Cost Sharing with Network Coding in Two-Way Relay Networks
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Abstract—We consider a scenario in which two sources of transmission policies at the sources which trade-off the
exchange stochastically varying traffic with the aid of a bi- average cost with the average delay.
directional relay that may perform network coding over the ) S ) L ) )
incoming packets. Each relay use incurs a unit cost, e.g., e begin by considering centralized policies in which
transmission energy. This cost is shared between the sourcesa centralized controller specifies the transmission rate of
when packets from both are transmitted via network coding; if ~ each source based on perfect information of both source
traffic from a single source is sent, the cost is passed on to only queue states. We use Lyapunov stability arguments as in
that source. We study transmission policies which trade-off the . - .
average cost with the average packet delay. First, we analyze [8]-[10] to develop rate allocation p9I|C|eS and anal.yzelrth.
the cost-delay trade-off for a centralized control scheme using COst-delay trade-off. We then consider a model in which
Lyapunov stability arguments. We then consider a distributed each source individually decides its own rate based on the
control scheme, where each source selfishly optimizes its OWhjoint queue size, resu|ting in a non_cooperative game. We
cost-delay trade-off by playing a non-cooperative game. We cnaracterize the equilibria of this game and show that in

determine the Nash equilibrium and show that it performs . .
worse than the centralized algorithm. However, appropriate general it leads to worse performance than the centralized

pricing at the relay achieves the centralized performance. These Solution. These equilibria require each source to know the
algorithms require full information of queue backlogs. Next, we queue size of both sources. We next consider algorithms

relax this assumption and any source makes the transmission which do not require full knowledge of the queue sizes at
decision depending on whether the other sources queue backlog both sources. Specifically, we derive strategies agairest th

exceeds a threshold, or not. This needs only one bit information t and best f th t thereby limiti
exchange and leads to asymptotically optimal cost, as the delay worst an est response ot the opponent thereby imiting

grows. Finally, we consider cost sharing with only local queue the backlog information to the individual queues only. This
information at each source. The results illustrate new cost-delay leads to the result that appropriate pricing by the relayter

trade-offs based on different levels of cooperation and queue worst-case response can achieve the cost-optimal operatio
information availability. at the expense of increasing the complexity of rate allocati

Next, we present a simple transmission scheme that re-
quires only one bit information of the other source’s queue

A simple, yet fundamental model for a multi-hop wirelesspaffk_log' The transmission decisions are based on whether th
networks is the two-way relay network shown in Fig. 1 Individual queue backlogs exceed a fixed threshold, or not. |

In this network, two sources communicate with each othdrticular, we show that it is possible to achieve asymptoti

with the assistance of a single relay node. It has beconf@!ly Optimal cost, as the packet delay grows with incregsin
well established that network coding [1] can improve thdhreshold values. Then, we further relax the assumption of

throughput of such a two-way relay over traditional storedUeue state knowledge and exte_nd the a_malysis to the case
and-forward routing, e.g. see [2], [3]. In many cases, the udvhere sources do not share any mf_ormatlon. on each other’s
of a relay node will incur a cost, for example representirgg thdU€ue backlog. All of the cost-sharing algorithms proposed
energy consumption of the relay. The use of network codintj thiS paper do not require ang priori information of

can also reduce this cost [4], [5]. For example, with networPaCket arrival statistics and they can operate only with the
coding a single transmission by the relay can be used {Bstantaneous values of queue backlogs.

forward one packet from each source simultaneously, while In terms of related work, we note that there have been a
with plain routing this would require two transmissions. Ifnumber of works studying the interaction of network coding
the cost per transmission was the same in both cases, theith stochastically varying traffic in both two-way relay
network coding will result in a 50% reduction in the totalnetworks [11], [12] and other network topologies [6], [13]-
cost. However, when the sources have bursty traffic, this cdd5]. There have also been a number of papers studying the
reduction may come at the price of higher delays, sinceade-off of for wireless networks without network coding,
each source must wait for packets to arrive at the othémcluding [9], [10], [16]. Other game theoretic models for
source in order to exploit the network coding gain. Thisietwork coding have been studied in [17], [18]; in these
cost-delay trade-off has been observed in [6], [7] and is thmodels the underlying conflict of interest is due flow opti-
main focus of this paper. Specifically, we consider the designization rather than cost sharing.

|. INTRODUCTION



a—][[[]e. O,[[[[«—7. ratemin;—(fz;(t). Any residual traffic is then routed in
relay uqcoded l‘orm only from one sourcewnh rate ,U/i(t) -
R min;—y 2(fi;(t)). Note that the network coding operation can
be carried out at packet or signal levels, i.e., relagither
Fig. 1. Two-way relay network: Two sources with packet asvand a de€codes, network-codes and transmits the incoming packets
single relay to exchange the incoming packets. or simply amplifies-and-forwards the received signals as in
analog network coding [3]. Decoding is accomplished by
combining the received network-coded packets with that
We consider the two-way relay network with two sourcesource’s individual packets. We do not consider the network
1 and2, and one relayR, as shown in Fig. 1. We assume coding overhead to notify sources whether the transmitted
a synchronous slotted system, in which each souree packet is network-coded or in plain form, and assume that
1,2 buffers the incoming packets in que@g with backlog this overhead is negligible compared to packet size.
q¢;(t) at time (slot)t. Each sourcé chooses the service rate Each use of the rela is assumed to incur a cost, which
w;(t) at timet (namely, the number of packets/bits or morecould, for example, represent the energy expended by the

generally data units injected to the system) such that relay. We assume that the relay cost is partitioned among
the two sources depending on the rate allocation such that

Il. SYSTEM MODEL

(k1 (), p2(1)) € C(2), (1) the cost of source = 1,2 for using the relayR with rate
where((t) is the rate region achievable by network coding: is
at time ¢. In this paper, we focus on a simple rate region - ~ .
. Ji t), t)) = ci(t i(t 6
C(t) = {(ua(t), pa(t)) : 0 < p(t) < pmax(t),i = 1,2} (1 (t), fiz(t)) = ci(t) (]1121512(,“7( ))) (6)
achievable over the relay:. This represents the case of a0 (7 (8) — min (s (¢
orthogonal channels from sources to the relay. The extensio +di(t) (“’( ) H:%DQ(MJ( )))’

to more general rate regions can further couple the servigg,are c;(t) and d;(t) are the costs charged by the relay
rates in addition to the coupling effect of network coding,z i deliver one packet by network coding and routing,
which poses the main interest in this paper. The queue lengifispectively. For most of the following we focus on the case
at source; = 1,2 evolves as wherec;(t) = 1, andd;(t) = 1. This models the case where
gi(t + 1) = max (qi(t) — (t),0) + as(t), (2) the cost per unit time of operating the relay is the same for
both routing and network coding and in the network coding
wherea; (1) is the number of bits/packets arriving at sourcease the cost is equally shared by both sources, whereas any
queue@; at timet. For each sourcg we assume that;(t)  source is solely responsible for the cost of packets rouged b

is generated via an ergodic process andNgtdenote its the relay. Then, the individual cost (6) can be rewritten as
long-term average. 1

Alternatively, the queue dynamics can be written as Ji(f1(t), pe(t)) = i (t) — 3 Hl11112 (f15(1)) (7
=4
it +1) = qi(t) — u(t) + ai(t), (3)  such that the total cost is simplified to
where the actual transmission rate of sourdg 2
Ji (i (1), fia(t)) = i (t)). 8
fi(t) = min(us(0), 4:(8)), i = 1,2, @) 2 Jia(0): iz(t)) = g (7 (9) ®)
since the number of transmitted packets is limited by the [1l. CENTRALIZED COST OPTIMIZATION

number of packets available in the queue. Note that the rateye start with the case where a centralized controller has

pi(t), i = 1,2, is sufficient to optimize the throughput rates,access to all system parameters along with the queue backlog
since sources can simply perform zero padding in the absenggsrmation, and makes the transmission decisions for both
of packets. However, we are interested in minimizing thg,rces. The main objective is to minimize the total cost
cost, which is a function of the number of transmitted packgor poth sources while ensuring that the average delay is no

ets. Therefore, we use the actual transmission rate, “amﬁ%ater than a given valuP. This leads to the following
i (t), that is bounded by the number packets available in tf}?ptimization problem:

source queues. The instantaneous rate region is defined as 15ta1 Minimum Cost Problem:

C(t) = {iu (1), fiz(t) : (i (1), fia(t)) € C(t),  (5) 1L
N . min lim — E [Ji(f1(7), (T
Ai(t) < gi(t),1=1,2} (1 (1), () €C ), 420 =00 t ;; il (7), fa())]
We assume that relay does not buffer the incoming (PC)
packets in queues and immediately forwards any received R R Elqi(7)]
data over a single channel which is orthogonal to the st lim ZZZ)\i < D.
e . —oo b A== A1 + Ao
channels used by each source. Specifically, the relay will 7=014=1

use network coding to transmit an equal number of packek$ere, the average delay constraint follows from the ratio of
per time-slot from both sources simultaneously at commatie average queue length to the total arrival rate according



Little’s theorem [19]. Note also that the objective(inC) is  given by the algorithn{Al) as follows:

equivalent to the average cost per packet by normalizing by .

the total long-term arrival rat&; +\,. Let P*(D) denote the (i (), /15 (t)) = (A1)
solution to(PC) as a function of the delay constraif, i.e. 0,0), if V> q(t)+ qa(t),

(
the cost-delay trade-off. In general this will be a decme@si | (u,(t), u.(t)), if q1(t) + g2(t) > V > max(qi(t), g2(t)),
function of D and asD — oo, it will yield the minimum (ui (), ue(t)), if qi(t) >V > q;(t),§ # i
) We ) [ — Yy ’ )
(ui(t)

cost solution subject to the queue’s being stable. . )
" . . ui(t auc(t))v if V< mln(Ql (t)a QQ(t))a

In principle, for a given delay constraint, ProblgiAC)
can be solved via dynamic programming. However, such 3 (a:(t) = V)ui(t) + ¢j (t)uc(t) =
solution quickly becomes intractable except for very sinpl (g5 () = V)u;(t) + qi(t)uc(t), j # 1,
arrival processes and furthermore, requigepriori knowl- \vnere
edge of arrival statistics. Instead, we will follow the apach
in [10] and use Lyapunov stability arguments to yield an u;(t) = min(g; (t), "™ (t)), (11)
approximate solution tgPC) with provable approximation ue(t) = min(ui (t), us(t)).
bounds. This approach is based on generalizing the classica Proof: The objective function to be maximized depends

back-pressure algorithm from [8] which is guaranteed te stan which source is assigned a higher rate, and it is either
bilize the packet queues if this is possible. This throughpuequal to(q1(t) — V)jir(t) + qo(t)fia(t), if fir (t) > fia(t) OF

optimal solution is given by (g2(t) — Vi (t) + q1 () (), if fi2(t) > f11(t). Consider
2 the case withy;(t) > V andg;(t) < V. For fi;(t) > f;(t),
max Z%’(t),ui(t)a (9) the objective function is greater than or equal(tg(t) +
(11(8)n2(8)€C()420 T ¢2(t) — V)u,(t), whereas the objective function is at most
which can be rewritten as (@1(t) + q2(t) — Vue(t) for fi;(t) = f;(t). Accordingly,
) the rate aIIocatlonNW|tmi(t) > pu;(t) is selected withyi, (t)
 max Z gi (0) s (1) (10) equa}l tou,(t) and fi;(t) equal tOuC_(t). )
(A1 (£),i2 (1)) EC(1),t>0 T Without loss of generality, consider the case wjitfit) >

(i (t). Then, t1(t), 2 (t)) = f;(t), and the objective
Note that (9)-(10) are not optimal with respect to minimiz—éﬁrgciion is (qilgxfu‘l/() [L ('lg ( +) zlj (t)gj((t)). :

ing the time-average cost if°C) as shown in the following ¢ g:(t) < V, the optimal solution should minimize; (),

example: since the multiplier associated with the rate of soutce
Example 1: Let a;(t) = 1, ag(t) = 2 for event, and s negative. However, the special case with(t) = ji; ()

a(t) =2, as(t) = 1 for odd t. For¢;(t) = 5 anddi(t) =  should be also taken into account. df(t) > |q:(t) — V],

1, the back-pressure solution js (f) = 1, u2(t) = 2 for  or equivalently ifq: (t) + ¢2(t) > V, then the optimal rate

event, and 1 (t) = 2, po(t) = 1 for odd ¢. The long- ajlocation isfi,(t) = ji;(t) = u.(t). On the other hand, if

term average costs per packhtand.J, are 2. However, if g;(t) < lg:(t) = V|, i.e., if ¢ (t) + q2(t) < V, the optimal

sources accumulate packets over time slots and transnhit Sygte allocation i (t) = fi;(t) = 0.

that relay 2 performs network coding only, the decisions ginally, if both ¢;(¢) andg;(t) exceedV’, rates should be

p(t) =1, pp(t) = 1 for event and i (t) = 2, pi2(t) = 2 selected from one of the two possibilities in the fourth case

for odd ¢ make the long-term average costs approach thg (A1) to maximize the overall objective function. [

lower bound; (which is achieved, if relay? only performs  The cost-delay trade-offs for Algorithiil) are evaluated
network coding such that the relay cost for each networky, Theorem 2:

coded packet is always equally shared by both sources).  Thaegrem?2: For Algorithm (A1), the average queue back-

The main idea in [10] is to augment the policy in (10) withjog and the average packet delay are proportional,tvhile
an additional term to reflect the cost. The resulting problerhe distance of the average cost from the minimum attainable

is given by cost is proportional tol:
max _ (qu(t)pa(t) + q2(t)pz(t)  (P1) 1 M2 B
(71 (1), 722 (1)) €C (1) ( o Jim Z Zji(ﬁl(T)v[fQ(T)) <J'+ 71 (12)
—V max(in (1), fia (1)), =0
) . I By + %
whereV’ is a control parameter to tune the trade-off between  lim - >0 Ela(n)] < p— (13)
the average queue backlog and the distance from the min- =0 i=1

imum achievable cost. InP{), maximizing the first term where J* is the optimal cost per time slof3; and B, are
q1(t)jin (t) + g2(t)f2(t) is due to backpressure algorithm inpositive constants, and; satisfies(\; +¢) € C(t), i = 1,2,
order to stabilize the source queues, whereas minimizieg tt any timet for an arbitrarily small positive constaat
second termmax(fi1 (), fiz(t)) serves the purpose of moving  Proof: (Sketch) We provide only a general sketch of
the stable solutions to the minimum achievable cost. the proof for brevity. The proof follows from the Lyapunov
Theoreml: At any time slott, the solution to(P1) is drift analysis with performance optimization arguments, a



in [10]. First, the Lyapunov drift (namely, the time-aveeag Definition 1: A pair of strategies{/i;} are a Nash equi-
difference of Lyapunov functions for queue backlogs) idibrium for the resulting stage game if, for each player
expressed for queue dynamics, and the average costis added - . _, S . ~
to the resulting drift formulation. This leads to Lyapunov Jili, i%3) = i, i75), forall i € C(1), (14)
drift conditions for stability. Next, we utilize the progE®s where“ — ;7 denotes the player other than player
are satisfied, leading to bounds on the average queue lengédgvex subset of an Euclidean space and the utility function
and consequently on the average values of delay and cqgtcontinuous in(ji , jio) and quasi-concave in;. Therefore,
i L) there exists pure strategy Nash equilibrium at any time slot

The optimal cost per packel;j?’t = ﬁ is given by ¢ for given ¢;(t), i = 1,2.
% and it is reduced tg for A; = X,. Theorem3: The Nash equilibrium strategfA2) of any

For qi(t) + q2(t) > V > max(qi(t),q2(t)), relay R  sourcei = 1,2 as solution to(P2) is given by:
performs only network coding and does not forward any

uncoded packet, which results in the energy-optimal oper- fa(t) = (A2)
ation. As V' increases, sources tend to transmit less. On 0, if ¢;(t) < %,
the other hand, a¥ decreases, relaR also forwards the u; (1), it g;(t) >V,
residual traffic_in uncoded_ form, which W(_)uld result in the 0, if % < i) < Vi qi(t) < %,j £,
throughput-optimal operation of the classical back-press e Vv .,
0oruc(t), if & <g(t)<V;,i=12
IV. INDIVIDUAL COST OPTIMIZATION Proof:  Note that J;(1(t),2(t)) = fu(t)

AV

. o L $ minj—1 5 (7;(t)) is equal tof;(t) — $/;(t), if f(t
Next we consider a scenario in which the individual nodeg; (¢), or equal tol i, (t), if ji;(t) > fii(f).
decide on their own rate allocations given full knowledge of \yjithout loss of generality, consider the former case, in
the other user's queue size. Each user1,2 would like to  which the objective function is equal 1@:(t) — Vi)ia(t) +

solve_tr_le folloyving individual optimiz.ation problem: %qj(t)/}j(t) for sourcei, and equal tdq; (t) — %)ﬂj (t) for
Individual Minimum Cost Problem: sourcej # i. The latter case follows directly by interchang-

ing < andj. If ¢;(t) > V;, i = 1,2, the maximum possible

t—1
oo omin Jim % D E((fn(7),fia(7)]  value for jii(t) is selected asu(t), since the multiplier
As(): (B (),fa (1)) €C 1), 220 =0 associated with the rate of sourcavill be always positive.
(PCI) Similarly, if ¢;(t) < %, = 1,2, the minimum possible value
1S E[g(n)] for f1;(t) is selected a8, since the multiplier associated with
st tlinolo t N <Di- the rate of source will be always negative.

7=0 V;

_ _ _ ~ Consider the case with: < ¢;(t) < V. If ¢;(t) < %

In this setting, the two users can be viewed as paying gburce; will not transmit and the best strategy of soutce
non-cooperative game, in whicRCl) reflects the pay-off of s to reduceu;(t) to 0. On the other hand, if;(t) >V,
useri. In principle, this can be viewed as a stochastic gam@e best strategy of sourgeis to transmit. Then, source
which can again be solved using dynamic programmingjther tends to decrease its ratewd) for i (t) > fi;(t),

ideas. However, again such an approach quickly becomgp tends to increase its rate to(t) for ji;(t) > fii(t). In
intractable and we instead consider a Lyapunov drift formugffect, source selects the rate.(t) for either case.

lation as as we did inRY) for the centralized optimization o, Y < q(t) < Vi, i = 1,2, there are multiple Nash

problem. Furthermore, we assume that in each time-slot, th@jjibria, since the equilibrium can also be established a
sources play a single-stage game against each other with m’?t) =0, = 1,2, in addition toy; () = u.(t), i = 1,2. 1
corresponding pay-off functioh.In other words, given;, ' )

j # 1, sourcei = 1,2 chooses the individual strategy (¢)

to solve: V. DYNAMIC PRICING AT THE RELAY

max (qi ()i (t) = Vidi (i (£), fio (t))). In this section, we consider the case where sources have no
fi(t): (f1(8),22(t))€C(¢),6>0 (P2) information about each other's queue backlog in contrast to

Minimizing the first terma (17 (1) in the indvidual ob- (-2) FOr at purpose, any souree. 1.2 assumes hat e
jective function is to stabilize the queue of source PP § piay gy-

whereas minimizing the second teri.J;(ji1 (¢), fis (£)) response of the opponeyjtis i; = 0 such that there is no

moves the stable solution to the optimal cost value. Defir(%OSSIbIIIty of pgrformmg network coding tq redyce the yela
= cost. If sourcei = 1,2 assumes that sourge+ ¢ plays the

il (), fia(t)) = i (8) i (8) = Viilfn (1), iz (1)), worst-case strategy, it ends up with the optimization pobl

10ne advantage of this formulation is that it does not requing a max <ql(t)/jz(t) — I/'Z-Ji(ﬂi(t)7())), (P3)
knowledge of the long-term arrival statistics of either oeu i (t): (f1:(t),0)€C (¢),t>0



The solution to(P3) is given by: If q1(t) + g2(t) >V > max(q1(t), g2(t)) : (18)
o, if g:(t) < Vi, di(t) + ei(t) > qi(t), ci(t) > di(t) +ei(t), i = 1,2
fi(t) {u,;(t), it (1) > Vi, (A3)

di(t) +e;(t) < q;(t),d;(t) +e;(t) > q;(t),
(A3) simply involves comparing the individual queue )+ eilt) < ai(t), d; () +e;() > ;)

backlog with a threshold that is independent of the oppo- ¢j(t) > d;(t) +¢;(t),

nent's queue backlog or transmission decision. A similar

algorithm(A4) can be defined by assuming that the opponent I V' < min(q1(¢), ¢2(%)) (20)
plays the best strategy. I(P2), the best-case response of (qi(t) = V)ui(t) + g () uc(t) > (g (t) — V)u,(t)

the opponent sourcg is fi; = pj'**(t) such that for +qi(tuc(t), j £

packets of sourcéthere is always an opportunity to perform ' , , 4 4 ‘
network coding such as to reduce the relay cost. The regultin di(t) + e(t) < qi(t), d; (1) + ¢;() > g;(2),
problem is c;(t) > d;(t) + e;(2).

Proof: The idea is to arrange the coefficients in (16)
(qi(t)/ll-(t)—V;Ji(ﬁi( )y WE(t ))). and adjust the weights;(t), d;(t) ande;(t) to mimic the

max
i (8): (s (£) 7 (D) €C (), 5 4 behavior of the centralized cag&l). The objective function

The solution(Ad) to (P4) s given by: (P4) to be maximized depends on which source is assigned a
g y: higher rate, and is equal t0y;(¢t) — d;(t) — e;(t)) i (t) +
iilt) = (Ad)  (dilt) + eilt) — i)y (1), 1F ult) > fiy(t), or (ai(t) +
0 i gult) < Y eit) — ci(t))uilt) — ei(D)7i (6), 1f fis(t) < i (0):

’max o Qmax v, o For brevity, we will consider two subcases. First, assume
py (), i wi(t) = @), 3 < at) <V 5F 5y S g1 (1) £ go(t), where the solution should be; () =
u;i(t), if wi(t) > pi™@), a(t) =V, j#1, fii(t) = 0 from (AL). If ¢;(t) < dq(t) + e;(t), assuming
u; (1), if u;(t) < ma"(t), qi(t) > %, j#4. i (t) > [ (t), the the worst-case responseuigt) = 0, and

if di(t)+e;(t) > q;(t), fi;(t) is selected a8, resulting in an
objective value of). Next, consider the assumptign(t) <
fi;(t), where the worst case responsgijgt) = 0 fore; < 0
andfi;(t) = u;(t) if e; > 0. Fore; < 0, we have the desired

So far, we assumed fixed weights(t) = 1 for network
coding andd;(t) = 1 for routing. Instead, relay? can apply
dynamic pricing by selecting the weights(¢) and d;(t) R P - N
. . solutioni; () = 0 from the initial assumptiom; (t) < /i;(¢).
in (6) as functions of queue backlogg(t) and g2(?) to For e; > 0, the maximum value of the objective function is
adapt the distributed energy costs to the centralized (aﬂ)tlm )Jre ()= (8) o (t) —ex (E)alt) = (qs(t) — i (£))ue(t)
solutions. For that purpose, relay penalizes the dlffesrencwlth ai( 1 ) < e E . nocte thazﬁ thecresultiné objeétive \;alue is
between the data rates transmitted from each source thererpe\,/ga,mz/e and tzhe overall rate selectiofiigt) — 0. Changing
increasing the network coding opportunities and miningzin

the rel ¢ The individual tf dés ch d1 the indicesi and j results in the symmetric operation, and
€ refay cos € individual cost for nodas changed to the centralized solution is achieved for this case.

Ji(fir (), fia(t)) = ci(t) 15111112 fi; (1) + di(t) (u(t) (15) Next, assumey; (t) + go(t) >V > max(q1(t), g2(t)).
o = o For f;(t) > [;(t), by selectinge;(t) > d;i(t) + e;i(t),

~ iy fij (1)) + ei(t) (]maX 1 (t) — Jnin fi5 (1)), the worst-case response is to maximjzgt). However, if
d;(t) + e;(t) > q¢(t), sourcei tends to reducegi,(t) to

wheree;(t) is the weight to equalize the transmission ratea () because of the worst-case response from sojrgae
for both sources. The individual optimization problem is resulting objective value is equal 1@, () — ¢;(t))ue(t). It

max ( (D) (t) — di ()i (t) (16) can be'sh~own tha~t the .maximum objective value achieved by
fii (£): (i (£)) €C (1), 20 assuming; (t) < fi;(t) is also equal tqg; (t) — c;(t))uc(t),
H(d; () + ;(t) — ¢t in (1) — et (1)), with f;(t) = u.(t). Hence, the overall solution ig;(t) =
(i) F-eat) = i) min, 75 (£) = ei(t) puas s )) u.(t). The other two subcases fqAl) can be derived

where the rate weights;(t), d;(t) and e;(t) are adjusted Similarly. By settingd;(t)+e:(t) < ¢;(t), the rates of source
by the relayR depending on the queue backloggt) and @ aré increased in accordance with the solutior{fAf). [
g2(t), and the sources play the worst-case response withoq;,I

. : . COSTSHARING WITH 1-BIT QUEUE INFORMATION
knowing each other’'s queue backlogs.

For the individual cost optimization problem, we can

Theorem4: Given the queue backlogs(t), i = 1,2, and further simplify the transmission decisions by limitingeth
threshold parametdr, the rate weights; (¢), d;(t) ande;(t) ~Necessary queue information to one bit, which distingshe

for (A3) to achieve the optimal solutior&\1) satisfy: whether the opponent’s queue exceeds a threshold, or not.
For that purpose, we present the following algorit(¥b):
IfV>aq(t)+ql) : 17) Let ™ = minj_;,uP®*. The system starts with

qi(t) < ci(t) <di(t) +eilt), i=1,2 threshold equal td/; = p™** + p™** for each source.



Then, source = 1,2 decides to transmit, if its individual  We assume that the maximum service rates of both sources
backlog satisfieg;(t) > V;. When the relay observes thatare identical tou™**. One restriction orp; is that it should

both sources have transmitted at least once, then it knats thbe large enough to ensure that the system operates under
qi(t) > ™ for bothi = 1,2, so it reduces the threshold to negative drift afterq;(¢t) exceedsmax(u™*,T), i.e., we

the common maximum service rgi#** knowing that both needp; > tﬁgx. If T > p™»*, the queueing system can
sources will operate with network coding. Afterwards, thébe modeled with two states: states with gueue backlogs less
thresholds are set tg; again, and the operation continues. thanu™** and states with queue backlogs greater tlaw:.

The relay cost can be further improved as follows. Eacfihis leads to a bulk queue system model, where the service
sourcei starts with one thresholtf; (which is greater than rate isp;™** and the arrival rate is\;. If we denoteg;
wimeey and transmits with rate?"* if its queue size exceeds as the stationary queue backlog of souice- 1,2, then
V;. Sourcei only needs to know whether the queue backlogP(g; < ™) =1 — ,l-:é'dx from the Little’s theorem [19].
q;(t) of the other sourcg # i exceeds the minimum of the If a source transmits a packet, the average cost depends on
maximum service rates of both us@r8™ = min;—y » u'**, the probability that the other source also transmits. Than,
or not. If so, a second threshalg,,.. is introduced. Then, if each sourcé the average cost per packet is

the queue size of souréés between the two thresholds, ..

A A
and V;, sourcei transmits with rateu,,.,. The resulting E[J;] = 0.5 x (p_umax)pi + 1 x (1 - p_umax)pi(ﬂ)
algorithm (A6) is given by: "\ !
=1-05——.
0, if Ch(t) < umax’ Mmax
0, if pmex <g,(t) < Vi, where J; denotes cost per packet for sourice
S ) — qj(t) < pm™,j # i, (A6) When the queue backlog is between 1 ariti*, we can
fii(t) = max  if , max , , allow the sources to transmit with some non-zero probabilit
H , f 1% < CI'L(t) <V . . . .
() > pmexj £ (either fixed or queue state dependent). In this algorithm
q? B3 7 (A8), the transmission decisions are given by:
pre i gi(t) > Vi

0, if ¢;(t) =0,
We will show in Section VIII that the cost performance () = 4 wi(t) with prob.p;, or a(t) (A8)
of (AB) is very close to the centralized algorithm, especially Hill) =y Wi . proo. p;, '
as we increase the thresholds i = 1, 2. 0 with prob. (1 —p;)  if ¢;(t) = 1,

(AB) has a similar structure as the algorithm proposed it (A8), given that a source transmits, the probability that the
[7], where two queues in the relay store packets incomingther source transmits is higher comparedAd). On the
from two sources. If both relay queues are nonempty, twgther hand, when sources transmit and their queue backlogs
packets, one from each relay queue, are network-coded a&@ less tham,,.., there might be a mismatch between the
transmitted by the relay. If one of the relay queues is emptjumber of packets transmitted from each source, and the cost

there is no transmission unless the backlogged queue lengigr packet might be greater than the optimal vajueven if
exceeds a fixed threshold (the buffer capacity). However, ioth sources transmit simultaneously.

[7], the system is not slotted and the scheduling decisions
are carried out at the instants of packet arrivals. Between V|||. C oMPARISON OFCOST-DELAY TRADE-OFFS
two consecutive scheduling instances, at most one packet )
can arrive at one of the two sources, and the combined queug’V€ compare the cost and delay performance of different
state can change at most by 1. This particular model a”o\,@ggorlthms su_mma_rlzed in Table I. We assume Poisson traffic
a Markov chain analysis for the decoupled source queuedith symmetric arrival rates; = A, parameter$; = V" and
However, in this paper we assume that the number of pack&gnsmission rateg;"**(t) = u™**, i = 1,2. The achievable
arrivals per time slot may be arbitrary, and this leads toemoCOSts are shown in Figures 2 and 3 fot** = 5 and forV =
complex transitions between the two queue states. 10 and 25, respgctlygly. As expected, thg centralized case
outperforms the individually optimal solutions. The axga
costs are high for low arrival rates, since the possibility o
performing network coding is lower than the case with higher

Next, we assume that sources do not have any informatid®ads, where it is more likely that queues are backlogged and
about each other's queue backlogs. First, we focus on tfiteis possible to perform network coding. As expected, the
class of algorithmgA7), where any sourcédoes not trans- average cost is reduced, as the paramgténcreases.
mit, until the individual queue backlogs exceed a threshold Figures 4 and 5 depict the average delay as function of
T, and transmits with probability;, if the individual queue the average cost per packet for different value¥ of-or the
backlog is greater thai. The resulting algorithnfA7) is centralized optimal problem, the usual energy-delay taftie

. is observed (such that the energy cost decreases, as delay
0, ifq(t) <T, increases), whereas the individual optimization problems
fii(t) = § wi(t) with prob.p;, or (A7) " may deviate from this behavior because sources do not have
0 with prob. (1 — p;) if ¢;(t)>T, full information on each other’s queue backlogs.

VIlI. COSTSHARING WITH LOCAL QUEUE INFORMATION



TABLE |

SUMMARY OF THE PROPOSED COST SHARING ALGORITHMS 1 -y
Al Centralized optimal algorithm 0.95 i
A2 Individually optimal algorithm 0.9
A3 Worst-case response algorithm . 085
A4 Best-case response algorithm 2 08
A5 | Dynamic threshold-based algorithm N

with initial transmission sensing 30‘75
A6 | Dynamic threshold-based algorithm g 07
with 1-bit queue backlog info © 0.65
A7 | Algorithm w/ local queue info only, 06
T = pmaz, pi =1,1=1,2 055
AT7" | Algorithm w/ local queue info only, P ! ; ; ,,
T:“;j%for varying p;, i = 1,2 ‘ 05 1 2 3 4 5
A8 | Algorithm w/ local queue info only Arrival Rate (packets/time slof)
and w/o thresholdp, =1, i = 1,2 Fig. 2. Cost per packet as function of common arrival ratelfoe= 10.

—+—Al|]
—©-A2
—*— A3

Note that the average cost per packet achievedAS)
is very close to the centralized algorith(®1) and the

A4l
delay is reduced while achieving the near-optimal costs Th = A5
effect is due ta/A6)'s property of having a lower threshold, —7—AB||

which causes sources to transmit without having to exces A7

the original threshold” (whenever both source queues are
backlogged) such that the average delay is reduced.
Figures 6 and 7 show the performance of algorithm
without queue backlog information. AlgorithrA7’) is a
variant of (A7), where threshold” is #==, This illustrates
the effect of dynamic threshold based on the transmissic - 05 1 2 3
decision. If there is no information available regarding th Arrival Rate (packets/time slot)
queue backlog of the opponent source, and, the threshold I'—llsg 3. Cost per packet as function of common arrival ratelfo= 25.
greater than or equal tp,.x, the delay-optimal strategy
is to select the lowest threshold,..., and p; = 1, i.e.,
each source transmits whenever its queue backlog excegggkets, whereas the residual cost for plain routing isgethr
the given threshold. Note that the cost performance is ito the individual source with higher rate requirement.
accordance with (21). Operating without threshold de@®as |f sources are selfish with the individual cost objectives,
the cost for the case without queue backlog informatiorost sharing with network coding couples them in a rate
Any increase in the transmission probability overcomegjiocation game. We derived the Nash equilibrium strategie
the negative effect of the queue backlog mismatch on thgnd evaluate the non-cooperative cost-delay trade-offfsn;T
average cost. Yet, the average cost of such an algorithmi& showed that pricing at the relay for the worst-case
significantly higher than algorithrfA6) with one bit queue response can achieve the cost-optimal operation.
state information, and it cannot approach the optimal value We also relaxed the assumption of queue state knowl-

unless the operating regime is very close to queue satoratiQyqe and considered simple rate allocation schemes, where
sources either have one bit or no information regarding the

queue state of the other source. With only one bit queue
information, the threshold-based algorithms approach the
In this paper, we considered the problem of minimizing®Ptimal cost, whereas the packet delay does not not increase
the cost at a relay node that exchanges the incoming packitéh the threshold as fast as the centralized cost-optimal
by network coding or routing depending on the availability oscheme does. This leads to new cost-delay trade-offs for
randomly arriving packets at both sources. The cost is ghargetwork coding.
by the sources depending on their rate allocation over the Future work should generalize the model to arbitrary rate
relay. We considered different levels of source coopematioregions. This may further increase the coupling of the sourc
and availability of queue state information at the sourcesjueues by imposing joint constraints on the achievablesrate
First, we derived the centralized control scheme to jointlyt is also crucial to extend the analysis of the cost-delay
optimize the cost and stable throughput rates. For diggibu trade-offs to an arbitrary number of sources communicating
operation, sources share the cost of network coding for thehrough the relay node. This would require more complicated
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