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Abstract— The discrete CEO Problem is considered when
the agents are under Byzantine attack. That is, a malicious
intruder has captured an unknown subset of the agents and
reprogrammed them to increase the probability of error. Two
traitor models are considered, depending on whether the traitors
are able to see honest agents’ messages before choosing their own.
If they can, bounds are given on the error exponent with respect
to the sum-rate as a function of the fraction of agents that are
traitors. The number of traitors is assumed to be known to the
CEO, but not their identity. If they are not able to see the honest
agents’ messages, an exact but uncomputable characterization of
the error exponent is given. It is shown that for a given sum-
rate, the minimum achievable probability of error is within a
factor of two of a quantity based on the traitors simulating a
false distribution to generate messages they send to the CEO.
This false distribution is chosen by the traitors to increase the
probability of error as much as possible without revealing their
identities to the CEO. Because this quantity is always within
a constant factor of the probability of error, it gives the error
exponent directly.

Index Terms—Distributed Source Coding. Byzantine Attack.
Sensor Fusion. Network Security.

I. INTRODUCTION

Distributed systems are more likely to be vulnerable to
physical attack. In particular, a malicious intruder might seize
a set of nodes, then reprogram them to cooperatively obstruct
the goal of the network, launching a so-called Byzantine attack
[1], [2]. A useful application which could come under threat
of Byzantine attack is distributed source coding. The simplest
form of this is the problem of Slepian-Wolf [3], in which a
common decoder attempts to reconstruct all the source values
from a number of encoders. The Slepian-Wolf problem under
Byzantine attack is studied in [4]. The main drawback to this
problem, however, is that we cannot expect a reprogrammed
node to transmit any useful information about its measurement.
Thus it is unreasonable to expect to recover all the data
perfectly, as can be done in the non-Byzantine problem.

However, this is not as catastrophic as it might first appear.
For instance, one application is a sensor network, in which a
fusion center receives data from a large number of sensors
to gain some knowledge about the environment. Because
there are so many sensors reporting data, any individual
sensor’s data is not so important. What the fusion center is
really interested in recovering is not sensor measurements
themselves, but rather some underlying phenomenon that is

correlated with these measurements. Hence, the fact that a
Byzantine attack removes the fusion center’s access to certain
sensors’ measurements is not so damaging.

One approach to solving this problem would be to use
the techniques of [4] to decode the sensors’ measurements,
even though some of them might by incorrect, then post-
process these measurements using the methods of [5], which
studies distributed detection under Byzantine attack but with-
out coding. However, this strategy is not rate optimal, since
perfectly reconstructing all the measurements as in [4] is
hardly necessary. It is our goal in this paper to combine these
two steps into one, thereby reducing the rate.

The problem we wish to solve is the CEO Problem [6],
which makes the additional assumption that measurements are
conditionally independent given the underlying phenomenon.
We also assume that conditional distributions are identical
across sensors, an assumption that was partially relaxed in
[6], but we have not done so here for simplicity. To be precise,
we assume there are L agents, where agent i has access to the
sequence {Yi(t)}∞t=1, and the CEO (common decoder or fusion
center) is interested in recovering the sequence {X(t)}∞t=1.
These random variables compose a temporally memoryless
source with distribution

p(x)
L∏
i=1

W (yi|x).

We assume that a fraction β of the L agents are repro-
grammed. These we call traitors, and the rest we call honest.
The quantity β is assumed to be known prior to design of
the code, though the exact identity of the traitors is unknown
to the CEO. It is shown in [6] that even without traitors,
the probability of error cannot be arbitrarily reduced for any
finite total communication rate even when the number of
agents and the block length go to infinity, rather the best
possible probability of error falls exponentially with increasing
sum-rate. As in [6], we are interested in the error exponent
associated with this drop in probability of error, but now as a
function of β.

In this paper we investigate two different traitor models.
In the first, which we call strong traitors, the traitors are
able to observe the messages that the honest agents send
to the CEO, and may use this information to decide what
to send themselves. The other model we refer to as weak



traitors, in which the traitors cannot observe these messages.
In both these models, we assume the traitors have complete
access to all the sources, as well as the code, so the main
difference between strong and weak traitors is that with weak
traitors, the honest agents may use independent randomness
to construct their codewords, and this randomness is unknown
to the traitors. Hence, even though weak traitors know an
agent’s measurement and the manner in which it chooses its
transmission, they may not know the transmission itself. As
we will show, this difference has a profound effect on the
resulting error exponent.

The main results of this paper give computable bounds on
the error exponent for strong traitors, and an uncomputable but
exact characterization of the error exponent for weak traitors.
The specification of the model is completed, and the results
are stated, in Section II. The upper bound for strong traitors
is proved in Section III. Section IV contains the proof of
achievability for weak traitors, and Section V the converse.
Finally, Section VI gives some concluding thoughts.

II. MODEL AND RESULTS

Given block length n and rates Ri for i = 1, . . . , L, the
encoding function for agent i is given by

fi : Yni → {1, . . . , 2nRi}

where in general fi may be a random function. The decoding
function for the CEO is given by

φ :
L∏
i=1

{1, . . . , 2nRi} → Xn.

Denote by Ci the codeword from the set {1, . . . , 2nRi} sent by
agent i to the CEO. Honest agents choose their transmissions
by setting Ci = fi(Y ni ). If i is a traitor, then it may select Ci
in any manner it chooses, based on the following constraints.
The traitors may cooperate, and they have access to all the
sources Xn, Y n1 , . . . , Y

n
L , and to fi and φ. This assumption

that the traitors have access to much more than those same
agents if they were honest is perhaps overly pessimistic, but
we err on the side of giving the traitors more power rather than
less to ensure robustness. As discussed above, strong traitors
may base their choose of transmission on Ci for honest i,
while weak traitors may not. Finally, the CEO produces its
estimate of Xn by setting X̂n = φ(C1, . . . , CL).

The probability of error is given by

Pe =
1
n
dH(Xn, X̂n) (1)

where dH is the Hamming distance. Observe the the prob-
ability of error depends on the actions of the traitors, and
indeed the identity of the traitors. Let Pe(f1, . . . , fL, φ) be
the probability of error as given in (1) where f1, . . . , fL and
φ are the coding functions, but maximized over all possible
sets of βL traitors, and all possible actions of those traitors.
Let Pe(R,L) be the minimum of Pe(f1, . . . , fL, φ) over all
choices of coding functions with

∑L
i=1Ri ≤ R. Also let

Pe(R) = lim
L→∞

Pe(R,L).

As is shown in [6], Pe(R) is positive for all values of R, but it
falls exponentially fast with increasing R. Hence, our quantity
of interest is the error exponent given by

E(p,W, β) = lim
R→∞

− logPe(R)
R

.

Observe that E is a function of the distribution p,W and also
the fraction of traitors β.

We now state our results. The first gives computable bounds
on the error exponent for strong traitors. These bounds meet
and match the result of [6] at β = 0. The second theorem gives
uncomputable bounds on the probability of error for weak
traitors. As these bounds are a factor of two apart, they give
the error exponent exactly.

Theorem 1: In addition to X and Y , we introduce two
auxiliary random variables U and J . The variable J is in-
dependent of (X,Y ) with marginal distribution PJ(j), and
X → (Y, J) → U is a Markov chain. The conditional
distribution of U is given by Q(u|y, j), and we define for
convenience

Q̃(u|x, j) =
∑
y

W (y|x)Q(u|y, j).

We also introduce the vector γj for all j ∈ J . Let

F (PJ , Q, γ) =

min
x1,x2

∑
j

γjD(Q̃λ,j‖Q̃(u|x1, j))

I(Y ;U |X, J)
(2)

where

Q̃λ,j =
Q̃1−λ(u|x1, j)Q̃λ(u|x2, j)∑
u

Q̃1−λ(u|x1, j)Q̃λ(u|x2, j)
(3)

and λ is chosen so that∑
j

γjD(Q̃λ,j‖Q̃(u|x1, j)) =
∑
j

γjD(Q̃λ,j‖Q̃(u|x2, j)).

(4)
For strong traitors,

max
PJ ,Q

min
γ
F (PJ , Q, γ) ≤ E(β) ≤ min

γ
max
PJ ,Q

F (PJ , Q, γ) (5)

where on both sides we impose the constraints that∑
j

γj ≥ 1− 2β and γj ≤ PJ(j) for all j ∈ J . (6)

Theorem 2: Consider a block of k independent copies of
X and Y L denoted Xk and Y ki for i = 1, . . . , L. We
introduce auxiliary random variables Ui for i = 1, . . . , L,
where Ui is conditionally independent of all other variables
given Y ki . Denote the conditional distribution Q(ui|yki ). Given
sets H,S ⊂ {1, . . . , L} with |H| = |S| = (1 − β)L and
conditional distributions q(uHc |ykH) and q(uSc |ykS), define the
following two distributions:

P1(xk, uL) =
∑
ykH

p(xk)W (ykH |xk)Q(uH |ykH)q(uHc |ykH),

P2(xk, uL) =
∑
ykS

p(xk)W (ykS |xk)Q(uS |ykS)q(uSc |ykH).



Let

P̃e(R)

= min
k,L,Q

max
H,S,q

1
k

k∑
t=1

∑
xn,x̂n,uL:
x(t)6=x̂(t)

P1(xk, uL)P2(x̂k, uL)
P (uL)

where the following constraints are imposed on Q and q:

R ≥ 1
k

L∑
i=1

I(Y ki ;Ui|Xk), (7)

P1(uL) = P2(uL). (8)

For weak traitors,

P̃e(R) ≥ Pe(R) ≥ 1
2
P̃e(R). (9)

Therefore

E(β) = lim
R→∞

− log P̃e(R)
R

.

This problem with weak traitors was previously studied in
[7], which gave computable but non-matching bounds on the
error exponent. The lower bound in (5) was one of those
bounds, and while this result was proved for weak traitors in
[7], the proof given there does not rely on this, so we do not
repeat it here. The upper bound in (5) is proved in Section III.
Achievability for Theorem 2 is proved in Section IV. and the
converse in Section V.

III. UPPER BOUND FOR STRONG TRAITORS

We denote by Ci the codeword transmitted by agent i, and
Q(ci|yni ) the distribution used by agent i, if it is honest, to
generate Ci from Y ni . Of course, Ci may be deterministic
given Y ni , but we assume in general that it may be randomized.
Define a distribution on Xn and CL as

P (xn, cL) =
∑
ynL

p(xn)
L∏
i=1

W (yni |xn)Q(ci|yni ).

We will refer to various marginals and conditionals of this
distribution as well.

Let X̃t = (X(1), . . . , X(t − 1), X(t + 1), . . . , X(n)).
For any t and x̃t, define Ui(t, x̃t) to be a random variable
distributed with X(t) and Yi(t) such that

Pr(X(t) = x, Yi(t) = y, Ui(t, x̃t) = c)

= p(x)W (y|x) Pr(Ci = c|Yi(t) = y, X̃t = x̃t).

Note that X(t)→ Y (t)→ Ui(t, x̃t) is a Markov chain.
Suppose the traitors perform the following attack. They

select a set S ⊂ {1, . . . , L} with |S| = (1−β)L and |H∩S| =
(1− 2β)L, where H is the true set of honest agents. The set
S is the traitors’ target set, that they endeavor to fool the
CEO into thinking may be the true set of honest agents. They
generate a sequence X ′n from the distribution P (xn|cH∩S).
Finally, they construct CS\H just as honest agents would if
X ′n were the truth. That is, from X ′n, they generate CS\H

from the distribution P (cS\H |xn), and transmit this CS\H to
the CEO.

Observe that Xn, X ′n, CL will be distributed according to

P (xn, cH)P (x′n|cH∩S)P (cS\H |x′n)

=
P (xn, cH)P (x′n, cS)

P (cH∩S)
.

This distribution is symmetric in xn and x′n. In particular, if S
were the true set of honest agents, and the traitors performed
an analogous attack selecting the set H as their target set, then
precisely the same distribution among Xn, X ′n, CL would
result, except that Xn and X ′n would switch roles. Hence, if
the CEO achieves a probability of error of Pe; that is, if X̂n

is such that Pe ≥ 1
ndH(Xn, X̂n), then it must also be that

Pe ≥ 1
ndH(X ′n, X̂n), because the CEO can only generate

one estimate, but it must work in both situations. Therefore

Pe ≥
1

2n
[dH(Xn, X̂n) + dH(X ′n, X̂n)]

≥ 1
2n
dH(Xn, X ′n) (10)

=
1

2n

n∑
t=1

Pr(X(t) 6= X ′(t))

=
1

2n

n∑
t=1

∑
x(t) 6=x′(t),cL

P (x(t), cH)P (x′(t), cS)
P (cH∩S)

=
1

2n

n∑
t=1

∑
x(t) 6=x′(t),cH∩S

P (x(t), cH∩S)P (x′(t), cH∩S)
P (cH∩S)︸ ︷︷ ︸

Pe(t)

(11)

where we used the triangle inequality in (10). The expression
in (11) can be shown to be concave in P . We may write

P (x(t), cH∩S) (12)

=
∑
x̃t,ynH

p(xn)
∏

i∈H∩S
W (yni |xn)Q(ci|yni )

=
∑
x̃t

p(xn)
∏

i∈H∩S

∑
y

W (y|x(t))

· Pr(Ci = ci|X̃t = x̃t, Yi(t) = y)

= EX̃tp(x(t))
∏

i∈H∩S

∑
y

W (y|x(t))

· Pr(Ui(t, X̃t) = ci|Yi(t) = y)

= EX̃tp(x(t))
∏

i∈H∩S
Pr(Ui(t, X̃t) = ci|X(t) = x(t)). (13)

Define for convenience

P (x, uH∩S |t, X̃t)

= p(x)
∏

i∈H∩S
Pr(Ui(t, X̃t) = ui|X(t) = x). (14)



Substituting (13) and (14) into (11) and using concavity gives

Pe(t) ≥ EX̃t
∑
x1 6=x2
uH∩S

P (x1, uH∩S |t, X̃t)P (x2, uH∩S |t, X̃t)∑
x3

P (x3, uH∩S |t, X̃t)

≥ |X|−1EX̃t max
x1 6=x2

∑
uH∩S

P (x1, uH∩S |t, X̃t)P (x2, uH∩S |t, X̃t)
max
x3

P (x3, uH∩S |t, X̃t)

Let

Ux =

{
uH∩S : x = argmax

x′
p(x′)

∏
i∈H∩S

Q̃(ui(t, X̃t)|x′)

}
.

Then

Pe(t) ≥ |X|−1EX̃t max
x1 6=x2

∑
x3

∑
uH∩S∈Ux3

P (x1, uH∩S |t, X̃t)P (x2, uH∩S |t, X̃t)
P (x3, uH∩S |t, X̃t)

≥ |X|−1EX̃t max
x1 6=x2,x3

∑
uH∩S∈Ux3

P (x1, uH∩S |t, X̃t)P (x2, uH∩S |t, X̃t)
P (x3, uH∩S |t, X̃t)

. (15)

For fixed x3, if both x1 and x2 are different from x3, we can
always increase the value in (15) by making x1 or x2 equal
to x3. Hence, we need only consider cases in which either
x1 = x3 or x2 = x3. Thus

Pe(t) ≥ |X|−1EX̃t max
x1 6=x2

∑
uH∩S∈Ux2

P (x1, uH∩S |t, X̃t)

= |X|−1EX̃t max
x1 6=x2

p(x1) Pr(Ux2 |x1, X̃t).

Using ideas from [6], we have that

Pr(Ux2 |x1, X̃t) ≥ 2−
P
i∈H∩S D(Q

(i)
λ ‖Pr(Ui(t,X̃t)|x1))−o(L)

where

Q
(i)
λ (u) =

Pr1−λ(Ui(t, X̃t) = u|x1) Prλ(Ui(t, X̃t) = u|x2)

∆(i)
λ

(16)
with ∆(i)

λ a normalizing constant and λ chosen such that∑
i∈H∩S

D(Q(i)
λ ‖Pr(Ui(t, X̃t)|x1))

=
∑

i∈H∩S
D(Q(i)

λ ‖Pr(Ui(t, X̃t)|x2)). (17)

Hence

Pe(t) ≥ EX̃t2
−minx1,x2

P
i∈H∩S D(Q

(i)
λ ‖Pr(Ui(t,X̃t)|x1))−o(L).

(18)

Putting (18) back into (11) gives

− logPe

≤ − log
1

2n

n∑
t=1

EX̃t

· 2−minx1,x2
P
i∈H∩S D(Q

(i)
λ ‖Pr(Ui(t,X̃t)|x1))−o(L)

≤ 1
n

n∑
t=1

EX̃t min
x1,x2

∑
i∈H∩S

D(Q(i)
λ ‖Pr(Ui(t, X̃t)|x1)) + o(L)

(19)

where we have used Jensen’s inequality in (19).
A chain of standard inequalities (see [6]) yields

R =
L∑
i=1

Ri ≥
1
n

n∑
t=1

EX̃t
L∑
i=1

I(Yi(t);Ui(t, X̃t|X(t)). (20)

Putting (19) together with (20) and using the fact that∑
iAi∑
iBi
≤ max

i

Ai
Bi

for any nonnegative Ai and Bi, we get

− logPe
R

≤ max
t,x̃t

min
x1,x2

∑
i∈H∩S

D(Q(i)
λ ‖Pr(Ui(t, x̃t)|x1)) + o(L)

L∑
i=1

I(Yi(t);Ui(t, x̃t)|X(t))

≤ max
Ui:X→Yi→Ui

min
x1,x2

1
L

∑
i∈H∩S

D(Q(i)
λ ‖Q̃(ui|x1))

1
L

L∑
i=1

I(Yi;Ui|X)

+ ε. (21)

Observing that the choices of H and S could have been made
differently by the traitors, we introduce a vector γi for i =
1, . . . , L under the constraints

γi ∈
{

0,
1
L

}
and

∑
i

γi = 1− 2β. (22)

This allows us to tighten (21) to

− logPe
R

≤ min
γi

max
Ui:X→Yi→Ui

min
x1,x2

L∑
i=1

γiD(Q(i)
λ ‖Q̃(ui|x1))

1
L

L∑
i=1

I(Yi;Ui|X)

+ ε.

(23)

we claim that the value of (23) does not change if we replace
(22) with

γi ≤
1
L

and
∑
i

γi ≥ 1− 2β. (24)



This is because we may use arbitrarily large L, so any γi
satisfying (22) can be closely approximated by a γi satisfying
(24). Furthermore, we introduce a variable I with values in
{1, . . . , L} such that

Pr(U = u|I = i, Y = y) = Pr(Ui = u|Y = y)

and maintaining the condition γi ≤ PI(i) for all i = 1, . . . , L.
Doing so gives

− logPe
R

≤ min
γi

max
PI ,Q

min
x1,x2

∑
i

γiD(Q̃λ,i‖Q̃(u|x1, i))

I(Y ;U |X, I)
= min

γi
max
PI ,Q

F (PI , Q, γ).

Replacing I with a variable J over an arbitrary alphabet proves
the upper bound in (5). Note that in this process (16), (17),
and (24) have become (3), (4), and (6) respectively.

IV. ACHIEVABILITY FOR WEAK TRAITORS

We first prove the upper bound in (9) for k = 1, and then
extend it to higher k. Descriptions of the codebook, and the
encoding and decoding rules follow in Section IV-A. An error
analysis is conducted in Section IV-B.

A. Coding Method

1) Random Code Structure: Each agent i forms its code-
book in the following way. Given Q(ui|yi), it generates
2n(I(Yi;Ui)+δ) n-length codewords from the marginal distri-
bution of Ui. Let C(n)

i be this codeword set. These codewords
are then uniformly at random placed into 2n(I(Yi;Ui|X)+2δ)

bins.
2) Encoding Rule: Upon receiving Y ni , agent i selects

uniformly at random an element of

C(n)
i ∩ T (n)

ε (Ui|Y ni ).

This random selection is performed at run time, not in the
codebook generation. Recall that this randomization is un-
known to the weak traitors, and is the main way in which
honest agents can do better with weak traitors than with strong.
Call the selected sequence Uni . Agent i then sends to the CEO
the index of the bin containing Uni . Observe that the sum rate
is

L∑
i=1

[I(Yi;Ui|X) + 2δ]

so (7) is satisfied as δ → 0.
3) Decoding Rule: For each S ⊂ {1, . . . , L} with |S| =

(1 − β)L, the CEO looks for a sequence in T
(n)
ε (US) that

matches the received bins from all agents in S. If there is
exactly one such a sequence, call it Ûni [S] for all i ∈ S.
Otherwise, define this to be null.

For all i, if there is exactly one non-null value of Ûni [S] for
all S 3 i, then call this sequence Ûni . If all the values of Ûni [S]
are null or they are inconsistent, then leave Ûni undefined. Let
R be the set of agents with Ûni defined.

The CEO looks for a set S and a distribution q(uR\S |yS)
such that ÛnR is typical with respect to the distribution

P2(x, uR) =
∑
yS

p(x)W (yS |x)Q(uS |yS)q(uR\S |yS). (25)

If there are more than one such pair (S, q), choose between
them arbitrarily. Finally, form X̂n by simulating the distribu-
tion P2(x|uR) with ÛnR as the input sequence.

B. Error Analysis

Consider the following error events:
1) Agent i can find no conditionally typical codewords

given the sequence Y ni . That is, the set

C(n)
i ∩ T (n)

ε (Ui|Y ni )

is empty.
2) The sequence UnH is not jointly typical, where H is the

true set of honest agents.
3) There is another typical sequence unH in the same bin

as UnH .
4) For some S 6= H and i ∈ H ∩ S, Ûni [S] 6= Uni .
5) The complete sequence (Xn, ÛnR) is not typical with

respect to the distribution∑
yH

p(x)W (yH |x)Q(uH |yH)q(uR\H |yH)

for any q(uR\H |yH).
We will consider each of these error events in turn, start-

ing with event (1). The probability that a particular typical
sequence uni is chosen as an agent i codeword is

2n(I(Yi;Ui)+δ)

2nH(Ui)
= 2−n(H(Ui|Yi)−δ).

Since given Y ni , the number of jointly typical sequences Uni
is about 2nH(Ui|Yi), with high probability there will be at least
one conditionally typical codeword (indeed, on average there
will be 2nδ). That is, event (1) occurs with small probability.
By the Markov Lemma, event (2) also occurs with small
probability.

It can be shown (for example, in [8]) that event (3) occurs
with small probability if for all A ⊂ H ,∑

i∈A
Ri ≥ I(UA;YA|UH\A)

where Ri = I(Yi;Ui|X) + 2δ. That is, we need to show that

2δ|A| ≥ I(YA;UA|UH\A)−
∑
i∈A

I(Yi;Ui|X). (26)

Observe that

I(YA;UA|UH\A)−
∑
i∈A

I(Yi;Ui|X)

= I(YA;UA|UH\A)− I(YA;UA|X)
= I(X;UA|UH\A)
≤ H(X|UH\A). (27)



If |A| ≤ |H|/2, then |H \ A| → ∞ as L → ∞, so
H(X|UH\A) → 0. Hence (26) holds for sufficiently large L.
If |A| ≥ |H|/2, then using (27) again gives

1
|A|

[
I(YA;UA|UH\A)−

∑
i∈A

I(Yi;Ui|X)

]

≤ 1
|A|

H(X|UH\A) ≤ 1
|A|

H(X) ≤ 2H(X)
|H|

≤ 2δ

for sufficiently large L, so again (26) holds, meaning event
(3) occurs with low probability. Note that if events (1)–(3) do
not occur, Ûni [H] = Uni for all i ∈ H .

Event (4) occurs only if the bin associated with agents
S \H sent by the traitors contains a sequence unS\H that is
jointly typical with some sequence u′nS∩H different from the
true UnS∩H but in the same S ∩H bin. However, since weak
traitors have access only to Y nS∩H and not UnS∩H , in order
to cause this event to occur with significant probability, they
must choose a S \H bin containing a corresponding unS\H for
each possible UnS∩H .

For a given UnS∩H , we first calculate the probability that a
certain S \H bin contains an element jointly typical with an
element in the same bin as UnS∩H . The probability that a given
pair of S ∩H and S \H codewords are jointly typical is

2nH(US)∏
i∈S 2nH(Ui)

= 2n(H(US)−
P
i∈S H(Ui)).

The average number of codewords in an agent i bin is about

2n(I(Yk;Ui)−I(Yk;Ui|X)−δ) = 2n(I(X;Ui)−δ)

so the probability that a S \ H bin contains any codeword
jointly typical with an element of a given S ∩ H bin other
than UnS∩H is

2n(H(US)−
P
i∈S H(Ui))

· 2n
P
i∈S\H(I(X;Ui)−δ)(2n

P
i∈S∩H(I(X;Ui)−δ) − 1)

≤ 2n(H(US)−
P
i∈S H(Ui)+

P
i∈S(I(X;Ui)−δ))

≤ 2n(H(X)+H(US |X)+
P
i∈S(−H(Ui|X)−δ))

= 2n(H(X)−|S|δ)

≤ 2−nε

for L sufficiently large. The expected size of

C(n)
i ∩ T (n)

ε (Ui|Y ni )

is 2nδ , and most of these sequences will be in different bins.
Hence, the probability that a certain S \ H bin contains
sequences jointly typical with a large fraction of those S ∩H
bins is at most (2−nε)2

nδ

. The probability that any of the S\H
bins has this property is therefore at most

2n(
P
i∈S\H(I(Yi;Ui|X)+2δ)−ε2nδ)

which is vanishingly small. Thus, event (4) occurs with small
probability. Note that if events (1)–(4) do not occur, Ûni will
be defined and equal to Uni for all i ∈ H .

To evaluate the probability of event (5), consider some agent
i ∈ R\H . It will be enough to show that there exists a function
gi : YnH → Uni such that with high probability, gi(Y nH) = Ûni .
That is, it is not just that the traitors choose a bin based on
Y nH , in fact they choose the exact value of Ûni that will be
recovered by the CEO. If there exist such functions gi for all
i ∈ R \ H , then it is not hard to show that Y nH , Û

n
R\H are

typical with respect to the distribution

P (yH)q(uR\H |yH)

for some q. Since (Xn, UnH)−Y nH− ÛnR\H is a Markov chain,
by the Markov lemma (Xn, Y nH , U

n
H , Û

n
R\H) is typical with

respect to

p(x)W (yH |x)Q(uH |yH)q(uR\H |yH)

with high probability. Since we have already shown in our
analysis of events (1)–(4) that with high probability ÛnH = UnH ,
we have that event (5) occurs with vanishing probability.

We now prove the existence of the functions gi. Since i ∈ R,
there must be some S such that i ∈ S and the bins transmitted
by the agents in S contain a jointly typical element ÛnS [S].
Furthermore, all estimates of Uni must have been consistent,
so Ûni = Ûni [S]. We consider two cases. First, suppose the
S \H bin selected by the traitors contains an element typical
with Y nS∩H according to the non-traitor distribution∑

x,yS\H

p(x)W (yS |x)Q(uS\H |yS\H).

In this case, let gi(Y nH) be this typical element. The Markov
lemma implies that with high probability (UnS\H , gi(Y

n
H)) ∈

T
(n)
ε (US). Since we have assumed that ÛnS [S] exists, this

sequence must be the unique jointly typical sequence in the
transmitted bins, meaning gi(Y nH) = Ûni .

Now consider the case that the S\H bin contains no element
typical with Y nS∩H . We will show that if so, it is highly unlikely
that any element of the bin could be jointly typical with UnS∩H .
Given jointly typical ynS∩H and unS∩H , we first determine the
probability that a S\H codeword is jointly typical with unS∩H
given that it is not typical with ynS∩H . If we let Uni be selected
i.i.d. from P (ui) for all i ∈ S \H , independently from each
other. Then

Pr(UnS\H ∈ T
(n)
ε (US\H |unS∩H)|UnS\H /∈ T (n)

ε (US\H |ynS∩H))

=
Pr(UnS\H ∈ T

(n)
ε (US\H |unS∩H) \ T (n)

ε (US\H |ynS∩H))

Pr(UnS\H /∈ T (n)
ε (US\H |ynS∩H))

≤
Pr(UnS\H ∈ T

(n)
ε (US\H |unS∩H))

Pr(UnS\H ∈
∏
i∈S\H T

(n)
ε (Ui) \ T (n)

ε (US\H |ynS∩H))

≤ 2−n(
P
i∈S\H H(Ui)+ε)

2−n(
P
i∈S\H H(Ui)−ε)

·
|T (n)
ε (US\H |unS∩H)|

|
∏
i∈S\H T

(n)
ε (Ui) \ T (n)

ε (US\H |ynS∩H)|



≤ 2n(H(US\H |US∩H)+3ε)

2n(
P
i∈S\H H(Ui)−ε) − 2n(H(US\H |YS∩H)+ε)

≤ 2n(H(US\H |US∩H)−
P
i∈S\H H(Ui)+5ε)

Hence, the probability that any codeword in a given S \H bin
is jointly typical with unS∩H given that they are all not typical
with ynS∩H is at most

2n(H(US\H |US∩H)−
P
i∈S\H H(Ui)+5ε)2n(

P
i∈S\H(I(X;Ui)−δ))

= 2n(I(X;US\H |US∩H)−|S\H|δ+5ε) ≤ 2−nε

for sufficiently large L. Therefore, it is highly unlikely that
any S \H bin without a sequence jointly typical with ynS∩H
contains a sequence jointly typical with a large fraction of
possible values of UnS∩H .

As we have shown, with high probability, events (1)–(5) do
not occur. Hence, there exists a distribution q(uR\H |yH) such
that (Xn, UnR) is typical with respect to

P1(x, uR) =
∑
yH

p(x)W (yH |x)Q(uH |yH)q(uR\H |yH).

Recall that the CEO’s estimation strategy is to find a set S and
distribution q(uR\S |yS) such that UnR is typical with respect to
P2(x, uR) as defined in (25). This means that UnR is strongly
typical with respect to both these distributions, so

|P1(uR)− P2(uR)| ≤ 2ε∏
i∈R |Ui|

(28)

for all uR. Hence, in the limit as ε → 0, these two marginal
distributions are equal (i.e. (8) holds). Furthermore, since
the CEO generates X̂n from P2(x|uR), with high probabil-
ity (Xn, X̂n) is typical with respect to P1(x, uR)P2(x̂|uR).
Hence with high probability

1
n
dH(Xn, X̂n) ≤

∑
x6=x̂
uR

P1(x, uR)P2(x̂|uR) +
ε

|X|

≤ max
H,S,q

∑
x6=x̂
uL

P1(x, uL)P2(x̂, uL)
P2(uL)

+
ε

|X|
.

(29)

Where we have replaced R with {1, . . . , L} in (29) because
it cannot decrease the probability of error. Furthermore, we
may assume that P1(uR) = P2(uR), because by continuity
and (28), it does not change the value in (29) for small ε.
Taking the limit as ε → 0 and noting that the honest agents
may choose L and Q however they like, we see that

Pe(R) ≤ min
L,Q

max
H,S,q

∑
x6=x̂
uL

P1(x, uL)P (x̂, uL)
P (uL)

.

We have proved achievability of Theorem 2 for k = 1.
To prove it for k > 1, we need only modify the coding
scheme to use distributions of the form Q(ui|yki ) to generate
Uni sequences. That is, each agent treats each k Yi values
as a single letter, and degrades those letters to Ui as before.
It is easy to modify the proof given above to show that
Pe(R) ≤ P̃e(R).

V. CONVERSE FOR WEAK TRAITORS

Consider any coding scheme used by the honest agents
and the CEO that achieves a probability of error of Pe. Let
Q(ci|yni ) be the distribution with which agent i would honestly
generate its codeword Ci from the measurement Y ni . Observe
that

R =
L∑
i=1

1
n

log |Ci| ≥
1
n

L∑
i=1

H(Ci) ≥
1
n

L∑
i=1

I(Y ni ;Ci|Xn).

Suppose the traitors perform the following attack. They choose
a set S with |S| = (1 − β)L and a distribution q(cHc |ynH)
such that there exists a q(cSc |ynS) for which if we define the
distributions

P1(xn, cL) =
∑
ynH

p(xn)W (ynH |xn)Q(cH |ynH)q(cHc |ykH),

P2(xn, cL) =
∑
ynS

p(xn)W (ynS |xn)Q(cS |ynS)q(cSc |ykH)

then
P1(cL) = P2(cL). (30)

From Y nH , the traitors then use the distribution q(cHc |ynH) to
generate CHc . Because this attack has a mirror image when S
is the true set of honest agents and the traitors use q(cSc |ynS),
in order to achieve Pe, the probability of error must be no
more than Pe in both cases. Hence, by an argument along the
lines of that leading up to (11),

Pe ≥
1

2n

n∑
t=1

∑
xn,x̂n,cL:
x(t)6=x̂(t)

P1(xn, cL)P2(x̂n, cL)
P (cL)

.

Replacing n with k and C with U results in the lower bound
in (9).

VI. CONCLUSION

We looked at the Byzantine CEO Problem for two traitor
models. For neither one are our results ideal. It would be
desirable to find exact computable characterization of the error
exponent for both models, but doing so may be, especially
for weak traitors, highly challenging. It does appear, however,
that in Byzantine multiterminal source coding, exactly what
the traitors are able to observe has a significant impact on the
resulting performance.
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