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Abstract— Communication requirements for nestedness A. Decentralized System Model

conditions require exchange of very large data noiselessly . .
hence these assumptions are generally impractical. In this Let X be a space in which elements of a random

paper, we present a weaker notion of nestedness, which Sequence{z,,t € Z, U{0}} live in. Let an observation
we term as stochastic nestedness. Stochastic nestedness ishannelC’ be defined as a stochastic kernelXmx Y’,
characterized with a sequence of Markov chain conditions. such that for everyz € X, p(.|z) is a probability
Itis shown that if the information structure of two decision  {istribution onag(Y?) and for everyA € o(Y?), p(Al.)

makers satisfy a stochastically nested structure, then the . . iy
optimization admits a dynamic programming recursion is a function ofa. Let there bel decision makers,

and the optimization is tractable; and in particular for the ~ {PM*,i = 1,2,..., L}. Let a Decision Maker (DM)
LQG problems, the team optimal solution is linear, despite DM* be located at one end of an observation chaéhel
the lack of deterministic nestedness or partial nestedness with inputsz; generated a§}; at the channel output. We
Itis also shown that the common state required need notbe efer to a policyIT? as a sequence of control functions

consisting of observations and it suffices to share beliefs . : i :
on the state and applied control actions; a pattern we which are causal such that the action/o/* at timet,

refer to as k-step belief sharing pattern. In case stochastic vt underll” is a causal function of its local information,
nestedness is absent, we can evaluate a precise expressioithat is, it is a measurable mapping with respect to the
for the minimum amount of information required to sigma-algebra generated by

achieve belief sharing. The information exchange needed , o ) )

is generally strictly less than the information exchange I =1y, Zi v 4—1) You—1)s Zjo—)t t 21,

needed for deterministic nestedness (even under optimal , o ,

coders) and is zero whenever stochastic nestedness ap-with I = {y{, Z}}, to U*, with the notation fort > 1

plies. We provide explicit examples of stochastically nestl

information structures and exhibit the benefit of belief yfo,t_u ={y,,0<s<t—-1}
sharing on information exchange requirements and discuss . . . .
the monotone value of information channels. Here Z; denotes the additional information that can be
supplied toDM? at timet. Let DM* have a policyll’
|. INTRODUCTION and under this policy generate control actidng, u! €

In a decentralized system, different information isU?,¢ > 0}, and let a dynamical system and observation
available to different decision makers who try to acthannels be described by the following discrete-time
on a common system towards a common goal as quations:
team problems [12] or towards a variety of goals as in
multi-criteria optimization problems [13]. Such team and
decentralized multi-criteria optimization problems are Yl = gt (zy,00),
challenging since the information patterns determining , . , ) .
which agent has access to what information and th&ith {w¢} independent, identical, white system noise
influence of her actions, can fall into the categories such’0¢eSS andv,i = 1,2,..., L} be disturbance pro-
that the generation of the optimal control laws can bgesses._The disturbance processes mlght be correlated,
very difficult, and of very high complexity. but are independent of the system noise process.

T T-1
We now proceed to make the decentralized system L€tX" =1];—o X be theT'—product space ok. For
considered in this paper precise. the above setup, under a sequence of control policies

{I1',112,..., 1%}, we define aninformation-Control
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with L L one-step delayed information sharing pattern: Z; =

_xT k k {yt-1, w1}
V=X x H HY % H HU It was observed by Radner [12] that a static LQG
t=0 k=1 t=0 k=1 . . .

] - ] team problem with non-nested information structures
Here, P is the probability measure on the sigma-algebrggmit a linear solution. This argument follows from the
(XTXHT lHL YkXHT IHL Uk) . . . ..
g i=0 1lp=1 i=0 llk=1 - observation that the team cost is convex in the joint

Information Patterns determine theisub-fleldsTfor all strategies of the DM’s, and it suffices to find the uique
deitpzl_slloanakgrs agqlt'mLe sta}cgeﬂt) C o(X" X fixed point. This, in turn, is satisfied by a linear set of
[lizo ITi=y Y¥ xIizg IT5=, U"). Hence, the control so|ytions for each DM. However, the extension of this
actions are measurable on the sub-fields, which agggyt to a dynamic setup is not always possible. The

characterized by; for all DMs, through the ter&;. In o] j0wing information structure present cases where, this
other words, an Information Pattern determines what thes,it still holds in a dynamic setting.

control action can depend on, inducing an information- partially Nested Information Structure: An informa-

control structure. _ o tion structure is partially nested, if whenever the control
With the above formulation, let the objective of theactions of aDM? affects the observations of another
decision makers be the minimization of decision makeD M/, the information available ab A/’
T T-1 L s . is known noiselessly by'the affec;ted decision maker, that
By, o [Z (@, up, ups - uy)], is: Z] = {y{, if DM' — DM/}. Here the notation
=0 DM? — DM’ denotes the fact that the actions of
over all policiesIT!, I12, . .., IIZ, with initial conditon DM’ affects the information atDM7. The partially
. nested structure effectively reduces the dynamic LQG
Let for a general vectog, q denote{q!,¢>...,q"}. team problem to a static optimization problem in the
Let IT = {II',11%,...,11*} denote the ensemble of sense that the signaling (inner) agent (whose information

policies. Under an ensemble of policiEE and a given sigma algebra is a subset of the signaled (outer) agent’s
information pattern, with an initial conditiom,, the information sigma algebra) makes all her decisions

attained performance index is statically and the outer agent can generate suate
71 strategy decisions and the joint decisions can be regarded
o (IT) = Eg[z (e, up)] as one smgle-DMs deC|S|o_n, effect,wely making thg
P problem static among such single DM’s. Due to the static

gature of the problem, one shows that the optimization
is jointly convex in the decision variables and there is
a person-by-person optimal solution, which turns out to
be a linear set of solutions. As a special case, partially-
nested structure includes the case where information
B. Relevant Literature and Information Patterns propagation is faster than dynamics propagation [19],

Various information structures have received particu[—ll]-

lar interest. It has been almost customary to categorize Non-classical Information Sructures: If a decision
such information structures as follows (See [1]' [14]’makerS,D]\/[J, information is dependent on the actions

[3)): of another, sayDM*, and DM’ does not have access
Centralized Information Structure: All agents have the 0 the information available taDM*, this informa-
same information regarding the current value of the statdOn structure is said to beon-classical. Hence, an
HereZi = {y;} for all decision makers and time stagesinformation pattern which is not partially nested is a
Quasi-Classical Information Sructure: Whenever a non-classical information pattern. Tioee-step delayed
dynamic programming recursion with a fixed complexitycontrol sharing pattern Z; = u,_, is one such example
per time stage is possible, the information structure il. [3], [13].
said to have a quasi-classical pattern. This structure Other information structures include the ones induced
includes theone-step delayed observation sharing in- by the n-step delayed information pattern with Z; =
formation pattern (see [6] and [13]), which allows the{Y:—n,u:—»}. Such a pattern does not lead to a sepa-
Decision Makers to share all their observations wittiation property [15] forn > 2. Here, by separation we
a unit delay: Z! = {y;_.}. If the agents also share Mmean that the conditional measure on a sufficient time

their decisions, then the information pattern is calledn the past and the received observations thereafter are

In the above problem, information patterns affect th
difficulty of control design, especially as the horizon
T or the cardinality ofX and U',i € {1,2,...,n}
increases.



sufficient statistics for the generation of optimal controterministic counterpart in the observation sharing in-
laws. formation pattern. The belief-sharing pattern allows us
A very important related information pattern is theto formulate an optimization problem with minimum
n-step periodic information sharing pattern of Ooi information exchange leading to a finite-complexity dy-
et al [8], with Z} = {¥[t—k—(t mod k),t—(t mod k)], NAMIC programming recursion to be applicable. We also
Ujt—k—(¢ mod k),t—(¢t mod k)] }» Wherek € Z, denotes address the communication rate minimization problem.
the period of information sharing. This pattern does Finally, we investigate the effects of various com-
admit a separation structure for the generation of optimahunication channels on stochastic nestedness, when the
control laws, and hence this leads to a quasi-classicehannels are used in a decentralized control system.
information structure. We will discuss this pattern fur-
ther in the paper, and provide an alternative derivatio
of the main results presented in [8] via Witsenhausen ons
equivalent model for discrete-stochastic control [10]. ~ Many of the results in this paper will base on the
When the information structures are non-nested, cohact that while controlling a partially observed Markov
trollers might choose to communicate via their controfhain, one could study the optimal control problem by
actions, that is might wish to pursue signaling. Thre€nlarging the state space, via replacing the state with
types of signaling can occur: signaling what the beliethe belief on the state in a centralized setting (or a
(that is, the conditional probability measure) on the statdecentralized setting, in which case the notion of state
of the system is, signaling what the belief on the othePecomes more complicated) and applying the control
agents controls are and signaling what the agent's owRachinery on the belief process [2].
future control actions will be. These are all distinct One could transform a partially observable Markov

issues and affect the classes of prob|ems that we Wﬂ?ecision Problem to a FU"y Observed Markov Decision
discuss in the remainder of the paper. Problem via an enlargement of the event space [7], if the

cost can be written as a summation of additive, per-stage
C. Contributions of the paper: Sochastic Nestedness ggts.
and the Belief Sharing Information Pattern In a general decentralized setting, the above discus-
The information structures leading to tractable sosion also applies, however, the notion of stateand
lutions require largenoiseless data transfer between the Markov recursion now involves a much larger space
decision makers. In practice, it is not possible to sendince the effective state includes the actions of the other
large amount data noiselessly especially in a real-timeM’s, and the beliefs of all DM’s on every other DM’'s
fashion. In particular, it is impossible to exchange a realctions and as the time horizon increases, the beliefs
number noiselessly over a practical channel. on the beliefs and so on, leading to a non-tractable
In this paper, we present a weaker notion of nestedptimization problem.
ness, which we term e&ochastic Nestedness. We show
that under stochastic nestedness, there is a rich class of
problems which lead to tractable solutions despite the
lack of deterministic nestedness or partial nestedness.!In this section we will present three types of informa-
The stochastically nested information structure entailion patterns, all of which are non-classical, yet admit
a Markov chain condition between the observations dtactable recursions and when applied to LQG problems
different sites and a state that is being controlled anad to the optimality of linear policies. We will later
in essence requires the information to be stochasticalljuild on the findings of this section to present a new

more informative at a decision maker than at anothdhformation sharing pattern. First, however, we discuss
one together with the availability of actions. why nestedness is important for team decision problems.

_ In this paper, we also int.roduce. another informaA A Linear Quadratic Gaussian Example and Impor-
tion pattern, which we calBelief Sharing Information tance of Nestedness

Pattern. We note however, that, a similar pattern was ) _
discussed in [8], although we adopt an approach basedConsider a two-controller system:

R. Control of a Markov Chain under Partial Observa-

Il. STOCHASTICALLY NESTEDINFORMATION
STRUCTURE

on st_ochastic_ control, Witsenhausen’s equiyqlept model 2o1 = Azy + Blul + B2 + wy
and information theory. Such a pattern minimizes the ) ) )
information exchanges required for tractability, without Yy = Crar + vy

i i ith i - 2 2 2
any loss of performance in comparison with its de y2 = C%xy + 172,



with  w,v',v?> zero-mean, ii.d. disturbances. Forand _ _
p1, p2 > 0, let the goal be the minimization of vy = st(y),

1 . L .
where s; is a deterministic function for¢ €
J = EKZ||a:t||§+p1||u%||§+p2||uf||§) + ||x2||§] {0,1,...,T — 1}, then the information structure is
=0 . stochastically nested.
over the control policies of the form: Theorem 2.1: Under the decentralized system de-
i = Mi(yfo Q) i=1,2,6=0,1 scription of Section I-A, letu; = [utl_uf_. ..ytL]T and
" @ > 0,R > 0 and there be an optimization problem

For a two-stage problem, the cost is in general nogith the objective to be minimized as:
longer quadratic in the action of the controllers acting in

the first stage = 0: This is because these actions might
affect the estimation quality of the other controllers in
the second stage, if one DM can signal information at }
the other DM in one stage. We note that this conditiofVith the system dynamics:

T-1
Ji= E[Z ! Qx; +ul Ruy]
t=0

is equivalent toC*A'B2? # 0 or C2A'B! # 0 ([17], L.

Lemma 3.1), with! denoting the delay in signaling. Ter1 = Awxe +ZB-7u§ + wy,

Hence, it is not immediate whether the cost function j=1

is jointly convex in the control policies, and as such yi = Cloy+vl, 1<i<IL, (1)

finding a fixed point in the optimal policies does not ; . )
necessarily lead to the conclusion that such policies afé1€réw:, v; are Gaussian and the disturbances and the
optimal. noise processes are such that the information structure

Under the one-step delayed information structurds stochastically nested. In this case, the optimal control

case, or the partially nested case, this ceases to 'S are Ii!ﬂear. _ _
true; there is no need for signaling, since all of the Reémark: Note that, if we relax the Markov chain

information that can be signaled is already available &°ndition there will be an incentive for signaling from
the DMs that can be signaled. Thus, the cost is convd@® inner DM to the outer DM on what the inner DM
in both the second stage controls and the first stadBinks regarding the initial state. The availability of the
ones; in particular, under any policy for the Contrmscontrollacuor_]s is also e;senual, for otherW|§e, therde.wn
in the first stage, the second stage controls are line3f @n incentive for the inner DM to signal information
and independent of an estimation error or improvemef@ its future control signals. ©

caused by control actions applied at the first stage. The comparison with the Control Sharing Information
optimization problem is still convex, and linear policieSpgtiern

are person-by-person-optimal, leading to a globally op- . stochastically nested information structure dis-

timal solution. : . .
cussed above brings to mind ti@ontrol Sharing In-

We WI|| see that, one may not need nestedness for ﬂ?ce)rmation Pattern of Aoki [5], Sandell and Athans [3]
convexity argument above to hold. We now proceed tQ

. . and Bismut [4]. In those works¢—optimal policies
define stochastic nestedness. : .
were obtained for the control sharing pattern. The

B. Sochastic Nestedness term arises due to the fact that the control policy is
Definition 2.1: Let for some measurable functionsto encode information on both the control action and
f.gii €{1,2,..., L}, a system be described by the observation, with as minimum damage as possible
to the control action; and this is possible due to the fact

Topr = [, ug, w), that a real number carries infinite amount of information

v = gilze,v}), i€{1,2,...,L} (when information is measured in Shannon information

] o ~ theoretic bits). One way to achieve this is as follows:
A: If wheneverDM* — DM, it follows that: exists ann such that am-decimal representation which
is at most at are distance (in the sup norm) from any
) real number in a compact set is possible. Hence, if one is
forms a Markov chain, to represent a finite dimensional contfiél= R", and a
I ={y i } finite dimensional observation variable = R™ taking
i Yio,4> Yo,7-1)

J i
To <= Yy Y0



values in some compact set, all of these signals can lie a class of decentralized optimization problems. We
represented uniformly by an arbitrarily small error withnow investigate the quantitative minimization of the
a real number by transmitting all the- approximate information requirements needed for tractability in a
decimal expansion of the numbers leading to a totdhrge class of decentralized optimal control problems.
of n(m + r) decimal letters, by allocating the most Before proceeding further, let us recall Witsen-
significantnr letters for the control signal. hausen’s equivalent model ([10], [16]) for dynamic team
If the control and observation variables take valueproblems in terms of an extensive form static team
in a non-compact set, then, by separability, a countabfgoblem. Let there be a common information vecipr
representation is possible but the mapping in the tranat some timet, which is available at all of the decision
formation needs to be infinite, and a uniform numbemakers. Let at timeks, k € Z,U{0} andT divisible by
of decimal letters will not be sufficient, hence, thek, s € Z., the decision makers share all their past infor-
coding design becomes further impractical. In practicahation: If;, = {yjo,xs—1], U[o,ks—1]}- In this case, until
applications, there cannot exist a noiseless exchangetbe next observation instant= (k 4+ 1)s we can regard
arbitrary real numbers, as this amounts to infinite amounhe individual decision functions specific tbM*? as
of information exchange. Also, note that, such a setupu! = ag(yfks_’t],lgs)} and we leta denote the ensemble
is extremely sensitive to even an arbitrarily small noisef such decision functions. In essence, it suffices to
[3]. generaten, for all s > 0, as the decision outputs condi-
In our setup, the resulting policy is optimal (and nottioned onyik&t], underﬂi(y%&%]ﬁs), can be generated.
only e-optimal), and unlike the setups of [3] and [4], Witsenhausen achieved this by transforming the effects
is applicable to cases where (i) the control policy i©f the control action into the costs and formulating an
discontinuous, or (ii) the state space has finite cardinalitequivalent control problem. In such a case, we have
(hence arbitrarily small precision of two signals is nothat @ (., I¢,) is the joint team decision rule mapping
possible via encoding into one-signal since there is only;, into a space of action vector$ui(1,§s,yfks,t]),i €
finite information that can be transmitted in one signal){1,2..., L},t € {ks,ks+1,... k(s +1) —1}}.
(iii) the observation and control sets are not compact, In this case, the cost function is also adjusted as:
eliminating the possibility of uniform approximation,
(iv) the observation space @M*, Y*, is an inseparable i _
space leading to an absence of a countable dense subset oo (1) = E”I”Io [Z o5 (- I, ), 7))
in turn leading to a uniformly close finite truncated s=0
representation, or (v) the time-horizon is not finite With (k41)s—1
These are some conditions under which the assumptions - NN
of [3] and [4] are not applicable. e (s Ii), 2s) = Z (@, ue)
The applicability of the above scenarios under the
stochastically partially nested structure follows beeaus,
in the information structure presented here, the signaling .~~~ i . .
DM does not need to encode any information on he €ing mdepgndent. Le; be a common |nformat|on
observations, as what she can encode is useless for ygetor supplied to the DMs regularly at evekytime .
other decision makers which have more informative ob2ePS: SO th"’_‘t the DMs have common memory with
servations. The exchange of the control signals, howev@{rfomrOI pollgy ge?erated as described above. Then,
is essential. Ts = xk§,u5(.,Iks),s > 0} form a Controlled
In the following section we investigate the case Wheréﬂarkov chain

there is no nestedness. We evaluate the im‘ormationIn View of the above, we now present a result on a
requirements to obtain stochastic nestedness. separation property. We note that the following has been
proven in [8]. We present a shorter proof, using the result

I1l. BELIEF SHARING INFORMATION PATTERN above directly.

The computationally attractive aspects of a partially Lemma 3.2: Let Ii be a common information vector
nested, or nested information structure comes with gUpplied to the DMs regularly at every time steps.
price of exchangingall of the information available There is no loss in performance If, is replaced by
by the preceding controllers noiselessly. This is, howd(Zs |15 ).-
ever, impractical. In the analysis heretofore, we have Proof:
weakened the information requirements for tractability

T
T

t=ks

Lemma 3.1: Consider the decentralized system setup
Section I-A, with the observation noise processes



The cost can be written as a function of additive costsA. Minimum Communication Rate Needed for the Belief

T Sharing Pattern
Juo(IL 1S) = EYY [Z é(0s, Zs)) The exchange of the common information states under
s=0 deterministic nestedness might lead to a large informa-
with tion exchangenoiselessly. This is impractical for many
(k+1)s—1 scenarios. However, as a result of Lemma 3.1 and 3.2,
é(Us,Ts) = Z c(xe, ue) what needs to be exchanged is a sufficient amount
t=ks of information such that the DMs have a common

For the minimization of an additive cost in Partially P(Zs|I5), so that their recursions can be based on
Observed Markov Chains, it suffices to transform théhis information. The question that we are interested

state to an equivalent state of conditional densities [ this section is the following: How much information
as discussed in Section I-D. Heng¥z,|I¢) acts as a exchange is needed between the decision makers so that

sufficient statistic. See also [2]. the decision makers have an agreement on the state of
o the system and a dynamic programming recursion is
Clearly, the larget is, the larger the complexity in tractable? The information is measured by information

the design of the computation of the control laiy,. bits, that is the average number of bits needed to be
This grows at least exponentially in exchanged among the decision makers. _
The essential issue for a tractable solution is to Now, let us introduce two standard information-

ensure a common information vector which will act as dheoretic notions, namely mutual information and rate
sufficient statistic for future control policies. This caa b distortion functionMutual information between an input
done via a one-step delayed structure, or some structUighdom variable X, and another on€/, is I(X;Y) =
possibly requiring larger but finite delay. H(X) — H(X|Y), where H(X) is the entropy of
Definition 3.1: Belief Sharing Information Pat- X (differential entropy if X is a continuous random
tern: An information pattern in which the DMs share variable) , andH (X|Y) is the conditional entropy of
their beliefs about the system state is called tieef X givenY. The entropy of a variable is an important
sharing information pattern. If the belief sharing occurs quantity since the entropy provides an almost tight lower
periodically at everyk-stages, and the DMs also sharébound for the expected number of bits for noiseless
the control actions they applied in the last k-1 stages, wiansmission of data. We assume variable-rate, time-
call this thek-stage belief sharing information pattern. ~ invariant encoding, that is, the rate is defined as the
We now discuss how the beliefs are shared Sequeﬂxpected number of bits to be transmitted: The COdlng
tially. We proceed by induction. Suppose at tilng the  Process of the controller abM’ is a mapping mea-
DMs have an agreement oR(Z,|I¢,) and know the surable with respect to the sigma-algebra generated by
policies used by each of the DM's, hence know the ICg;- The DM"s coding policy to DM’ is a mapping

and the probability measut®. It follows that, from Ij to W7/ = {W"I(1), W5/ (2),...,W"I(N)},

- o the codebook for communication froﬂi‘:?MZ to DM,
P(Zsq1]yirs p(s+1)-11, P(Zs1E,)) Hence, at each time stage, DM’ sends R =
 P(Zart, Yiks p(s+1) 1) P(@SIE)) =N P(Wi(n), t) logy(P(Wi (n), 1)) bits on av-
- Xk P, Yiksrsn) -1, P(3S]EL)) erage over an external channel f\/’ at timet. Let

T T T c - GV ] PR i i
Pt Yoy PEIT) R~ LRU A€ 1,2, L) Such thatbelf shating
T ok P@art T Yoot 1)1, P(@sIg,)) 1o POSSIVE: PEUNEL = 11 RAD iy g B, SUC

that belief sharing is realized. We wish to obtain the
Hence, to recover the joint belief, it suffices that thenfimum of suchR values.
DMs share: In the following, we consider the discrete-alphabet
P(y[lk&k(sﬂ)_l],yfks’k(sﬂ)_l],---,y[L;C&k(Sﬂ)_lﬂfs), valued observation case, as the analysis is simpler to
which is a|X|—dimensional vector witfR-valued com- pursue. Note that we do not require the state-space to be
ponents for everyr, € X giveny i, x(s+1)—1) and the discrete, the proceds:;} might still live in an uncount-
control strategytis (., I, ), and actions. In case the stateable space. However, if the observation process takes
space is uncountable, a probability measures@X) is a countable number of values the following analysis is
to be exchanged. With this description, the recursionspplicable. As mentioned above, with natural extensions,
can be obtained. one could study the most general case of uncountable
X, Y? cases for allDM?®.



1) One-Sep Belief Sharing Pattern: Let us consider a given distortion level as the rate required typically
the one-step delayed information pattern, first for a twbbecomes infinite, as the conditional measure process
DM setup. In this case, the information needed at bottypically converges to—oo, leading to I[(X;Y) =
the controllers is such that they all need to exchange thig X)) —h(X|Y") to grow unbounded. Herlg( X') denotes
relevant information on the state, and need to agree dhe differential entropy of the random variable
p(z|I}, I?), wherel} denotes the information available
at DM?. In the one-step Belief-Sharing Pattein,= z;,
since the period for information exchange-= 1.

In the one-step belief sharing pattern, control actions An example is for the case in which the channels has
need to be exchanged, since they can be obtained givé®fo capacity. In this case, as
the agreement on the beliefs. 1 - —1 -

Thgorem 3.1: Suppose the observation variables are Ps =nlws) = Py; = Blz,)
discrete values, that ?,i = 1,2 is a countable space. for all , 3 values that the observation can take, there
To achieve the belief sharing information pattern, as no further information that is needed for the belief-
lower bound on the minimum average amount of bitsharing pattern. As such, there is no need for information

B. A Case Study: Sochastically Nested Sructure with
Zero-Capacity Channels

to be transmitted tdM? is lower bounded by: exchange, since there is no information generated by the
observation for the controller with regard to the state
R > H(P(:Ctlffpytlayf) P(xt—lllfl),ytl) and no transmitted information will be useful. Hence,

the communication required for stochastic nestedness is

A lower bound on the minimum amount of informationzero if all of the information channels are channels with
needed to be transmitted M ! from DM? is: zero-capacity.

72> g Plerc 1o p Ie 5 It should be noted that, Wher_1 .th_e channels are zero-
= (@el B, 9, y2) | P (@11 0), wi capacity channels, the deterministic nestedness condi-
We note that the information needed is less than ontéons would require all the information to be exchanged,
needed for achieving the one-step delayed informaticalthough the benefit of this is zero. This example indeed
pattern. By the above argument, one would n&d >  clearly exhibits the efficiency difference between the two
H(yi|y], If) for the one-step delayed observation sharinformation patterns.
ing pattern. The entropy of the output is at most as
much as the entropy of the observed variable. This is
because, different outputs may lead to the same value§l] T. Basar and J. Cruz, “Concepts and methods in multipers

2 c . coordination and control”, in em S. G. Tzafestas, editor,
for P(yt - y|xt’jt)‘ Hence, we have the following Optimization and Control of Dynamic Operational Research

corollary to Theorem 3.1. Models, Chapter 11, pp. 351 - 387. North Holland, 1982.
Corollary 3.1: When the observation space is dis- [2] A. Arapostathis, V. S. Borkar, E. Fernandez-Gaucheravid

; ; ; ; K. Ghosh and S. I. Marcus, “Discrete-Time Controlled Markov
crete, the one-step belief sharing information pattern g ° = " it Average Cost Criterion: A SUrveSIAM J.

requires less or equal amount of information exchange  control and Optimization, vol. 31, pp. 282-344, 1993.
between the controllers than the one-step delayed obsef3] N. Sﬁndell gnd_ M. Athagls, ng:zltllztgg of 50218 nonf:la(':ssltﬁkl?-

: H stochastic decision pro emd rans. Automatic Control,
vation sharing pattern. vol 19, pp. 108-116, 1974,

For the multiple-decision maker case, one has a4 J. m. Bismut, “An example of interaction between infortioa
distributed coding with side information scenario: In and control: The transparency of a game”, presented at the
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lead to meaningful results however, one needs to assume
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