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Abstract—In this work, we consider a distributed source [5] inner bound. It has been shown in the literature that
coding problem with a joint distortion criterion depending  this is optimal in several cases. The work of Korner and
on the sources and the reconstruction. This includes as a \i5rton [1], however, is an exception and looks at a special
special case the problem of computing a function of the soues ’ - . . .
to within some distortion and also the classic Slepian-Wolf c(.’;\se of the problem involving a pair of d°9b'y symmetric
problem [12], Berger-Tung problem [5], Wyner-Ziv problem  binary sources and near lossless reconstruction of thelsamp
[4], Yeung-Berger problem [6] and the Ahlswede-Korner-Wyrer ~ wise logical XOR function of the source sequences. They
problem [3], [13]. While the prevalent trend in information  considered an encoding strategy where the first operation is
theory has been to prove achievability results using Shanms 5 jgentity transformation. For the second operation, they

random coding arguments, using structured random codes id d tructured binni fth f
offer rate gains over unstructured random codes for many CONSIGEr random structured binning of the Spaces of source

problems. Motivated by this, we present a new achievable rat ~ Sequences and show optimality. Further, the binning of two
distortion region (an inner bound to the performance limit) for ~ spaces is done in a “correlated” fashion using a binary tinea
this problem for discrete memoryless sources based on “gobd code.

structured random n_ested co_des built over abelian groups. \& In the present paper, we build on this work, and present
demonstrate rate gains for this problem over traditional caling - . .
schemes using random unstructured codes. For certain soues a new achlevable rate region for the general Q'St”bmed
and distortion functions, the new rate region is strictly bigger ~ source coding problem and demonstrate an encoding scheme
than the Berger-Tung rate region, which has been the best that achieves this rate region by using random coding on
known achievable rate region for this problem till now. Further,  structured code ensembles. Our approach relies on the use
there is no known unstructured random coding scheme that ¢ hasted group codes for encoding. The binning operation of

achieves these rate gains. Achievable performance limitsoif th d d . u lated” dictated
single-user source coding using abelian group codes are als € eéncoders are done In a “correlated” manner as dictate

obtained as parts of the proof of the main coding theorem. As by these structured codes. This use of “structured quanti-
a corollary, we also prove that nested linear codes achievéi¢  zation followed by correlated binning” is in contrast to the
Shannon rate-distortion bound in the single-user settingNote  mpore prevalent “quantization using random codes followed
that while group codes retain some structure, they are more |, jnqenendent binning” in distributed source coding. This
general than linear codes which can only be built over finite o S
fields which are known to exist only for certain sizes. approach unifies all the known results in distributed source
coding such as the Slepian-Wolf problem [12], Korner-
I. INTRODUCTION Marton problem [1], Wyner-Ahlswede-Korner problem [3],

The problem of distributed source coding involves a set dgt3]: Wyner-Ziv problem [4], Yeung-Berger problem [6]
encoders which observe different correlated componeras oft"d Berger-Tung problem [S], under a single framework
vector source and communicate their quantized obsengatioffnile recovering their respective rate regions. Moreotfes,
to a central decoder through a rate-constrained noiseledaProach performs strictly better than the standard Berger
communication link. The decoder is interested in recomstru 1UNd based approach for certain source distributions. As a
ing these observations or some function of them to withifforollary, we show that nested linear codes can achieve the
some distortion as measured by a fidelity criterion. The goaiinannon rate-distortion function in the single source oin
is to obtain a computable single-letter characterizatiothe ~©0-POINt setting. A similar correlated binning strategy fo
performance limits measured by the rates of transmissigReonstructing linear functions of jointly Gaussian sasrc
and the distortions achieved. Such a formulation finds wid&ith mean squared error criterion was presented in [9]. The
applications in many areas of communications such as sen&b£Sent work develops a similar framework based on group
networks and distributed computing. codes. This rate region is developed using the following two

Most existing works that address this problem use th@eW ideas. First, we use the fact that any abelian group is
canonical encoding strategy of vector quantization folidw S0morphic to the direct sum of primary cyclic groups to
by random binning. The best known inner bound to thgnable the decomposition of the source into its constituent

performance limit that uses this approach is the BergegTundigits” which are then encoded sequentially. Second, we
show that, although group codes may not approach the

This work was supported by NSF grant (CAREER) CCF-0448115.  Shannon rate-distortion function in a single source point-



to-point setting, it is possible to construct non-trivimbgp  definitions, an achievable rate region for this problem is
codes which contain a code that approaches it. Using thegeesented below.
two ideas, we provide an all-group-code solution to the Fact 1: For a given sourc€X,Y’) and distortiond(, -, -)
problem and characterize an inner bound to the performandefine the regiorRDgr as
limit using single-letter information quantities.

The paper is organized as follows. In Section Il, we = RDp, £ U {31 > I[(X;U|V),
define the problem fprmally and present known _results for (Puix Pyiy)EP
the proplem. In Sec’Flon I, we presenft an overview of the Ry > I(Y;V|U), Ry + Re > I(XY;UV),
properties of groups in general and cyclic groups in paldicu
tha_t shall be used Iater_ on. In Section IV, we define the D > Ed(X,Y,G(U, V))} )
various concepts used in the rest of the paper. In Section
V, we present our coding scheme and present an achievable . )
rate region for the problem defined in Section II. Sectior] €N any (B1, Rz, D) € RDpy is achievable where
VI contains the various corollaries of the theorem presnté€NOES convex closure _
in Section V. In Section VII, we demonstrate the application _ P100f: Follows from the analysis of the Berger-Tung
of our coding theorem to various problems. We conclude th¥oPlem [5] in a straightforward way. u
paper with some comments in Section VIII. I1l. GROUPS- AN INTRODUCTION

A brief overview of the notation used in the paper is given | s section, we present an overview of some properties
below. Random variables are denote_d by capltal letters SUSF'groups that are used later. We refer the reader to [11] for
as .X’Y etc. The alphabgt over V\,’h'Ch a discrete ran_do%ore details. We shall deal exclusively with abelian groups
var!abIeX ta}kes values \,N'" be indicated by. The cardi- 504 hence the additive notation will be used for the group
nality of a discrete sek’ is denoted byX|. For a random 0 ation The group operation of the gra@ips denoted by
variable X with distribution px (-), the set of alln-length +¢. Similarly, the identity element of grou@ is denoted
strongly _e-typ?cgl sequences are denoted_ Hy (X) [1_0]' by ec. The additive inverse of € G is denoted by-a. The
Fpr a parr of jointly distributed random variable§ Y with subscripts are omitted when the group in question is clear
distribution piyy (-, ), the set of alin-lengthy"-sequences ¢, the context. IfH is a subgroup of the groug, it is
jointly e-typical with a givenz" sequence is denoted by the yooted byH < G. The direct sum of two group&,; and

set AZ («"). G, is denoted byG; @ G». The direct sum of a groug

Il. PROBLEM DEFINITION AND KNOWN RESULTS with itself n times is denoted byr". o
Consider a pair of discrete random variable, ) It is assumed that the reader has familiarity with the
Lo ’ concepts of group homomorphisms, cyclic groups and cosets.

with joint distribution pxy (-,-). Let the alphabets of the P group P yclic group

. : Wi t the followi Ik fact about abeli
random variablesX andY be X and ) respectively. The © present the Toflowing well Known fact about abelian

source sequencéX™,Y™) is independent over time and groups.
has the product distributio®r((X™,Y™) = (2",y")) = Fact 2: Let G be a finite abelian group of order> 1 and

. . s /) let the unique factorization of into distinct prime powers be
[T, pxv(zi,y:). We consider the following distributed :Hk d P P

source coding problem. The two components of the source, Fuir:thgi .f(-)rrhggfhz; /111<e91/12< A aiﬁf |Ay\/|hire LI?AW_G
are observed by two encoders which do not communicale, . , ~ o7 -“--EB_Z ~ whereh ;h .1.)? -
with each other. Each encoder communicates a compressed H e pr TEIERL = e =
version of its input through a noiseless channel to a joifNd 22;—1 h; = ei. This decomposition of4; into direct
decoder. The decoder is interested in reconstructing t§&M Of primary cyclic groups is called the invariant factor
sources with respect to a general fidelity criterion. Lt decomposition of4;. Putting these decompositions together,
denote the reconstruction alphabet, and the fidelity ¢oiter W€ get & decomposition of an arbitrary abelian gréimto
is characterized by a mappind: X x Y x Z — R*. We & direct sum of possibly repeated primary cyclic groups.
restrict our attention to additive distortion measures. Further, this decomposition of/ is unique,i.e., ifG =

In this work, we will concentrate on the above distributedB1 ® Bz ... Bm with [B;[ = p;* for all i, then B; = A;
source coding problem (with one distortion constrainty an@nd B; and 4; have the same invariant factors.
provide an information-theoretic inner bound to the optima _ Proof: See [11], Sectiory.2, Theorem5. u
rate-distortion region. One such inner bound can be oldaine FOr €xample, Fact 2 implies that any abelian group of
based on the Berger-Tung coding scheme [5] as follow§der8 is isomorphic to eithefs or Z, © Z; or 10 Zy ©
Let P denote the family of pair of conditional probabilities 22 © Z> where® denotes the direct sum of groups. Thus,
(Pyix, Py|y) defined ont x/ andy x V, whereU andV ~ We flrst consider the coding theorems only for the primary
are finite sets. For anyPyx, Py|y) € P, let the induced cyclic groupsZ,,.. Results .obtalned fpr such groups are the.n
joint distribution bePxy v = Pxy Pyx Pyjy. U,V play extended to hold for arbitrary abelian groups through this

the role of auxiliary random variables. Defitle ¢/ xV — z  decomposition.
as that function ot/, V/ that g.Nes the optimal recqnstructlon 1The cardinalites ofU and V' can be bounded using Caratheodary
Z with respect to the distortion measute, -, -). With these theorem [10].



The groupZ,, is a commutative ring with the addition p; < --- < p; are primes anck; are positive integers.
operation being addition modula- and the multiplication Then, it follows from Fact 2 that there exists a bijection
operation being multiplication moduler. This multiplica-  Sa: A — Z,e1 x Ly LetU = Sa(U),V = S4a(V).

tive structure is also exploited in the proofs. The groupet 7 = (77;,...,U,) be the vector representation of.
operation inZjy, is denoted byuy + uy. Addition of i The random variables; are called the digits of’. A similar
with itself £ times is denoted bycu? The multiplication decomposition holds fo]:/ DefineZ — (Zl’ el Zk) where

operation between elementsandy of the underlying ring 7. 2 7, B V. It follows that S;*(Z) = U +4 V.

Ly, is denoted byzy. The group operation in the group  oyr encoding operation proceeds thus: we reconstruct the
Zy, is often explicitly denoted byp,,. We shall build Ul functionG(U, V) by first embedding it in some abelian group
codebooks as kernels of homomorphisms fréfp 0 Z;.. 4 and then reconstructing +4 ¥ which we accomplish
The proofs exploit the known fact th_at there exists a bigacti sequentially by reconstructifig; @ V; one digit at a time.
between the set of all homomorphisms from the grélfp  \hile reconstructing theth digit,pfhe decoder has as side
to Z’;r and the set of alk x n matrices with elements taking jnformation the previously reconstructéd— 1) digits. This
values from the grouft,.. digit decomposition approach requires that we build codes
over the primary cyclic group&,,. which are “good” for
various coding purposes. We define the concepts of group

When a random variablél' takes value over the group codes and what it means for group codes to be “good” in

Z,-, we need to ensure that it doesn’t just take values ithe following series of definitions.

some proper subgroup @, This leads us to the concept pefinition 4: Let A be a finite abelian group. A group

of a non-redundant distribution over a group. ~ codeC of blocklengthn over the groupA is a subset of
Definition 1: A random variableX with X' = Z,, orits  4» which is closed under the group addition operation, i.e.,

distribution Px is said to be non-redundant x(z) > 0 ¢ — An is such that ifen, 3 € C, then so does? + 4n 3.

for at least one symbat € Z,, \pZ,. _ Recall that the kerndter(¢) of a homomorphismp: A” —
It follows from this definition thatz™ € A7(X) contains 4k ig 4 subgroup ofA™. We use this fact to build group
at least oner € Z,\pZ,- if X is non-redundant. Such cqes. As mentioned earlier, we build codes over the primary

sequences are called non-redundant sequences. A redun%@}ic groupZ,,.. In this case, every group codeC Z,

random variable taking values over, can be made non- paq associated with it & x n matrix H with entries inZ
redundant by a suitable relabeling of the symbols. Alsoeno

that a redundant random variable oy is non-redundant

IV. DEFINITIONS

p’!‘
twhich completely defines the group code @s> {z" ¢
h . q K | : o Loy : Hx™ = 0*}. Here, the multiplication and addition are
when viewed as taking values ov&f,—. for somel <i <. capeqd out modulg”. H is called the parity-check matrix

Our coding scheme invplves good negted group codps f8f the codeC. We employ nested group codes in our coding
source and channel coding and the notion of embedding tIél@heme. In distributed source coding problems, we often
optimal reconstruction function in a suitable abelian grou need one of the components of a nested code to be a good
Th‘?s_e_ concepts are made precise in the following series qurce code while the other one to be a good channel code.
definitions. We shall now define nested group codes and the notions of

Definition 2: A biv_ariate funcFionG: U x V — @G is said “goodness” used to classify a group code as a good source
to be embeddable in an abelian grodpwith respect to or channel code

the distributionpy v (u, v) onU x V if there exists injective Definition 5: A nested group codéCs,C,) is a pair of

. A A . .
funct!ons %E{)): u- A’S‘(/ v — Aand a surjective group codes such that every codeword in the codeldgak
fu.nctlon S¢ '+ A — G such that for all(u,v) € U XV 50 a codeword i€y, i.e.,Cy < Cy. Their associated parity
with pyv (u,v) > 0, we have check matrices are thl, x n matrix H; and theks x n

SéA)(S[(]A) () + S‘(/A)(v)) — G(u,v) @) g?tsrg(mlileXhZZ ra:;trriiIbairfed to each other Bs = J - Hy
If G(U,V) is indeed embeddable in the abelian groufhe codeC; is called the fine group code whi& is called
A, it is denoted asG(U,V) C A with respect to the the coarse group code. When nested group codes are used in
distributionpy v (u, v). Define the mapped random variabledistributed source coding, typically the coset leadergnf
U= S[(JA>(U) andV = S‘(,A>(V)_ Their dependence oA is  in C; are employed as codewords. In such a case, the rate of
suppressed and the group in question will be clear from ttbe nested group code would be! (ks — k1) log p™ bits.
context. We define the notion of “goodness” associated with a
Suppose the functiot(U, V) C A with respect topyyy.  group code below. To be precise, these notions are defined
We encode the functio(U, V') sequentially by treating the for a family of group codes indexed by the blocklength
sources as vector valued over the cyclic groups whose direct However, for the sake of notational convenience, this
sum is isomorphic tad. This alternative representation of indexing is not made explicit.
the sources is made precise in the following definition. Definition 6: Let Pxy be a distribution ove®t’ x & such
Definition 3: Suppose the functiotz(U, V) C A with  that the marginalP; is a non-redundant distribution over
respect topyy. Let A be isomorphic to@lezpfi where 7 . for some prime powep”. For a given group codé€



overl/ and a givere > 0, let the setd.(C) be defined as

A (C) & {z™: Fu™ e C such that(z",u") € A™(X,U)}.
3

The group cod€ overl/ is called a good source code for th

triple (X,U, Pxy) if for alle > 0, we haveP%(A.(C)) >

1 — ¢ for all sufficiently largen.

Note that, a group code which is a good source code in th
sense may not be a good source code in the usual Shannoa—
sense. Rather, such a group code contains a subset whict
a good source code in the Shannon sense for the sdtfce

with forward test channel; x .

Definition 7: Let Pzs be a distribution oveZ x S such
that the marginalP; is a non-redundant distribution ove
Z,- for some prime powep”. For a given group cod€
over Z and a givere > 0, define the seB,(C) as follows:

B.(C) 2 {(z",s"): 32" such that(z",s") € A" (Z,5)
and Hz" = Hz"}.
4)

Here, H is the k(n) x n parity check matrix associated

with the group code&. The group cod€ is called a good
channel code for the tripléz, S, Pzg) if for all € > 0, we
haveP}(B.(C)) < ¢ for all sufficiently largen. Associated

with such a good group channel code would be a decoding

functiony : ZF. x 8" — 7, such thatP(y(Hz",s") =
2")>1—e.

Note that, as before, a group code which is a good channel

code in this sense may not a good channel code in

a good source code for the trip{&’, U, Pxy) such that the
dimensions of their associatédn) x n parity check matrices
satisfy

k(n)

e . r|HU|X) —logp"~|*
min

ae{l,r}

lim

n—oo

logp" = (6)

«
there|:c|+ = max(z,0).
he proofs of these lemmas are omitted. Putting- 1
-gquations (5) and (6), we get the performance obtainable
ile using linear codes built over Galois fields.
Lemma 3:Let X,Y,S,U,V be five random variables
where U and V' take value over the grouf,,. for some
rprime powerp”. LetZ =U @, V. LetU - X =Y =V
form a Markov chain, and lef — (X,Y) — (U, V) form
a Markov chain. From the Markov chains, it follows that
HU|X) < H(Z|S),H(V|Y) < H(Z|S). Without loss of
generality, letH (U|X) < H(V|Y) < H(Z|S). Then, there
exists a pair of nested group cod@s,Cs) and (C12,Cs)
such that

e« C11 is a good group source code for the triple
(X, U, Pxy)  with  lim, o 2220 og pr
minge g1, (r/a) | H(U|X) — log pm—|*.
Ci2 is a good group source code for
triple (V,V, Pyy) with lim, k12 (n) logp”
minge 1,3 (r/a)[H(V|Y) —logp™*|*.
Co is a good group channel code
triple (2,8, Pzs) with lim, o 20 1og pr
) (H(Z]S) — H(1Z)9).

w

the

for the

_r_
r—1

the maxo<i<r

usual Shannon sense. Rather, every coset of such a groughe proof is omitted.

code contains a subset which is a good channel code in
Shannon sense for the chani&| ; with input distribution
Pz. This interpretation is valid only whefl is a non-trivial
random variable.

Lemma 1:For any triple(Z,S, Pzg) of two finite sets
and a distribution, withZ| = p” a prime power and; non-
redundant, there exists a sequence of group cGdimt is
a good channel code for the tripl€, S, Pzs) such that the
dimensions of their associatédrn) x n parity check matrices

) ((z1s) - 11215

satisfy
< (5)

k(n)
where[Z]; is a random variable taking values over the set

lim —=
all distinct cosets ofainT in Z,-. For example, ifZ = Zs,

n—oo N

logp” = max

0<i<r \r —1

then[Z], is a4-ary random variable with symbol probabili-

ties (pz(0) +pz(4)), (pz(1) +pz(5)), (pz(2) + pz(6)) and
(pz(3) + pz(7)).
Note that [Z], is a constant andZ], = Z. When

building codes over groups, each proper subgroup of thg = (Zl,...,

the
V. THE CODING THEOREM

We are given discrete random variabl&sandY which
are jointly distributed according tdPxy. Let P denote
the family of pair of conditional probabilitie&Py| x , Py |y )
defined onX x U4 and )Y x V, whereld and V are finite
sets,|U| = a,|V| = (. For any(Pyx, Pyy) € P, let the
induced joint distribution bePxyyv = Pxy Py xPv)y-
U,V play the role of auxiliary random variables. Define
G:U x V — Z as that function ofU,V that gives
the optimal reconstructio® with respect to the distortion
measured(-, -, -). Let G denote the image off(U, V). Let
7T = {A: Ais abelian|g| < |4] < of, G(U,V) C
of! with respect toPyyv }. It can be shown that the sét
is non-empty, i.e., there always exists an abelian group
A € T in which any functionG(U, V) can be embedded.
For any A € 7, let A be isomorphic to@lezpfi. Let
U = Sa(SU)) and V= S4(SSV(V)) where the
mappings are as defined in Definitions 2 and 3. Define
Z,) whereZ; = U; @ V; and the addition is

group contributes a term to the maximization in equatiodone in the group to which the digifﬁi,f/i belong. Assume
(5). Since the smaller the right hand side of equation (%), thwithout loss of generality that the digit§, V;, Z;,1 < i < k

better the channel code is, we incur a penalty by buildi
codes over groups with large number of subgroups.
Lemma 2:For any triple(X,U, Pxy) of two finite sets
and a distribution, withZ{| = p” a prime power and’; non-
redundant, there exists a sequence of group cGdimt is

ngre all non-redundant. If they are not, they can be made so
by suitable relabeling of the symbols. Recall the definition
of [Z]; from Lemma 1. The encoding operation of the
andY encoders proceed i steps with each step producing
one digit of U and V respectively. Letr,: {1,...,k} —



{1,...,k} be a permutation. The permutationy, can be 9H4(b),1~/,,A(b),PY‘~,H na (b))
thought of as determining the order in which the digitsode for the tfip|e(2AwA(b)?2nA(b),Pz )
A A

get encoded and decoded. Let the Bef(b),1 < b < k The encoding scheme used by theencoder to encode

be de_fined gsl'[,f,(b) = b ”A(_l)_ < b}. The setll4(b) the bth digit, 1 < b < k is detailed below. TheX-encoder
contains the indices of all the digits that get encoded lmefofooks for a typical sequencé’” o € Ci1p such that it
¥ wa(b

the bth stage. At thebth stage, let the digité/, ), Vxav)  is jointly typical with the source sequencE™ and the

take values over the groufi;. With these definitions, an re\ious encoder output digits?; - If it finds at least
achievable rate region for the problem is presented below,ne g ch sequence, it chooses one of these sequences and
Theorem 1:For a given sourc¢X,Y'), define the region o cmits the syndrom&z;, 2 HQbU:A ,, to the decoder.
RDin as If it finds no such sequence, it declares an encoding error.
k The operation of theY-encoder is similar. Letyy(-,-)
U {(Rl,Rz,D): R; > Zmin (RE;),RE?) be the decoder corresponding to the good channel code
(Py|x Py |y)EP b=1 Cop. The decoder receives the syndromgs, and Sy,
ACT ma and computes), (S:cb Dpyrs SYbs ZﬁA(b)). It can be shown

fori=1,2,D >Ed(X,Y,G(U,V)) that this equalst:A(b) with high probability and that the

corresponding rates needed aﬂéﬁ)),Ré}))). The encoding

andCsy, to be a good channel

7
0 strategy to achievag),i = 1,2 also involves nested group
where codes similar to the ones above and is omitted. [
(1) Ty 5 5
Ry > {Ogagb (Tb —i) (H(Z,,A(b) | Z1i,v)) . . VI. SPE(.:IAL CASES | .
. - In this section, we consider the various special cases of
- H([Zm(b)]i|ZHA(b)))] the rate region presented in Theorem 1.
_ ( min 1o H(Unaw) | X, Unaw) —logpy” *[" A. Lossless Source Coding using Group Codes
ac{lro} @ We start by demonstrating the achievable rates using codes
(8) over groups for the problem of lossless source coding. A
and good group channel codé for the triple (X,0, Px) as
, ~ 3 defined in Definition 7 can be used to achieve lossless
Rﬁ) > { max ( b > (H(U,TA(Z,) | Zriav)) source coding of the sourcE. The source encoder outputs
Osr<r \Tp — 1 ) ) Hz™ where H is the k x n parity check matrix ofC.
— H([Ux )i | ZHA(b)))] The decoder uses the associated decoding funetion)
- ~ ~ to recovery(Hz™,0) = ™ with high probability. Based on
ol H(Ur o) | X, Unav)) — logpy" ™" i i
— | min ul ’ this scheme, we get the following corollary to Theorem 1.
ag{lry} o Corollary 1: SupposeX is a non redundant random vari-

(9) able over the groufd,, and the decoder wants to reconstruct
Then any (Ri,Rs,D) € RD:, is achievable where t)ﬁ I:)sslﬁ_ssly. 'I:[Een, tthere exists a group based coding scheme
denotes convex closure. at achieves the rate

Proof: A very brief sketch of the proof ideas is pre- R> max
sented here. The encoding proceeds istages with theéth T o<i<r \ 1 —

(H(X) - H(X])) (10

stage encoding the digif, , (), Vx5 in order to produce Puttingr = 1 in equation (10) reduces it to the well known

the digit Z , ). For this, the decoder has side informatio €Sult that linear codes over prime fields can compress a

7 - Let Uy, 1) v () take values over the groug’; source down to its entropy. Note that this achievable rate
A : TA » T TA b

The encoders have two encoding options available abtthe region using group codes can be strictly greater than Shenno
stage. They can either encode the didits, ;) and V,., ) entropy.

directly or encode in such a way that the decoder is able {9 | ossy Source Coding using Group Codes

reconstructZ, , ;) directly. We present a coding scheme to

achieve the latter corresponding to the ra@é),z' =1,2.
We shall use a pair of nested group cod€s:s,Cop)

We next consider the case of lossy point to point source
coding using codes built over the gro,.. Consider a

_ /- memoryless sourc& with distribution Py. The decoder
and (Ci2;,C2) to encodeZr ). Let the corresponding aiempts to reconstrudf that is within distortionD of X

parity check matrices of these codes B&iy, Hi2, and g gpecified by some additive distortion measurér xi/ —
Hay, respectively. Let the dimensionality of these matrices bg+ Supposel takes its values from the group, .. A
. -

k11 X m, k12p X n andksgy, x n respectively. These codebooksgood group source codé for the triple (X,U, Pxy) as

are all over the groufi, ;. We need’',, to be a good source gefined in Definition 6 can be used to achieve lossy coding
code for the triple(X' x Ut ,b),Unav), Pxory )0, ) Of the sourceX provided the joint distributiorPx; is such
Ciap to be a good source code for the triple x thatE(d(X,U)) < D andU is non-redundant. The source



encoder outputs,” € C that is jointly typical with the Corollary 4: Suppose we have a pair of correlated discrete
source sequence”™. An encoding error is declared if no sources(X,Y’) and the decoder is interested in reconstruct-
suchu™ is found. The decoder use& as its reconstruction ing Z to within distortion D as measured by a fidelity
of the sourcer™. Based on this coding scheme, we get theriterion d: X x J x Z — R*. For this problem, an

following corollary to Theorem 1. achievable rate region using nested linear codes is given by
Corollary 2: With definitions as above, there exists a
group based coding scheme that achieves the rate RDpr = U {(R1, Re): Ry = I(X; UY),
— (Py|x,Pv|y)EP
) rlH(U|X) — logp™—<|*
R>logp"—  min H(UIX) —logp™ 7] (11) Ry > I(Y;V|X), Ry + Ry > I(XY;UV)} (13)
Py|x Ed(X,U)<D (6%

ac{l,r . . .. . . .
If U takes values in{a g}eneral abelian group of ordérat is whereP is the family of all joint distributionsPxy v that

not necessarily a primary cyclic group, then a decompuasiticsatisfy the Markov chair/ — X — Y —V such that the
based approach similar to the one used in the proof @fstortion criterionEd(X,Y,Z(U,V)) < D is met. Here
Theorem 1 can be used. Puttimg= 1 in equation (11) Z(U, _V) is the c_>pt||_”nal reconstruction of with respect to
tells us that linear codes incur a strictly non-negative ratthe distortion criterion gived/ and V. . _
loss oflog p— H(U) bits/sample when used for lossy source Proof: We proceed by first reconstructing the function

coding. G(U,V) = (U,V) at the decoder and then computing the
) function Z(U, V). For ease of exposition, assume that=
C. Nested Linear Codes V = Z, for some primey. If they are not, a decomposition

We specialize the rate region of Theorem 1 to the cademased approach can be used and the proof is similar to the
when the nested group codes are built over cyclic groups ohe presented below. Clearlg (U, V) can be embedded
prime order, i.e., over Galois fields of prime order. It wasn the abelian groupA £ Z, @ Z, with the mappings
already shown that Lemmas 1 and 2 imply that linear codds = (U,0) and vV = (0,V). Thus, Zy =U+0=0U
achieve the entropy bound and incur a rate loss while useghd Z, = 0 + V = V. Encoding is done in two stages.
in lossy source coding. In this section, we demonstrate thest the permutationr4(-) be the identity permutation. With
implications of Theorem 1 when specialized to the case afiese choices, it can be verified that Theorem 1 yields
nested linear codes, i.e., wheris set tol. Ry > I(X;U),Re > I(Y; V|U). This is one of the corner

1) Shannon Rate-Distortion FunctiorWe remark that points of the rate region given in equation (13). Choosirgg th
Theorem 1 shows the existence of nested linear codes thrmutationr 4 (-) to be the derangement gives us the other
can be used to approach the rate-distortion bound in tlw®rner point and time sharing between the two points yields
single-user setting for arbitrary discrete sources anifrarp  the entire rate region of equation (13). The rate needed to
distortion measures. reconstructl/, V' at the decoder coincides with the Berger-

Corollary 3: Let X be a discrete memoryless source withTung rate region [5]. u
distribution Px and letX’ be the reconstruction alphabet. Letwe note that this implies that our theorem recovers the rate
the fidelity criterion be given byl: X x X — R™. Then, regions of the problems considered by Wyner and Ziv [4],
there exists a nested linear co(&, C») that achieves the Ahlswede-Korner-Wyner [3], [13], Berger and Yeung [6]
rate-distortion bound and Slepian and Wolf [12] since the Berger-Tung problem

R(D) = glin I(X;X) (12) encompasses all these problems as special cases.
Ed(;éf)‘g@ D. Lossless Reconstruction of Mod@oSum of Binary
Proof: Let the optimal forward test channel thatSources

achieves tAhe bound b? 9“’8” W&\X' Suppose is a prime In this section, we show that Theorem 1 recovers the
such that¥’ C Z, and X is non-redundant. The rate bound, 416 region derived by Korner and Marton [1] for the re-
given by I(X; X) can be approached using a nested lineafonstruction of the modul@-sum of two binary sources.
code (C1,Cs) built over the groupZ,. HereC; is a good | et X v be correlated binary sources. Let the decoder
source code for the tripleY, X, Py ¢) andC; is @ good pe interested in reconstructing the functidi(X,Y) =
channel code for the tripl¢X,S, Py) whereS = {0} X @, Y losslessly. In this case, the auxiliary random vari-
and S is a degenerate random variable wity(0) = 1. ables can be chosen d8 = X,V = Y. Clearly, this
It follows from Lemmas 2 and 1 that the dimensions ofunction can be embedded in the groufs,Zs,Z, and
the parity check matrices associated with and C, sat-  Z, @ Z,. For embedding irZ,, the rate region of Theorem
isfy lim, oo 2™ logg = H(X|X),lim, o 2™ logg = 1 reduces toR; > min(H(X), H(X @, Y)) and Ry >
H(X). Thus, the rate achieved by this scheme is given byin(H (Y), H(X @2 Y)). It can be verified that embedding
n=Y(ka(n) — ki(n))logq = I(X; X). B in Zs; or Zs always gives a worse rate than embedding in
2) Berger-Tung Rate Regiowe now show that Theorem Z,. Embedding inZ, & Z, results in the Slepian-Wolf rate
1 implies that nested linear codes built over prime fieldsegion. Combining these rate regions, we see that a sum rate
can achieve the rate region of the Berger-Tung based codin§ R; 