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Abstract— In this work, we consider a distributed source
coding problem with a joint distortion criterion depending
on the sources and the reconstruction. This includes as a
special case the problem of computing a function of the sources
to within some distortion and also the classic Slepian-Wolf
problem [12], Berger-Tung problem [5], Wyner-Ziv problem
[4], Yeung-Berger problem [6] and the Ahlswede-Korner-Wyner
problem [3], [13]. While the prevalent trend in information
theory has been to prove achievability results using Shannon’s
random coding arguments, using structured random codes
offer rate gains over unstructured random codes for many
problems. Motivated by this, we present a new achievable rate-
distortion region (an inner bound to the performance limit) for
this problem for discrete memoryless sources based on “good”
structured random nested codes built over abelian groups. We
demonstrate rate gains for this problem over traditional coding
schemes using random unstructured codes. For certain sources
and distortion functions, the new rate region is strictly bigger
than the Berger-Tung rate region, which has been the best
known achievable rate region for this problem till now. Further,
there is no known unstructured random coding scheme that
achieves these rate gains. Achievable performance limits for
single-user source coding using abelian group codes are also
obtained as parts of the proof of the main coding theorem. As
a corollary, we also prove that nested linear codes achieve the
Shannon rate-distortion bound in the single-user setting.Note
that while group codes retain some structure, they are more
general than linear codes which can only be built over finite
fields which are known to exist only for certain sizes.

I. I NTRODUCTION

The problem of distributed source coding involves a set of
encoders which observe different correlated components ofa
vector source and communicate their quantized observations
to a central decoder through a rate-constrained noiseless
communication link. The decoder is interested in reconstruct-
ing these observations or some function of them to within
some distortion as measured by a fidelity criterion. The goal
is to obtain a computable single-letter characterization of the
performance limits measured by the rates of transmission
and the distortions achieved. Such a formulation finds wide
applications in many areas of communications such as sensor
networks and distributed computing.

Most existing works that address this problem use the
canonical encoding strategy of vector quantization followed
by random binning. The best known inner bound to the
performance limit that uses this approach is the Berger-Tung
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[5] inner bound. It has been shown in the literature that
this is optimal in several cases. The work of Korner and
Marton [1], however, is an exception and looks at a special
case of the problem involving a pair of doubly symmetric
binary sources and near lossless reconstruction of the sample-
wise logical XOR function of the source sequences. They
considered an encoding strategy where the first operation is
an identity transformation. For the second operation, they
consider random structured binning of the spaces of source
sequences and show optimality. Further, the binning of two
spaces is done in a “correlated” fashion using a binary linear
code.

In the present paper, we build on this work, and present
a new achievable rate region for the general distributed
source coding problem and demonstrate an encoding scheme
that achieves this rate region by using random coding on
structured code ensembles. Our approach relies on the use
of nested group codes for encoding. The binning operation of
the encoders are done in a “correlated” manner as dictated
by these structured codes. This use of “structured quanti-
zation followed by correlated binning” is in contrast to the
more prevalent “quantization using random codes followed
by independent binning” in distributed source coding. This
approach unifies all the known results in distributed source
coding such as the Slepian-Wolf problem [12], Korner-
Marton problem [1], Wyner-Ahlswede-Korner problem [3],
[13], Wyner-Ziv problem [4], Yeung-Berger problem [6]
and Berger-Tung problem [5], under a single framework
while recovering their respective rate regions. Moreover,this
approach performs strictly better than the standard Berger-
Tung based approach for certain source distributions. As a
corollary, we show that nested linear codes can achieve the
Shannon rate-distortion function in the single source point-
to-point setting. A similar correlated binning strategy for
reconstructing linear functions of jointly Gaussian sources
with mean squared error criterion was presented in [9]. The
present work develops a similar framework based on group
codes. This rate region is developed using the following two
new ideas. First, we use the fact that any abelian group is
isomorphic to the direct sum of primary cyclic groups to
enable the decomposition of the source into its constituent
“digits” which are then encoded sequentially. Second, we
show that, although group codes may not approach the
Shannon rate-distortion function in a single source point-



to-point setting, it is possible to construct non-trivial group
codes which contain a code that approaches it. Using these
two ideas, we provide an all-group-code solution to the
problem and characterize an inner bound to the performance
limit using single-letter information quantities.

The paper is organized as follows. In Section II, we
define the problem formally and present known results for
the problem. In Section III, we present an overview of the
properties of groups in general and cyclic groups in particular
that shall be used later on. In Section IV, we define the
various concepts used in the rest of the paper. In Section
V, we present our coding scheme and present an achievable
rate region for the problem defined in Section II. Section
VI contains the various corollaries of the theorem presented
in Section V. In Section VII, we demonstrate the application
of our coding theorem to various problems. We conclude the
paper with some comments in Section VIII.

A brief overview of the notation used in the paper is given
below. Random variables are denoted by capital letters such
as X,Y etc. The alphabet over which a discrete random
variableX takes values will be indicated byX . The cardi-
nality of a discrete setX is denoted by|X |. For a random
variableX with distribution pX(·), the set of alln-length
strongly ǫ-typical sequences are denoted byAn

ǫ (X) [10].
For a pair of jointly distributed random variablesX,Y with
distribution pX,Y (·, ·), the set of alln-length yn-sequences
jointly ǫ-typical with a givenxn sequence is denoted by the
setAn

ǫ (xn).

II. PROBLEM DEFINITION AND KNOWN RESULTS

Consider a pair of discrete random variables(X,Y )
with joint distribution pXY (·, ·). Let the alphabets of the
random variablesX and Y be X andY respectively. The
source sequence(Xn, Y n) is independent over time and
has the product distributionPr((Xn, Y n) = (xn, yn)) =
∏n

i=1 pXY (xi, yi). We consider the following distributed
source coding problem. The two components of the source
are observed by two encoders which do not communicate
with each other. Each encoder communicates a compressed
version of its input through a noiseless channel to a joint
decoder. The decoder is interested in reconstructing the
sources with respect to a general fidelity criterion. LetẐ
denote the reconstruction alphabet, and the fidelity criterion
is characterized by a mapping:d : X × Y × Ẑ → R

+. We
restrict our attention to additive distortion measures.

In this work, we will concentrate on the above distributed
source coding problem (with one distortion constraint), and
provide an information-theoretic inner bound to the optimal
rate-distortion region. One such inner bound can be obtained
based on the Berger-Tung coding scheme [5] as follows.
Let P denote the family of pair of conditional probabilities
(PU|X , PV |Y ) defined onX ×U andY×V , whereU andV
are finite sets. For any(PU|X , PV |Y ) ∈ P , let the induced
joint distribution bePXY UV = PXY PU|XPV |Y . U, V play
the role of auxiliary random variables. DefineG : U×V → Ẑ
as that function ofU, V that gives the optimal reconstruction
Ẑ with respect to the distortion measured(·, ·, ·). With these

definitions, an achievable rate region for this problem is
presented below.

Fact 1: For a given source(X,Y ) and distortiond(·, ·, ·)
define the regionRDBT as

RDBT ,
⋃

(PU|X ,PV |Y )∈P

{

R1 ≥ I(X ;U |V ),

R2 ≥ I(Y ;V |U), R1 +R2 ≥ I(XY ;UV ),

D ≥ Ed(X,Y,G(U, V ))

}

(1)

Then any (R1, R2, D) ∈ RD∗
BT is achievable where∗

denotes convex closure1.
Proof: Follows from the analysis of the Berger-Tung

problem [5] in a straightforward way.

III. G ROUPS- AN INTRODUCTION

In this section, we present an overview of some properties
of groups that are used later. We refer the reader to [11] for
more details. We shall deal exclusively with abelian groups
and hence the additive notation will be used for the group
operation. The group operation of the groupG is denoted by
+G. Similarly, the identity element of groupG is denoted
by eG. The additive inverse ofa ∈ G is denoted by−a. The
subscripts are omitted when the group in question is clear
from the context. IfH is a subgroup of the groupG, it is
denoted byH < G. The direct sum of two groupsG1 and
G2 is denoted byG1 ⊕ G2. The direct sum of a groupG
with itself n times is denoted byGn.

It is assumed that the reader has familiarity with the
concepts of group homomorphisms, cyclic groups and cosets.
We present the following well known fact about abelian
groups.

Fact 2: LetG be a finite abelian group of ordern > 1 and
let the unique factorization ofn into distinct prime powers be
n =

∏k

i=1 p
ei

i . ThenG ∼= A1 ⊕A2 · · · ⊕Ak where|Ai| =
pei

i . Further, for eachAi, 1 ≤ i ≤ k with |Ai| = pei

i , we
haveAi

∼= Z
p

h1
i

⊕ Z
p

h2
i

· · · ⊕ Z
p

ht
i

whereh1 ≥ h2 · · · ≥ ht

and
∑t

j=1 hj = ei. This decomposition ofAi into direct
sum of primary cyclic groups is called the invariant factor
decomposition ofAi. Putting these decompositions together,
we get a decomposition of an arbitrary abelian groupG into
a direct sum of possibly repeated primary cyclic groups.
Further, this decomposition ofG is unique,i.e., ifG ∼=
B1 ⊕ B2 . . . Bm with |Bi| = pei

i for all i, thenBi
∼= Ai

andBi andAi have the same invariant factors.
Proof: See [11], Section5.2, Theorem5.

For example, Fact 2 implies that any abelian group of
order 8 is isomorphic to eitherZ8 or Z4 ⊕ Z2 or to Z2 ⊕
Z2 ⊕ Z2 where⊕ denotes the direct sum of groups. Thus,
we first consider the coding theorems only for the primary
cyclic groupsZpr . Results obtained for such groups are then
extended to hold for arbitrary abelian groups through this
decomposition.

1The cardinalities ofU and V can be bounded using Caratheodary
theorem [10].



The groupZm is a commutative ring with the addition
operation being addition modulo-m and the multiplication
operation being multiplication modulo-m. This multiplica-
tive structure is also exploited in the proofs. The group
operation inZ

n
m is denoted byun

1 + un
2 . Addition of un

1

with itself k times is denoted bykun
1 . The multiplication

operation between elementsx andy of the underlying ring
Zm is denoted byxy. The group operation in the group
Zm is often explicitly denoted by⊕m. We shall build our
codebooks as kernels of homomorphisms fromZ

n
pr to Z

k
pr .

The proofs exploit the known fact that there exists a bijection
between the set of all homomorphisms from the groupZ

n
pr

to Z
k
pr and the set of allk×n matrices with elements taking

values from the groupZpr .

IV. D EFINITIONS

When a random variableX takes value over the group
Zpr , we need to ensure that it doesn’t just take values in
some proper subgroup ofZpr . This leads us to the concept
of a non-redundant distribution over a group.

Definition 1: A random variableX with X = Zpr or its
distributionPX is said to be non-redundant ifPX(x) > 0
for at least one symbolx ∈ Zpr\pZpr .
It follows from this definition thatxn ∈ An

ǫ (X) contains
at least onex ∈ Zpr\pZpr if X is non-redundant. Such
sequences are called non-redundant sequences. A redundant
random variable taking values overZpr can be made non-
redundant by a suitable relabeling of the symbols. Also, note
that a redundant random variable overZpr is non-redundant
when viewed as taking values overZpr−i for some0 < i ≤ r.
Our coding scheme involves good nested group codes for
source and channel coding and the notion of embedding the
optimal reconstruction function in a suitable abelian group.
These concepts are made precise in the following series of
definitions.

Definition 2: A bivariate functionG : U × V → G is said
to be embeddable in an abelian groupA with respect to
the distributionpUV (u, v) on U × V if there exists injective
functions S(A)

U : U → A,S
(A)
V : V → A and a surjective

function S(A)
G : A → G such that for all(u, v) ∈ U × V

with pUV (u, v) > 0, we have

S
(A)
G (S

(A)
U (u) +A S

(A)
V (v)) = G(u, v) (2)

If G(U, V ) is indeed embeddable in the abelian group
A, it is denoted asG(U, V ) ⊂ A with respect to the
distributionpUV (u, v). Define the mapped random variables
Ū = S

(A)
U (U) and V̄ = S

(A)
V (V ). Their dependence onA is

suppressed and the group in question will be clear from the
context.

Suppose the functionG(U, V ) ⊂ A with respect topUV .
We encode the functionG(U, V ) sequentially by treating the
sources as vector valued over the cyclic groups whose direct
sum is isomorphic toA. This alternative representation of
the sources is made precise in the following definition.

Definition 3: Suppose the functionG(U, V ) ⊂ A with
respect topUV . Let A be isomorphic to⊕k

i=1Zp
ei
i

where

p1 ≤ · · · ≤ pk are primes andei are positive integers.
Then, it follows from Fact 2 that there exists a bijection
SA : A → Zp

e1
1

× . . .Zp
ek
k

. Let Ũ = SA(Ū), Ṽ = SA(V̄ ).

Let Ũ = (Ũ1, . . . , Ũk) be the vector representation of̃U .
The random variables̃Ui are called the digits of̃U . A similar
decomposition holds for̃V . DefineZ̃ = (Z̃1, . . . , Z̃k) where
Z̃i , Ũi ⊕p

ei
i
Ṽi. It follows thatS−1

A (Z̃) = Ū +A V̄ .
Our encoding operation proceeds thus: we reconstruct the

functionG(U, V ) by first embedding it in some abelian group
A and then reconstructinḡU +A V̄ which we accomplish
sequentially by reconstructing̃Ui⊕p

ei
i
Ṽi one digit at a time.

While reconstructing theith digit, the decoder has as side
information the previously reconstructed(i− 1) digits. This
digit decomposition approach requires that we build codes
over the primary cyclic groupsZpr which are “good” for
various coding purposes. We define the concepts of group
codes and what it means for group codes to be “good” in
the following series of definitions.

Definition 4: Let A be a finite abelian group. A group
codeC of blocklengthn over the groupA is a subset of
An which is closed under the group addition operation, i.e.,
C ⊂ An is such that ifcn1 , c

n
2 ∈ C, then so doescn1 +An cn2 .

Recall that the kernelker(φ) of a homomorphismφ : An →
Ak is a subgroup ofAn. We use this fact to build group
codes. As mentioned earlier, we build codes over the primary
cyclic groupZpr . In this case, every group codeC ⊂ Z

n
pr

has associated with it ak× n matrixH with entries inZpr

which completely defines the group code asC , {xn ∈
Z

n
pr : Hxn = 0k}. Here, the multiplication and addition are

carried out modulo-pr. H is called the parity-check matrix
of the codeC. We employ nested group codes in our coding
scheme. In distributed source coding problems, we often
need one of the components of a nested code to be a good
source code while the other one to be a good channel code.
We shall now define nested group codes and the notions of
“goodness” used to classify a group code as a good source
or channel code.

Definition 5: A nested group code(C1, C2) is a pair of
group codes such that every codeword in the codebookC2 is
also a codeword inC1, i.e., C2 < C1. Their associated parity
check matrices are thek1 × n matrix H1 and thek2 × n
matrix H2. They are related to each other asH1 = J · H2

for somek1 × k2 matrix J .
The codeC1 is called the fine group code whileC2 is called
the coarse group code. When nested group codes are used in
distributed source coding, typically the coset leaders ofC2

in C1 are employed as codewords. In such a case, the rate of
the nested group code would ben−1(k2 − k1) log pr bits.

We define the notion of “goodness” associated with a
group code below. To be precise, these notions are defined
for a family of group codes indexed by the blocklength
n. However, for the sake of notational convenience, this
indexing is not made explicit.

Definition 6: Let PXU be a distribution overX ×U such
that the marginalPU is a non-redundant distribution over
Zpr for some prime powerpr. For a given group codeC



overU and a givenǫ > 0, let the setAǫ(C) be defined as

Aǫ(C) , {xn : ∃un ∈ C such that(xn, un) ∈ A(n)
ǫ (X,U)}.

(3)
The group codeC overU is called a good source code for the
triple (X ,U , PXU ) if for allǫ > 0, we havePn

X(Aǫ(C)) ≥
1 − ǫ for all sufficiently largen.

Note that, a group code which is a good source code in this
sense may not be a good source code in the usual Shannon
sense. Rather, such a group code contains a subset which is
a good source code in the Shannon sense for the sourcePX

with forward test channelPU|X .
Definition 7: Let PZS be a distribution overZ × S such

that the marginalPZ is a non-redundant distribution over
Zpr for some prime powerpr. For a given group codeC
overZ and a givenǫ > 0, define the setBǫ(C) as follows:

Bǫ(C) , {(zn, sn) : ∃z̃n such that(z̃n, sn) ∈ A(n)
ǫ (Z, S)

andHz̃n = Hzn}.
(4)

Here, H is the k(n) × n parity check matrix associated
with the group codeC. The group codeC is called a good
channel code for the triple(Z,S, PZS) if for all ǫ > 0, we
havePn

ZS(Bǫ(C)) ≤ ǫ for all sufficiently largen. Associated
with such a good group channel code would be a decoding
function ψ : Z

k
pr × Sn → Z

n
pr such thatP (ψ(Hzn, sn) =

zn) ≥ 1 − ǫ.
Note that, as before, a group code which is a good channel

code in this sense may not a good channel code in the
usual Shannon sense. Rather, every coset of such a group
code contains a subset which is a good channel code in the
Shannon sense for the channelPS|Z with input distribution
PZ . This interpretation is valid only whenS is a non-trivial
random variable.

Lemma 1:For any triple(Z,S, PZS) of two finite sets
and a distribution, with|Z| = pr a prime power andPZ non-
redundant, there exists a sequence of group codesC that is
a good channel code for the triple(Z,S, PZS) such that the
dimensions of their associatedk(n)×n parity check matrices
satisfy

lim
n→∞

k(n)

n
log pr = max

0≤i<r

(

r

r − i

)

(H(Z|S) −H([Z]i|S))

(5)
where[Z]i is a random variable taking values over the set of
all distinct cosets ofpi

Zpr in Zpr . For example, ifZ = Z8,
then [Z]2 is a 4-ary random variable with symbol probabili-
ties (pZ(0)+ pZ(4)), (pZ(1)+ pZ(5)), (pZ(2)+ pZ(6)) and
(pZ(3) + pZ(7)).

Note that [Z]0 is a constant and[Z]r = Z. When
building codes over groups, each proper subgroup of the
group contributes a term to the maximization in equation
(5). Since the smaller the right hand side of equation (5), the
better the channel code is, we incur a penalty by building
codes over groups with large number of subgroups.

Lemma 2:For any triple(X ,U , PXU ) of two finite sets
and a distribution, with|U| = pr a prime power andPU non-
redundant, there exists a sequence of group codesC that is

a good source code for the triple(X ,U , PXU ) such that the
dimensions of their associatedk(n)×n parity check matrices
satisfy

lim
n→∞

k(n)

n
log pr = min

α∈{1,r}

r|H(U |X) − log pr−α|+

α
(6)

where|x|+ = max(x, 0).
The proofs of these lemmas are omitted. Puttingr = 1

in equations (5) and (6), we get the performance obtainable
while using linear codes built over Galois fields.

Lemma 3:Let X,Y, S, U, V be five random variables
whereU and V take value over the groupZpr for some
prime powerpr. Let Z = U ⊕pr V . Let U → X → Y → V
form a Markov chain, and letS → (X,Y ) → (U, V ) form
a Markov chain. From the Markov chains, it follows that
H(U |X) ≤ H(Z|S), H(V |Y ) ≤ H(Z|S). Without loss of
generality, letH(U |X) ≤ H(V |Y ) ≤ H(Z|S). Then, there
exists a pair of nested group codes(C11, C2) and (C12, C2)
such that

• C11 is a good group source code for the triple
(X ,U , PXU ) with limn→∞

k11(n)
n

log pr =
minα∈{1,r}(r/α)|H(U |X) − log pr−α|+.

• C12 is a good group source code for the
triple (Y,V , PY V ) with limn→∞

k12(n)
n

log pr =
minα∈{1,r}(r/α)|H(V |Y ) − log pr−α|+.

• C2 is a good group channel code for the
triple (Z,S, PZS) with limn→∞

k2(n)
n

log pr =

max0≤i<r

(

r
r−i

)

(H(Z|S) −H([Z]i|S)).
The proof is omitted.

V. THE CODING THEOREM

We are given discrete random variablesX andY which
are jointly distributed according toPXY . Let P denote
the family of pair of conditional probabilities(PU|X , PV |Y )
defined onX × U and Y × V , whereU and V are finite
sets,|U| = α, |V| = β. For any(PU|X , PV |Y ) ∈ P , let the
induced joint distribution bePXY UV = PXY PU|XPV |Y .
U, V play the role of auxiliary random variables. Define
G : U × V → Ẑ as that function ofU, V that gives
the optimal reconstruction̂Z with respect to the distortion
measured(·, ·, ·). Let G denote the image ofG(U, V ). Let
T = {A : A is abelian, |G| ≤ |A| ≤ αβ, G(U, V ) ⊂
A with respect toPUV }. It can be shown that the setT
is non-empty, i.e., there always exists an abelian group
A ∈ T in which any functionG(U, V ) can be embedded.
For anyA ∈ T , let A be isomorphic to⊕k

i=1Zp
ei
i

. Let

Ũ = SA(S
(A)
U (U)) and Ṽ = SA(S

(A)
V (V )) where the

mappings are as defined in Definitions 2 and 3. Define
Z̃ = (Z̃1, . . . , Z̃k) whereZ̃i = Ũi ⊕ Ṽi and the addition is
done in the group to which the digits̃Ui, Ṽi belong. Assume
without loss of generality that the digits̃Ui, Ṽi, Z̃i, 1 ≤ i ≤ k
are all non-redundant. If they are not, they can be made so
by suitable relabeling of the symbols. Recall the definition
of [Z]i from Lemma 1. The encoding operation of theX
andY encoders proceed ink steps with each step producing
one digit of Ũ and Ṽ respectively. LetπA : {1, . . . , k} →



{1, . . . , k} be a permutation. The permutationπA can be
thought of as determining the order in which the digits
get encoded and decoded. Let the setΠA(b), 1 ≤ b ≤ k
be defined asΠA(b) = {l : πA(l) < b}. The setΠA(b)
contains the indices of all the digits that get encoded before
the bth stage. At thebth stage, let the digits̃UπA(b), ṼπA(b)

take values over the groupZrb
pb

. With these definitions, an
achievable rate region for the problem is presented below.

Theorem 1:For a given source(X,Y ), define the region
RDin as

⋃

(PU|X ,PV |Y )∈P

A∈T ,πA

{

(R1, R2, D) : Ri ≥

k
∑

b=1

min
(

R
(1)
ib , R

(2)
ib

)

for i = 1, 2, D ≥ Ed(X,Y,G(U, V ))

}

(7)

where

R
(1)
1b >

[

max
0≤i<rb

(

rb
rb − i

)

(

H(Z̃πA(b) | Z̃ΠA(b))

− H([Z̃πA(b)]i|Z̃ΠA(b))
)]

−

(

min
α∈{1,rb}

rb|H(ŨπA(b) | X, ŨΠA(b)) − log prb−α
b |+

α

)

(8)

and

R
(2)
1b >

[

max
0≤i<rb

(

rb
rb − i

)

(

H(ŨπA(b) | Z̃ΠA(b))

− H([ŨπA(b)]i | Z̃ΠA(b))
)]

−

(

min
α∈{1,rb}

rb|H(ŨπA(b) | X, ŨΠA(b)) − log prb−α
b |+

α

)

(9)

Then any (R1, R2, D) ∈ RD∗
in is achievable where∗

denotes convex closure.
Proof: A very brief sketch of the proof ideas is pre-

sented here. The encoding proceeds ink stages with thebth
stage encoding the digits̃UπA(b), ṼπA(b) in order to produce
the digit Z̃πA(b). For this, the decoder has side information
Z̃ΠA(b). Let ŨπA(b), ṼπA(b) take values over the groupZrb

pb .
The encoders have two encoding options available at thebth
stage. They can either encode the digitsŨπA(b) and ṼπA(b)

directly or encode in such a way that the decoder is able to
reconstructZ̃πA(b) directly. We present a coding scheme to

achieve the latter corresponding to the ratesR
(1)
ib , i = 1, 2.

We shall use a pair of nested group codes(C11b, C2b)
and (C12b, C2b) to encodeZ̃πA(b). Let the corresponding
parity check matrices of these codes beH11b, H12b and
H2b respectively. Let the dimensionality of these matrices be
k11b×n, k12b×n andk2b×n respectively. These codebooks
are all over the groupZrb

pb . We needC11b to be a good source

code for the triple(X × ŨΠA(b), ŨπA(b), PXŨΠA(b)ŨπA(b)
),

C12b to be a good source code for the triple(Y ×

ṼΠA(b), ṼπA(b), PY ṼΠA(b)ṼπA(b)
) andC2b to be a good channel

code for the triple(Z̃πA(b), Z̃ΠA(b), PZ̃πA(b)Z̃ΠA(b)
).

The encoding scheme used by theX-encoder to encode
the bth digit, 1 ≤ b ≤ k is detailed below. TheX-encoder
looks for a typical sequencẽUn

πA(b) ∈ C11b such that it
is jointly typical with the source sequenceXn and the
previous encoder output digits̃Un

ΠA(b). If it finds at least
one such sequence, it chooses one of these sequences and
transmits the syndromeSxb , H2bŨ

n
πA(b) to the decoder.

If it finds no such sequence, it declares an encoding error.
The operation of theY -encoder is similar. Letψb(·, ·)
be the decoder corresponding to the good channel code
C2b. The decoder receives the syndromesSxb and Syb

and computesψb

(

Sxb ⊕pb
rb Syb, Z̃

n
ΠA(b)

)

. It can be shown

that this equalsZ̃n
πA(b) with high probability and that the

corresponding rates needed are(R
(1)
1b , R

(1)
2b ). The encoding

strategy to achieveR(2)
ib , i = 1, 2 also involves nested group

codes similar to the ones above and is omitted.

VI. SPECIAL CASES

In this section, we consider the various special cases of
the rate region presented in Theorem 1.

A. Lossless Source Coding using Group Codes

We start by demonstrating the achievable rates using codes
over groups for the problem of lossless source coding. A
good group channel codeC for the triple (X , 0, PX) as
defined in Definition 7 can be used to achieve lossless
source coding of the sourceX . The source encoder outputs
Hxn where H is the k × n parity check matrix ofC.
The decoder uses the associated decoding functionψ(·, ·)
to recoverψ(Hxn, 0) = xn with high probability. Based on
this scheme, we get the following corollary to Theorem 1.

Corollary 1: SupposeX is a non redundant random vari-
able over the groupZpr and the decoder wants to reconstruct
X losslessly. Then, there exists a group based coding scheme
that achieves the rate

R ≥ max
0≤i<r

(

r

r − i

)

(H(X) −H([X ]i)) (10)

Puttingr = 1 in equation (10) reduces it to the well known
result that linear codes over prime fields can compress a
source down to its entropy. Note that this achievable rate
region using group codes can be strictly greater than Shannon
entropy.

B. Lossy Source Coding using Group Codes

We next consider the case of lossy point to point source
coding using codes built over the groupZpr . Consider a
memoryless sourceX with distribution PX . The decoder
attempts to reconstructU that is within distortionD of X
as specified by some additive distortion measured : X×U →
R

+. SupposeU takes its values from the groupZpr . A
good group source codeC for the triple (X ,U , PXU ) as
defined in Definition 6 can be used to achieve lossy coding
of the sourceX provided the joint distributionPXU is such
that E(d(X,U)) ≤ D andU is non-redundant. The source



encoder outputsun ∈ C that is jointly typical with the
source sequencexn. An encoding error is declared if no
suchun is found. The decoder usesun as its reconstruction
of the sourcexn. Based on this coding scheme, we get the
following corollary to Theorem 1.

Corollary 2: With definitions as above, there exists a
group based coding scheme that achieves the rate

R ≥ log pr− min
PU|X : Ed(X,U)≤D

α∈{1,r}

r|H(U |X) − log pr−α|+

α
(11)

If U takes values in a general abelian group of ordern that is
not necessarily a primary cyclic group, then a decomposition
based approach similar to the one used in the proof of
Theorem 1 can be used. Puttingr = 1 in equation (11)
tells us that linear codes incur a strictly non-negative rate
loss oflog p−H(U) bits/sample when used for lossy source
coding.

C. Nested Linear Codes

We specialize the rate region of Theorem 1 to the case
when the nested group codes are built over cyclic groups of
prime order, i.e., over Galois fields of prime order. It was
already shown that Lemmas 1 and 2 imply that linear codes
achieve the entropy bound and incur a rate loss while used
in lossy source coding. In this section, we demonstrate the
implications of Theorem 1 when specialized to the case of
nested linear codes, i.e., whenr is set to1.

1) Shannon Rate-Distortion Function:We remark that
Theorem 1 shows the existence of nested linear codes that
can be used to approach the rate-distortion bound in the
single-user setting for arbitrary discrete sources and arbitrary
distortion measures.

Corollary 3: LetX be a discrete memoryless source with
distributionPX and letX̂ be the reconstruction alphabet. Let
the fidelity criterion be given byd : X × X̂ → R

+. Then,
there exists a nested linear code(C1, C2) that achieves the
rate-distortion bound

R(D) = min
P

X̂|X

Ed(X,X̂)≤D

I(X ; X̂) (12)

Proof: Let the optimal forward test channel that
achieves the bound be given byP

X̂|X . Supposeq is a prime

such thatX̂ ⊂ Zq andX̂ is non-redundant. The rate bound,
given by I(X ; X̂) can be approached using a nested linear
code (C1, C2) built over the groupZq. Here C1 is a good
source code for the triple(X , X̂ , P

X,X̂
) and C2 is a good

channel code for the triple(X̂ ,S, P
X̂S) where S = {0}

and S is a degenerate random variable withPS(0) = 1.
It follows from Lemmas 2 and 1 that the dimensions of
the parity check matrices associated withC1 and C2 sat-
isfy limn→∞

k1(n)
n

log q = H(X̂|X), limn→∞
k2(n)

n
log q =

H(X̂). Thus, the rate achieved by this scheme is given by
n−1(k2(n) − k1(n)) log q = I(X ; X̂).

2) Berger-Tung Rate Region:We now show that Theorem
1 implies that nested linear codes built over prime fields
can achieve the rate region of the Berger-Tung based coding
scheme presented in Lemma 1.

Corollary 4: Suppose we have a pair of correlated discrete
sources(X,Y ) and the decoder is interested in reconstruct-
ing Ẑ to within distortion D as measured by a fidelity
criterion d : X × Y × Ẑ → R

+. For this problem, an
achievable rate region using nested linear codes is given by

RDBT =
⋃

(PU|X ,PV |Y )∈P

{(R1, R2) : R1 ≥ I(X ;U |Y ),

R2 ≥ I(Y ;V |X), R1 +R2 ≥ I(XY ;UV )} (13)

whereP is the family of all joint distributionsPXY UV that
satisfy the Markov chainU − X − Y − V such that the
distortion criterionEd(X,Y, Ẑ(U, V )) ≤ D is met. Here
Ẑ(U, V ) is the optimal reconstruction of̂Z with respect to
the distortion criterion givenU andV .

Proof: We proceed by first reconstructing the function
G(U, V ) = (U, V ) at the decoder and then computing the
function Ẑ(U, V ). For ease of exposition, assume thatU =
V = Zq for some primeq. If they are not, a decomposition
based approach can be used and the proof is similar to the
one presented below. Clearly,G(U, V ) can be embedded
in the abelian groupA , Zq ⊕ Zq with the mappings
Ũ = (U, 0) and Ṽ = (0, V ). Thus, Z̃1 = U + 0 = U
and Z̃2 = 0 + V = V . Encoding is done in two stages.
Let the permutationπA(·) be the identity permutation. With
these choices, it can be verified that Theorem 1 yields
R1 ≥ I(X ;U), R2 ≥ I(Y ;V |U). This is one of the corner
points of the rate region given in equation (13). Choosing the
permutationπA(·) to be the derangement gives us the other
corner point and time sharing between the two points yields
the entire rate region of equation (13). The rate needed to
reconstructU, V at the decoder coincides with the Berger-
Tung rate region [5].
We note that this implies that our theorem recovers the rate
regions of the problems considered by Wyner and Ziv [4],
Ahlswede-Korner-Wyner [3], [13], Berger and Yeung [6]
and Slepian and Wolf [12] since the Berger-Tung problem
encompasses all these problems as special cases.

D. Lossless Reconstruction of Modulo-2 Sum of Binary
Sources

In this section, we show that Theorem 1 recovers the
rate region derived by Korner and Marton [1] for the re-
construction of the modulo-2 sum of two binary sources.
Let X,Y be correlated binary sources. Let the decoder
be interested in reconstructing the functionF (X,Y ) =
X ⊕2 Y losslessly. In this case, the auxiliary random vari-
ables can be chosen asU = X,V = Y . Clearly, this
function can be embedded in the groupsZ2,Z3,Z4 and
Z2 ⊕ Z2. For embedding inZ2, the rate region of Theorem
1 reduces toR1 ≥ min(H(X), H(X ⊕2 Y )) and R2 ≥
min(H(Y ), H(X ⊕2 Y )). It can be verified that embedding
in Z3 or Z4 always gives a worse rate than embedding in
Z2. Embedding inZ2 ⊕ Z2 results in the Slepian-Wolf rate
region. Combining these rate regions, we see that a sum rate
of R1 + R2 = min(2H(X ⊕2 Y ), H(X,Y )) is achievable
using our coding scheme. This recovers the Korner-Marton



rate region for this problem [1], [10]. Moreover, one can also
show that this approach can recover the Ahlswede-Han rate
region [8] for this problem, which is an improvement over
the Korner-Marton region.

VII. E XAMPLES

In this section, we consider applications of the coding
theorem (Theorem 1) for a lossless and lossy distributed
source coding problem.

A. Lossless Encoding of a Quaternary Function

Consider the following distributed source coding problem.
Let (X,Y ) be correlated random variables both taking values
in Z4. Let X,Z be independent random variables taking
values in Z4 according to the distributionsPX and PZ

respectively. Assume further that the random variableZ
is non-redundant. Define the random variableY as Y =
X ⊕4 Z. SupposeX and Y are observed by two separate
encoders which communicate their quantized observations to
a central decoder. The decoder is interested in reconstructing
the functionZ = (X − Y ) mod 4 losslessly.

Since we are interested in lossless reconstruction, we
can choose the auxiliary random variablesU, V to be
U = X,V = Y . The functionG(U, V ) then reduces
to F (X,Y ) , (X − Y ) mod 4. This function can be
embedded in several groups with order less than or equal
to 16. For simplicity, we only present the achievable rates
for embedding inZ4 andZ4 ⊕ Z4.

Lets consider the groupZ4 first. Define the mappings
x̃ , S

(Z4)
X (x) = x for all x ∈ Z4, ỹ , S

(Z4)
Y (y) =

−y for all y ∈ Z4 and S(Z4)
F (z) = z for all z ∈ Z4. With

these mappings, it follows from Definition 2 thatF (X,Y ) is
embeddable inZ4 with respect to the distributionPXY . From
Theorem 1, it follows that an achievable rate region using this
embedding is given byR1 = R2 = max{H(Z), 2(H(Z) −
H([Z]1))}. It is easy to verify that ifG(U, V ) ⊂ Z4⊕Z4 and
this embedding results in the Slepian-Wolf rate region given
byR1+R2 = H(X,Y ) = H(X)+H(Z). For certain source
distributions, it is possible that embedding inZ4 results in
a lower sum rate than the joint entropy. For example, taking
X to be uniformly distributed andPZ(0) = 1/2, PZ(1) =
0, PZ(2) = PZ(3) = 1/4, we get that embedding inZ4

results in a sum rate of3 bits/sample whereas the joint
entropyH(X,Y ) is 3.5 bits/sample. Further enlargement
of this achievable rate region is possible by embedding the
functionG(U, V ) in the groupsZ7 andZ2 ⊕ Z2 ⊕ Z2. The
overall achievable rate region for this problem is the union
of the achievable rate regions over all groups in which the
functionG(U, V ) can be embedded. The details are omitted.

B. Lossy Reconstruction of the Modulo-2 Sum of Binary
Sources

This example concerns the reconstruction of the binary
XOR function with the Hamming distortion criterion. The
rate region of Theorem 1 is very cumbersome to calculate
analytically in the general case. So, we restrict our attention
to the case of symmetric source distribution and additive

test channels in the derivation below where the intention is
to demonstrate the analytical evaluation of the rate region
of Theorem 1. We then present plots where the entire sum
rate-distortion region is computed without any restrictive
assumptions.

Consider a binary correlated source(X,Y ) with sym-
metric joint distributionPXY (0, 0) = PXY (1, 1) = q/2
and PXY (1, 0) = PXY (0, 1) = p/2. Suppose we are
interested in reconstructingF (X,Y ) = X ⊕2 Y within
Hamming distortionD. We present an achievable rate pair
for this problem based on Theorem 1 and compare it to
the achievable rate region presented in Lemma 1. It was
shown in [14] that it suffices to restrict the cardinalities of
the auxiliary random variablesU andV to the cardinalities
of their respective source alphabets in order to compute
the Berger-Tung rate region. Since the scheme presented in
Lemma 1 is based on the Berger-Tung coding scheme, the
rate regionRDBT for this problem can be computed by
using binary auxiliary random variables.

Let us now evaluate the rate region provided by Theorem 1
for this problem. The auxiliary random variablesU andV are
binary and suppose the test channelPXY PU|XPV |Y is fixed.
The functionG(U, V ) which is the optimal reconstruction
of X ⊕2 Y given U and V can then be computed. In
general, this function can take any of the16 possible values
depending upon the test channelPXY PU|XPV |Y . For ease
of exposition, let the auxiliary random variables be defined
as U = X ⊕2 Q1 and V = Y ⊕2 Q2. HereQ1, Q2 are
independent binary random variables withP (Qi = 0) =
qi, i = 1, 2. Let pi = 1−qi, i = 1, 2. Defineα = q1q2+p1p2

and β = 1 − α. Once the test channelPXY PU|XPV |Y is
thus fixed, the optimal reconstruction functionG(U, V ) that
minimizes the probabilityP (F (X,Y ) 6= G(U, V )) can be
computed. It can be showed that

G(U, V ) =















0 α > p, α < q
U ⊕2 V α > p, α > q
U ⊕2 V α < p, α < q

1 α < p, α > q

(14)

where a denotes the complement of the bita. The corre-
sponding distortion for these reconstructions can be calcu-
lated as

D(α) =















p α > p, α < q
β α > p, α > q
α α < p, α < q
q α < p, α > q

(15)

Clearly, no rate need be expended if the function to be
reconstructed isG(U, V ) = 0 or G(U, V ) = 1 and the rates
needed would be the same for bothG(U, V ) = U ⊕2 V
and G(U, V ) = U ⊕2 V . Let us therefore consider only
reconstructingG(U, V ) = U ⊕2 V . It can be shown that this
function is embeddable in the groupsZ2,Z3,Z4 andZ2⊕Z2.
Let us consider the groupA , Z2. The associated mappings
S

(A)
U (·), S

(A)
V (·) and S(A)

G (·) are all identity mappings. In
this case, we have only one digit to encode. Further, note
thatP (Z1 = 0) = P (U1 ⊕2 V1 = 0) = qα+ pβ.
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Fig. 1. Comparison of the lower convex envelopes of the two coding schemes

The rates of the encoders can be shown to beR1 =
h(qα + pβ) − h(q1), R2 = h(qα + pβ) − h(q2) whereh(·)
is the binary entropy function. These rates together with an
achievable distortionD ≥ D(α) (as given in equation (15)
give an achievable rate region for the problem. Rate points
achieved by embedding the function in the abelian groups
Z3,Z4 are strictly worse than that achieved by embedding
the function inZ2 while embedding inZ2 ⊕ Z2 gives the
Slepian-Wolf rate region for the lossless reconstruction of
(U, V ).

We now plot the entire sum rate-distortion region for
the case of a general source distribution and general test
channelsPU|X , PV |Y and compare it with the Berger-Tung
rate regionRDBT of Fact 1. The source distribution used
is PXY (00) = 0.3381, PXY (01) = 0.1494, PXY (10) =
0.2291, PXY (11) = 0.2834.

Figure 1 demonstrates that the sum rate-distortion regions
of Theorem 1 and Fact 1 and shows that Theorem 1 offers
improvements over the rate region of Fact 1 for low distor-
tions. We expect the gains afforded by Theorem 1 over the
rate region of Lemma 1 would increase as we increase the
cardinality of the source alphabets.

VIII. C ONCLUSION

We have introduced structured codes built over arbitrary
abelian groups for lossless and lossy source coding and
derived their performance limits. We also derived a coding
theorem based on nested group codes for reconstructing an
arbitrary function of the sources based on a fidelity criterion.
The encoding proceeds sequentially in stages based on
the primary cyclic decomposition of the underlying abelian
group. This coding scheme recovers the known rate regions
of many distributed source coding problems while presenting
new rate regions to others. The usefulness of the scheme is
demonstrated with both lossless and lossy examples.
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