in unicast
communications. Equivalently, the total Euclidean distance
for a manycast tree is on average less than the Euclidean
distance between any randomly selected source and destination
in unicast communication. However, these Euclidean distances
become the same, on average, when k = ©(y/m). As it can
be predicted from this figure, the total Euclidean distance in
a manycast tree increases as k increase and for k > ©(y/m),

the capacity of manycast becomes less than unicast because
of the total Euclidean distance in the manycast tree.

Ci(m)
MPT or MPR

@(mw /k)

(T
( (")) ************ Jmlk increase

As T(n) increap

Point-to-Point Communication
@(r ‘(n)\/r?/nk)
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G)(n"r"(n))

As r(n) increas

o(1) o(r?m) e(r2m) o) ™

Fig. 5. Order throughput capacity of (n, m, k)-cast with MPT or MPR and
point-to-point communication

C. Cp, k(n) as a Function of Transceiver Range (T'(n))

Equations (22) and (21) show that the throughput capacity
of wireless ad hoc networks do increase with the increase in
the transceiver range 7'(n) when the transceivers encode (MPT
case) or decode (MPR case) more than one packet at a time.
Similar result for MPR was shown in [11] for the case of
unicasting. This result is in sharp contrast to results attained
with point-to-point communication, with which increasing the
communication range decreases the capacity. In networks with
MPT or MPR, by increasing the transceiver range in the
network we actually increase the total number of simultaneous
transmissions at a given time! In contrast, for networks with
point-to-point communication, a larger transmission range
leads to increased interference at larger number of nodes,
which forces these nodes to be silent during a communication
session.

Clearly, the capacity of the network is maximized if we
maximize the number of simultaneous transmissions in the
network. Ideally, if the transceiver range can be made ©(1),
then a network using MPT or MPR can scale linearly with n.
Obviously, the transceiver range is restricted in practice by the
complexity of the nodes. However, even the transceiver range
is assumed to have the minimum value, which is the connec-
tivity criterion in Eq. (1), MPT or MPR still renders a capacity
gain compared to point-to-point communication. Furthermore,
this gain is still an order gain equal to ©(logn) compared to
the capacity attained with point-to-point communication for
(n,m, k)-casting. Our result agrees and extends the capacity
gain result reported in [11] for unicast.

D. Duality Between MPT and MPR

From the analysis above, it is clear that MPT and MPR
are two cooperative techniques that are equivalent in terms
of capacity scaling laws. MPT concentrates on increasing the
encoding complexity at the transmitter, while MPR requires
more decoding complexity at the receiver side. The results in
this paper provide new directions and opportunities for future
research activities in wireless ad hoc networks.



The fact that MPR and MPT are equivalent to each other in
terms of capacity and delay scaling laws is important, because
MPT may be a more practical approach to embracing interfer-
ence than implementing MPR (e.g., by means of directional
antennas or beam forming). Our work shows that addressing
the practical implications of MPR and MPT schemes should
be the subject of future studies.

VIII. CONCLUSION

We showed that the throughput capacity of (n,m, k)-cast
with multi-packet reception/transmission is © (T'(n)y/m/k)
when £ < m < ©(T72%(n)), ©(1/k) when k <
O (T%(n)) < m and © (T?(n)) when © (T~2(n)) < k <
m. When T'(n) > © (w/log n/n) to satisfy the connectivity
criterion, MPT (MPR) leads to the minimum throughput
capacity gain of at least ©(logn) compared to the (n,m, k)-
cast throughput capacity with point-to-point communication.
When T'(n) = ©(1), which is the maximum transceiver range
for MPT (MPR), the network is linearly scalable. However,
this case is not practical in real systems, and simply pro-
vides the guideline for designing networks. It suggests that,
in order to increase the capacity of wireless ad hoc net-
works, we must embrace interference by using MPT (MPR).
This result is in sharp contrast with traditional interference
dominated networks based on point-to-point communication.
Finally, when the number of destinations is greater than
© (T72(n)) or equivalently the transceiver range is larger

than © (\/log n/n), there are higher throughput capacity
gains with MPT (MPR). This is the case in broadcasting or
multicasting with larger numbers of destinations, because MPT
(MPR) schemes can inhibit the negative effects of interference
compared to point-to-point communication.
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