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Abstract—We study the capacity of the full-duplex bidirec-
tional (or two-way) relay channel with two nodes and one relay.
The channels in the forward direction are assumed to be different
(in general) than the channels in the backward direction, i.e.
channel reciprocity is not assumed. We use the recently proposed
deterministic approach to capture the essence of the problem
and to determine a good transmission and relay strategy for
the Gaussian channel. Depending on the ratio of the individual
channel gains, we propose to use either a simple amplify-and-
forward or a particular superposition coding strategy at the relay.
We analyze the achievable rate region and show that the scheme
achieves to within 3 bits the cut-set bound for all values of channel
gains.

I. I NTRODUCTION

Bidirectional or two-way communication between two
nodes was first studied by Shannon himself in [1]. Nowa-
days the two-way communication where an additional node
acting as a relay is supporting the exchange of information
between the two nodes is attracting increasing attention. Some
achievable rate regions for the two-way relay channel using
different strategies at the relay, such as decode-and-forward,
compress-and-forward and amplify-and-forward, have been
analyzed in [2]. The capacity region of the so called broad-
cast two-way half-duplex relay channel, i.e. assuming that
the communication takes places in two hops and the relay
is decoding the received messages completely, was recently
characterized in [3]. Network coding type techniques have
been proposed by [4], [5], [6] (and others) in order to improve
the transmission rate. While inferior to traditional routing at
low signal-to-noise-ratios (SNR), it was shown in [7] that
network coding achieves twice the rate of routing at high
SNR. Similarly, in [8] the half-duplex two-way relay channel
where the channel gains are all equal to one is investigated.
It was shown that a combination of a decode-and-forward
strategy using lattice codes and a joint decoding strategy is
asymptotically optimal. Indeed, by using lattice codes it was
shown in [9] that for some cases rates within less than one bit
to the capacity can be achieved.

So far, the main focus is however so far on the one-
way relay channel, which was introduced by [10] and further
investigated in [11]. In general, cooperative communication
schemes are particulary important when reliable communica-
tion can not be guaranteed by using a conventional point-to-
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point connection. Cooperation between two source nodes for
communication to a common receiver was proposed in [12].
There, a non-cooperative phase is followed by a cooperative
one and it is shown that this strategy outperforms non-
cooperative strategies. Cooperation by using distributedspace-
time coding techniques in networks has been analyzed in [13],
[14], [15], [16]. Recent information-theoretic studies onrelay
channels can be found in e.g. [17] and references therein.
Relaying can be expected to be adopted in current and future
wireless systems, as it has been introduced in the 802.16j
(WiMAX) standard.

In this paper, we study the capacity of the full-duplex two-
way relay channel, which, to the best of our knowledge, is not
known in general. Motivated by the deterministic approach in
[18] for Gaussian networks, here we make progress towards
the goal of “approximating” the capacity region of the two-way
relay channel. The advantage of the deterministic approachis
that one can focus on the interaction between the signals arriv-
ing from different nodes rather than the background noise of
the system. Thus, our work represents an alternative approach,
however for the full-duplex case, to e.g. the approaches in [2],
[4], [8]. Furthermore, here we analyze the general case, where
the channel gains are all different (in general) and channel
reciprocity is not assumed. Although our focus is on the case
where a direct link between the two nodes is not present, we
discuss also the impact of a direct channel later on. Similar
to the general relay network studied in [18], [19] and the
interference channel studied in [20], [21], we show that our
scheme can achieve to within3 bits of the capacity for all
channel parameter values.

II. SYSTEM MODEL

The system model of the two-way full-duplex relay channel
is shown in Fig. 1. Communication takes place simultaneously
from the relay to the nodes and vice versa. As can be observed
from Fig. 1, channel reciprocity is not assumed here. Thus, in
generalh1, which is the channel parameter describing the link
from nodeA to the relay, is different fromh3, the channel
describing the link from the relay to nodeA (and similarly
for h2 and h4). The received signal at the relay is given
by (cf.Fig. 1(a))

yR = h1xA + h2xB + zR, (1)

wherexA andxB are the signals transmitted from nodeA and
nodeB, respectively. The variablezR describes the additive

http://arxiv.org/abs/0808.3145v1


PSfrag replacements

h1 h2

zR

yR
Node A

Relay

Node B

(a) Communication to the relay

PSfrag replacements

h3 h4

z3 z4
y3 y4Node 1

Relay

Node 2

(b) Communication from the relay

Fig. 1. Bidirectional relaying

Gaussian noise at the relay. Without loss of generality, we
assume thatE

[

|xA|2
]

= E
[

|xB|2
]

= E
[

|zR|2
]

= 1. The
received signals at the nodes are given by (cf. Fig. 1(b))

yA = h3xR + z2 (2)

yB = h4xR + z3.

The variablesz2 andz3 are the unit variance additive Gaussian
noises at nodeA and nodeB, respectively.

III. D ETERMINISTIC TWO-WAY RELAY

The deterministic channel model was introduced in [18].
Here is a formal definition of this model.

Definition 1: (Definition of the deterministic model) Con-
sider a wireless network as a set of nodesV , where|V | = N .
Communication from nodei to node j has a non-negative
integer gain1 n(i,j) associated with it. This number models the
channel gain in a corresponding Gaussian setting. At each time
t, nodei transmits a vectorxi[t] ∈ F

q
2 and receives a vector

yi[t] ∈ F
q
2 whereq = maxi,j(n(i,j)). The received signal at

each node is a deterministic function of the transmitted signals
at the other nodes, with the following input-output relation: if
the nodes in the network transmitx1[t],x2[t], . . .xN [t] then
the received signal at nodej, 1 ≤ j ≤ N is:

yj [t] =

N
∑

k=1

Sq−nk,jxk[t] (3)

for all 1 ≤ k ≤ N , whereS is theq× q shift matrix given by

S =















0 0 0 · · · 0
1 0 0 · · · 0
0 1 0 · · · 0
...

. . . . . .
. . .

...
0 · · · 0 1 0















.

and the summation and multiplication is inF2.

We start our analysis by considering the deterministic model
of the two-way relay channel as shown in Fig. 2. The following
theorem is our main result for the deterministic two-way relay
network.

1Some channels may have zero gain.
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Fig. 2. Deterministic model for bidirectional relaying

Theorem 1: The capacity region of the bi-directional linear
finite field deterministic relay network is:

RAB ≤ min(n1, n4) (4)

RBA ≤ min(n2, n3). (5)

Furthermore, the cut-set bound is achievable with a simple
shift-and-forward strategy at the relay.

In the rest of the section, we give a sketch of the proof.
We use an algebraic approach to solve the problem of finding
the optimal strategy. In the deterministic model assume that
nodeA andB sendsxA and xB ∈ F

q
2, respectively, where

q = max(n1, n2, n3, n4). The received signal at the relay is
then given by

yR = Sq−n1xA + Sq−n2xB .

Now consider a linear coding strategy at the relay. Thus, it is
going to send

xR = GyR = G(Sq−n1xA + Sq−n2xB),

whereG is an arbitraryq×q generating matrix that is a design
choice.

The received signal at nodeA is thus given by

yA = Sq−n3xR = Sq−n3G(Sq−n1xA + Sq−n2xB)

while nodeB receives

yB = Sq−n4xR = Sq−n4G(Sq−n1xA + Sq−n2xB).

Since nodeA and nodeB respectively know their own signals
xA and xB, they can cancel it from their received signal.
Hence effectively they receive

y′
A = Sq−n3GSq−n2xB

y′
B = Sq−n4GSq−n1xA. (6)

The question is, whether we can find a matrixG, such that the
ratesRAB = min(n1, n4) andRBA = min(n2, n3) in (4), (5)
are achievable. By obtaining such a matrix, we would also
gain insights how the processing at the relay should be done
in an optimal way.

Now we state the following lemma, whose proof is given
in Appendix A.
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Lemma 1: It is possible to convert the network in Fig. 2 into
one of the following two cases without changing the cut-set
bound.

1) n1 = n4 andn2 ≤ n3

2) n2 = n3 andn1 ≤ n4

Therefore, by Lemma 1 and symmetry we only need to study
this case:

n1 = n4 andn2 ≤ n3.

It turns out, that we are indeed able to construct a matrix
G, such that the cut-set bound is achievable. The generating
matricesG for the individual cases (the derivation is given in
Appendix B) are given as follows.

1) q = n1

G =

[

0n2×(q−n2) In2

Iq−n2 0(q−n2)×n2

]

(7)

2) q = n3

(a) n2 ≤ n1

G =

[

0n1×(q−n1) In1

0q−n1 0(q−n1)×n1

]

(8)

(b) n2 > n1

G =

[

0n1×(q−n1) In1

Iq−n1 0(q−n1)×n1

]

(9)

In the following we give interpretations of the different
generating matricesG in (7), (8), and (9) for the three cases.

A. Interpretation of the case n1 = q

We start with the generating matrixG in (7). The inter-
pretation of this operation for the deterministic case is the
following. The relay receivesn1 = q signal levels as shown
in Fig. 3(a). The lastn2 contain information from both nodeA
and nodeB (gray area in Fig. 3(a)) and the other (top) signal
levels are only information fromA (white area in Fig. 3(a)).
The relay is now creating a codeword, which has the lastn2

received signal levels at highest level (gray area in Fig. 3(b))
and the remaining bits ofA at lower signal levels (white area
in Fig. 3(a)).

The interpretation of the scheme for the Gaussian channel is
the following. At first the relay decodes a part of the message,

namely x(1)
A , received from nodeA that has arrived above

the signal level of nodeB and subtracts it from the overall
received signal. The remaining part (lowestn2 levels) of the
overall received signal at the relay is just the summation of
signals from both the nodeA and nodeB. The argumentation
here is that the relay can not decode this summation and thus it
quantize it. The interesting part is now that the relay creates the
transmit signal by using a superposition code [22]. The cloud
center of this superposition code is the quantized signal, while
the bin index is the informationx(1)

A it has decoded from node
A.

B. Interpretation of the case n3 = q

We start with the casen2 ≤ n1. Here, the relay receives
n1 signal levels. The relay then simply shifts the received
signal up and forwards it. The corresponding scheme for the
Gaussian channel is thus amplify-forward. As an alternative
approach, we could also use a similar superposition strategy
as forn1 = q. However, as we will show later on, the simple
amplify-and-forward strategy is enough in order to achieveto
within 3 bits the capacity for all channel parameter values.

The case withn2 > n1 is analogous to the case withn1 =
q. Here the relay receivesn2 signal levels. The lastn1 bits
contain information for both nodeA andB and the rest is just
the information for nodeA. The interpretation of the scheme
for the Gaussian channel is very similar to the scheme for
n1 = q and thus omitted.

IV. GAUSSIAN TWO-WAY RELAY CHANNEL

In this section, we use the insights obtained from studying
the deterministic two-way relay channel to find near-optimal
relaying strategies in the Gaussian case as defined in section II.
It follows our main result for the Gaussian two-way relay
channel and the rest of this section is devoted to proving it.

Theorem 2: Consider a Gaussian two-way relay channel as
defined in section II with unit average noise and transmit
power at each node. The capacity of this system satisfies

C̄AB − 3 ≤ CAB ≤ C̄AB

and

C̄BA − 3 ≤ CBA ≤ C̄BA,

whereC̄AB = log(1+min(|h1|2, |h4|2)) andC̄BA = log(1+
min(|h2|2, |h3|2)) is the cut-set upper bound on the capacity
of the transmission fromA to B andB to A, respectively [23].

Since Lemma 1 holds also for the Gaussian case, we again
need to study only the case that|h1|2 = |h4|2 and |h2|2 ≤
|h3|2. Now we discuss the achievability strategy:

A. Achievability strategy

In general, the transmit signals from nodeA, nodeB and
the relay are given by

xA =
√
αAx

(1)
A +

√
1− αAx

(2)
A

xB =
√
αBx

(1)
B +

√
1− αBx

(2)
B

xR =
√
αRx

(1)
R +

√
1− αRx

(2)
R . (10)



where x
(1)
A , x

(2)
A , x

(1)
B , x

(2)
B , x

(1)
R , and x

(2)
R are codewords

chosen from a random Gaussian codebook of size2nR
(1)
AB ,

2nR
(2)
AB , 2nR

(1)
BA , 2nR

(2)
BA , 2nR

(1)
R , and 2nR

(2)
R , respectively. At

nodeA (and similarly for nodeB) we have two messagesm(1)
A

andm
(2)
A of size 2nR

(1)
AB and2nR

(2)
AB that are mapped tox(1)

A

and x
(2)
A , respectively. The relay signaling strategy depends

on the channel gains and will be specificized later for each
case. The choice ofαA, αB, andαR in (10) depend on the
magnitude of the channel gains|h1|, |h2|, |h3|, and |h4|.

B. |h1|2 ≥ |h3|2

Following the insights gained from the deterministic model,
for |h1|2 ≥ |h3|2 we setαB = 0 andR(1)

BA = 0. The transmit
signal at nodeB then reduces to

xB = x
(2)
B .

Thus, the receive signal at the relay is given by

yR =
(√

αAx
(1)
A +

√
1− αAx

(2)
A

)

h1 + h2xB + zR. (11)

αA is chosen such that the received signal ofx
(2)
A andxB are

at the same scale. Thus, the following expression has to hold
√
1− αAh1 = h2, (12)

which gives

1− αA =

(

h2

h1

)2

.

Form yR, the relay first decodesx(1)
A (i.e. m(1)

A ) by treating
the remaining received signalsx(2)

A andxB as noise. This can
be done with low error probability as long as

R
(1)
AB ≤ log

(

1 +
αA|h1|2

1 + (1− αA) |h1|2 + |h2|2
)

= log

(

1 +
|h1|2 − |h2|2
1 + 2|h2|2

)

. (13)

Then the relay maps the decodedx(1)
A to another codeword

x
(1)
R of size2nR

(1)
R with R

(1)
R = R

(1)
AB. If the above expression

is fulfilled, the relay can decode the signalx
(1)
A and cancel it

from the received signal in (11). Thus, we have

ỹR =
√
1− αAx

(2)
A h1 + h2xB + zR.

As suggested in the deterministic model,ỹR is not decoded.
Rather, a quantization is performed. The relay uses an optimal
vector quantizer of size2nR

(2)
R and maps the quantization index

to a codewordx(2)
R . Then the relay transmits (10), where

αR =
αA

2|h2|2 + 1
.

Having received the signal from the relay, nodesA andB
first attempt to decodex(2)

R . Since nodeA knowsx(1)
R it can

cancel it from the received signal, however nodeB is treating

x
(1)
R as noise. The decoding ofx(2)

R can be done with low
error probability as long as

R
(2)
R ≤ min

(

log

(

1 +
|h1|2(1− αR)

|h1|2αR + 1

)

, log
(

1 + |h3|2(1− αR)
)

)

(14)

= min

(

log

( |h1|2 + 1

|h1|2αR + 1

)

, log
(

1 + |h3|2(1− αR)
)

)

.

The second expression within the min-operation is obtained
due to nodeA. As aforementioned, assuming that nodeA
knows the strategy of relay and the codebook it has used,
it can reconstructx(1)

R perfectly, since it contains only its
own message. Using interference cancelation results in a
interference free channel. The first expression within the min-
operation is obtained due to nodeB which observes part of
the signal from the relay, i.e.x(1)

R , as additional noise. Then
nodeB cancelsx(2)

R from its received signal and attempts to
decodex(1)

R . This can be done with low error probability if

R
(1)
R ≤ log

(

1 + αR|h1|2
)

.

Now that nodesA andB have decodedx(1)
R , they can create

ỹ
Q
R = βỹR + zQ = β

(√
1− αAx

(2)
A h1 + h2xB + zR

)

+ zQ

(12)
= β

(

h2

(

x
(2)
A + xB

)

+ zR

)

+ zQ

where

β = (1−D/σ2
ỹR

)

andzQ is due to the quantization noise with variance

σ2
Q = D(1−D/σ2

ỹR
).

Thus, the distortionD in our case has to fulfill [23]

D = 2−R
(2)
R σ2

ỹR
=min

(

αR|h1|2 + 1

|h1|2 + 1
,

1

1 + |h3|2(1 − αR)

)

×
(

2|h2|2 + 1
)

.

Assuming that the nodes are able to cancel their own
message from̃yQ

R , they can decode each others codeword with
low error probability if

RBA ≤ min

(

log



1 +
|h2|2

(

1− αR|h1|
2+1

|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1 2|h2|2



 , (15)

log



1 +
|h2|2

(

1− 1
1+|h3|2(1−αR)

)

1 + 2|h2|2

1+|h3|2(1−αR)





)

and

R
(2)
AB ≤ min

(

log



1 +
|h2|2

(

1− αR|h1|
2+1

|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1 2|h2|2



 , (16)

log



1 +
|h2|2

(

1− 1
1+|h3|2(1−αR)

)

1 + 2|h2|2

1+|h3|2(1−αR)





)

.



Therefore, the rate in (15) and

RAB

(13),(16)
≤ log

(

1 +
|h1|2 − |h2|2
1 + 2|h2|2

)

+min

(

log



1 +
|h2|2

(

1− αR|h1|
2+1

|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1 2|h2|2



 ,

log



1 +
|h2|2

(

1− 1
1+|h3|2(1−αR)

)

1 + 2|h2|2

1+|h3|2(1−αR)





)

are achievable. With some algebra, we can show that

min

(

log



1 +
|h2|2

(

1− αR|h1|
2+1

|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1 2|h2|2



 ,

log



1 +
|h2|2

(

1− 1
1+|h3|2(1−αR)

)

1 + 2|h2|2

1+|h3|2(1−αR)





)

≥ log
(

1 + |h2|2
)

− log (3)

and

log

(

1 +
|h1|2 − |h2|2
1 + 2|h2|2

)

+min

(

log



1 +
|h2|2

(

1− αR|h1|
2+1

|h1|2+1

)

1 + αR|h1|2+1
|h1|2+1 2|h2|2



 ,

log



1 +
|h2|2

(

1− 1
1+|h3|2(1−αR)

)

1 + 2|h2|2

1+|h3|2(1−αR)





)

≥ log
(

1 + |h1|2
)

−max(2, 3).

Thus, we are at most3 bits away from the cut-set bound.

C. Case |h1|2 < |h3|2
1) Amplify-and-forward:|h2|2 < |h1|2: With αA = αB =

0, the transmit signals from nodeA and nodeB reduce to
xA = x

(2)
A andxB = x

(2)
B chosen from a random Gaussian

codebook of size2nRAB and 2nRBA , respectively. Thus, the
received signal at the relay is given by

yR = h1xA + h2xB + zR.

Using a amplify and forward strategy, the transmit signal at
the relay is thus given by

xR =
1

√

|h1|2 + |h2|2 + 1
yR.

Using (2), the received signals at the nodes are given by

yA =
h3

√

|h1|2 + |h2|2 + 1
(h1xA + h2xB + zR) + zA

yB =
h4

√

|h1|2 + |h2|2 + 1
(h1xA + h2xB + zR) + zB .

First, the nodes cancel their own messages from the received
signal. Then, the nodes can decode each other signals with
low error probability as long as

RAB ≤ log

(

1 +
|h1|2|h4|2

|h4|2 + |h1|2 + |h2|2 + 1

)

RBA ≤ log

(

1 +
|h2|2|h3|2

|h3|2 + |h1|2 + |h2|2 + 1

)

.

With some algebra, we can show that

log

(

1 +
|h1|2|h4|2

|h4|2 + |h1|2 + |h2|2 + 1

)

≥ log
(

1 + |h1|2
)

− log(3)

log

(

1 +
|h2|2|h3|2

|h3|2 + |h1|2 + |h2|2 + 1

)

≥ log
(

1 + |h2|2
)

− log(3).

Thus, we are at most withinlog(3) bits away from the cut-set
bound, which is strictly better than what we aimed for.

2) |h2|2 > |h1|2: The following derivations are very similar
to the case|h1|2 ≥ |h3|2 with slight differences. First of all,
αA = 0 andαB andαR are now given by

αB = 1− |h1|2
|h2|2

andαR =
αB |h2|2

|h3|2 (2|h1|2 + 1)
.

While we had amin-operator in the case|h1|2 > |h3|2
(cf. (14), here it can be shown that|h1|2 > |h3|

2
/(αR|h3|

2+1)
is never fulfilled in this case. Thus, we have to consider only
|h1|2 ≤ |h3|

2
/(|h3|

2αR+1) and themin-operator is obsolete.
Therefore the nodes can decode each other signals with low
error probability as long as

RAB ≤ log



1 +
|h1|2

(

1− 1
1+|h1|2(1−αR)

)

1 + 2|h1|2

1+|h1|2(1−αR)





and

RBA ≤ log

(

1 + |h1|2 + |h2|2
1 + 2|h1|2

)

+RAB.

With some algebra, we can show that

log



1 +
|h1|2

(

1− 1
1+|h1|2(1−αR)

)

1 + 2|h1|2

1+|h1|2(1−αR)



 ≥ log
(

1 + |h1|2
)

− log (3)

and

log

(

1 + |h1|2 + |h2|2
1 + 2|h1|2

)

+RAB ≥ log
(

1 + |h2|2
)

− 3

Thus, we are at most3 bits away from the cut-set bound.

V. I MPACT OF A DIRECT LINK BETWEEN NODES

If a direct link between the nodesA andB is present then
the system equations change to

yA = h3xR + h5xB + z2 (17)

yB = h4xR + h6xA + z3.

Since channel reciprocity is not assumed, in generalh5 6= h6.
The cut-set bound for the deterministic case changes to

RAB ≤ min(max(n1, n6),max(n4, n6))

= n6 +min((n1 − n6)
+, (n4 − n6)

+) (18)

RBA ≤ min(max(n2, n5),max(n3, n5))

= n5 +min((n2 − n5)
+, (n3 − n5)

+). (19)

From the cut-set bound above, we observe that as long as
n5 andn6 are larger thanmax(n1, n2, n3, n4), we can ignore



the relay. If that is not the case, then the relay ignores the top
q−max(min((n2−n5)

+, (n3−n5)
+),min((n1−n6)

+, (n4−
n6)

+), signal levels, withq = max(n1, . . . , n6), at the relay.
Then, the firstmin((n2−n5)

+, (n3−n5)
+, (n1−n6)

+, (n4−
n6)

+) are routed from the nodes over the relay at an interfering
signal level. The intermediate|min((n2−n5)

+, (n3−n5)
+)−

min((n1 − n6)
+, (n4 − n6)

+)| are routed over the relay on
the non-interfering signal levels.

For the Gaussian two-way relay channel we have the
following cut-set bound

C̄AB = max
|ρA|≤1

min
(

log(1 + (1 − ρ2A(|h6|2 + |h1|2)),

log(1 + |h6|2 + |h4|2 + 2ρA|h6||h4|
)

C̄BA = max
|ρB |≤1

min
(

log(1 + (1 − ρ2B(|h5|2 + |h2|2)),

log(1 + |h5|2 + |h3|2 + 2ρB|h5||h3|
)

.

The simultaneous transmission from the relay and the nodes
causes interference at the respective receiving node. If|h6| <
min(|h1|, |h4|) or |h5| < min(|h2|, |h3|), using a simple
block-Markov encoding scheme in combination with backward
decoding in order to overcome the interference created by the
two incoming signals at each node results in the same rates
for the proposed scheme as before. A better exploitation of
the direct link would certainly result in higher rates. Similarly,
if |h6| > min(|h1|, |h4|) and |h5| > min(|h2|, |h3|), i.e. the
direct links are stronger than the relay links, the relay cannot
increase the capacity by more than 2 bits. Thus, we can ignore
it and still we are within a constant gap to the cut-set bound.
The cut-set bound in the interesting case in which the direct
links are weaker than the relay paths can be upper bounded
by

C̄AB ≤ min
(

log(1 + |h1|) + 1, log(1 + |h4|2) + 2
)

= log(1 + |h1|) + 1

C̄BA ≤ min
(

log(1 + |h2|) + 1, log(1 + |h3|2) + 2
)

= log(1 + |h2|) + 1.

Since the cut-set bound increases to at most one more bit, we
are at most 4 bits away from the cut-set bound.

VI. I LLUSTRATION

In Fig. 4(a) and 4(b), the gap between the ratesRAB and
RBA and the corresponding cut-set upper bound is plotted
for different channel gains, respectively. Thex-coordinate is
representing the ratio of the channel gain from the relay to
nodeA (i.e. h3) to the reverse direction, i.e. from nodeA to
the relay (i.e.h1), in dB scale. On they-coordinate we have
the ratio of the channel and from the nodeB to the relay (i.e.
h2) to the reverse direction, i.e. from the relay to nodeB (i.e.
h4 = h1), in dB scale. The ordinate shows the gap in bits.
From the simulations, we observe that the gap is in general
less than3 bits, which verifies our theoretical results. We also
observe that for a certain region, the gap is less than1 bit. This
region is especially large forRBA. In the plot, we normalized
the channel gainh1 to 20 dB higher than the noise variance.
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Fig. 4. Gap to the cut-set upper bound

Interestingly, it turns out that the gap is further reduced by
shrinking the channel gainh1 (not shown here).

VII. C ONCLUSION

In this paper, we have studied the capacity of the full-
duplex bidirectional (or two-way) relay channel with two
nodes and one relay. We used the recently proposed deter-
ministic approach to capture the essence of the problem and
to determine a good transmission and relay strategy for the
Gaussian channel. Depending on the ratio of the individual
channel gains, we used either a simple amplify-and-forward
or a particular superposition coding strategy at the relay.
We analyzed the achievable rate region and showed that the
scheme achieves to within3 bits the cut-set bound for all
values of channel gains.

APPENDIX A
PROOF OFLEMMA 1

Proof: The basic idea is that by reducing the transmission
power at the nodes appropriately, the cut-set bound is not
changed. Note the following three observations:



• If n1 > n4 then nodeA can reduce its power such that
n′
1 = n4 and also since during this processmin(n1, n4) is

unchanged, the cut-set upper bound also does not change
• Similarly if n2 > n3 then nodeB can reduce its power

such thatn′
2 = n3 and also since during this process

min(n2, n3) is unchanged, the cut-set upper bound also
does not change

• If n1 < n4 andn2 < n3 then the relay can reduce its
power bymin(n4−n1, n3−n2) and then either (n′

3 = n2

andn1 ≤ n′
4) or (n1 = n′

4 andn2 ≤ n′
3)

Therefore in any case we can transform the network to one of
the cases described above, and the cut-set upper bound is not
changed.

APPENDIX B
DERIVATION OF THE GENERATING MATRICES

From (6) note that for anyG it holds that

rank(Sq−n3GSq−n2) ≤ min(n2, n3) (20)

rank(Sq−n4GSq−n1) ≤ min(n1, n4),

since from [24] we have that

rank(Sq−n3GSq−n2) ≤ min(rank(Sq−n3), rank(G),

rankSq−n2))

rank(Sq−n4GSq−n1) ≤ min(rank(Sq−n4), rank(G),

rank(Sq−n1)),

which is consistent with the cut-set upper bound in (4), (5).
What remains to be solved is to find a matrixG such that

both necessary conditions in (20) are satisfied with equality,
i.e.

rank(Sq−n3GSq−n2) = min(n2, n3) (21)

rank(Sq−n4GSq−n1) = min(n1, n4). (22)

Now we have two possibilities. Either we haveq = n1 or
q = n3. If q = n1 then conditions onG in (21) and (22)
become:

rank(Sq−n3GSq−n2) = min(n2, n3) = n2

rank(G) = q

OneG that satisfies both equalities is the following:

G =

[

0n2×(q−n2) In2

Iq−n2 0(q−n2)×n2

]

.

If q = n3 then conditions onG in (21) and (22) become:

rank(GSq−n2) = min(n3, n3) = n2

rank(Sq−n1GSq−n1) = n1

Here, we have to consider two cases: Ifn2 ≤ n1 holds, then
oneG that satisfies both inequalities is the following:

G =

[

0n1×(q−n1) In1

0q−n1 0(q−n1)×n1

]

.

If insteadn2 > n1 is given, then oneG that satisfies both
inequalities is the following:

G =

[

0n1×(q−n1) In1

Iq−n1 0(q−n1)×n1

]

.
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