On the Performance of Multiple Choice Hash Tables with Moves
on Deletes and Inserts

Adam Kirsch and Michael Mitzenmachér
School of Engineering and Applied Sciences
Harvard University
{ki rsch, mi chael ml@ecs. harvard. edu

Abstract— In a multiple choice hash table scheme, each stored in a hash table, for a small constdnt.ookups
item is stored in one ofd > 2 hash table buckets. The are therefore constant time. The space required is linear
ability to choose from multiple locations when storing an jn n, with small constant factors in practice. Dele-
item improves space utiIizatiqn, while the simplicity of ons are performed by simply removing the item, and
such schemes makes them highly amenable to haraware o otore ‘aiso require only constant time. Insertions,
implementation, as in a router. Some variants, such as . .
however, while constant time on average, generally take

cuckoo hashing, allow items to be moved among theid X X .) . .
choices in order to improve load balance and avoid hash fime logarithmic inn with non-negligible probability,

table overflows. We consider schemes that move items Which may not be suitable for many applications. In
on insertion and deletion operations, as arguably one order to avoid this high cost for an insertion, previous
would be willing to incur more time on such operations work has considered multilevel hash tables (MHTS) [1],
as opposed to more frequent lookup operations. To [4], which also used possible locations per item and
keep the schemes as simple as possible for hardware|inear space. To lower the insertion time to constant,
implementation, we focus on schemes that allow a single gygitional hardware, namely small content address-
move on an insertion or deletion. Our results show 0 e aries (CAMS), were used to handle potential
significant space savings when moving items is allowed, . .
even under the limitation of one move per insertion and overflow Causeq by collisions m}he hash table. In
deletion operation. [3], MHTs allowing only one additional move of an
item on an insertion are studied. In [5], an alternative
. INTRODUCTION construction where a CAM is used as a queue for move
perations is discussed.

In this paper, we consider further variations of multi-
vel hash tables that also allow moves when items are
eleted. As we shall see, handling moves on a deletion

generally harder than handling moves on an insertion.

is is because schemes for moving items when a new
em is inserted can be based on moving an existing
em that collides with the new item out of its way.

Jat is, it is clear what items to try to move. On a

High-performance hashing has become a fundamef
tal subroutine for a wide variety of high performanc
network processing tasks, including header lookup f
routing, measurement, and monitoring. In consider-
ing hashing alternatives, many possible consideratio
arise, perhaps the most important being how muc
time is spent performing lookup, insert, and deletét
operations, and how much space the table requir

Here time primarily corresponds to the number of has

tables entries that are read and, when items can gletlon, we generally want to try to move an existing

moved within the hash table, the number of items thé&em_ n the_ table into the now-vacant Space’.bm Itis
are moved, as computation is often free compared ot immediately clear where an appropriate item can

the time to perform a memory access or a write. He e found. We consider two approaches. First, we use

space corresponds to the amount of space required:’}%d't'onaI met:nofry todstc;]re smglllh;nts of wheresltemsd
hold n items, with high probability. 0 move can be found when a deletion occurs. Second,

For example, cuckoo hashing [10] is a scheme whe\r'g%e cop5|der an idea fr_om [7]: we make the locations
of an item dependent in such a way so that when an

each item had possible locations where it can be.
item is deleted, another item in the table can be easily

*This work was supported by NSF grant CNS-0721491 and gpund.to be m_oved into its location.
research grant from Cisco Systems, Inc. While we aim for analyses of our schemes, gener-

ally this does not seem to be possible using standasgppear well-suited to a hardware implementation. In
techniques. Analyses of several of our basic schemparticular, their open-addressed nature seems to make
remain open, and we rely on simulations to obtaithem preferable to approaches that involve chaining,
insight into performance. Our experiments are designechd their use of separate sub-tables allows for the
to highlight tradeoffs with these schemes and examirmossibility that all of the hash locations for a particular
the comparative value of schemes that move items @em can be accessed in parallel.

a deletion against those that move items on an insert.Two important methods for improving the perfor-
Naturally, we consider whether allowing a move ormmance of MHTs are proposed by Kirsch and Mitzen-
both an insertion and a deletion can yield substantialinacher in [4] and [3]. The key contribution of [4] is a
better results than moving on just an insertion overy compact and simple Bloom filter-bassdmmary

deletion alone. data structure that, for any item in the MHT, can
efficiently answer a query as to what sub-table contains

Il. BACKGROUND: MULTILEVEL HASH that item. For items not in the MHT, the summary has
TABLES some false positive probability, like a standard Bloom

The basis for our hash table schemes is the multilevéiter. In practice, the summary data structure is small
hash table (MHT) of Broder and Karlin [1]. This is aenough that it can be stored in fast memory when the
hash table consisting o sub-tablesTy,..., Ty, with hash table is so large that it can only be stored in much
each T, having one hash functioh;. (In this work, slower memory. Thus, the summary allows for a hash
we make the heuristic assumption that hash functiorigble lookup to be performed with only one access
are fully random; for more on this, see for exampldo slow memory, whereas the naive approach would
[9].) We view these tables as being laid out from topequire d accesses (possibly in parallel). One could
(T1) to bottom {Iy). To insert an itenx, we find the also use a Bloomier filter [2], although a summary
minimal i such thatT;[hi(x)] is unoccupied, and place specifically designed for this setting can perform better.
x there. We assume that each bucket can store at mosthe paper [3] shows that the space utilization of
one item, although generalizations to larger bucket siz&sMHT can be substantially improved by allowing a
are certainly possible. f1[hy(x)],..., Tq[hq(X)] are all single item in the table to be moved during an insertion
occupied, then we declareaaisis. There are multiple operation. This observation is a major motivational
things that we can do to handle a crisis. The approadarce behind this work, and so we elaborate in some
in [1] is to resample the hash functions and rebuild théetail. In particular, [3] proposes thgecond Chance
entire table. That work shows that it is possible to inseinsertion scheme, described as follows. Essentially, the
n items into a properly designed MHT wit@(n) total idea is that as we insert items into a standard MHT
space andl = loglogn+ O(1) in O(n) expected time, with sub-tablesTs,..., Tq, the sub-tables fill up from
assuming only 4-wise independent hash functions. top to bottom, with items cascading frof to T 1

Assuming fully random hash functions, Kirsch andvith increasing frequency &6 fills up. Thus, a natural
Mitzenmacher [4] modify the analysis of [1] to showway to increase the space utilization of the table is to
that, if the sub-tables are sized properly, then no rglow down this cascade at every step.
hashings are necessary in practice. Essentially, the ideal'his idea is implemented in the Second Chance
is that if theT;’s are (roughly) geometrically decreasingscheme in the following way. We mimic the insertion of
in size, then the total space of the table€dg&). If the an itemx using the standard MHT insertion procedure,
ratio by which the size offi,; is smaller thanT; is, except that if we are attempting to insettinto T;,
say, twice as large as the expected fraction of itenibthe bucketsTi[h;(x)] and Tiy1[hi+1(X)] are occupied,
that are not stored i1, ..., Tj, then the distribution of rather than simply moving on t@. as in the standard
items over thel;’s decreases doubly exponentially withscheme, we check whether the itgnim Ti[h;(x)] can be
high probability. This double exponential decay allowsnoved toTi1[hi+1(y)]. If this move is possible (i.e., the
the choice ofd = loglogn+O(1). For a more detailed bucketT1[hi;1(y)] is unoccupied), then we perform
description of this intuition, see [1] or [4]. the move and place at T[hi(x)]. Thus, we effectively

A very useful property of MHTSs is that they naturallyget asecond chancat preventing a cascade from, 1
support deletions, as one can just perform a lookup Ti;2.
on an item to find its location in the table, and then Just as in the standard MHT insertion scheme, there
mark the corresponding item as deleted. Also, MHTmay be items that cannot be placed in the MHT during

the insertion procedure. Previously, we considered thiecursively be moved up in the table. Intuitively and
to be an extremely bad event and strived to bound its practice, pulling items up to lower numbered levels
probability. An alternative approach if an item is notdecreases the subsequent probability of a failure, where
successfully placed in the MHT during its insertion isa newly inserted item cannot be placed. But there is no
to place it in astash which, in practice, would be immediate method to find an appropriate item to move
implemented with a CAM. To perform a lookup, weto the now empty location, and exhaustive search is far
simply check the stash in parallel with the MHT. too expensive. (This in part explains the previous focus
It turns out that since the Second Chance schens@ moving items only on insertion operations of [3].)
only allows moves from top to bottom, it is analyzable One approach to circumvent this problem would be
by afluid limit or mean-fieldtechnique, which is es- to storehints in cells, where the hints would consist
sentially a way of approximating stochastic phenomenaf a short pointer encoding where to find an item that
by a deterministic system of differential equations. Thlas previously collided at that cell. A pointer could be
technique also applies to the standard MHT insertioexpressed as an ordered pair of a level and a cell in that
procedure, as well as a wide variety of extensions tevel, which can be written in a small number of bits.
the basic Second Chance scheme. This approach mak&s will become clear, such hints take roughly jog
it possible to perform very accurate numerical analysdsts.) We emphasize that the hint is simply a hint; the
of these systems, and in particular it allows for somi#em at the given location may no longer be an item that
interesting optimizations. We refer to [3] for details. collided at the cell with the hint, because of intervening
The Second Chance scheme is also much moigsertions and deletions, and hence its hash value for
amenable to a hardware implementation than it maye level it could be moved to must be checked before
at first seem. To insert an itery we simply read all of moving the item.
the itemsy; = Ti[h1(X)],...,Yda = Tqlhg(X)] in parallel. A variety of hints and move strategies are possible.
Then we compute the hashés(yi),...,hq(yg—1) in One approach would be to store a hint whenever a
parallel. (Here, for notational simplicity, we are assumeollision occurs at a cell, always replacing any existing
ing that all of Ty[h1(X)], ..., Ta[hq(X)] are occupied, so hint. Another approach would be to store the collision
that they;’s are well-defined,; it should be clear how tocorresponding to the item that has been placed at
handle the general case.) At this point, we now havhe deepest level. Yet another alternative would be
all of the information needed to execute the insertioto only store hints for items at the next level; this
procedure without accessing the hash table (assumigkightly shortens the length required for a hint, and
that we maintain a bit vector indicating which bucketsvould still allow items at deep levels to be moved up
of the table are occupied). recursively. We clarify that our goal is not to provide
The Second Chance scheme also supports deletiamsomplete picture of all the various permutations of
in the natural way: an item can simply be removedtiint strategies that can be imagined, but to obtain
from the table. However, as with many hash tablsome insight into the potential of schemes that move
constructions, the intermixing of insertions and deleitems on a deletion as compared to other approaches.
tions fundamentally changes the behavior of the systerAs our tests of performance will be based primarily
making analysis via fluid limits inaccurate (albeit stillon simulations, we remark that performance of any

potentially useful). For details, see [3]. given scheme may depend on a number of variables,
particularly the distribution of the lifetime of an item
Il USING HINTS in the table before deletion.

With a standard multilevel hash table, each item While multiple moves per deletion are possible,
obtains an independent hash for each level of the haBHlowing [3] we focus attention on schemes that are
table. With no correlation between levels, collisiondimited to one move per deletion operation.
at one level do not affect another, allowing items to
easily find free locations. As a downside, howevef?‘
it is not entirely clear what to do when item are We provide some basic simulation results. We em-
deleted from the hash table. Potentially when an item ghasize that these results are not meant to cover the
deleted from level — 1, some item at level or some wide range of possibilities, but to give insight into
deeper level could be moved back to that spot, arttiese processes. When choosing a hash table structure,
possibly then additional items from further levels couldne must consider the tradeoffs among the number of

. Experimental Results

TABLE |

hash functions, the load factor (ratio of items to cells
NUMERICAL RESULTS FOR HINFBASED SCHEMES

in the hash table), and the probability of an overflow.

There are also potential issues in sizing the subtables, ltems | Hashes| Max. | Avg.
deciding the number of items per bucket, determining A = S'IZe (Levels) | Stash | Stash
the number of moves allowed, and so on. In designing NchE?ee 2‘1220 " ('tgrlns) (';ezrg?
simulations, one must consider the distributions of No Move || 16384 12 29 4375
lifetimes among items, how the load varies over time, No Move || 32768 13 31 3.896
and the overall length of the simulation. Second Chance 8192 6 2 0.001
. . L Second Chance| 16384 6 2 0.001

Here we begin with the goal of aiming for a load Second Chance 32768 6 1 0.003
of at least 50%. We test settings where each bucket Hint+1 Move | 8192 7 2 0.004
holds only one item, and the size of each sublevel n:mﬁ mgxg ég?gg ; g 8-822
of the hash table falls _by a_fac_tor of/ZL from the Hint+Moves || 8192 6 5 0.063
previous level. The load is maintainedratems, where Hint+Moves || 16384 6 5 0.131
in our tests we usa = 213 214 215 we initially load Hint+Moves || 32768 6 7 0.246
; : i~ Hint+1 Movet+SC || 8192 4 10 1.198

the t_able Wlthn mse_rts, an?{?then aIterr_late deletion Hintt1 MoverSe || 16384 4 15 > 345
and insertion operations for2 steps, which appears inii1 Moversc | 32768 4 18 4.678
more than sufficient time for the process to reach Hint+Moves+SC || 8192 4 6 0.236
steady-state. This alternation of insert and deletes is Hint+Movest-SC || 16384 4 8 0.455
Hint+MovestSC || 32768 4 9 0.911

roughly equivalent to assuming item lifetimes follow
the memoryless exponential distribution. We track both
the load at each level of the hash table at the end of the

pr(?jceﬁs to Ot?ta'” aln agproxmat;tel ste?d%/—statﬁ averagdfance scheme with these deletion-based schemes, and
and the maximum foa at each level throughout e,y v performance improves substantially. The gap
process. Finally, we allpw a small s'_[ash (generally, UBetween one move on a deletion and multiple moves
o size 10, although slightly Iarger in some cases) tF?early disappears. With a small CAM, a load factor of
holilltems_ that cannot b(:)glé;lc_ed N tf\]/\e/ hash t%ble. anz with just four hash functions can be achieved, using
con Eurat]lcorr]l Wﬁsf rurl'l tlmesd edctcr)]ns' er .t € at most one move per insert and deletion operation.
numoer of hash functions required arn € MaXIMU il this still does not meet the performance of a full
size of resulting stash in order to achieve no crisis foéuckoo hashing implementation with four choices, the

those 1'0’000 trials. _ improvement over moving at most one item only on
We first note that with no moves at all, a load factofysertion or deletion is strong.

of 1/2is just barely possible with a MHT. As shown preyious experience with schemes that move only
in Table I, we required increasing the stash size tgn insertions has shown that for small stashes, the
32, and a much larger than desirable number of hagfiribution of the stash size is approximately Poisson.
functions. For comparison purposes, we also considfjere we find a similar rough correspondence. The
the Second Chance scheme of [3], which uses at mQ§ktribution for the stash size at the end df Moves

one move on each insert and no moves on a deletiddyer the 10,000 trials is given below in Figure 1.
In our initial experiments we found that the approach

of replacing any existing hint whenever a collision IV. RESTRICTED HASHING

occurred performed best of our proposed schemes, soAn alternative approach, suggested in [7], avoids the
we report the results for this algorithm. We consideneed for additional storage for hints by making hash
two variants of this scheme. In the first, only one movéocations at levels beyond the first depend only partially
is allowed per deletion, so an item can only be moved ton the item, and primarily on the bucket at the previous
the vacated cell. In the second, when an item is movéevel. For example, one way this could be done would
because of a deletion, another item can recursively lbe to have the location of an itemat the first level
moved into its empty location, and so on as muche given by the hash valug (x), at the second level
as possible. As can be seen from our experimentsy hy(hi(x)), and so on. A simple variation is to have
the recursive variation adds some benefit in terms dfie bucket at théth level be given byn(x) mod Z~'+1,
performance, but both schemes perform less well tharhis approach simplifies moves when deletions occur;
the Second Chance scheme. given an item to be deleted, one can easily find items

Naturally, we consider combining the Second

0.2

EaniricaI PDF of Stash Size [0’ 2k7|)’ forie [1’\/_ 1] andj € [O’ 6)'

PDF of Poisson(4.678) —— | We describe how these hash functions are used for
insertion and deletion. For an inputits bucket in the
first table is given byH(x). If that bucket is freex

is placed there. If there is a collision, however, then
X must be placed at a subsequent level. The item will
have one bucket at each level, given by

hl,gl(x) (H (X)), h27gz(x) (thl(x) (H (X))), s

Alternatively, if f(x) is the possible bucket ofat level
i, thenh; 4 (f(x)) is its possible bucket at the next
level.

More descriptively, the bucket for at the first level
Fig. 1. A comparison of the distribution of the stash size and thg IVeN by H(x). In subseqL_Jent levels, if there are
Poisson distribution. collisions at a bucket, any items that hash to these

buckets havel possible buckets at the next level that
they can be hashed to, given by the functibps which
that can move to the empty space, based on searchinmap buckets at levdl to ¢ buckets at levelj. Which
set of buckets dependent only on the vei(e). A clear specific bucket is used for an itemat each level is
problem with this approach is that overloaded bucketietermined by the hasB(x) (This is referred to as a
simply pass items down level by level; if the load ofdeciderfunction in [7].) Intuitively, the hash functions
some bucket at the first level is larger than the numbéy ; are used to spread collisions at one level to multiple
of levels, then there will be a failure. In short, by notbuckets at subsequent levels.
randomizing the hash per item at each level, one greatly This approach increases the spread of items across
reduces the spread of items among buckets after the fitlse table while maintaining the ability to move items up
level. in the table in response to deletions. Specifically, when

While it is possible to use more sophisticatedn item is deleted, there are omypossible buckets at
schemes, we here presemegativeresult. We consider the next level to examine to see if an item can be moved
a very powerful scheme that uses this general approaiththe open bucket, and at ma&t? possible buckets
to avoid the need for hints, and show that it can b total to consider through all levels. (It is possible
numerically analyzed. With this analysis approach, wthat an item exists in the table that can be moved to
show that even this scheme has comparatively potihve open bucket, but that it is not at the next level,
behavior compared to alternative schemes using hints,might have been placed at a later level because of
or even the Second Chance scheme of [3] that onfurther collisions.)
moves items on insertions. We therefore suggest thatin fact, intuitively, we don’t necessarily want tieg;
these schemes will likely prove less effective in almogb be “random” hash functions; in such a case, certain
all contexts. buckets at each level could essentially go unused, as no

bucket from the previous level would hash to them, and
A. A General Setup other buckets could receive items from far more than

We first discuss how to increase the spread by usinije average number of buckets at the previous level.
a more sophisticated approach, describing the setuplimstead, we suggest using shifts; although we do not
full generality. Our suggested structure depends onshow it here, our analysis shows that shifts perform
parametel. (Generally,/ will be small; it may help to more effectively. More descriptively, when level sizes
think of / =2 in what follows.) A first hash function are a power of two and each bucket has two choices,
H maps items in the universe to the rari@e2¥), and we can think of each level as being split into a left half
a second hash functio® maps items to the range and right half. For each half, each bucket is given two
[O,KV‘l), wherev is the number of levels. Thinking possible buckets on the next level, one on the left and
of G(x) as anf-ary vector of lengthv—1, let gi(x) one on the right, on the next level. Specifically, we use
be theith item of the vectorG(x). Also, there are hjj(y) =y+sjomod -1 if y< 21 andh j(y) =
hash functionsh; ; mapping items from0,2¢~1) to (y+sj; mod 271~1) 4 2k-1=1 if y > 2k for distinct

0.18 |

0.16 |
0.14
0.12
0.1 ¢
0.08 |
0.06
0.04 |
0.02 |

2 4 6 8 10 12 14

Bin(n,2%) First, while the distribution of items in any single
bucket at the first level is indeed given by Bin2¥),
the joint distribution among several buckets does not
exactly correspond to independent binomial random
variables. This difference is negligible asymptotically,
and we ignore it henceforth. Similarly, when we reach
the last level, we obtain a distribution for the number
of items that land in each bucket, but we do not obtain
a joint distribution, which would allow a direct calcula-
Fig. 2. An example with three levels. At the top level, the numbefion of the number of items overflowing into the stash.
of items m_each bucket is distributed according to a blnomla%h . - h iabl independent appears to
random variable, assumed independent. We can then compute gain, treating the _Vana esas . p pp_
distribution of items in each bucket at the next level, and so on tB€ @ rough but suitable approximation. Alternatively,
the last level. we can derive the expected overflow into the stash,
and use the experimental fact that this distribution is

. . roximately th m of in ndent Bernoulli trials,
shifts sjo andsj1. For appropriately chosen constantsapp oximately the sum of independent Bernoulii trials

) . . and is therefore approximately Poisson or normal in the
Sijo andsj1, and assuming the table is sufficiently large . .] .
. Standard regimes. Finally, as mentioned previously, we
we can ensure that the items that hash to a bucket . . "
A : - are assuming that we have chosen shifts appropriately,
H(x) have ¢' distinct possible buckets to hash to in L
. T o . so that each bucket receives items passed frobugk-
level i. Another way of thinking about it is given in . . .
.) . I) ets in the previous level, and there is no dependence.
Figure 2; under appropriate conditions regarding th

size of the hash table and the choice of shift offsets, ee Flgu.re 2.) _
branching backwards from a bucket at the last level, Interestingly, the above analysis can be made to hold

the buckets that potentially pass items to this buck&ven in the case of deletions. It is not clear that it would

form a tree. This fact avoids dependencies that wouftf Natural under any deletion scheme for the item kept
otherwise complicate analysis in a bucket to be chosen randomly from the items

hashed to the bucket. However, one could imagine a

B. An Optimistic Analysis somewhat impractical algorithm which kept this invari-

We now suggest how to analyze this approact@nt after any insertion or deletion; as a newly inserted or
utilizing techniques from [3], [4]. For convenience, wedeleted item only affects the load of a constant number
first consider the case of insertions only. If we considedf buckets, such a scheme might not even be completely
the first level, the distribution of items in a bucketimpractical, as updates would take only constant time
is Bin(n,27X). If buckets can holdc items, then the and a constant number of move operations (although
number of items passed on to the next level is dighese constants can be quite high, exponential in the
tributed as(Bin(n,27¥) —c¢)*, where(x)* = max(x,0) nhumber of levels). We call the scheme where, at each
is the standard notation. We take= 1 henceforth step, each bucket keeps a random item and passed down
although this analysis approach is more general. &l others the Random scheme. Our analysis above
the remaining elements were split randomly amdng allows us to compute steady-state quantities for the
buckets at the next level, each would obtain a numb&andom scheme. (The maximum over extended time
of items distributed as BiifBin(n,2¥) — 1)*,1/¢), periods would have to be considered via simulation, as
and the distribution of the number of items in a birthere would be dependence between time steps.)
at the second level would be the sum df Andom A more sophisticated scheme, which we call Greedy,
variables with this distribution. From this, we we caris to keep not a random item for each bucket, but
calculate the distribution of the number of items ininstead keep an item that balances as much as possible
a bucket at the second level, and so on proceeditige items distributed to the next level. That is, if a
recursively, until we obtain the probability a bucketucket gets six items, with four mapped to bucket
at the last level overflows. Using this approach, wat the next level and two to buck& it makes sense
can obtain quite accurate predictions for the numbeo store one destined to buckét (It might not be best
of overflowing bins. in any particular instance, but statistically it is the tigh

We note that there are some simplifications beingpproach.) We can analyze this scheme numerically as
made in this analysis, and hence it is only approximateell, using the same approach. Indeed, we can similarly

TABLE Il

additional item to move on an insertion and deletion
NUMERICAL RESULTS FOR SCHEMES WITH LIMITED HASH

gain substantially over schemes with no moves, or

FUNCTIONS. . . .
previous schemes that move only on insertion.

Items Hash | Average An alternative approach based on using highly re-
<o T('BTVGS"_O) Functions ?ttaSh) stricted hash functions, suggested by the work of [7],
chneme aple size Iems : .
Random 8192 5 0618 appears less effective. Here our analyss of a very op-
Random| 16384 6 1.236 timistic scheme shows performance will be worse than
Random 32768 6 2.470 even the easily implemented Second Chance scheme
Greedy| — 8192 6 0.0455 that moves items only on insertions.
Greedy | 16384 6 0.0908 A i te that koo hashi
Greedy| 32768 6 0.1815 S an open question, we note that cuckoo hashing

schemes generally do not perform moves on deletions,
only on insertions [10]. While moves on deletions

analyze any scheme where the item to be kept at tH¢uld not appear capable of changing the asymptotic
bucket at each level depends only on the items at tﬁ@aracteristics of the cost of insertion operations, it
bucket at that level, and not on happenings at futul§ Interesting to consider whether moves on deletions
lower levels. Our assumption is that the Greedy scherrf@uld improve practical performance significantly.

and indeed even the Random scheme, have performance REFERENCES
significantly better than one could hope to expect from

.[1] A. Broder and A. Karlin. Multilevel Adaptive Hashing. In
schemes used in practice. While this assumption Ié Proceedings of the 1st ACM-SIAM Symposium on Discrete

admittedly unproven, we do not expect a better online Algorithms(SODA), pp. 43-53, 1990.
scheme. [2] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal. The Bloomier

; ; Filter: An Efficient Data Structure for Static Support Lookup
The results from Table Il give the expected size of Tables. InProceedings of the Fifteenth Annual ACM-SIAM

the stash after using six levels. Eyen the optimistic gymposium on Discrete Algorithif@ODA), pp. 30-39, 2004.
Greedy version of this approach, which in theory allows[3] A. Kirsch and M. Mitzenmacher. The Power of One Move:

multiple moves on any insert or delete operation and Hashing Schemes for Hardware. Rioceedings of the 27th

: : . : IEEE International Conference on Computer Communications
potentially requires examining a considerable number (INFOCOM), 2008.

of buckets for an item to move, has a higher averages) a. kirsch and M. Mitzenmacher. Simple Summaries for Hash-
stash size than using just the Second Chance scheme ing with Choices.IEEE/ACM Transactions on Networking
of [3] on insertions, as can be seen by comparin%S] 16(1):218-231, 2008.

. A. Kirsch and M. Mitzenmacher. Using a Queue to De-
with Table I. While the optimistic scheme potentially amortize Cuckoo Hashing in Hardware.Pnoceedings of the

performs better than schemes that only use moves on Forty-Fifth Annual Allerton Conference on Communication,
deletions, we believe it is clear that the hint-based Control, and Computing2007.

: ;] A. Kirsch, M. Mitzenmacher, and U. Wieder. More Robust
approach combined with the Second Chance scheme df! Hashing: Cuckoo Hashing with a Stash, To appedticeed-

when hints might be problematic, just using the Second g of the 16th Annual European Symposium on Algorithms

Chance scheme, provide better performance. 2008.
[71 S. Kumar, J. Turner, and P. Crowley. Peacock Hash: Fast
V. CONCLUSIONS and Updatable Hashing for High Performance Packet Pro-

. .)) cessing Algorithms. IrProceedings of the 27th IEEE Inter-
Extending the direction taken in [3], we have con- national Conference on Computer CommunicatighsFO-

sidered multilevel hash tables that move items on either COM), 2008.

an insertion or a deletion. Moving items on a deletionl®] M- Mitzenmacher, A. Richa, and R. Sitaraman. The Power
of Two Choices: A Survey of Techniques and Results. In

1S hardgr than _On an 'nsert'o_n’ S!nce one ”ee‘?'s & Handbook of Randomized Computireglited by P. Pardalos,
mechanism to find an appropriate item to move int0 S. Rajasekaran, J. Reif, and J. Rolim. Kluwer Academic

the empty location. Also, such schemes do not appear Publishers, Norwell, MA, 2001, pp. 255-312.

; ; M. Mitzenmacher and S. Vadhan. Why Simple Hash Func-
generally amenable to standard analysis techniques, a tions Work: Exploiting the Entropy in a Data Stream. In

for many of them, analysis remains open. Proceedings of the Nineteenth Annual ACM-SIAM Symposium
With these caveats, we have found experimentally on Discrete Algorithm§SODA), pp. 746-755, 2008.
that using hints to locate possible items to move oHOl R. Pagh and F. Rodler. Cuckoo Hashiripurnal of Algo-
a deletion is a reasonable approach that can s fithms, 51(2):122-144, 2004.
pp . \ﬁ] B. Vocking. How Asymmetry Helps Load Balancingpurnal
space or reduce the number of hash functions used of the ACM 50(4):568-589, 2003.

in such schemes. Schemes that allow even just one

