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Infinite-message Distributed Source Coding for Two-teahimteractive
Computing
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Abstract— A two-terminal interactive function computation
problem with alternating messages is studied within the frane-
work of distributed block source coding theory. For any arbi-
trary fixed number of messages, a single-letter characteraion
of the minimum sum-rate function was provided in previous
work using traditional information-theoretic techniques. These
techniques, however, do not lead to a satisfactory charaatea-
tion of the infinite-message limit, which is a new, unexploré
dimension for asymptotic-analysis in distributed block sairce
coding involving potentially infinitesimal-rate messages This
paper introduces a new convex-geometric approach to proviel
a blocklength-free single-letter characterization of theinfinite-
message minimum sum-rate function as a functional of the jait
source pmf. This characterization is not obtained by takinga
limit as the number of messages goes to infinity. Instead, ifsi
in terms of the least element of a family of partially-ordered
marginal-perturbations-concave functionals associatedavith the
functions to be computed. For computing the Boolean AND
function of two independent Bernoulli sources at one and bdt
terminals, the respective infinite-message minimum sum-tas
are characterized in closed analytic form. These sum-rateare
achievable using infinitely many infinitesimal-rate messags.
The convex-geometric functional viewpoint also suggestsna
iterative algorithm for evaluating any finite-message minmum
sum-rate function.

|. INTRODUCTION

In this paper we study a two-terminal interactive functio

within a distributed block source coding framework. Here,
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Fig. 1. Interactive distributed source coding withlternating messages.
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n
computation problem with alternating messages (Eig. 1)

samples of one component of a discrete memoryless multi-
sourceX = X" := (X(1),...,X(n)) € X" are available

at terminal A and n samples of another component of the
multi-sourceY € Y" are available at a fferent terminal

B. The two component sources of the multi-source are
statistically dependent. Termin&lis required to computa
samplesa(X,Y) := (fa(X(1), Y(2)), ..., fa(X(n), Y(n))) of a
samplewise functioris : XxY — Za of the two component
sources. Similarly, terminaB is required to computen
samplesfg(X,Y) = (fg(X(2), Y(1)),..., fs(X(n), Y(n))) of

a samplewise functionfg : X x Y — Zg of the two
component sources. All alphabets are assumed to be finite. To
achieve the desired objectiiegoded messaged)s, ..., My,

of respective bit rates (bits per source sampRy),..., R,

are sent alternately from the two terminals starting with
some terminal. The message sent from a terminal can depend
on the source samples at that terminal and on all the
previous messages (which are available to both terminals).
There is enough memory at both terminals to store all the
source samples and messages. Afteressages, termin&
produces a sequen@ € Zj and terminalB produces a
sequencé\g € Zj. Thet-message minimum sum-ralumt

is the infimum of the sum of all rate§|_; R for which
P(fa(X,Y) # Za) andP(fg(X,Y) # Zg) — 0 asn — o.

For any fixed number ta single-letter characterization
of the set of all feasible coding rates (the rate region)
and the minimum sum-ratBsym:, for a more general two-
terminal interactive rate-distortion problem, was pradd

in our previous work [1], [2] using traditional informatien
theoretic techniques. These techniques, however, do adt le
to a satisfactory characterization of timéinite-message limit
Rsumeo = liMi5e Resumt. The objective of this paper is to
provide a characterization d®sym« Which is not obtained

by taking a limit as the number of messages goes to infinity
and also an iterative algorithm to evaluate it. Understand-
ing the minimum sum-rate in the limit where potentially
an infinite number of alternating messages are allowed to
be exchanged will shed light on the fundamental benefit
of cooperative interaction in two-terminal problems. Vehil
asymptotics involving blocklength, rate, quantizer st&re,
and network size have been explored in the distributed block

source coding literature, asymptotics involving an inénit

number of messages, each with potentially infinitesimag, rat
has not been studied. The number of messages is a relatively
unexplored resource and a new dimension for asymptotic
analysis.
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This paper introduces a new convex-geometric approachll Y meansX andY are independent.
to provide a blocklength-free single-letter characteiizaof Il. | NTERACTIVE FUNCTION COMPUTATION PROBLEM
the infinite-message minimum sum-rate as a functional 9{ Problem formulation
the multi-source pmf. This characterization is not obtdine -
by taking a limit as the number of messages goes to We consider two statistically dependent discrete memo-
infinity. Instead, it is in terms of the least element of dYyless stationary sources taking values in finite alphabets
family of partially-ordered, marginal-perturbationsrcave Fori = 1,....n, let (X(i),Y(i)) ~ iid pxv(xy),x€ X,y €
functionals associated with the functions to be computed/;|X| < oo,|¥| < co. Here, pxy is a joint pmf which
For computing the Boolean AND function of two indepen_describes the statistical dependencies among the samples
dent Bernoulli sources at offmth terminals, the respective Observed at the two terminals at each time instanitet
infinite-message minimum sum-rates are characterized fa : X XY — Za andfs : X x Y — Zg be functions
closed analytic form and shown to be achievable usingf interest at terminalé and B respectively, whereZ, and
infinitely many infinitesimal-rate messages. The functionals are finite alphabets. The desired outputs at termiAals
viewpoint also leads to an iterative algorithm for evalogti and B are Z, and Zg respectively, where for = 1,....n,
any finite-message minimum sum-rate. Za(i) := fa(X(i), Y(1)) and Zg(i) := fg(X(i), Y(i)).

Related interactive computation problems have been stud-pefinition 1: A two-terminal interactive distributed source
ied extensively in the area of communication complexity, [3]code (for function computation) with initial terminal and
[4_] where the main focus is oexactzero error computation, parameterst(n,|Ml, ..., | M) is the tuple é. .. ., &, ga, Os)
without regard for the statistical dependencies in samples t block encoding functiones, ... ., & and two block decod-

across terminals, and where computirfjogency is gauged ing functionsga, gg, of blocklengthn, where forj = 1,...,t,
in terms of the order-of-magnitudeof the total number

of bits exchanged; not bit-rate (notable exceptions to thisgciy g - X"x @1 M — M, i jis odd
main focus are [5], [6]). Two-way distributed block source ’ Y x (X)i';l Mi— M;, if jiseven’
coding where the goal is teeproducethe sources with a t

non-zero per-sample distortion, as opposed to computin@ecA) ga: X"x ®Mj - Zh

functions, was studied by Kaspi [7] who characterizedtthe j=1

message sum rate-distortion function in each directiofit-Or t

sky and Roche [8] studied two-terminal samplewise functiofDecB) gs: Y"x ® M — Zg.

computation with a vanishing block-error probability and =1

characterized the feasible rates and the minimum sum-rat@e output ofej, denoted byM;, is called thej-th mes-

for two alternating messages € 1,2). A more detailed sage, andt is the number of messages. The outputs of

account of related work appears in [2]. ga and gs are denoted byZ, and Zg respectively. For
The focus of this paper is otrmessage two-terminal each j, (1/n)log,|M,;| is called thej-th block-coding rate

samplewise function computation where the probability ofin pits per sample). The sum of all the individual rates
computation error for a block of samples vanishes as thg/n) th—l log, M| is called the sum-rate.

blocklength goes to infinity. The results presented here/-ho
ever, directly extend to the more general two-terminal-rate Definition 2: A rate tupleR = (Ry,...,R) is admissible
distortion problem studied in [2] involving coupled single for t-message interactive function computation with initial
letter distortion criteria. The generalization is omittedre terminal A if, Ye > 0, 3 N(e,t) such that¥n > N(e,t),
due to limited space but will be presented in [9]. there exists an interactive distributed source code witialn
Notation: Vectors are denoted by boldface letters; théerminal A and parameters,(, M), ..., M) satisfying
dimension will be clear from the context. The acronym ‘iid’ 1
stands for independent and identically distributed andf*pm o log, IMjl <Rj+e j=1,....t,
stands for probability mass function. With the exception of = =
the symbolR N, A, andB, random quantities are denoted in PZa#Zp) <€ P(Zs# Zp) <€
upper case and their specific instantiations in lower case. F  Note that of interest here are the probabilities of block
integersi, j, with i < j, V! denotes the sequence of randonerror P(Za # Za) and P(Zg # Zg) which are multi-
variablesvi, ..., Vj. Fori > 1,V is abbreviated t&'. If j <i letter distortion functions. The set of all admissible rate
then “v)” denotes the void expression “. More generally, iftuples, denoted bRf, is called the operational rate region
{Qilics is a set of quantitiex) indexed by a subse® of for t-message interactive function computation with initial
integers then for all integerisnot in S, “Q” = “". For a terminal A. The rate region is closed and convex due to
setS, S" denotes ther-fold Cartesian producs x ... x S.  the way it has been defined. The minimum sum-ifg,,
The support-set of a pn is the set over which it is strictly is given by mir(th:1 Rj) where the minimization is over
positive and is denoted by sum(If supp@) € suppf) then R e RA. For initial terminal B, the rate region and the
we write g < p. The set of all pmfs on alphabgt, i.e., the minimum sum-rate are denoted Y andREumt respectively.
probability simplex inRM, is denoted byA(A). X ~ Ber(p)  The focus of this paper is on the minimum sum-rate rather
meanspy (1) = 1 - px(0) = p, andhy(p) denotes its entropy. than the rate region.



We allow the number of message® be equal to 0. When involving X, Y,U% fori = 1,...,t, if i is odd,U;—(X, Ui‘l)—Y
t = 0, there is no message transfer and the initial terminal ferms a Markov chain, otherwisg; — (Y, U1 — X forms a
irrelevant. Thus fott = 0, in the notation for the minimum Markov chain. Let
zﬂm:[:::,;gsucr)n?lt the superscript and denote the mwmumso?mt ' {all conditional pmfspuixy of the form (2). (3)
For a given initial terminal, fot = 0 andt = 1, function Thus,SDﬁ\mt is a family of conditional pmfs parameterized
computation may not be feasible for genemly, fa, fs.  (continuously) by the conditional pmfpu,x, Puyvu,s -- -
If the computation is infeasibleR* is empty and we set For finitet, Pﬁm is a compact subset of a finite-dimensional
Rﬁumt = +oo. If for some specifiqxy, fa, fz, the computation Euclidean space. Let
is feasible, therR4,,, will be finite. Note that fort > 2, the . . B
computation is alwrgys feasible amd),, is finite. Penu(Pxv, fa, fe) = {Puixy - HEAX VX, UT) =
For all j < t, null messages, i.e., messages for which H(fe(X, Y)IY.U') = O}. (4)
IMj| = 1, are permitted by Definitioh] 1. Hence, 8(1)-  Note that for allt > 2, the setPeny is not empty because one
message interactive code is a special case bimessage can choosdJ; and U, such thatH(X|U;) = H(Y|Uy) = O:
interactive code. ThusRS, . 1) > Rom aNd R 1) = take U, (respectivelyUs) to be a deterministic one-to-one
RS.m (see [1, Proposition 1] for a detailed discussion)mapping fromX to U (respectivelyy to ) (note that
Therefore, I Remt = iMoo REm = Rsumeo- The limit x| < 241] and Y] < [242]). Also note thatH(fa(X, Y)IX, UY)
Rsume is the infinite-message minimum sum-rate. and H(fz(X, Y)|Y,U") are continuous functionals of the joint
Depending on the specific joint pnpky and functionsfa  pmf pyyy; and for each fixedpxy, they are continuous
and fg, it may be possible to reach the infinite-message limfynctionals of puyxy. Thus, for finitet, Pen(pPxy. fa, fa) is
Rsumeo With finite t (see end of Se€.ViB for examples).  a compact subset of a finite-dimensional Euclidean space
For all finite t, a single-letter characterization of the(since it is the contour of conditional pmfs on which
operational rate regioR;* and the minimum sum-rat&,,, the conditional entropies are equal to zero). Therefore,
were respectively provided in Theorem 1 and Corollary y’f(va, fa, fg) = pﬁm N Pent(Pxy, fa, fz) is @ compact
of [1]. As discussed in Se¢. 1B, this does not, in gensubset of a finite-dimensional Euclidean space. Generally
eral, lead to a satisfactory characterization of the irdiit speaking P! is determined bypxy, fa, and fg. In the rest
message limiRsume Which is a new, unexplored dimension of this paper, however, and fg are fixed (but have general
for asymptotic-analysis in distributed block source cgdinform) and pxy is variable. Therefore, we drofi and fg
involving potentially an infinite number of infinitesimagte  from the notation and speak of the family of conditional
messages. The main goal and contribution of this paper is thénfs PA(pxy) associated withpyy. For initial terminal B,
development of a general convex-geometric blocklengte-fr the corresponding set is denoted B (pxy). We are now

characterization of this infinite-message limit. ready to state the characterizationRff,,,, developed in [1].
B. Characterization of & for finite t Fact 1: (Characterization of &y, [1, Corollary 1])

Let U, ..., U; be finite alphabets whose cardinalities are R@umt = miQ (1O UTY) + 1(Y; UYX)). (5)
bounded as follows Putixy€ P (Pxr)

X (HH I(U'I) tt—i+3 jodd Note that.the conditional mutual inf_ormation quantities in
;| < ij:}l i J g .J (1) (8 are continuous functionals of the joint pmp&yy. In the

Iyl(l—lizl I‘Llil) +t-j+3, jeven minimization in [3), pxy, fa, and fg are fixed. Since we are
minimizing a continuous functional over a compact set, a
minimizer exists inP(pxy). Since the arguments live in a
finite dimensional Euclidean space, the minimization[ih (5)

Note that these bounds are independent of blocklength

Forj = 1,....t, j odd, let py,xui- denote a conditional
f wh f h x ui-1 i ) L . S

zum\xyl(?lrf uﬂ) eZ‘CA()fulf) ?Sifnilar)li/ Xf;Lr[lj X_ 1 % (th, lj’ is a finite dimensional optimization problem.

evér_l, letpy,yui-+ denote a conditional pmf where for eachinf-lc;:f] ucshﬁg)?&:tel;:ésrﬁg Ot?:%g]\t/elrn e@ (Rdoes iné)t t()jéruer?:jlz

(Yol € Y XUy x X Ui, Puvu (19, U7 € ACT). B ere s e 2

Let X,Y,Us,...,U; denote random variables taking valuesOn the rate of convergence are unavailable for gergxal

in X, Y., ... U respectively with joint pmipxyy = fa, andfg. In the absence of such bounds, one pragmatic ap-

¢ t ' proach to estimatBs,me IS to computeRﬁumt by numerically
PxvPuixy where for all y) € Xx Y and allu’ ¢ ®i:1 U, solving (with some machine precision) the finite-dimenaion

Puixy(UIXY) = Puyx(U1lX) - P,y (Ualy, Ug) - optimization problem in[{5) for increasing values tofintil

2 the diference betweemR? . and Ry, is smaller than

- Pugxuz(Uslx U7 . ... (2) sumt-1 sumt .
some small number. Althougl](5) provides a single-letter

Here,X andY are referred to as the source random variablesharacterization foiRg,,,, for each finitet, ast increases,
andU! as the auxiliary random variables. Note tppatxyisa an increasing number of auxiliary random variablé¢'sare
conditional pmf where for eactx(y) € XxY, puyxv(:IX,y) € involved in the optimization problem. In fact, due [d (1)eth
AUy x ... x Uy). The factorization of pyyxy(U|x,y) in  upper bounds fof/;| increase exponentially with respect to
(@) is equivalent to the following Markov chain conditionst. Therefore, the dimension of the optimization problem in



(®) explodes asincreases. Each iteration is computationallyError-free computations can be performed without any mes-
much more demanding than the previous one. To malsage transfers if, and only ifixy € Ps,¢,. Thus,

matters worse, there appears to be no obvious way of re- .
Rsumo={ 0, if pxy € Pirfes

using the computations done for evaluatlﬁgmfl when oo, otherwise,

evaluating R, i.e., every timet is increased, a new
optimization problem needs to be solved all over again. _f HXIY) + H(YIX), if pxy € Prats
Finally, if we need to estimat®sym. for a diferent joint po = { —00, otherwise.

pmf pxy (but for the same function§, and fg), we would

need to repeat this entire process for the new. f(x,y) is not a function ofy alone, then for albxy € P, 1,

In Sec. I, we take a new fundamentally fidirent we have supfifxy) # X x /. Suchpxy can only lie on the
approach. We first devel_op a general cpnvex-geometr%undary of the probability simple&(X x ).
blocklength-free characterization &ume which does not EvaluatingRl, . is equivalent to evaluating the rate reduc-
involve taking a limit ast — co. Furthermore, instead of (i, ;A Notice, however, that if16), all the auxiliary ran-
developing the characterization &um. for a fixed joint 4, yariables appear only as conditioned random variables
pmf pxy — which is a single nonnegative real number — W&, heeas this is not the case [ (5). As discussed in[Secl 11I-C

characterize the entire infinite-message minimum sum-raffis gierence is critical as it enables us to characterize
surfaceRsum«(Pxy) — Which is a functional of the joint pmf = Mo p = liM oo pB Which then gives us a charac-

pxy — in a single concise description. This leads to a Simp@ization 0fRsumes @S Reumes = H(XIY) + H(YIX) = peo. The

test for checking if a given achievable sum-rate functionglye reqyction functional is the key to the characterizatio
of pxy coincides withRsum«(pxy). It also provides a whole

new family of lower bounds foRsyme. In Sec[TV, we use B. Marginal-perturbations-closed family of joint pmf&y

the new characterization to develop an iterative algorithm Generally speakin ,Sumt,p{%, Rsumo andp.. are function-
for computing the surfaceBsume(Pxv) and R&,m(Pxv) (for  als of pyy, fa, and fa. We will view R, (pxv), pf(Pxy),
any finite t) in which, crudely speaking, the complexity of Rym..(pxy) andpe(pxy) as functionals ofoxy with f4 and
computation in each iteration does not grow with iteratiorfg fixed to emphasize the dependencepgf. Instead of
number and results from the previous iteration are re-used évaluatingp..(pxy) for one particularpxy as it is done in
the following one. In Se¢.V we use the new characterizatioghe numerical evaluation of single-terminal and Wyner-Ziv
to evaluateRsume exactly in closed analytic form, for two rate-distortion functions, our approach is to evalyat€pyxy)
specific examples. For one of the examples (§ec] V-A), in &@ar all pxy belonging toPxy — a collection of joint pmfs of
earlier work we had derived an upper bound Ralim-(Pxy)  interest which is closed in the sense of Definifidn 4. We will
using an achievable distributed source coding strategy th@evelop a characterization @f.(pxy) for the entire pmf-
uses infinitely many infinitesimal-rate messages, but hagbllection Pxy; not just for one particulapyxy. Central to
been unable establish the optimality of that strategy. Thge definition ofxy is the idea of a marginal perturbation
new characterization, however, shows this to be optimal. set which is discussed next.

()

Remark 1:1f fa(x,y) is not a function ofx alone and

1. CHARACTERIZATION OF Rsumeo(PxY) Definition 3: (X-marginal and Y-marginal perturbation
setsPyix(pxy) and Pxyy(pxy)) The set ofX-marginal per-

A. The rate reduction functionai(pxv) turbations of a pmfpxy € A(X x V) is defined as

If the goal is tolosslessly reproducte sourcesfi(x,y) = , , , ,
v, fa(x,y) = X), the minimum sum-rate is equal o(X|Y) + 7 ix(Pxv) = {Pxy € A(XXY) : Py < Pxvs PxyPx = PxyPx}
H(Y|X) and this can be achieved by SIepian-WOIf COdingwhere Px and p;( denote thex_margina|s OprY and p;(Y
The sum-rate needed for computing functions can only h@spectively. Similarly, let
smaller than that needed for reproducing sources losglessl|
The reduction in the minimum sum-rate for function com?xv(Pxv) := {Pky € AXXY) : Pyy < Pxv, PxyPy = PxvPy}

putation in comparison to source reproduction is given by genote the set of-marginal perturbations ofxy where py

Pr = HXIY) + HYIX) - Rgumt and p{, denote they-marginals ofpxy and p, respectively.
— max  [H(XIY,UY + H(Y|X,UY]. (6) The setsPyix(pxy) and Pxy(pxy) are nonempty as they
Putxv€ P (Pxy) containpxy. Notice that a pmf,, € Pyix(pxy) iff p§ < px

For interactive distributed source codes with initial terat  21d V(% Y) € SUpp@l) x V. py(yx) = pvx(y1X), where
B, the minimum sum-rate and rate reduction are denoted lﬂ'x Plx (Y1X) andpx, pyix(¥1X) greX—margma_I and cond|t|o.nal
RE, . andpg respectively. A quantity which plays a key role pmfs of piy and pxy re_s,pectlvel)f. Essentiallyyx (pxy) is
in the characterization dRsyme IS p@ corresponding to the the c_o_llect|on of all JOII’]/I PmISPy VYh'Ch have /the same
“rate reduction” for zero messages (there are no auxilia@f&nd't'onaI Pmfpyix OF Pyy = Pvix - Py ON SUPPPLy). The

random variables in this case). Since the initial termiread h > btlety is that the conditional pnyi(;, of the joint pmf
no significance whet = 0, p2 = pB =: po. Let Py is well-defined only on supp() x Y. Corresponding
oo statements can be made ®y;y(pxy). Marginal perturbation

Pirte = {Pxy € AXXY) : H(fa(X, Y)IX) = H(fs(X, Y)IY) = 0}. sets can be viewed as neighborhood$gyf.



Remark 2:For all pxy: (i) Pvix(pxy) and Pxy(pxy) are To prove Theoreni]l we will establish a connection
convex sets of joint pmfs; (i) ifpl, € Pyx(pxy) then between thet-message interactive coding problem and a
Pyix(Py) S Pyix(Pxy); and (iii) if ply € Pxy(pxy) then (t-1)-message interactive coding subproblem. Intuitivaly, t
Pxiv(Py) S Pxiv(Pxy)- construct at-message interactive code with initial terminal

We will develop a characterization pf,(pxy) for all pxy A, we need to begin by choosing the first message. This
belonging to any family of joint pmf$xy which is closed corresponds to choosing the auxiliary random varidlye
with respect toX-marginal andY-marginal perturbations.  Then for each realizatiobl; = u;, constructing the remain-
¢ ing part of the code becomes &(1)-message subproblem

with initial terminal B with the same desired functions, but
be called marginal-perturbations-closed if forplly € Pyy, Wit @ different source pmpxyu, (-, -us) € Pyx(pxy). We
Pyx(Pxy) U Pxv(Pxy) € Pxy. can repea’F this pr_ocedure ret_:urs_lv_e_ly to cor_15tructt—a10-
message interactive code with initial terminBl After t

Examples of such marginal-perturbations-closed familiegeps of recursion, we will be left with the trivial 0-messag
of joint pmfs include (i) the set of all joint pmfs with problem.

Definition 4: (Marginal-perturbations-closed family o
joint pmfsPyy) A family of joint pmfs Pxy € A(X x YY) will

supports contained in a specified subset i< Y, i.e., Proof: (i) We need to verify thap,, satisfies all three
Pxy = A(S) whereS ¢ X x Y and (ii) the set of all ynditions in Definitiof b:
joint pmfs of all independent source®xy = {pxpvIpPx € 1) SinceVpxy € Pxv, Rsumeo( R

, » Rsumeo (Pxv) < Rsumo(Pxy), we have
A(X), py € A(Y)} (see _Sed:k/). In fact,_ |qqu belongs to Peo(Pxy) = po(Pxy). Thuspe, is po-majorizing.
any marglnal-perturbanons-close_d fam|ly_W|th supp(= X 2) For an arbitrarygxy € Pxy, consider two arbitrary
and ;uppﬁy) = Y, then the family contain&(X) x A(Y), joint pmfs pxyi. Pxvo € Pyx(0xy). For everyd € (0,1),
that is, all product pmfs o& x Y. let pxya = Apxv1 + (1 — A)pxvo- Let pxo(X), Pyixo(YIX)
C. Main result and px1(x), pyx1(YIX) and px., pyx.a(yX) denote theX-

To describe the characterization of the functionaigir%'gﬁl ;nch ogdt'ct)'oggngrgsz?ﬁm agd F;;(Y’l (and) p>\</Y\}é
Reumeo(Pxy), it is convenient to define the following family 'c-PectVel. DU IAxva Yxlxy)-

: ; : ; need to show thgte(Pxy.a) = 4pw(Pxva) + (1= 1) peo (Pxv0)-
of functionals associated with computirig and fe. Let (X,Y) be a pair of source random variables with joint

Definition 5: (Marginal-perturbations-concaves-major- - pmf pyy,. Consider an auxiliary random variabllg taking
-izing family of functionals#(Pxy)) Let Pxy be any values in; = {0,1} such that X,Y,U;) ~ pxvaPu;x
marginal-perturbations-closed family of joint pmfs onwherevx e suppfpx.), pusx(11%) = Apx1(X)/Px.(x) and
A(X x Y). The set of marginal-perturbations-concawg; pu;x (01%) 1= (1 — ) pxo(X)/ Px.1(¥).

majorizing family of functionalsf(Pxy) is the set of all |t follows that the marginal pmf of; is Ber(1) andY—X-
the fg_nchonals,o . Pxy — R satisfying the following three U; is a Markov chain. Consequenthy(x, uy) € Supp@x..) X
conditions: U3, pxu; (Xus) = Pxu, (¥) andY(x.y, us) € supppxy.) X U;,
1) po-majorization:¥pxy € Pxv, p(Pxv) = po(Pxy)- Pvixu; (Y%, U7) = Pyixa(Y1X).
2) Concavity with respect tX-marginal perturbations:  The key implication is tha¥(x,y, u;) € supp@xy.) X U,
Ypxy € Pxy, p is concave orPyx(Pxy). Pxvu; (% YIU1) = Pxyu, (X, ). This is becausexyu; (%, yiur) =
3) Concavity with respect tor-marginal perturbations: pxg, (X)- Pyixa(MX) = Px.u, (X) - Pyixu, VX)) = Pxyu, (X Y) where
¥pxy € Pxy, p is concave orPyxy(Pxy). in the last but one equality we used the crucial property that
Remark 3:Since po(pxy) = —co for all pxy ¢ Pras, all joint pmfs in PY\):(qu) have the same conditional pmf.
condition 1) of Definitiorib is trivially satisfied for afty e~ NOW: forallte Z* we have,
Pxv \ Pt,1 (We use the convention th&fa € R, a > —c0). ol (pxv) = max {H(XlY, uY + me’ut)}
Thus the statement that majorizespg on the setPyy is Putixve PE(Pxva)

equivalent to the statement thamajorizesH (X|Y) +H(Y|X)

on the se®rf, (1 Pxy. max{ max_{H(XIY,U') + H(YX, U")}

Remark 4:Conditions 2) and 3) do not imply that is - Puyx | Pubxvey
concave orPxy. In fact, Pxy itself may not be convex. For Pug X Put vy € 20 (Pxva)
example, the sePxy = {pxPyIpx € A(X), py € A(Y)} is not @ . .
convex. > max {H(XY,Up, U) + H(YIX, Uz, Uy}
We now state and prove the main result of this paper. 2

Pu; X Put v € P2 (Pxva)

Theorem 1:(i) p € F(Pxv). (i) For all p € F(Pxy), () - -
and all pey € P, we havem (px) < p(pxy). b Ariutz‘rffﬁ»,ul):{H(X'Y’ UL, U3 = 1)+ H(Y|X, UL, U; = 1)}
The set F(Pxy) is partially ordered with respect to Puzx Pug v € Pr (Pxva)
majorization. The theorem says th@&i(Pxy) has a least + (1-2-
element and thap., is the least element. Note that there . max {H(X|Y UL, UZ = 0) + H(Y]X Ub, UZ = 0)}
is no parametet which needs to be sent to infinity in this Pug v (1-0): e e

characterization Op. Pu x Pu v € P1 (Pxvo)



2 Ao i(pea) +(L- Do i) ()
In step (a) we replacepy,x with the particulampy;x defined
above. Step (b) follows from the “law of total conditional
entropy” with the additional observations that conditid e
U7 = ug, pxviu: (% Yluz) = pxvu, (% y) and H(XY, U}, U7 =
u1)+H(Y|X Ut U; = up)) only depends omyyxyu; (‘I ,ul)
Step (c) is due to the observation that for a fl)ﬂtd‘x, con-
ditioned onU; = uy, (i) pu: axPuyxvu; € Pmct iff Puyxyu; €
Pr.y and (”) Pu;xPuyxvy, € Pentt(Pxvuss o fg) iff
Puxvy; € Pentr-1(Pxvus» Tas fe). Therefore,pu; axPuyxyy €
Pp (vaul) iff puyxyy; € PE | (Pxvu,). Now sendt to |nf|n|ty
in both the Ieft and rlght sides of](8). Since lim, pf* =
Mt pf = poo, WE havepe(Pxva) = 4 peolPxya) + (1 -
A) pe(Pxvo). Therefore p,, satisfies condition 2) in Defini-
tion 5.

that pxvu, (-, lu1) € Pyix(pxy) for all uy € supp@u,). This
is confirmed by noting that sinc€ — X — U; is a Markov
chain, Yu; € suppfpu,) and ¥x € supppx), we have
Pyixu, (VIX, U1) = pyx(YIX) (see para after Definitiofl 3). Step
(f) is due to the inductive hypothesis® , (Pxy) < p(Pxy).-
Step (g) is Jensen’s inequality applied gfpxy) which is
concave orPyix(pxy). Using similar steps as above, we can
also show thap2(pxy) < p(pxy)- [ ]

Remark 5:In the proof of Theoreni]l, there are only
two places where the marginal-perturbations-closed ptppe
of Pxy is used. It is first used in part (i) to show that
Pxviu; (X Ylu1) = pxyu, (X, Y). It is used in part (i) to show
that pxvu, (-, lu1) € Pyix(Pxy)-

Remark 6:It can be verified that the functionaH(X|Y) +
H(Y|X)) belongs toF (A(X x Y)). Whereas bothH(X|Y) +
H(Y|X)) and p.(pxy) are concave orX-marginal andY-

3) In a similar manner, by reversing the roles of terminalgharginal perturbation sets gy, it cannot be claimed that

A and B in the above proof, it can be shown that also
satisfies condition 3) in Definitio] 5. Thug. € F(Pxy).
(i) It is sufﬁcient to show that¥p € F(Pxv), Vpxy €
Pxv, Yt € Z* {0}, pf(pxv) < p(Pxy) andpp(pxy) < p(Pxy)-
We prove this by |nduct|on onn. Fort = 0, the result is
true by condition 1) in Def|n|t|0rIE|5p (Pxy) = pg B(pxy) =
po(Pxy) < p(pxy)- Now assume that for an arbitratye Z™,
P 1(Pxy) < p(pxy) and p2,(pxv) < p(pxy) hold. We will
show thatof(pxv) < p(Pxv) andpB(pxv) < p(pxy) hold.

pflpxy) = max  {H(XIY.UY) + H(YIX, UY}
Putxve PE(Pxy)

= max{ max {H(XIY U%) + H(YIX, Ut)}

Puyix | Pubixvy, -
Puyix Pugxvu, € P{(Pxy)

= max Z pu, (u1)  max {H(X|Y, UL Uz =)
PuL | e suppbu,) ug vy (o U): .
Pugx pU12|><\(u1E P (Pxviuy (1))

+ H(YIX, US, Ug = uy))

© max{ Z pul(ul)PtBl(waul(-,-|U1))} 9)

PUi | e supppy,)

p max{ > pul(uﬂp(pxwul(-,-lul»}

PUL | uye suppbu,)

9 m?}{P{ Z pul(Ul)waul(','Wl)]}

us€ suppfu, )
= p(pxy).

Rsumeo(Pxy) = (H(XIY) + H(Y|X)) — peo(Pxv) Will be convex
on the marginal perturbation sets p§y. For eacht, pf i

the maximum of H(X|Y, UY) + H(Y|X, UY)), whereU! appear
only as conditioned random variables. This enables us to use
the “law of total conditional entropy” (which corresponds t
convexification) and arrive af](8) and] (9). Notice, however,
that Rsume is the minimum value of (X; UYY) +1(Y; UYX))
over all U' whereU" are not conditioned. Therefor&%,,
cannot be expressed as a convex combinatioRR{f, ;-
Due to these reasons, although evaluapngis equivalent

to evaluatingRsum«, the rate reduction functional is the key
to the characterization as remarked in $ec1lI-A.

Since everyp € F(Pxy) gives an upper bound fqr.,
(H(X]Y) + H(YIX) — p) gives a lower bound foRsyme.
This fact provides a way testing if an achievable sum-rate
functional is optimal. IfR* is a sum-rate functional which
is achievable thel pxy € Pxv, R (Pxvy) = Rsume (Pxy). If it
can be verified thap* := (H(X|Y) + H(Y|X) — R*) belongs
to F(Pxy), then by Theorehl1R* = Rsyme. The nontrivial
part of the test is to verify ilR* is concave onX-marginal
and Y-marginal perturbation sets. We will demonstrate this
test on two examples in Sec] V.

IV. | TERATIVE ALGORITHM FOR COMPUTING Réumt(-) AND Rsymeo()

Although Theorenf]l provides a characterizationpgf
and Rgyme that is not obtained by taking a limit, it does
not directly provide an algorithm to evaluatme. TO
efficiently represent and search for the least element of
F (Pxy) is nontrivial because each element is a functional;
not a scalar. The proof of Theordm 1, however, inspires an
iterative algorithm for evaluatings,,; and Rsume.

Equation [®) states that/(pxy) is the maximum value
of p € R such that(pxy,p) is a finite convex combina-
tion of {(pXY|U1(', '|U]_), pEl(pXY\U1(" '|ul))}U1€ suppfu, )+ where
Pxviu, (-, -Ju1) belongs toPvix(pxy) for all up in suppfy,) C
U;. Consider the hypograph obﬁl(-) on Pyx(pxv):
hYBo,oePes = ((Pxvsp) @ Pxy €  Pyx(pxy), p <

The reasoning for steps (d) and (e) are similar to those fef,(pPxv)}. Due to [9), the convex hull of hyp ., 0P,
steps (b) and (c) respectively in the proof of part (i) (seés hyppy‘x(pw)pt This enables us to evaluatg from p2
equation array[{8)) but for step (e) we need to also confirmn the setPvx(pxy): pf* is the least concave functional on



Pvix(pxy) that majorizesof_l. In the convex optimization  Since —p{* is the convex biconjugate oﬁpF_l on all X-
literature, epf) is called the double Legendre-Fenchel transmarginal perturbation sets angf is the convex biconjugate
form or convex biconjugate of—(oEl) [10]. Thuspf* can be of —pﬁl on all Y-marginal perturbation sets, it follows that
determined through a convex biconjugation operationfigiki for all t > 0, pf* satisfies conditions 1) and 2) in Defini-
a convex hull of a hypograph) on any givettmarginal tion [ (oo-majorization and concavity with respect ¥%-
perturbation set. To determiné(pxy) for all pxy € Pxy, marginal perturbations), anef satisfies satisfies conditions
we can, in principle, first choose a cover fBy made 1) and 3) po-majorization and concavity with respect to
up of X-marginal perturbation sets, sdfvix(Pxv)lpwes,  Y-marginal perturbations). By Theorelm 4, satisfies all
whereA C Pxy, and then perform the convex biconjugationthree conditions of Definitiof]5 and is not larger than any
operation in everyX-perturbation set in the cover. Thisp which satisfies all three conditions. Also for all by
relationship betweenp and pEl leads to the following definition, pf* < p., and pf* < p.. Hence, if for somet,
iterative algorithm. pf satisfies 3) thepf = p.. Similarly, if for somet, pf
satisfies 2) thep? = p.. Thus, pf* and p? equalp., iff
hey satisfy all three conditions. If all three conditiong a
ot satisfied (two are always satisfied), it is beneficial to
increase the number of messages. Specifically?ifs not

tfion (7) in the domainPyy. Choose a cover foPyy cgncave onBa(-marg<|naAI\ perturbation set, then for somgy,
made up ofX-marginal perturbation sets, denoted bft (Pxv) < Pea(Pxv) < P (Pxv).

{Pvix(PxY)}pyye a, Where A C Pxy. Also choose a V. EXAMPLES

cover forPxy made up ofY-marginal perturbation sets, A. Rym. for independent binary sources and Boolean AND
denoted by{Pxv(Pxy)}pxye 3, Wheres  Pxy. function computed at both terminals

* :EOOp: Forr =1 throughgdo ;heffﬂ:lowing._ h In [1, Sec. IV.F], we studied the samplewise computation
or every pxy € A, do the following In the set ¢, Boglean AND function at both terminals for inde-

Algorithm to evaluate RS, and RE,

« Initialization: Choose a marginal-perturbations-close
family Pxy containing all source joint pmfs of inter-

est. Definepf(pxy) = pE(Pxy) = po(pxy) by equa-

Pyix(Pxy). pendent Bernoulli sources, i.eX = Y = (0,1}, X 1 Y,
— Construct hyp, (5,02 - X ~ Ber(p), Y ~ Ber(q), and fa(x,y) = fa(x,y) = XA Y.
— Let p? be the upper boundary of the convex hull ofan interesting interactive coding scheme was described in
hprwx(PXY)pE—l' [1] where the individual rate for each message vanished as
For every pxy € 8, do the following in the set the number of messages went to infinity. The (achievable)
Pxiv(Pxy)- infinite-message sum-rate of this scheme, denotad'bwas

— Construct hyp evaluated in closed form as

A
XIY(pXY)pT—l'

— Let pB be the upper boundary of the convex hull of ha(p) + phe(g) + plog, g+ p(1—g)log, e
hyppxw(PXY)pf—l' R'(p.q) = ?f O0<p<g<l
« Output RE,«(Pxy) = H(XIY) + H(YIX) — pf(pxy) and R'(9, p) fo<g<ps< 1.( 10

B _ B
Rsum(Pxv) = HXIY) + HYIX) = o (px)- This expression was derived in [1, Sec. IV.F] for the sitfati
To make numerical computation feasibfexy hasto be 0 < p < q < 1. The situation 0< q < p < 1
discretized. Once discretized, however, in each iterattom  follows by symmetry. The remaining situatiops} = 0 and
amount of computation is the same and is fixed by thél - p)(1 - q) = 0 easily follow using zero or one message.
discretization step-size. Also note that results from eacBinceR*(p,q) is an achievable sum-rat®; > Rsym«. Using
iteration are re-used in the following one. Therefore, foTheorem[l, we shall now prove th& is, in fact, equal
larget, the complexity to computB%,,, grows linearly with  to Reyme.. We will verify that p* := H(X|Y) + H(Y|X) - R*

respect ta. belongs toF (Pxy) for the product pmf familyPxy, which
Rsume Can also be evaluated to any precision, in principleyill imply, by Theoren(d(ii), thafp* > pw, i-€., R* < Rsumeo-
by running this iterative algorithm fot = 1,2,..., untii  Note thatRgm. is not evaluated using Theorérh 1. Only part

some stopping criterion is met, e.g., the maximuifiedence (ii) of Theorem[1 is used as a converse proof to show that
betweenpﬁl and p{'\ on Pxy falls below some threshold. the achievable sum-raf@ is Rsymc-

Developing stopping criteria with precision guarantees re Since the sources are independent, we take the marginal-
quires some knowledge of the rate of convergence whigberturbations-closed family to b&xy = {pxpyvlpx €

is not established in this paper; the rate may, however, R€X), py € A(Y)}. For each product pmpxpy, the X-
empirically estimated. When the objective is to evaluatenarginal andy-marginal perturbation sets a#&x(pxpy) =
Rsumeo(Pxy) for all pmfs in Pxy, this iterative algorithm is {p{py : p§ < px} and Pxy(pxPy) = {PxP, : P < py}
much more &icient than using[{5) to solve deQumt for  respectively. Sincey and py are parameterized by andq
eachpxy for t = 1,2,..., an approach which follows the respectively, each product pnpipy can be represented by
definition of Rsume. literally as the limit of RS, ast — co.  a point (0, q) € [0,1]% For all pmfs @, q) € (0,1)? the X-

Our iterative algorithm is based on Theor&in 1 which is anarginal andy-marginal perturbation sets are line segments
characterization oRsyme Without taking a limit involving.t [0, 1] x {q} and {p} x [0, 1] respectively. For all pmfs (@),



whereq € (0, 1), theX-marginal andy-marginal perturbation B. Rsym« for independent binary sources and Boolean AND

sets are () and{0}x|[O0, 1] respectively. For the pmfs (0), function computed at only terminal B

both the X-marginal andY-marginal perturbation sets are \ye change the problem in S€C_V-A to the problem of

(0,0). The marginal perturbation sets of remaining pmfs OBomputing the Boolean AND function at only terming)

the boundary of [01]2 can be derived using symmetry (swapj g fa(x,y) = 0 and fgs(x,y) = X A y. The source statistics

p andq; then swap symbols 0 and 1). are unchangedX 1 Y, X ~ Ber(p), Y ~ Ber(q). An achiev-
Itis easy to see that able sum-rateR* can be derived using the same technique

Reumo(P. ) = 0, if(p,a)e Pty presented in [1, Sec. IV.F]. The derivation is omitted irsthi
sumo(P- &) =1 o otherwise, paper due to limited space but will be presented in [9]. The

where®,;, = {(p,g) : p=0orq=0orp=q=1}. Itis €xpression foR"is

also easy to verify that for allgt @), R'(p, @) < Reumo(Pp. @) = ha(p) + phe(a) + plog, q + p(1 - 20) log, e
0, or equivalentlyp*(p, g) > po(p, 0). By taking the first and fo<p<qg<1/2
second-order partial derivatives pf(p, g) = h2(p) + h2(q) — R'(p.g) ={ R(q,p) fo<q<p<1/2
R‘(p, q) with respect top and g, we can verify that for any R(1-p,q) ifo<qgq<1/2<p<1,
fixed g, p*(p,q) is concave with respect tp, and for any h2(p) ifl1/2<q<1

fixed p, p*(p,q) is concave with respect tg. Therefore, . . . o

0*(p.q) is concave in everyX-marginal andY-marginal Follow[]g the m(.athod _|n OSedjiA, O|t can _veriﬁed :jhat
perturbation set. Thereforgy*(p,q) €  F(Pxy), which P*fAfB = {(pa) - p = 0Oorg = Oorp = 1} an
implies thatRsume(p. ) > R*(p,q) due to Theorenfa(i). ¥ (. 9) = (hz(P)+h2(q) -R'(p. d)) belongs tar (Pxy), where
SinceR‘(p, q) is both an upper bound and a lower bound of XY = {PxPvIpx € AWX), py € A(Y)} is the same marginal-
Rsumes(P, 0), We haveRume(p, @) = R'(p, q). Fig.2(a) shows perturbatlons-_closed family used in Séc. V-A. Therefore,
a plot of p (P, 9) = p*(p, ). Note thato.(p, q) is concave in R’ = Rsume- Fig.[3(b) shows a plot 0b«(p. ) = p*(P. A)-

p andq separately but not jointly concave in the pai @). nonofeesstggte fr?;eﬂls ('zt,nqt))eesi;:th F(T;gl]alze C()O:l?;”[';TZa{‘]d

Rsume = h2(p) and this sum-rate can be achieved with
t = 1 message fronA to B, thus R’S‘\um1 = Rsume. Note

that Reumo = o0 becausef, q) ¢ Pr,r, andRE, | = co. For
(p,0) € {1/2} x (0,1/2), Rsumw = h2(q). In [8, Sec. V.C] it
was shown that this sum-rate can be achieved with 2
messages, the first fro® to A and the second fronA

to B. Thus Rgumz = Rsume. Note '[hatREum1 = o and in
[1, Sec. IV.C] we showed thzﬁ?@uml =log,2 = 1. These

examples show that depending on the specific joint pmf and
functions, it may be possible to reach the infinite-message
limit Rgyme With finite t.
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