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Abstract— We consider a scenario in which two sources
exchange stochastically varying traffic with the aid of a bi-
directional relay that may perform network coding over the
incoming packets. Each relay use incurs a unit cost, e.g.,
transmission energy. This cost is shared between the sources
when packets from both are transmitted via network coding; if
traffic from a single source is sent, the cost is passed on to only
that source. We study transmission policies which trade-off the
average cost with the average packet delay. First, we analyze
the cost-delay trade-off for a centralized control scheme using
Lyapunov stability arguments. We then consider a distributed
control scheme, where each source selfishly optimizes its own
cost-delay trade-off by playing a non-cooperative game. We
determine the Nash equilibrium and show that it performs
worse than the centralized algorithm. However, appropriate
pricing at the relay achieves the centralized performance. These
algorithms require full information of queue backlogs. Next, we
relax this assumption and any source makes the transmission
decision depending on whether the other sources queue backlog
exceeds a threshold, or not. This needs only one bit information
exchange and leads to asymptotically optimal cost, as the delay
grows. Finally, we consider cost sharing with only local queue
information at each source. The results illustrate new cost-delay
trade-offs based on different levels of cooperation and queue
information availability.

I. I NTRODUCTION

A simple, yet fundamental model for a multi-hop wireless
networks is the two-way relay network shown in Fig. 1.
In this network, two sources communicate with each other
with the assistance of a single relay node. It has become
well established that network coding [1] can improve the
throughput of such a two-way relay over traditional store-
and-forward routing, e.g. see [2], [3]. In many cases, the use
of a relay node will incur a cost, for example representing the
energy consumption of the relay. The use of network coding
can also reduce this cost [4], [5]. For example, with network
coding a single transmission by the relay can be used to
forward one packet from each source simultaneously, while
with plain routing this would require two transmissions. If
the cost per transmission was the same in both cases, then
network coding will result in a 50% reduction in the total
cost. However, when the sources have bursty traffic, this cost
reduction may come at the price of higher delays, since
each source must wait for packets to arrive at the other
source in order to exploit the network coding gain. This
cost-delay trade-off has been observed in [6], [7] and is the
main focus of this paper. Specifically, we consider the design

of transmission policies at the sources which trade-off the
average cost with the average delay.

We begin by considering centralized policies in which
a centralized controller specifies the transmission rate of
each source based on perfect information of both source
queue states. We use Lyapunov stability arguments as in
[8]–[10] to develop rate allocation policies and analyze their
cost-delay trade-off. We then consider a model in which
each source individually decides its own rate based on the
joint queue size, resulting in a non-cooperative game. We
characterize the equilibria of this game and show that in
general it leads to worse performance than the centralized
solution. These equilibria require each source to know the
queue size of both sources. We next consider algorithms
which do not require full knowledge of the queue sizes at
both sources. Specifically, we derive strategies against the
worst and best response of the opponent thereby limiting
the backlog information to the individual queues only. This
leads to the result that appropriate pricing by the relay forthe
worst-case response can achieve the cost-optimal operation
at the expense of increasing the complexity of rate allocation.

Next, we present a simple transmission scheme that re-
quires only one bit information of the other source’s queue
backlog. The transmission decisions are based on whether the
individual queue backlogs exceed a fixed threshold, or not. In
particular, we show that it is possible to achieve asymptoti-
cally optimal cost, as the packet delay grows with increasing
threshold values. Then, we further relax the assumption of
queue state knowledge and extend the analysis to the case
where sources do not share any information on each other’s
queue backlog. All of the cost-sharing algorithms proposed
in this paper do not require anya priori information of
packet arrival statistics and they can operate only with the
instantaneous values of queue backlogs.

In terms of related work, we note that there have been a
number of works studying the interaction of network coding
with stochastically varying traffic in both two-way relay
networks [11], [12] and other network topologies [6], [13]–
[15]. There have also been a number of papers studying the
trade-off of for wireless networks without network coding,
including [9], [10], [16]. Other game theoretic models for
network coding have been studied in [17], [18]; in these
models the underlying conflict of interest is due flow opti-
mization rather than cost sharing.



Fig. 1. Two-way relay network: Two sources with packet arrivals and a
single relay to exchange the incoming packets.

II. SYSTEM MODEL

We consider the two-way relay network with two sources
1 and2, and one relayR, as shown in Fig. 1. We assume

a synchronous slotted system, in which each sourcei =
1, 2 buffers the incoming packets in queueQi with backlog
qi(t) at time (slot)t. Each sourcei chooses the service rate
µi(t) at time t (namely, the number of packets/bits or more
generally data units injected to the system) such that

(µ1(t), µ2(t)) ∈ C(t), (1)

whereC(t) is the rate region achievable by network coding
at time t. In this paper, we focus on a simple rate region
C(t) = {(µ1(t), µ2(t)) : 0 ≤ µi(t) ≤ µmax

i (t), i = 1, 2}
achievable over the relayR. This represents the case of
orthogonal channels from sources to the relay. The extension
to more general rate regions can further couple the service
rates in addition to the coupling effect of network coding,
which poses the main interest in this paper. The queue length
at sourcei = 1, 2 evolves as

qi(t + 1) = max (qi(t) − µi(t), 0) + ai(t), (2)

whereai(t) is the number of bits/packets arriving at source
queueQi at timet. For each sourcei, we assume thatai(t)
is generated via an ergodic process and letλi denote its
long-term average.

Alternatively, the queue dynamics can be written as

qi(t + 1) = qi(t) − µ̃i(t) + ai(t), (3)

where the actual transmission rate of sourcei is

µ̃i(t) = min(µi(t), qi(t)), i = 1, 2, (4)

since the number of transmitted packets is limited by the
number of packets available in the queue. Note that the rate
µi(t), i = 1, 2, is sufficient to optimize the throughput rates,
since sources can simply perform zero padding in the absence
of packets. However, we are interested in minimizing the
cost, which is a function of the number of transmitted pack-
ets. Therefore, we use the actual transmission rate, namely
µ̃i(t), that is bounded by the number packets available in the
source queues. The instantaneous rate region is defined as

C̃(t) = {µ̃1(t), µ̃2(t) : (µ̃1(t), µ̃2(t)) ∈ C(t), (5)

µ̃i(t) ≤ qi(t), i = 1, 2}.

We assume that relayR does not buffer the incoming
packets in queues and immediately forwards any received
data over a single channel which is orthogonal to the
channels used by each source. Specifically, the relay will
use network coding to transmit an equal number of packets
per time-slot from both sources simultaneously at common

rate minj=1,2(µ̃j(t)). Any residual traffic is then routed in
uncoded form only from one sourcei with rate µ̃i(t) −
minj=1,2(µ̃j(t)). Note that the network coding operation can
be carried out at packet or signal levels, i.e., relayR either
decodes, network-codes and transmits the incoming packets,
or simply amplifies-and-forwards the received signals as in
analog network coding [3]. Decoding is accomplished by
combining the received network-coded packets with that
source’s individual packets. We do not consider the network
coding overhead to notify sources whether the transmitted
packet is network-coded or in plain form, and assume that
this overhead is negligible compared to packet size.

Each use of the relayR is assumed to incur a cost, which
could, for example, represent the energy expended by the
relay. We assume that the relay cost is partitioned among
the two sources depending on the rate allocation such that
the cost of sourcei = 1, 2 for using the relayR with rate
µ̃i is

Ji(µ̃1(t), µ̃2(t)) = ci(t)
(

min
j=1,2

(µ̃j(t))
)

(6)

+di(t)
(

µ̃i(t) − min
j=1,2

(µ̃j(t))
)

,

where ci(t) and di(t) are the costs charged by the relay
R to deliver one packet by network coding and routing,
respectively. For most of the following we focus on the case
whereci(t) = 1

2 , anddi(t) = 1. This models the case where
the cost per unit time of operating the relay is the same for
both routing and network coding and in the network coding
case the cost is equally shared by both sources, whereas any
source is solely responsible for the cost of packets routed by
the relay. Then, the individual cost (6) can be rewritten as

Ji(µ̃1(t), µ̃2(t)) = µ̃i(t) −
1

2
min
j=1,2

(µ̃j(t)) (7)

such that the total cost is simplified to

2
∑

i=1

Ji(µ̃1(t), µ̃2(t)) = max
i=1,2

(µ̃i(t)). (8)

III. C ENTRALIZED COST OPTIMIZATION

We start with the case where a centralized controller has
access to all system parameters along with the queue backlog
information, and makes the transmission decisions for both
sources. The main objective is to minimize the total cost
for both sources while ensuring that the average delay is no
greater than a given valueD. This leads to the following
optimization problem:

Total Minimum Cost Problem:

min
(µ̃1(t),µ̃2(t))∈C̃(t),t≥0

lim
t→∞

1

t

t−1
∑

τ=0

2
∑

i=1

E [Ji(µ̃1(τ), µ̃2(τ))]

(PC)

s.t. lim
t→∞

1

t

t−1
∑

τ=0

2
∑

i=1

E[qi(τ)]

λ1 + λ2
< D.

Here, the average delay constraint follows from the ratio of
the average queue length to the total arrival rate accordingto



Little’s theorem [19]. Note also that the objective in(PC) is
equivalent to the average cost per packet by normalizing by
the total long-term arrival rateλ1+λ2. LetP∗(D) denote the
solution to(PC) as a function of the delay constraintD, i.e.
the cost-delay trade-off. In general this will be a decreasing
function of D and asD → ∞, it will yield the minimum
cost solution subject to the queue’s being stable.

In principle, for a given delay constraint, Problem(PC)
can be solved via dynamic programming. However, such a
solution quickly becomes intractable except for very simple
arrival processes and furthermore, requiresa priori knowl-
edge of arrival statistics. Instead, we will follow the approach
in [10] and use Lyapunov stability arguments to yield an
approximate solution to(PC) with provable approximation
bounds. This approach is based on generalizing the classical
back-pressure algorithm from [8] which is guaranteed to sta-
bilize the packet queues if this is possible. This throughput-
optimal solution is given by

max
(µ1(t),µ2(t))∈C(t),t≥0

2
∑

i=1

qi(t)µi(t), (9)

which can be rewritten as

max
(µ̃1(t),µ̃2(t))∈C̃(t),t≥0

2
∑

i=1

qi(t)µ̃i(t). (10)

Note that (9)-(10) are not optimal with respect to minimiz-
ing the time-average cost in (PC) as shown in the following
example:

Example 1: Let a1(t) = 1, a2(t) = 2 for even t, and
a1(t) = 2, a2(t) = 1 for odd t. For ci(t) = 1

2 and di(t) =
1, the back-pressure solution isµ1(t) = 1, µ2(t) = 2 for
even t, and µ1(t) = 2, µ2(t) = 1 for odd t. The long-
term average costs per packetJ1 andJ2 are 2

3 . However, if
sources accumulate packets over time slots and transmit such
that relayR performs network coding only, the decisions
µ1(t) = 1, µ2(t) = 1 for event and µ1(t) = 2, µ2(t) = 2
for odd t make the long-term average costs approach the
lower bound1

2 (which is achieved, if relayR only performs
network coding such that the relay cost for each network-
coded packet is always equally shared by both sources).

The main idea in [10] is to augment the policy in (10) with
an additional term to reflect the cost. The resulting problem
is given by

max
(µ̃1(t),µ̃2(t))∈C̃(t)

(

q1(t)µ̃1(t) + q2(t)µ̃2(t) (P1)

−V max(µ̃1(t), µ̃2(t))
)

,

whereV is a control parameter to tune the trade-off between
the average queue backlog and the distance from the min-
imum achievable cost. In (P1), maximizing the first term
q1(t)µ̃1(t) + q2(t)µ̃2(t) is due to backpressure algorithm in
order to stabilize the source queues, whereas minimizing the
second termmax(µ̃1(t), µ̃2(t)) serves the purpose of moving
the stable solutions to the minimum achievable cost.

Theorem1: At any time slot t, the solution to(P1) is

given by the algorithm(A1) as follows:

(µ̃i(t), µ̃j(t)) = (A1)






































(0, 0), if V > q1(t) + q2(t),

(uc(t), uc(t)), if q1(t) + q2(t) > V ≥ max(q1(t), q2(t)),

(ui(t), uc(t)), if qi(t) > V ≥ qj(t), j 6= i,

(ui(t), uc(t)), if V ≤ min(q1(t), q2(t)),

(qi(t) − V )ui(t) + qj(t)uc(t) ≥

(qj(t) − V )uj(t) + qi(t)uc(t), j 6= i,

where

ui(t) = min(qi(t), µ
max
i (t)), (11)

uc(t) = min(u1(t), u2(t)).

Proof: The objective function to be maximized depends
on which source is assigned a higher rate, and it is either
equal to(q1(t) − V )µ̃1(t) + q2(t)µ̃2(t), if µ̃1(t) ≥ µ̃2(t) or
(q2(t) − V )µ̃2(t) + q1(t)µ̃1(t), if µ̃2(t) ≥ µ̃1(t). Consider
the case withqi(t) > V and qj(t) < V . For µ̃i(t) ≥ µ̃j(t),
the objective function is greater than or equal to(q1(t) +
q2(t) − V )uc(t), whereas the objective function is at most
(q1(t) + q2(t) − V )uc(t) for µ̃j(t) ≥ µ̃i(t). Accordingly,
the rate allocation withµi(t) ≥ µj(t) is selected with̃µi(t)
equal toui(t) and µ̃j(t) equal touc(t).

Without loss of generality, consider the case withµ̃i(t) ≥
µ̃j(t). Then,max(µ̃1(t), µ̃2(t)) = µ̃i(t), and the objective
function is (qi(t) − V )µ̃i(t) + qj(t)µ̃j(t).

If qi(t) < V , the optimal solution should minimizeui(t),
since the multiplier associated with the rate of sourcei

is negative. However, the special case withµ̃i(t) = µ̃j(t)
should be also taken into account. Ifqj(t) > |qi(t) − V |,
or equivalently ifq1(t) + q2(t) > V , then the optimal rate
allocation isµ̃i(t) = µ̃j(t) = uc(t). On the other hand, if
qj(t) < |qi(t) − V |, i.e., if q1(t) + q2(t) < V , the optimal
rate allocation is̃µi(t) = µ̃j(t) = 0.

Finally, if both qi(t) andqj(t) exceedV , rates should be
selected from one of the two possibilities in the fourth case
of (A1) to maximize the overall objective function.

The cost-delay trade-offs for Algorithm(A1) are evaluated
in Theorem 2:

Theorem2: For Algorithm(A1), the average queue back-
log and the average packet delay are proportional toV , while
the distance of the average cost from the minimum attainable
cost is proportional to1

V
:

lim
M→∞

1

M

M−1
∑

τ=0

2
∑

i=1

Ji(µ̃1(τ), µ̃2(τ)) ≤ J∗ +
B1

V
, (12)

lim
M→∞

1

M

M−1
∑

τ=0

2
∑

i=1

E[qi(τ)] ≤
B2 + V

2

ǫ
, (13)

whereJ∗ is the optimal cost per time slot,B1 and B2 are
positive constants, andλi satisfies(λi + ǫ) ∈ C(t), i = 1, 2,
at any timet for an arbitrarily small positive constantǫ.

Proof: (Sketch) We provide only a general sketch of
the proof for brevity. The proof follows from the Lyapunov
drift analysis with performance optimization arguments, as



in [10]. First, the Lyapunov drift (namely, the time-average
difference of Lyapunov functions for queue backlogs) is
expressed for queue dynamics, and the average cost is added
to the resulting drift formulation. This leads to Lyapunov
drift conditions for stability. Next, we utilize the properties
of the rate allocation algorithm to show that these conditions
are satisfied, leading to bounds on the average queue lengths
and consequently on the average values of delay and cost.

The optimal cost per packetJopt
p = J∗

λ1+λ2

is given by
max(λ1,λ2)

λ1+λ2

, and it is reduced to12 for λ1 = λ2.
For q1(t) + q2(t) > V > max(q1(t), q2(t)), relay R

performs only network coding and does not forward any
uncoded packet, which results in the energy-optimal oper-
ation. As V increases, sources tend to transmit less. On
the other hand, asV decreases, relayR also forwards the
residual traffic in uncoded form, which would result in the
throughput-optimal operation of the classical back-pressure
algorithm.

IV. I NDIVIDUAL COST OPTIMIZATION

Next we consider a scenario in which the individual nodes
decide on their own rate allocations given full knowledge of
the other user’s queue size. Each useri = 1, 2 would like to
solve the following individual optimization problem:

Individual Minimum Cost Problem:

min
µ̃i(t): (µ̃1(t),µ̃2(t))∈C̃(t),t≥0

lim
t→∞

1

t

t−1
∑

τ=0

E [Ji((µ̃1(τ), µ̃2(τ))]

(PCI)

s.t. lim
t→∞

1

t

t−1
∑

τ=0

E [qi(τ)]

λi

< Di.

In this setting, the two users can be viewed as paying a
non-cooperative game, in which (PCI) reflects the pay-off of
useri. In principle, this can be viewed as a stochastic game
which can again be solved using dynamic programming
ideas. However, again such an approach quickly becomes
intractable and we instead consider a Lyapunov drift formu-
lation as as we did in (P1) for the centralized optimization
problem. Furthermore, we assume that in each time-slot, the
sources play a single-stage game against each other with the
corresponding pay-off function.1 In other words, giveñµj ,
j 6= i, sourcei = 1, 2 chooses the individual strategỹµi(t)
to solve:

max
µ̃i(t): (µ̃1(t),µ̃2(t))∈C̃(t),t≥0

(

qi(t)µ̃i(t)−ViJi(µ̃1(t), µ̃2(t))
)

.

(P2)
Minimizing the first termqi(t)µ̃i(t) in the individual ob-
jective function is to stabilize the queue of sourcei,
whereas minimizing the second termViJi(µ̃1(t), µ̃2(t))
moves the stable solution to the optimal cost value. Define
J̃i(µ̃1(t), µ̃2(t)) = qi(t)µ̃i(t) − ViJi(µ̃1(t), µ̃2(t)).

1One advantage of this formulation is that it does not require any
knowledge of the long-term arrival statistics of either source.

Definition 1: A pair of strategies{µ̃∗
i } are a Nash equi-

librium for the resulting stage game if, for each playeri,

J̃i(µ̃
∗
i , µ̃

∗
−i) ≥ J̃i(µ̃i, µ̃

∗
−i), for all µ̃i ∈ C̃(t), (14)

where“ − i” denotes the player other than playeri.
For any sourcei = 1, 2, the strategy space is a non-empty
convex subset of an Euclidean space and the utility function
is continuous in(µ̃1, µ̃2) and quasi-concave iñµi. Therefore,
there exists pure strategy Nash equilibrium at any time slot
t for given qi(t), i = 1, 2.

Theorem3: The Nash equilibrium strategy(A2) of any
sourcei = 1, 2 as solution to(P2) is given by:

µ̃i(t) = (A2)






























0, if qi(t) < Vi

2 ,

ui(t), if qi(t) ≥ Vi,

0, if Vi

2 ≤ qi(t) < Vi, qj(t) <
Vj

2 , j 6= i,

uc(t), if Vi

2 ≤ qi(t) < Vi, qj(t) ≥ Vj , j 6= i,

0 or uc(t), if Vi

2 ≤ qi(t) < Vi, i = 1, 2.

Proof: Note that Ji(µ̃1(t), µ̃2(t)) = µ̃i(t) −
1
2 minj=1,2 (µ̃j(t)) is equal toµ̃i(t) −

1
2 µ̃j(t), if µ̃i(t) ≥

µ̃j(t), or equal to1
2 µ̃i(t), if µ̃j(t) ≥ µ̃i(t).

Without loss of generality, consider the former case, in
which the objective function is equal to(qi(t) − Vi)µ̃i(t) +
Vi

2 qj(t)µ̃j(t) for sourcei, and equal to(qj(t)−
Vj

2 )µ̃j(t) for
sourcej 6= i. The latter case follows directly by interchang-
ing i and j. If qi(t) > Vi, i = 1, 2, the maximum possible
value for µ̃i(t) is selected asui(t), since the multiplier
associated with the rate of sourcei will be always positive.
Similarly, if qi(t) < Vi

2 , i = 1, 2, the minimum possible value
for µ̃i(t) is selected as0, since the multiplier associated with
the rate of sourcei will be always negative.

Consider the case withVi

2 < qi(t) < Vi. If qj(t) <
Vj

2 ,
sourcej will not transmit and the best strategy of sourcei

is to reduceui(t) to 0. On the other hand, ifqj(t) > Vj ,
the best strategy of sourcej is to transmit. Then, sourcei
either tends to decrease its rate touc(t) for µ̃i(t) ≥ µ̃j(t),
or tends to increase its rate touc(t) for µ̃j(t) ≥ µ̃i(t). In
effect, sourcei selects the rateuc(t) for either case.

For Vi

2 < qi(t) < Vi, i = 1, 2, there are multiple Nash
equilibria, since the equilibrium can also be established at
µi(t) = 0, i = 1, 2, in addition toµi(t) = uc(t), i = 1, 2.

V. DYNAMIC PRICING AT THE RELAY

In this section, we consider the case where sources have no
information about each other’s queue backlog in contrast to
(P2). For that purpose, any sourcei = 1, 2 assumes that the
opponent sourcej 6= i plays a fixed strategy. The worst-case
response of the opponentj is µ̃j = 0 such that there is no
possibility of performing network coding to reduce the relay
cost. If sourcei = 1, 2 assumes that sourcej 6= i plays the
worst-case strategy, it ends up with the optimization problem:

max
µ̃i(t): (µ̃i(t),0)∈C̃(t),t≥0

(

qi(t)µ̃i(t) − ViJi(µ̃i(t), 0)
)

. (P3)



The solution to(P3) is given by:

µ̃i(t) =

{

0, if qi(t) < Vi,

ui(t), if qi(t) ≥ Vi.
(A3)

(A3) simply involves comparing the individual queue
backlog with a threshold that is independent of the oppo-
nent’s queue backlog or transmission decision. A similar
algorithm(A4) can be defined by assuming that the opponent
plays the best strategy. In(P2), the best-case response of
the opponent sourcej is µ̃j = µmax

j (t) such that for
packets of sourcei there is always an opportunity to perform
network coding such as to reduce the relay cost. The resulting
problem is

max
µ̃i(t):(µ̃i(t),µmax

j
(t))∈C(t),j 6=i

(

qi(t)µ̃i(t)−ViJi(µ̃i(t), µ
max
j (t))

)

.

(P4)
The solution(A4) to (P4) is given by:

µ̃i(t) = (A4)


















0, if qi(t) < Vi

2 ,

µmax
j (t), if ui(t) ≥ µmax

j (t), Vi

2 ≤ qi(t) < Vi, j 6= i,

ui(t), if ui(t) ≥ µmax
j (t), qi(t) ≥ Vi, j 6= i,

ui(t), if ui(t) < µmax
j (t), qi(t) ≥

Vi

2 , j 6= i.

So far, we assumed fixed weightsci(t) = 1
2 for network

coding anddi(t) = 1 for routing. Instead, relayR can apply
dynamic pricing by selecting the weightsci(t) and di(t)
in (6) as functions of queue backlogsq1(t) and q2(t) to
adapt the distributed energy costs to the centralized optimal
solutions. For that purpose, relay penalizes the difference
between the data rates transmitted from each source thereby
increasing the network coding opportunities and minimizing
the relay cost. The individual cost for nodei is changed to

Ji(µ̃1(t), µ̃2(t)) = ci(t) min
j=1,2

µ̃j(t) + di(t) (µ̃i(t) (15)

− min
j=1,2

µ̃j(t)) + ei(t) ( max
j=1,2

µ̃j(t) − min
j=1,2

µ̃j(t)),

whereei(t) is the weight to equalize the transmission rates
for both sources. The individual optimization problem is

max
µ̃i(t):(µ̃i(t))∈C(t),t≥0

(

qi(t)µ̃i(t) − di(t)µ̃i(t) (16)

+(di(t) + ei(t) − ci(t)) min
j=1,2

µ̃j(t) − ei(t) max
j=1,2

µ̃j(t)
)

,

where the rate weightsci(t), di(t) and ei(t) are adjusted
by the relayR depending on the queue backlogsq1(t) and
q2(t), and the sources play the worst-case response without
knowing each other’s queue backlogs.

Theorem4: Given the queue backlogsqi(t), i = 1, 2, and
threshold parameterV , the rate weightsci(t), di(t) andei(t)
for (A3) to achieve the optimal solutions(A1) satisfy:

If V > q1(t) + q2(t) : (17)

qi(t) < ci(t) < di(t) + ei(t), i = 1, 2

If q1(t) + q2(t) ≥ V > max(q1(t), q2(t)) : (18)

di(t) + ei(t) > qi(t), ci(t) > di(t) + ei(t), i = 1, 2

If qi(t) ≥ V > qj(t), j 6= i : (19)

di(t) + ei(t) < qi(t), dj(t) + ej(t) > qj(t),

cj(t) > dj(t) + ej(t),

If V ≤ min(q1(t), q2(t)) (20)

(qi(t) − V )ui(t) + qj(t)uc(t) ≥ (qj(t) − V )uj(t)

+qi(t)uc(t), j 6= i :

di(t) + ei(t) < qi(t), dj(t) + ej(t) > qj(t),

cj(t) > dj(t) + ej(t).
Proof: The idea is to arrange the coefficients in (16)

and adjust the weightsci(t), di(t) and ei(t) to mimic the
behavior of the centralized case(A1). The objective function
to be maximized depends on which source is assigned a
higher rate, and is equal to(qi(t) − di(t) − ei(t))µ̃i(t) +
(di(t) + ei(t) − ci(t))µ̃j(t), if µ̃i(t) ≥ µ̃j(t), or (qi(t) +
ei(t) − ci(t))µ̃i(t) − ei(t)µ̃j(t), if µ̃i(t) ≤ µ̃j(t).

For brevity, we will consider two subcases. First, assume
V > q1(t) + q2(t), where the solution should bẽµj(t) =
µ̃i(t) = 0 from (A1). If ci(t) < di(t) + ei(t), assuming
µ̃i(t) ≥ µ̃j(t), the the worst-case response isµ̃j(t) = 0, and
if di(t)+ei(t) > qi(t), µ̃i(t) is selected as0, resulting in an
objective value of0. Next, consider the assumptioñµi(t) ≤
µ̃j(t), where the worst case response isµ̃j(t) = 0 for ei < 0
andµ̃j(t) = uj(t) if ei > 0. For ei < 0, we have the desired
solutionµ̃i(t) = 0 from the initial assumptioñµi(t) ≤ µ̃j(t).
For ei > 0, the maximum value of the objective function is
(qi(t)+ei(t)−ci(t))uc(t)−ei(t)uc(t) = (qi(t)−ci(t))uc(t).
With qi(t) < ci(t), note that the resulting objective value is
negative and the overall rate selection isµ̃i(t) = 0. Changing
the indicesi and j results in the symmetric operation, and
the centralized solution is achieved for this case.

Next, assumeq1(t) + q2(t) > V > max(q1(t), q2(t)).
For µ̃i(t) ≥ µ̃j(t), by selectingci(t) > di(t) + ei(t),
the worst-case response is to maximizeµ̃j(t). However, if
di(t) + ei(t) > qi(t), source i tends to reducẽµi(t) to
uc(t) because of the worst-case response from sourcej. The
resulting objective value is equal to(qi(t) − ci(t))uc(t). It
can be shown that the maximum objective value achieved by
assuming̃µi(t) ≤ µ̃j(t) is also equal to(qi(t)− ci(t))uc(t),
with µ̃i(t) = uc(t). Hence, the overall solution is̃µi(t) =
uc(t). The other two subcases for(A1) can be derived
similarly. By settingdi(t)+ei(t) < qi(t), the rates of source
i are increased in accordance with the solution of(A1).

VI. COST SHARING WITH 1-BIT QUEUE INFORMATION

For the individual cost optimization problem, we can
further simplify the transmission decisions by limiting the
necessary queue information to one bit, which distinguishes
whether the opponent’s queue exceeds a threshold, or not.
For that purpose, we present the following algorithm(A5):

Let µmax = minj=1,2 µmax
j . The system starts with

threshold equal toVi = µmax + µmax
i for each sourcei.



Then, sourcei = 1, 2 decides to transmit, if its individual
backlog satisfiesqi(t) ≥ Vi. When the relay observes that
both sources have transmitted at least once, then it knows that
qi(t) ≥ µmax for both i = 1, 2, so it reduces the threshold to
the common maximum service rateµmax knowing that both
sources will operate with network coding. Afterwards, the
thresholds are set toVi again, and the operation continues.

The relay cost can be further improved as follows. Each
sourcei starts with one thresholdVi (which is greater than
µmax

i ), and transmits with rateµmax
i if its queue size exceeds

Vi. Sourcei only needs to know whether the queue backlog
qj(t) of the other sourcej 6= i exceeds the minimum of the
maximum service rates of both usersµmax = minj=1,2 µmax

j ,
or not. If so, a second thresholdµmax is introduced. Then, if
the queue size of sourcei is between the two thresholdsµmax

and Vi, sourcei transmits with rateµmax. The resulting
algorithm (A6) is given by:

µ̃i(t) =







































0, if qi(t) < µmax,

0, if µmax ≤ qi(t) < Vi,

qj(t) < µmax, j 6= i,

µmax, if µmax ≤ qi(t) < Vi,

qj(t) > µmax, j 6= i,

µmax
i , if qi(t) ≥ Vi.

(A6)

We will show in Section VIII that the cost performance
of (A6) is very close to the centralized algorithm, especially
as we increase the thresholdsVi, i = 1, 2.

(A6) has a similar structure as the algorithm proposed in
[7], where two queues in the relay store packets incoming
from two sources. If both relay queues are nonempty, two
packets, one from each relay queue, are network-coded and
transmitted by the relay. If one of the relay queues is empty,
there is no transmission unless the backlogged queue length
exceeds a fixed threshold (the buffer capacity). However, in
[7], the system is not slotted and the scheduling decisions
are carried out at the instants of packet arrivals. Between
two consecutive scheduling instances, at most one packet
can arrive at one of the two sources, and the combined queue
state can change at most by 1. This particular model allows
a Markov chain analysis for the decoupled source queues.
However, in this paper we assume that the number of packet
arrivals per time slot may be arbitrary, and this leads to more
complex transitions between the two queue states.

VII. C OST SHARING WITH LOCAL QUEUE INFORMATION

Next, we assume that sources do not have any information
about each other’s queue backlogs. First, we focus on the
class of algorithms(A7), where any sourcei does not trans-
mit, until the individual queue backlogs exceed a threshold
T , and transmits with probabilitypi, if the individual queue
backlog is greater thanT . The resulting algorithm(A7) is

µ̃i(t) =











0, if qi(t) < T,

ui(t) with prob. pi, or

0 with prob. (1 − pi) if qi(t) ≥ T,

(A7)

We assume that the maximum service rates of both sources
are identical toµmax. One restriction onpi is that it should
be large enough to ensure that the system operates under
negative drift afterqi(t) exceedsmax(µmax, T ), i.e., we
needpi > λi

µmax . If T ≥ µmax, the queueing system can
be modeled with two states: states with queue backlogs less
thanµmax and states with queue backlogs greater thanµmax.
This leads to a bulk queue system model, where the service
rate is piµ

max and the arrival rate isλi. If we denoteqi

as the stationary queue backlog of sourcei = 1, 2, then
P (qi < µmax) = 1 − λi

piµmax from the Little’s theorem [19].
If a source transmits a packet, the average cost depends on
the probability that the other source also transmits. Then,for
each sourcei the average cost per packet is

E[Ji] = 0.5 ×
( λi

piµmax

)

pi + 1 ×
(

1 −
λi

piµmax

)

pi(21)

= 1 − 0.5
λi

µmax
.

whereJi denotes cost per packet for sourcei.
When the queue backlog is between 1 andµmax, we can

allow the sources to transmit with some non-zero probability
(either fixed or queue state dependent). In this algorithm
(A8), the transmission decisions are given by:

µ̃i(t) =











0, if qi(t) = 0,

ui(t) with prob. pi, or

0 with prob. (1 − pi) if qi(t) ≥ 1,

(A8)

In (A8), given that a source transmits, the probability that the
other source transmits is higher compared to(A7). On the
other hand, when sources transmit and their queue backlogs
are less thanµmax, there might be a mismatch between the
number of packets transmitted from each source, and the cost
per packet might be greater than the optimal value1

2 even if
both sources transmit simultaneously.

VIII. C OMPARISON OFCOST-DELAY TRADE-OFFS

We compare the cost and delay performance of different
algorithms summarized in Table I. We assume Poisson traffic
with symmetric arrival ratesλi = λ, parametersVi = V and
transmission ratesµmax

i (t) = µmax, i = 1, 2. The achievable
costs are shown in Figures 2 and 3 forµmax = 5 and forV =
10 and 25, respectively. As expected, the centralized case
outperforms the individually optimal solutions. The average
costs are high for low arrival rates, since the possibility of
performing network coding is lower than the case with higher
loads, where it is more likely that queues are backlogged and
it is possible to perform network coding. As expected, the
average cost is reduced, as the parameterV increases.

Figures 4 and 5 depict the average delay as function of
the average cost per packet for different values ofV . For the
centralized optimal problem, the usual energy-delay trade-off
is observed (such that the energy cost decreases, as delay
increases), whereas the individual optimization problems
may deviate from this behavior because sources do not have
full information on each other’s queue backlogs.



TABLE I

SUMMARY OF THE PROPOSED COST SHARING ALGORITHMS

A1 Centralized optimal algorithm
A2 Individually optimal algorithm
A3 Worst-case response algorithm
A4 Best-case response algorithm
A5 Dynamic threshold-based algorithm

with initial transmission sensing
A6 Dynamic threshold-based algorithm

with 1-bit queue backlog info
A7 Algorithm w/ local queue info only,

T = µmax, pi = 1, i = 1, 2
A7′ Algorithm w/ local queue info only,

T = µmax

pi
for varying pi, i = 1, 2

A8 Algorithm w/ local queue info only
and w/o threshold,pi = 1, i = 1, 2

Note that the average cost per packet achieved by(A6)
is very close to the centralized algorithm(A1) and the
delay is reduced while achieving the near-optimal cost. This
effect is due to(A6)’s property of having a lower threshold,
which causes sources to transmit without having to exceed
the original thresholdV (whenever both source queues are
backlogged) such that the average delay is reduced.

Figures 6 and 7 show the performance of algorithms
without queue backlog information. Algorithm(A7′) is a
variant of (A7), where thresholdT is µmax

pi
. This illustrates

the effect of dynamic threshold based on the transmission
decision. If there is no information available regarding the
queue backlog of the opponent source, and the threshold is
greater than or equal toµmax, the delay-optimal strategy
is to select the lowest thresholdµmax, and pi = 1, i.e.,
each source transmits whenever its queue backlog exceeds
the given threshold. Note that the cost performance is in
accordance with (21). Operating without threshold decreases
the cost for the case without queue backlog information.
Any increase in the transmission probability overcomes
the negative effect of the queue backlog mismatch on the
average cost. Yet, the average cost of such an algorithm is
significantly higher than algorithm(A6) with one bit queue
state information, and it cannot approach the optimal value,
unless the operating regime is very close to queue saturation.

IX. CONCLUSION

In this paper, we considered the problem of minimizing
the cost at a relay node that exchanges the incoming packets
by network coding or routing depending on the availability of
randomly arriving packets at both sources. The cost is shared
by the sources depending on their rate allocation over the
relay. We considered different levels of source cooperation
and availability of queue state information at the sources.
First, we derived the centralized control scheme to jointly
optimize the cost and stable throughput rates. For distributed
operation, sources share the cost of network coding for their
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Fig. 2. Cost per packet as function of common arrival rate forV = 10.
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Fig. 3. Cost per packet as function of common arrival rate forV = 25.

packets, whereas the residual cost for plain routing is charged
to the individual source with higher rate requirement.

If sources are selfish with the individual cost objectives,
cost sharing with network coding couples them in a rate
allocation game. We derived the Nash equilibrium strategies
and evaluate the non-cooperative cost-delay trade-offs. Then,
we showed that pricing at the relay for the worst-case
response can achieve the cost-optimal operation.

We also relaxed the assumption of queue state knowl-
edge and considered simple rate allocation schemes, where
sources either have one bit or no information regarding the
queue state of the other source. With only one bit queue
information, the threshold-based algorithms approach the
optimal cost, whereas the packet delay does not not increase
with the threshold as fast as the centralized cost-optimal
scheme does. This leads to new cost-delay trade-offs for
network coding.

Future work should generalize the model to arbitrary rate
regions. This may further increase the coupling of the source
queues by imposing joint constraints on the achievable rates.
It is also crucial to extend the analysis of the cost-delay
trade-offs to an arbitrary number of sources communicating
through the relay node. This would require more complicated
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Fig. 4. Cost per packet as function of packet delay,λ = 1, µmax = 5.
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Fig. 5. Cost per packet as function of packet delay,λ = 4,µmax = 5.

scheme of network coding (beyond pairwise packet match-
ing) depending on the instantaneous backlogs of all sources.

REFERENCES

[1] R. Ahlswede, N. Cai, S. Y. R. Li, and R. W. Yeung. Network Infor-
mation Flow. IEEE Transactions on Information Theory, 46(4):1204–
1216, April 2000.

[2] S. J. Kim, P. Mitran, and V. Tarokh. Performance Bounds for
Bi-directional Coded Cooperation Protocols.IEEE Transactions on
Information Theory, 54(11):5235–5240, November 2008.

[3] S. Katti, I. Maric, A. Goldsmith, D. Katabi, and M. Medard.Joint
Relaying and Network Coding in Wireless Networks.In Proc. of IEEE
International Symposium on Information Theory, Nice, France, June
2007.

[4] D. S. Lun, N. Ratnakar, M. Medard, R. Koetter, D. R. Karger, T. Ho,
E. Ahmed, and F. Zhao. Minimum-cost Multicast over Coded Packet
Networks. IEEE Transactions on Information Theory, 52(6):2608–
2623, June 2006.

[5] Y. Wu, P. A. Chou, and S.-Y. Kung. Minimum-energy Multicastin
Mobile Ad Hoc Networks using Network Coding.IEEE Transactions
on Communications, 53(11):1906–1918, November 2005.

[6] Y. E. Sagduyu and A. Ephremides. Cross-layer Optimizationof MAC
and Network Coding in Wireless Queueing Tandem Networks.IEEE
Transactions on Information Theory, 54(2):554–571, February 2007.

[7] X. He and A. Yener. On the Energy Delay Trade-off of a Two-Way
Relay Network. In Proc. of the Conference on Information Sciences
and Systems, 2008, Princeton, NJ, March 2008.

[8] L. Tassiulas and A. Ephremides. Stability Properties of Constrained
Queuing Systems and Scheduling Properties for Maximum Through-
put in Multihop Radio Networks.IEEE Transactions on Automatic
Control, 37(12):1936–1948, 1992.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0.62

0.64

0.66

0.68

0.7

0.72

Transmission Probability pi

C
os

t 
pe

r 
P

ac
ke

t

 

 

A7
A7'
A8

Fig. 6. Cost for varying transmission probability,λ = 3, µmax = 5.

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

10

20

30

40

50

60

Transmission Probability pi

D
el

ay
 (

tim
e 

sl
ot

s)

 

 

A7
A7'
A8

Fig. 7. Delay for varying transmission probability,λ = 3, µmax = 5.

[9] M. J. Neely. Optimal Energy and Delay Tradeoffs for Multi-User
Wireless Downlinks.IEEE Transactions on Information Theory, 53(9),
September 2007.

[10] M. J. Neely. Energy Optimal Control for Time Varying Wireless
Networks. IEEE Transactions on Information Theory, 52(7):2915–
2934, July 2006.

[11] E. N. Ciftcioglu, A. Yener, and R. Berry. Stability Regions for Two-
Way Relaying with Network Coding.In Proc. of Wireless Internet
Conference,Maui, HI,, November 2008.

[12] C. H. Liu and F. Xue. Network Coding for Two-way Relaying:
Achievable Rate Regions, Sum Rate and Opportunistic Scheduling. In
Proc. of IEEE International Conference on Communications, Beijing,
China, May 2008.

[13] A. Eryilmaz and D. S. Lun. Control for Inter-session Network Coding.
In Proc. of NETCOD, San Diego, CA, January 2007.

[14] T. Ho and H. Viswanathan. Dynamic Algorithms for Multicast with
Intra-session Network Coding.IEEE Transactions on Information
Theory, 55(2):797–815, February 2009.

[15] Y. E. Sagduyu, D. Guo, and R. Berry. Throughput Optimal Control
for Relay-Assisted Wireless Broadcast with Network Coding.In Proc.
of IEEE International Workshop on Wireless Network Coding, San
Francisco, CA, June 2008.

[16] R. Berry and R. G. Gallager. Communication over Fading Channels
with Delay Constraints.IEEE Transcations on Information Theory,
48(5):1135–1149, May 2002.

[17] J. Price and T. Javidi. Network Coding Games with UnicastFlows.
IEEE Journal on Selected Areas in Communications, 26(7):1302–
1316, September 2008.

[18] J. R. Marden and M. Effros. A Game Theoretic Approach to
Network Coding. In Proc. of IEEE Information Theory Workshop
on Networking and Information Theory, Volos, Greece, June 2009.

[19] D. Bertsekas and R. Gallager. Data Networks, 2nd edition. New
Jersey: Prentice Hall, June 1992.


