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Infinite-message Distributed Source Coding for Two-terminal Interactive
Computing

Nan Ma and Prakash Ishwar

Abstract— A two-terminal interactive function computation
problem with alternating messages is studied within the frame-
work of distributed block source coding theory. For any arbi-
trary fixed number of messages, a single-letter characterization
of the minimum sum-rate function was provided in previous
work using traditional information-theoretic techniques. These
techniques, however, do not lead to a satisfactory characteriza-
tion of the infinite-message limit, which is a new, unexplored
dimension for asymptotic-analysis in distributed block source
coding involving potentially infinitesimal-rate messages. This
paper introduces a new convex-geometric approach to provide
a blocklength-free single-letter characterization of theinfinite-
message minimum sum-rate function as a functional of the joint
source pmf. This characterization is not obtained by takinga
limit as the number of messages goes to infinity. Instead, it is
in terms of the least element of a family of partially-ordered
marginal-perturbations-concave functionals associatedwith the
functions to be computed. For computing the Boolean AND
function of two independent Bernoulli sources at one and both
terminals, the respective infinite-message minimum sum-rates
are characterized in closed analytic form. These sum-ratesare
achievable using infinitely many infinitesimal-rate messages.
The convex-geometric functional viewpoint also suggests an
iterative algorithm for evaluating any finite-message minimum
sum-rate function.

I. Introduction

In this paper we study a two-terminal interactive function
computation problem with alternating messages (Fig. 1)
within a distributed block source coding framework. Here,n
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Fig. 1. Interactive distributed source coding witht alternating messages.
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samples of one component of a discrete memoryless multi-
source X := Xn := (X(1), . . . ,X(n)) ∈ Xn are available
at terminalA and n samples of another component of the
multi-sourceY ∈ Yn are available at a different terminal
B. The two component sources of the multi-source are
statistically dependent. TerminalA is required to computen
samplesfA(X,Y) := ( fA(X(1),Y(1)), . . . , fA(X(n),Y(n))) of a
samplewise functionfA : X×Y → ZA of the two component
sources. Similarly, terminalB is required to computen
samplesfB(X,Y) := ( fB(X(1),Y(1)), . . . , fB(X(n),Y(n))) of
a samplewise functionfB : X × Y → ZB of the two
component sources. All alphabets are assumed to be finite. To
achieve the desired objective,t coded messages,M1, . . . ,Mt,
of respective bit rates (bits per source sample),R1, . . . ,Rt,
are sent alternately from the two terminals starting with
some terminal. The message sent from a terminal can depend
on the source samples at that terminal and on all the
previous messages (which are available to both terminals).
There is enough memory at both terminals to store all the
source samples and messages. Aftert messages, terminalA
produces a sequencêZA ∈ Z

n
A and terminalB produces a

sequencêZB ∈ Z
n
B. The t-message minimum sum-rateRsum,t

is the infimum of the sum of all rates
∑t

i=1 Ri for which
P(fA(X,Y) , ẐA) andP(fB(X,Y) , ẐB) → 0 asn→ ∞.

For any fixed number t, a single-letter characterization
of the set of all feasible coding rates (the rate region)
and the minimum sum-rateRsum,t, for a more general two-
terminal interactive rate-distortion problem, was provided
in our previous work [1], [2] using traditional information-
theoretic techniques. These techniques, however, do not lead
to a satisfactory characterization of theinfinite-message limit
Rsum,∞ := lim t→∞ Rsum,t. The objective of this paper is to
provide a characterization ofRsum,∞ which is not obtained
by taking a limit as the number of messages goes to infinity
and also an iterative algorithm to evaluate it. Understand-
ing the minimum sum-rate in the limit where potentially
an infinite number of alternating messages are allowed to
be exchanged will shed light on the fundamental benefit
of cooperative interaction in two-terminal problems. While
asymptotics involving blocklength, rate, quantizer step-size,
and network size have been explored in the distributed block
source coding literature, asymptotics involving an infinite
number of messages, each with potentially infinitesimal rate,
has not been studied. The number of messages is a relatively
unexplored resource and a new dimension for asymptotic
analysis.
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This paper introduces a new convex-geometric approach
to provide a blocklength-free single-letter characterization of
the infinite-message minimum sum-rate as a functional of
the multi-source pmf. This characterization is not obtained
by taking a limit as the number of messages goes to
infinity. Instead, it is in terms of the least element of a
family of partially-ordered, marginal-perturbations-concave
functionals associated with the functions to be computed.
For computing the Boolean AND function of two indepen-
dent Bernoulli sources at one/both terminals, the respective
infinite-message minimum sum-rates are characterized in
closed analytic form and shown to be achievable using
infinitely many infinitesimal-rate messages. The functional
viewpoint also leads to an iterative algorithm for evaluating
any finite-message minimum sum-rate.

Related interactive computation problems have been stud-
ied extensively in the area of communication complexity [3],
[4] where the main focus is onexactzero error computation,
without regard for the statistical dependencies in samples
across terminals, and where computing efficiency is gauged
in terms of the order-of-magnitudeof the total number
of bits exchanged; not bit-rate (notable exceptions to this
main focus are [5], [6]). Two-way distributed block source
coding where the goal is toreproducethe sources with a
non-zero per-sample distortion, as opposed to computing
functions, was studied by Kaspi [7] who characterized thet-
message sum rate-distortion function in each direction. Orlit-
sky and Roche [8] studied two-terminal samplewise function
computation with a vanishing block-error probability and
characterized the feasible rates and the minimum sum-rate
for two alternating messages (t = 1, 2). A more detailed
account of related work appears in [2].

The focus of this paper is ont-message two-terminal
samplewise function computation where the probability of
computation error for a block of samples vanishes as the
blocklength goes to infinity. The results presented here, how-
ever, directly extend to the more general two-terminal rate-
distortion problem studied in [2] involving coupled single-
letter distortion criteria. The generalization is omittedhere
due to limited space but will be presented in [9].

Notation: Vectors are denoted by boldface letters; the
dimension will be clear from the context. The acronym ‘iid’
stands for independent and identically distributed and ‘pmf’
stands for probability mass function. With the exception of
the symbolsR,N,A, andB, random quantities are denoted in
upper case and their specific instantiations in lower case. For
integersi, j, with i ≤ j, V j

i denotes the sequence of random
variablesVi , . . . ,V j. For i ≥ 1, Vi

1 is abbreviated toVi . If j < i
then “V j

i ” denotes the void expression “”. More generally, if
{Qi}i∈S is a set of quantitiesQ indexed by a subsetS of
integers then for all integersi not in S, “Qi” = “”. For a
setS, Sn denotes then-fold Cartesian productS × . . . × S.
The support-set of a pmfp is the set over which it is strictly
positive and is denoted by supp(p). If supp(q) ⊆ supp(p) then
we write q≪ p. The set of all pmfs on alphabetA, i.e., the
probability simplex inR|A|, is denoted by∆(A). X ∼ Ber(p)
meanspX(1) = 1− pX(0) = p, andh2(p) denotes its entropy.

X y Y meansX andY are independent.

II. Interactive function computation problem

A. Problem formulation

We consider two statistically dependent discrete memo-
ryless stationary sources taking values in finite alphabets.
For i = 1, . . . , n, let (X(i),Y(i)) ∼ iid pXY(x, y), x ∈ X, y ∈
Y, |X| < ∞, |Y| < ∞. Here, pXY is a joint pmf which
describes the statistical dependencies among the samples
observed at the two terminals at each time instanti. Let
fA : X × Y → ZA and fB : X × Y → ZB be functions
of interest at terminalsA and B respectively, whereZA and
ZB are finite alphabets. The desired outputs at terminalsA
and B are ZA and ZB respectively, where fori = 1, . . . , n,
ZA(i) := fA(X(i),Y(i)) andZB(i) := fB(X(i),Y(i)).

Definition 1: A two-terminal interactive distributed source
code (for function computation) with initial terminalA and
parameters (t, n, |M1|, . . . , |Mt|) is the tuple (e1, . . . , et, gA, gB)
of t block encoding functionse1, . . . , et and two block decod-
ing functionsgA, gB, of blocklengthn, where for j = 1, . . . , t,

(Enc.j) ej :


Xn ×

⊗ j−1
i=1Mi →M j , if j is odd

Yn ×
⊗ j−1

i=1Mi →M j , if j is even
,

(Dec.A) gA : Xn ×

t⊗

j=1

M j → Z
n
A,

(Dec.B) gB : Yn ×

t⊗

j=1

M j → Z
n
B.

The output ofej , denoted byM j , is called the j-th mes-
sage, andt is the number of messages. The outputs of
gA and gB are denoted bŷZA and ẐB respectively. For
each j, (1/n) log2 |M j | is called the j-th block-coding rate
(in bits per sample). The sum of all the individual rates
(1/n)

∑t
j=1 log2 |M j | is called the sum-rate.

Definition 2: A rate tupleR = (R1, . . . ,Rt) is admissible
for t-message interactive function computation with initial
terminal A if, ∀ǫ > 0, ∃ N(ǫ, t) such that∀n > N(ǫ, t),
there exists an interactive distributed source code with initial
terminalA and parameters (t, n, |M1|, . . . , |Mt|) satisfying

1
n

log2 |M j | ≤ Rj + ǫ, j = 1, . . . , t,

P(ZA , ẐA) ≤ ǫ, P(ZB , ẐB) ≤ ǫ.

Note that of interest here are the probabilities of block
error P(ZA , ẐA) and P(ZB , ẐB) which are multi-
letter distortion functions. The set of all admissible rate
tuples, denoted byRA

t , is called the operational rate region
for t-message interactive function computation with initial
terminal A. The rate region is closed and convex due to
the way it has been defined. The minimum sum-rateRA

sum,t

is given by min
(∑t

j=1 Rj

)
where the minimization is over

R ∈ RA
t . For initial terminal B, the rate region and the

minimum sum-rate are denoted byRB
t andRB

sum,t respectively.
The focus of this paper is on the minimum sum-rate rather
than the rate region.



We allow the number of messagest to be equal to 0. When
t = 0, there is no message transfer and the initial terminal is
irrelevant. Thus fort = 0, in the notation for the minimum
sum-rate, we omit the superscript and denote the minimum
sum-rate asRsum,0.

For a given initial terminal, fort = 0 andt = 1, function
computation may not be feasible for generalpXY, fA, fB.
If the computation is infeasible,RA

t is empty and we set
RA

sum,t = +∞. If for some specificpXY, fA, fB, the computation
is feasible, thenRA

sum,t will be finite. Note that fort ≥ 2, the
computation is always feasible andRA

sum,t is finite.
For all j ≤ t, null messages, i.e., messages for which
|M j | = 1, are permitted by Definition 1. Hence, a (t − 1)-
message interactive code is a special case of at-message
interactive code. Thus,RA

sum,(t−1) ≥ RA
sum,t and RA

sum,(t−1) ≥

RB
sum,t (see [1, Proposition 1] for a detailed discussion).

Therefore, limt→∞ RA
sum,t = lim t→∞ RB

sum,t =: Rsum,∞. The limit
Rsum,∞ is the infinite-message minimum sum-rate.

Depending on the specific joint pmfpXY and functionsfA
and fB, it may be possible to reach the infinite-message limit
Rsum,∞ with finite t (see end of Sec. V-B for examples).

For all finite t, a single-letter characterization of the
operational rate regionRA

t and the minimum sum-rateRA
sum,t

were respectively provided in Theorem 1 and Corollary 1
of [1]. As discussed in Sec. II-B, this does not, in gen-
eral, lead to a satisfactory characterization of the infinite-
message limitRsum,∞ which is a new, unexplored dimension
for asymptotic-analysis in distributed block source coding
involving potentially an infinite number of infinitesimal-rate
messages. The main goal and contribution of this paper is the
development of a general convex-geometric blocklength-free
characterization of this infinite-message limit.

B. Characterization of RAsum,t for finite t

LetU1, . . . ,Ut be finite alphabets whose cardinalities are
bounded as follows

|U j | ≤


|X|
(∏ j−1

i=1 |Ui |
)
+ t − j + 3, j odd,

|Y|
(∏ j−1

i=1 |Ui |
)
+ t − j + 3, j even.

(1)

Note that these bounds are independent of blocklengthn.
For j = 1, . . . , t, j odd, let pU j |XU j−1 denote a conditional
pmf where for each (x, u j−1) ∈ X × U1 × . . . × U j−1,
pU j |XU j−1(·|x, u j−1) ∈ ∆(U j). Similarly, for j = 1, . . . , t, j
even, letpU j |YUj−1 denote a conditional pmf where for each
(y, u j−1) ∈ Y ×U1 × . . . ×U j−1, pU j |YUj−1 (·|y, u j−1) ∈ ∆(U j).
Let X,Y,U1, . . . ,Ut denote random variables taking values
in X,Y,U1, . . . ,Ut respectively with joint pmfpXYUt =

pXYpUt |XY where for all (x, y) ∈ X×Y and allut ∈
⊗t

i=1Ui ,

pUt |XY(ut|x, y) = pU1|X(u1|x) · pU2|YU1(u2|y, u1) ·

· pU3|XU2(u3|x, u
2) . . . . (2)

Here,X andY are referred to as the source random variables
andU t as the auxiliary random variables. Note thatpUt |XY is a
conditional pmf where for each (x, y) ∈ X×Y, pUt |XY(·|x, y) ∈
∆(U1 × . . . × Ut). The factorization ofpUt |XY(ut|x, y) in
(2) is equivalent to the following Markov chain conditions

involving X,Y,U t: for i = 1, . . . , t, if i is odd,Ui−(X,U i−1)−Y
forms a Markov chain, otherwiseUi − (Y,U i−1) − X forms a
Markov chain. Let

PA
mc,t := {all conditional pmfspUt |XY of the form (2)}. (3)

Thus,PA
mc,t is a family of conditional pmfs parameterized

(continuously) by the conditional pmfspU1|X, pU2|YU1 , . . ..
For finite t, PA

mc,t is a compact subset of a finite-dimensional
Euclidean space. Let

Pent,t(pXY, fA, fB) := {pUt |XY : H( fA(X,Y)|X,U t) =

H( fB(X,Y)|Y,U t) = 0}. (4)

Note that for allt ≥ 2, the setPent,t is not empty because one
can chooseU1 and U2 such thatH(X|U1) = H(Y|U2) = 0:
take U1 (respectivelyU2) to be a deterministic one-to-one
mapping fromX to U1 (respectivelyY to U2) (note that
|X| ≤ |U1| and |Y| ≤ |U2|). Also note thatH( fA(X,Y)|X,U t)
andH( fB(X,Y)|Y,U t) are continuous functionals of the joint
pmf pXYUt ; and for each fixedpXY, they are continuous
functionals ofpUt |XY. Thus, for finitet, Pent,t(pXY, fA, fB) is
a compact subset of a finite-dimensional Euclidean space
(since it is the contour of conditional pmfs on which
the conditional entropies are equal to zero). Therefore,
PA

t (pXY, fA, fB) := PA
mc,t ∩ Pent,t(pXY, fA, fB) is a compact

subset of a finite-dimensional Euclidean space. Generally
speaking,PA

t is determined bypXY, fA, and fB. In the rest
of this paper, however,fA and fB are fixed (but have general
form) and pXY is variable. Therefore, we dropfA and fB
from the notation and speak of the family of conditional
pmfs PA

t (pXY) associated withpXY. For initial terminal B,
the corresponding set is denoted byPB

t (pXY). We are now
ready to state the characterization ofRA

sum,t developed in [1].

Fact 1: (Characterization of RAsum,t [1, Corollary 1])

RA
sum,t = min

pUt |XY∈ P
A
t (pXY)

[ I (X; U t|Y) + I (Y; U t|X)]. (5)

Note that the conditional mutual information quantities in
(5) are continuous functionals of the joint pmfpXYUt . In the
minimization in (5),pXY, fA, and fB are fixed. Since we are
minimizing a continuous functional over a compact set, a
minimizer exists inPA

t (pXY). Since the arguments live in a
finite dimensional Euclidean space, the minimization in (5)
is a finite dimensional optimization problem.

The characterization ofRA
sum,t in (5) does not directly

inform us how quicklyRA
sum,t converges toRsum,∞, i.e., bounds

on the rate of convergence are unavailable for generalpXY,
fA, and fB. In the absence of such bounds, one pragmatic ap-
proach to estimateRsum,∞ is to computeRA

sum,t by numerically
solving (with some machine precision) the finite-dimensional
optimization problem in (5) for increasing values oft until
the difference betweenRA

sum,t−1 and RA
sum,t is smaller than

some small number. Although (5) provides a single-letter
characterization forRA

sum,t for each finitet, as t increases,
an increasing number of auxiliary random variablesU t are
involved in the optimization problem. In fact, due to (1), the
upper bounds for|Ut | increase exponentially with respect to
t. Therefore, the dimension of the optimization problem in



(5) explodes ast increases. Each iteration is computationally
much more demanding than the previous one. To make
matters worse, there appears to be no obvious way of re-
using the computations done for evaluatingRA

sum,t−1 when
evaluating RA

sum,t, i.e., every time t is increased, a new
optimization problem needs to be solved all over again.
Finally, if we need to estimateRsum,∞ for a different joint
pmf pXY (but for the same functionsfA and fB), we would
need to repeat this entire process for the newpXY.

In Sec. III, we take a new fundamentally different
approach. We first develop a general convex-geometric
blocklength-free characterization ofRsum,∞ which does not
involve taking a limit ast → ∞. Furthermore, instead of
developing the characterization ofRsum,∞ for a fixed joint
pmf pXY – which is a single nonnegative real number – we
characterize the entire infinite-message minimum sum-rate
surfaceRsum,∞(pXY) – which is a functional of the joint pmf
pXY – in a single concise description. This leads to a simple
test for checking if a given achievable sum-rate functional
of pXY coincides withRsum,∞(pXY). It also provides a whole
new family of lower bounds forRsum,∞. In Sec. IV, we use
the new characterization to develop an iterative algorithm
for computing the surfacesRsum,∞(pXY) andRA

sum,t(pXY) (for
any finite t) in which, crudely speaking, the complexity of
computation in each iteration does not grow with iteration
number and results from the previous iteration are re-used in
the following one. In Sec. V we use the new characterization
to evaluateRsum,∞ exactly, in closed analytic form, for two
specific examples. For one of the examples (Sec. V-A), in an
earlier work we had derived an upper bound forRsum,∞(pXY)
using an achievable distributed source coding strategy that
uses infinitely many infinitesimal-rate messages, but had
been unable establish the optimality of that strategy. The
new characterization, however, shows this to be optimal.

III. Characterization of Rsum,∞(pXY)

A. The rate reduction functionalρA
t (pXY)

If the goal is tolosslessly reproducethe sources (fA(x, y) =
y, fB(x, y) = x), the minimum sum-rate is equal toH(X|Y) +
H(Y|X) and this can be achieved by Slepian-Wolf coding.
The sum-rate needed for computing functions can only be
smaller than that needed for reproducing sources losslessly.
The reduction in the minimum sum-rate for function com-
putation in comparison to source reproduction is given by

ρA
t := H(X|Y) + H(Y|X) − RA

sum,t

= max
pUt |XY∈ P

A
t (pXY)

[H(X|Y,U t) + H(Y|X,U t)]. (6)

For interactive distributed source codes with initial terminal
B, the minimum sum-rate and rate reduction are denoted by
RB

sum,t andρB
t respectively. A quantity which plays a key role

in the characterization ofRsum,∞ is ρA
0 corresponding to the

“rate reduction” for zero messages (there are no auxiliary
random variables in this case). Since the initial terminal has
no significance whent = 0, ρA

0 = ρ
B
0 =: ρ0. Let

P fA fB := {pXY ∈ ∆(X×Y) : H( fA(X,Y)|X) = H( fB(X,Y)|Y) = 0}.

Error-free computations can be performed without any mes-
sage transfers if, and only if,pXY ∈ P fA fB. Thus,

Rsum,0 =

{
0, if pXY ∈ P fA fB,

+∞, otherwise,

ρ0 =

{
H(X|Y) + H(Y|X), if pXY ∈ P fA fB,

−∞, otherwise.
(7)

Remark 1: If fA(x, y) is not a function ofx alone and
fB(x, y) is not a function ofy alone, then for allpXY ∈ P fA fB,
we have supp(pXY) , X × Y. SuchpXY can only lie on the
boundary of the probability simplex∆(X × Y).

EvaluatingRA
sum,t is equivalent to evaluating the rate reduc-

tion ρA
t . Notice, however, that in (6), all the auxiliary ran-

dom variables appear only as conditioned random variables
whereas this is not the case in (5). As discussed in Sec. III-C,
this difference is critical as it enables us to characterize
ρ∞ := limt→∞ ρ

A
t = lim t→∞ ρ

B
t which then gives us a charac-

terization ofRsum,∞ asRsum,∞ = H(X|Y) + H(Y|X) − ρ∞. The
rate reduction functional is the key to the characterization.

B. Marginal-perturbations-closed family of joint pmfsPXY

Generally speaking,RA
sum,t, ρ

A
t , Rsum,0 andρ∞ are function-

als of pXY, fA, and fB. We will view RA
sum,t(pXY), ρA

t (pXY),
Rsum,∞(pXY) andρ∞(pXY) as functionals ofpXY with fA and
fB fixed to emphasize the dependence ofpXY. Instead of
evaluatingρ∞(pXY) for one particularpXY as it is done in
the numerical evaluation of single-terminal and Wyner-Ziv
rate-distortion functions, our approach is to evaluateρ∞(pXY)
for all pXY belonging toPXY – a collection of joint pmfs of
interest which is closed in the sense of Definition 4. We will
develop a characterization ofρ∞(pXY) for the entire pmf-
collectionPXY; not just for one particularpXY. Central to
the definition ofPXY is the idea of a marginal perturbation
set which is discussed next.

Definition 3: (X-marginal and Y-marginal perturbation
setsPY|X(pXY) and PX|Y(pXY)) The set ofX-marginal per-
turbations of a pmfpXY ∈ ∆(X ×Y) is defined as

PY|X(pXY) := {p′XY ∈ ∆(X×Y) : p′XY≪ pXY, p
′
XYpX = pXYp′X}

where pX and p′X denote theX-marginals ofpXY and p′XY
respectively. Similarly, let

PX|Y(pXY) := {p′XY ∈ ∆(X×Y) : p′XY≪ pXY, p
′
XYpY = pXYp′Y}

denote the set ofY-marginal perturbations ofpXY wherepY

and p′Y denote theY-marginals ofpXY and p′XY respectively.

The setsPY|X(pXY) andPX|Y(pXY) are nonempty as they
containpXY. Notice that a pmfp′XY ∈ PY|X(pXY) iff p′X ≪ pX

and ∀(x, y) ∈ supp(p′X) × Y, p′Y|X(y|x) = pY|X(y|x), where
p′X, p

′
Y|X(y|x) andpX, pY|X(y|x) areX-marginal and conditional

pmfs of p′XY and pXY respectively. Essentially,PY|X(pXY) is
the collection of all joint pmfsp′XY which have the same
conditional pmfpY|X or p′XY = pY|X · p′X on supp(p′XY). The
subtlety is that the conditional pmfp′Y|X of the joint pmf
p′XY is well-defined only on supp(p′X) × Y. Corresponding
statements can be made forPX|Y(pXY). Marginal perturbation
sets can be viewed as neighborhoods ofpXY.



Remark 2:For all pXY: (i) PY|X(pXY) andPX|Y(pXY) are
convex sets of joint pmfs; (ii) ifp′XY ∈ PY|X(pXY) then
PY|X(p′XY) ⊆ PY|X(pXY); and (iii) if p′XY ∈ PX|Y(pXY) then
PX|Y(p′XY) ⊆ PX|Y(pXY).

We will develop a characterization ofρ∞(pXY) for all pXY

belonging to any family of joint pmfsPXY which is closed
with respect toX-marginal andY-marginal perturbations.

Definition 4: (Marginal-perturbations-closed family of
joint pmfsPXY) A family of joint pmfsPXY ⊆ ∆(X×Y) will
be called marginal-perturbations-closed if for allpXY ∈ PXY,
PY|X(pXY) ∪ PX|Y(pXY) ⊆ PXY.

Examples of such marginal-perturbations-closed families
of joint pmfs include (i) the set of all joint pmfs with
supports contained in a specified subset ofX × Y, i.e.,
PXY = ∆(S) where S ⊆ X × Y and (ii) the set of all
joint pmfs of all independent sources:PXY = {pXpY|pX ∈

∆(X), pY ∈ ∆(Y)} (see Sec. V). In fact, ifqXqY belongs to
any marginal-perturbations-closed family with supp(qX) = X
and supp(qY) = Y, then the family contains∆(X) × ∆(Y),
that is, all product pmfs onX × Y.

C. Main result

To describe the characterization of the functional
Rsum,∞(pXY), it is convenient to define the following family
of functionals associated with computingfA and fB.

Definition 5: (Marginal-perturbations-concave,ρ0-major-
-izing family of functionalsF (PXY)) Let PXY be any
marginal-perturbations-closed family of joint pmfs on
∆(X × Y). The set of marginal-perturbations-concave,ρ0-
majorizing family of functionalsF (PXY) is the set of all
the functionalsρ : PXY → R satisfying the following three
conditions:

1) ρ0-majorization:∀pXY ∈ PXY, ρ(pXY) ≥ ρ0(pXY).
2) Concavity with respect toX-marginal perturbations:
∀pXY ∈ PXY, ρ is concave onPY|X(pXY).

3) Concavity with respect toY-marginal perturbations:
∀pXY ∈ PXY, ρ is concave onPX|Y(pXY).

Remark 3:Since ρ0(pXY) = −∞ for all pXY < P fA fB,
condition 1) of Definition 5 is trivially satisfied for allpXY ∈

PXY \ PfA fB (we use the convention that∀a ∈ R, a > −∞).
Thus the statement thatρ majorizesρ0 on the setPXY is
equivalent to the statement thatρ majorizesH(X|Y)+H(Y|X)
on the setP fA fB

⋂
PXY.

Remark 4:Conditions 2) and 3) do not imply thatρ is
concave onPXY. In fact,PXY itself may not be convex. For
example, the setPXY = {pX pY|pX ∈ ∆(X), pY ∈ ∆(Y)} is not
convex.

We now state and prove the main result of this paper.

Theorem 1:(i) ρ∞ ∈ F (PXY). (ii) For all ρ ∈ F (PXY),
and all pXY ∈ PXY, we haveρ∞(pXY) ≤ ρ(pXY).

The set F (PXY) is partially ordered with respect to
majorization. The theorem says thatF (PXY) has a least
element and thatρ∞ is the least element. Note that there
is no parametert which needs to be sent to infinity in this
characterization ofρ∞.

To prove Theorem 1 we will establish a connection
between thet-message interactive coding problem and a
(t−1)-message interactive coding subproblem. Intuitively, to
construct at-message interactive code with initial terminal
A, we need to begin by choosing the first message. This
corresponds to choosing the auxiliary random variableU1.
Then for each realizationU1 = u1, constructing the remain-
ing part of the code becomes a (t − 1)-message subproblem
with initial terminal B with the same desired functions, but
with a different source pmfpXY|U1(·, ·|u1) ∈ PY|X(pXY). We
can repeat this procedure recursively to construct a (t − 1)-
message interactive code with initial terminalB. After t
steps of recursion, we will be left with the trivial 0-message
problem.

Proof: (i) We need to verify thatρ∞ satisfies all three
conditions in Definition 5:

1) Since∀pXY ∈ PXY, Rsum,∞(pXY) ≤ Rsum,0(pXY), we have
ρ∞(pXY) ≥ ρ0(pXY). Thusρ∞ is ρ0-majorizing.

2) For an arbitraryqXY ∈ PXY, consider two arbitrary
joint pmfs pXY,1, pXY,0 ∈ PY|X(qXY). For everyλ ∈ (0, 1),
let pXY,λ := λpXY,1 + (1 − λ)pXY,0. Let pX,0(x), pY|X,0(y|x)
and pX,1(x), pY|X,1(y|x) and pX,λ, pY|X,λ(y|x) denote theX-
marginal and conditional pmfs ofpXY,0 and pXY,1 and pXY,λ

respectively. Due to Remark 2(i),pXY,λ ∈ PY|X(qXY). We
need to show thatρ∞(pXY,λ) ≥ λρ∞(pXY,1)+ (1−λ)ρ∞(pXY,0).

Let (X,Y) be a pair of source random variables with joint
pmf pXY,λ. Consider an auxiliary random variableU∗1 taking
values inU∗1 := {0, 1} such that (X,Y,U∗1) ∼ pXY,λpU∗1 |X

where∀x ∈ supp(pX,λ), pU∗1 |X
(1|x) := λpX,1(x)/pX,λ(x) and

pU∗1 |X
(0|x) := (1− λ)pX,0(x)/pX,λ(x).

It follows that the marginal pmf ofU∗1 is Ber(λ) andY−X−
U∗1 is a Markov chain. Consequently,∀(x, u1) ∈ supp(pX,λ)×
U∗1, pX|U∗1

(x|u1) = pX,u1(x) and∀(x, y, u1) ∈ supp(pXY,λ)×U∗1,
pY|X,U∗1

(y|x, u∗1) = pY|X,λ(y|x).
The key implication is that∀(x, y, u1) ∈ supp(pXY,λ) ×U∗1,

pXY|U∗1
(x, y|u1) = pXY,u1(x, y). This is becausepXY|U∗1

(x, y|u1) =
pX,u1(x) ·pY|X,λ(y|x) = pX,u1(x) ·pY|X,u1(y|x) = pXY,u1(x, y) where
in the last but one equality we used the crucial property that
all joint pmfs inPY|X(qXY) have the same conditional pmf.

Now, for all t ∈ Z+ we have,

ρA
t (pXY,λ) = max

pUt |XY∈ P
A
t (pXY,λ )

{
H(X|Y,U t) + H(Y|X,U t)

}

= max
pU1 |X


max

pUt
2 |XYU1

:

pU1 |X pUt
2 |XYU1

∈ PA
t (pXY,λ )

{
H(X|Y,U t) + H(Y|X,U t)

}


(a)
≥ max

pUt
2 |XYU∗1

:

pU∗1 |X
pUt

2 |XYU∗1
∈ PA

t (pXY,λ )

{
H(X|Y,U t

2,U
∗
1) + H(Y|X,U t

2,U
∗
1)
}

(b)
= λ · max

pUt
2 |XYU∗1

(·|·,·,1):

pU∗1 |X
pUt

2 |XYU∗1
∈ PA

t (pXY,1)

{
H(X|Y,U t

2,U
∗
1 = 1)+ H(Y|X,U t

2,U
∗
1 = 1)

}

+ (1− λ) ·

· max
pUt

2 |XYU∗1
(·|·,·,0):

pU∗1 |X
pUt

2 |XYU∗1
∈ PA

t (pXY,0)

{
H(X|Y,U t

2,U
∗
1 = 0)+ H(Y|X,U t

2,U
∗
1 = 0)

}



(c)
= λ ρB

t−1(pXY,1) + (1− λ) ρB
t−1(pXY,0). (8)

In step (a) we replacedpU1|X with the particularpU∗1 |X
defined

above. Step (b) follows from the “law of total conditional
entropy” with the additional observations that conditioned on
U∗1 = u1, pXY|U∗1

(x, y|u1) = pXY,u1(x, y) and (H(X|Y,U t
2,U

∗
1 =

u1)+H(Y|X,U t
2,U

∗
1 = u1)) only depends onpUt

2|XYU∗1
(·|·, ·, u1).

Step (c) is due to the observation that for a fixedpU∗1 |X
, con-

ditioned onU∗1 = u1, (i) pU∗1 |X
pUt

2|XYU∗1
∈ PA

mc,t iff pUt
2|XYU∗1

∈

PB
mc,t−1 and (ii) pU∗1 |X

pUt
2|XYU∗1

∈ Pent,t(pXY,u1, fA, fB) iff
pUt

2|XYU∗1
∈ Pent,t−1(pXY,u1, fA, fB). Therefore,pU∗1 |X

pUt
2|XYU∗1

∈

PA
t (pXY,u1) iff pUt

2|XYU∗1
∈ PB

t−1(pXY,u1). Now sendt to infinity
in both the left and right sides of (8). Since limt→∞ ρ

A
t =

lim t→∞ ρ
B
t = ρ∞, we haveρ∞(pXY,λ) ≥ λ ρ∞(pXY,1) + (1 −

λ) ρ∞(pXY,0). Therefore,ρ∞ satisfies condition 2) in Defini-
tion 5.

3) In a similar manner, by reversing the roles of terminals
A and B in the above proof, it can be shown thatρ∞ also
satisfies condition 3) in Definition 5. Thus,ρ∞ ∈ F (PXY).

(ii) It is sufficient to show that:∀ρ ∈ F (PXY), ∀pXY ∈

PXY, ∀t ∈ Z+
⋃
{0}, ρA

t (pXY) ≤ ρ(pXY) andρB
t (pXY) ≤ ρ(pXY).

We prove this by induction ont. For t = 0, the result is
true by condition 1) in Definition 5:ρA

0 (pXY) = ρB
0 (pXY) =

ρ0(pXY) ≤ ρ(pXY). Now assume that for an arbitraryt ∈ Z+,
ρA

t−1(pXY) ≤ ρ(pXY) and ρB
t−1(pXY) ≤ ρ(pXY) hold. We will

show thatρA
t (pXY) ≤ ρ(pXY) andρB

t (pXY) ≤ ρ(pXY) hold.

ρA
t (pXY) = max

pUt |XY∈ P
A
t (pXY)

{
H(X|Y,U t) + H(Y|X,U t)

}

= max
pU1 |X


max

pUt
2 |XYU1

:

pU1 |X pUt
2 |XYU1

∈ PA
t (pXY)

{
H(X|Y,U t) + H(Y|X,U t)

}


(d)
= max

pU1 |X



∑

u1∈ supp(pU1 )

pU1(u1)


max

pUt
2 |XYU1

(·|·,·,u1):

pU1 |X pUt
2 |XYU1

∈ PA
t (pXY|U1 (·,·|u1))

{
H(X|Y,U t

2,U1 = u1)

+ H(Y|X,U t
2,U1 = u1)

}





(e)
= max

pU1 |X


∑

u1∈ supp(pU1 )

pU1(u1) ρ
B
t−1(pXY|U1(·, ·|u1))


(9)

( f )
≤ max

pU1 |X


∑

u1∈ supp(pU1 )

pU1(u1) ρ(pXY|U1(·, ·|u1))



(g)
≤ max

pU1 |X


ρ


∑

u1∈ supp(pU1 )

pU1(u1)pXY|U1(·, ·|u1)




= ρ(pXY).

The reasoning for steps (d) and (e) are similar to those for
steps (b) and (c) respectively in the proof of part (i) (see
equation array (8)) but for step (e) we need to also confirm

that pXY|U1(·, ·|u1) ∈ PY|X(pXY) for all u1 ∈ supp(pU1). This
is confirmed by noting that sinceY − X − U1 is a Markov
chain, ∀u1 ∈ supp(pU1) and ∀x ∈ supp(pX), we have
pY|XU1(y|x, u1) = pY|X(y|x) (see para after Definition 3). Step
(f) is due to the inductive hypothesisρB

t−1(pXY) ≤ ρ(pXY).
Step (g) is Jensen’s inequality applied toρ(pXY) which is
concave onPY|X(pXY). Using similar steps as above, we can
also show thatρB

t (pXY) ≤ ρ(pXY).
Remark 5: In the proof of Theorem 1, there are only

two places where the marginal-perturbations-closed property
of PXY is used. It is first used in part (i) to show that
pXY|U∗1

(x, y|u1) = pXY,u1(x, y). It is used in part (ii) to show
that pXY|U1(·, ·|u1) ∈ PY|X(pXY).

Remark 6: It can be verified that the functional (H(X|Y)+
H(Y|X)) belongs toF (∆(X × Y)). Whereas both (H(X|Y) +
H(Y|X)) and ρ∞(pXY) are concave onX-marginal andY-
marginal perturbation sets ofpXY, it cannot be claimed that
Rsum,∞(pXY) = (H(X|Y) + H(Y|X)) − ρ∞(pXY) will be convex
on the marginal perturbation sets ofpXY. For eacht, ρA

t is
the maximum of (H(X|Y,U t)+H(Y|X,U t)), whereU t appear
only as conditioned random variables. This enables us to use
the “law of total conditional entropy” (which corresponds to
convexification) and arrive at (8) and (9). Notice, however,
thatRsum,∞ is the minimum value of (I (X; U t|Y)+ I (Y; U t |X))
over all U t whereU t are not conditioned. Therefore,RA

sum,t

cannot be expressed as a convex combination ofRB
sum,t−1.

Due to these reasons, although evaluatingρ∞ is equivalent
to evaluatingRsum,∞, the rate reduction functional is the key
to the characterization as remarked in Sec. III-A.

Since everyρ ∈ F (PXY) gives an upper bound forρ∞,
(H(X|Y) + H(Y|X) − ρ) gives a lower bound forRsum,∞.
This fact provides a way testing if an achievable sum-rate
functional is optimal. IfR∗ is a sum-rate functional which
is achievable then∀pXY ∈ PXY, R∗(pXY) ≥ Rsum,∞(pXY). If it
can be verified thatρ∗ := (H(X|Y) + H(Y|X) − R∗) belongs
to F (PXY), then by Theorem 1,R∗ = Rsum,∞. The nontrivial
part of the test is to verify ifR∗ is concave onX-marginal
and Y-marginal perturbation sets. We will demonstrate this
test on two examples in Sec. V.

IV. I terative algorithm for computing RA
sum,t(·) and Rsum,∞(·)

Although Theorem 1 provides a characterization ofρ∞
and Rsum,∞ that is not obtained by taking a limit, it does
not directly provide an algorithm to evaluateRsum,∞. To
efficiently represent and search for the least element of
F (PXY) is nontrivial because each element is a functional;
not a scalar. The proof of Theorem 1, however, inspires an
iterative algorithm for evaluatingRA

sum,t andRsum,∞.
Equation (9) states thatρA

t (pXY) is the maximum value
of ρ ∈ R such that(pXY, ρ) is a finite convex combina-
tion of {(pXY|U1(·, ·|u1), ρB

t−1(pXY|U1(·, ·|u1))}u1∈ supp(pU1 ), where
pXY|U1(·, ·|u1) belongs toPY|X(pXY) for all u1 in supp(pU1) ⊆
U1. Consider the hypograph ofρB

t−1(·) on PY|X(pXY):
hypPY|X(pXY)ρ

B
t−1 := {(pXY, ρ) : pXY ∈ PY|X(pXY), ρ ≤

ρB
t−1(pXY)}. Due to (9), the convex hull of hypPY|X(pXY)ρ

B
t−1

is hypPY|X(pXY)ρ
A
t . This enables us to evaluateρA

t from ρB
t−1

on the setPY|X(pXY): ρA
t is the least concave functional on



PY|X(pXY) that majorizesρB
t−1. In the convex optimization

literature, (−ρA
1) is called the double Legendre-Fenchel trans-

form or convex biconjugate of (−ρB
t−1) [10]. ThusρA

t can be
determined through a convex biconjugation operation (taking
a convex hull of a hypograph) on any givenX-marginal
perturbation set. To determineρA

t (pXY) for all pXY ∈ PXY,
we can, in principle, first choose a cover forPXY made
up of X-marginal perturbation sets, say{PY|X(pXY)}pXY∈ A,
whereA ⊆ PXY, and then perform the convex biconjugation
operation in everyX-perturbation set in the cover. This
relationship betweenρA

t and ρB
t−1 leads to the following

iterative algorithm.

Algorithm to evaluate RA
sum,t and RB

sum,t

• Initialization: Choose a marginal-perturbations-closed
family PXY containing all source joint pmfs of inter-
est. DefineρA

0 (pXY) = ρB
0 (pXY) = ρ0(pXY) by equa-

tion (7) in the domainPXY. Choose a cover forPXY

made up ofX-marginal perturbation sets, denoted by
{PY|X(pXY)}pXY∈ A, where A ⊆ PXY. Also choose a
cover forPXY made up ofY-marginal perturbation sets,
denoted by{PX|Y(pXY)}pXY∈ B, whereB ⊆ PXY.

• Loop: For τ = 1 throught do the following.
For every pXY ∈ A, do the following in the set
PY|X(pXY).

– Construct hypPY|X(pXY)ρ
B
τ−1.

– Let ρA
τ be the upper boundary of the convex hull of

hypPY|X(pXY)ρ
B
τ−1.

For every pXY ∈ B, do the following in the set
PX|Y(pXY).

– Construct hypPX|Y(pXY)ρ
A
τ−1.

– Let ρB
τ be the upper boundary of the convex hull of

hypPX|Y(pXY)ρ
A
τ−1.

• Output RA
sum,t(pXY) = H(X|Y) + H(Y|X) − ρA

t (pXY) and
RB

sum,t(pXY) = H(X|Y) + H(Y|X) − ρB
t (pXY).

To make numerical computation feasible,PXY has to be
discretized. Once discretized, however, in each iteration, the
amount of computation is the same and is fixed by the
discretization step-size. Also note that results from each
iteration are re-used in the following one. Therefore, for
larget, the complexity to computeRA

sum,t grows linearly with
respect tot.

Rsum,∞ can also be evaluated to any precision, in principle,
by running this iterative algorithm fort = 1, 2, . . ., until
some stopping criterion is met, e.g., the maximum difference
betweenρA

t−1 and ρA
t on PXY falls below some threshold.

Developing stopping criteria with precision guarantees re-
quires some knowledge of the rate of convergence which
is not established in this paper; the rate may, however, be
empirically estimated. When the objective is to evaluate
Rsum,∞(pXY) for all pmfs in PXY, this iterative algorithm is
much more efficient than using (5) to solve forRA

sum,t for
each pXY for t = 1, 2, . . ., an approach which follows the
definition of Rsum,∞ literally as the limit ofRA

sum,t as t→ ∞.
Our iterative algorithm is based on Theorem 1 which is a
characterization ofRsum,∞ without taking a limit involving t.

Since−ρA
t is the convex biconjugate of−ρB

t−1 on all X-
marginal perturbation sets and−ρB

t is the convex biconjugate
of −ρA

t−1 on all Y-marginal perturbation sets, it follows that
for all t > 0, ρA

t satisfies conditions 1) and 2) in Defini-
tion 5 (ρ0-majorization and concavity with respect toX-
marginal perturbations), andρB

t satisfies satisfies conditions
1) and 3) (ρ0-majorization and concavity with respect to
Y-marginal perturbations). By Theorem 1,ρ∞ satisfies all
three conditions of Definition 5 and is not larger than any
ρ which satisfies all three conditions. Also for allt, by
definition, ρA

t ≤ ρ∞ and ρA
t ≤ ρ∞. Hence, if for somet,

ρA
t satisfies 3) thenρA

t = ρ∞. Similarly, if for some t, ρB
t

satisfies 2) thenρB
t = ρ∞. Thus, ρA

t and ρB
t equal ρ∞ iff

they satisfy all three conditions. If all three conditions are
not satisfied (two are always satisfied), it is beneficial to
increase the number of messages. Specifically, ifρA

t is not
concave on aY-marginal perturbation set, then for somepXY,
ρA

t (pXY) < ρB
t+1(pXY) ≤ ρA

t+2(pXY).

V. Examples

A. Rsum,∞ for independent binary sources and Boolean AND
function computed at both terminals

In [1, Sec. IV.F], we studied the samplewise computation
of the Boolean AND function at both terminals for inde-
pendent Bernoulli sources, i.e.,X = Y = {0, 1}, X y Y,
X ∼ Ber(p), Y ∼ Ber(q), and fA(x, y) = fB(x, y) = x ∧ y.
An interesting interactive coding scheme was described in
[1] where the individual rate for each message vanished as
the number of messages went to infinity. The (achievable)
infinite-message sum-rate of this scheme, denoted byR∗, was
evaluated in closed form as

R∗(p, q) =



h2(p) + ph2(q) + p log2 q+ p(1− q) log2 e
if 0 ≤ p ≤ q ≤ 1,

R∗(q, p) if 0 ≤ q ≤ p ≤ 1.
(10)

This expression was derived in [1, Sec. IV.F] for the situation
0 < p ≤ q < 1. The situation 0 < q ≤ p < 1
follows by symmetry. The remaining situationspq = 0 and
(1− p)(1− q) = 0 easily follow using zero or one message.
SinceR∗(p, q) is an achievable sum-rate,R∗ ≥ Rsum,∞. Using
Theorem 1, we shall now prove thatR∗ is, in fact, equal
to Rsum,∞. We will verify that ρ∗ := H(X|Y) + H(Y|X) − R∗

belongs toF (PXY) for the product pmf familyPXY, which
will imply, by Theorem 1(ii), thatρ∗ ≥ ρ∞, i.e.,R∗ ≤ Rsum,∞.
Note thatRsum,∞ is not evaluated using Theorem 1. Only part
(ii) of Theorem 1 is used as a converse proof to show that
the achievable sum-rateR∗ is Rsum,∞.

Since the sources are independent, we take the marginal-
perturbations-closed family to bePXY = {pXpY|pX ∈

∆(X), pY ∈ ∆(Y)}. For each product pmfpX pY, the X-
marginal andY-marginal perturbation sets arePY|X(pXpY) =
{p′X pY : p′X ≪ pX} and PX|Y(pXpY) = {pX p′Y : p′Y ≪ pY}

respectively. SincepX and pY are parameterized byp andq
respectively, each product pmfpXpY can be represented by
a point (p, q) ∈ [0, 1]2. For all pmfs (p, q) ∈ (0, 1)2, the X-
marginal andY-marginal perturbation sets are line segments
[0, 1] × {q} and {p} × [0, 1] respectively. For all pmfs (0, q),



whereq ∈ (0, 1), theX-marginal andY-marginal perturbation
sets are (0, q) and{0}×[0, 1] respectively. For the pmfs (0, 0),
both the X-marginal andY-marginal perturbation sets are
(0, 0). The marginal perturbation sets of remaining pmfs on
the boundary of [0, 1]2 can be derived using symmetry (swap
p andq; then swap symbols 0 and 1).

It is easy to see that

Rsum,0(p, q) =

{
0, if ( p, q) ∈ P fA fB,

+∞, otherwise,

whereP fA fB = {(p, q) : p = 0 or q = 0 or p = q = 1}. It is
also easy to verify that for all (p, q), R∗(p, q) ≤ Rsum,0(p, q) =
0, or equivalently,ρ∗(p, q) ≥ ρ0(p, q). By taking the first and
second-order partial derivatives ofρ∗(p, q) = h2(p) + h2(q)−
R∗(p, q) with respect top andq, we can verify that for any
fixed q, ρ∗(p, q) is concave with respect top, and for any
fixed p, ρ∗(p, q) is concave with respect toq. Therefore,
ρ∗(p, q) is concave in everyX-marginal andY-marginal
perturbation set. Therefore,ρ∗(p, q) ∈ F (PXY), which
implies thatRsum,∞(p, q) ≥ R∗(p, q) due to Theorem 1(ii).
SinceR∗(p, q) is both an upper bound and a lower bound of
Rsum,∞(p, q), we haveRsum,∞(p, q) = R∗(p, q). Fig. 2(a) shows
a plot ofρ∞(p, q) = ρ∗(p, q). Note thatρ∞(p, q) is concave in
p andq separately but not jointly concave in the pair (p, q).
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Fig. 2. (a) ρ∞(p, q) for x ∧ y computed at both terminals (Sec. V-A). (b)
ρ∞(p, q) for x∧ y computed only at terminalB (Sec. V-B).

B. Rsum,∞ for independent binary sources and Boolean AND
function computed at only terminal B

We change the problem in Sec. V-A to the problem of
computing the Boolean AND function at only terminalB,
i.e., fA(x, y) = 0 and fB(x, y) = x ∧ y. The source statistics
are unchanged:X y Y, X ∼ Ber(p), Y ∼ Ber(q). An achiev-
able sum-rateR∗ can be derived using the same technique
presented in [1, Sec. IV.F]. The derivation is omitted in this
paper due to limited space but will be presented in [9]. The
expression forR∗ is

R∗(p, q) =



h2(p) + ph2(q) + p log2 q+ p(1− 2q) log2 e
if 0 ≤ p ≤ q ≤ 1/2,

R∗(q, p) if 0 ≤ q ≤ p ≤ 1/2,
R∗(1− p, q) if 0 ≤ q ≤ 1/2 ≤ p ≤ 1,
h2(p) if 1/2 ≤ q ≤ 1.

Following the method in Sec. V-A, it can verified that
P fA fB = {(p, q) : p = 0 or q = 0 or p = 1} and
ρ∗(p, q) = (h2(p)+h2(q)−R∗(p, q)) belongs toF (PXY), where
PXY = {pX pY|pX ∈ ∆(X), pY ∈ ∆(Y)} is the same marginal-
perturbations-closed family used in Sec. V-A. Therefore,
R∗ = Rsum,∞. Fig. 2(b) shows a plot ofρ∞(p, q) = ρ∗(p, q).

Note that for all (p, q) ∈ P fA fB, Rsum,0 = 0 = Rsum,∞ and
no message needs to be sent. For all (p, q) ∈ (0, 1)× [1/2, 1],
Rsum,∞ = h2(p) and this sum-rate can be achieved with
t = 1 message fromA to B, thus RA

sum,1 = Rsum,∞. Note
that Rsum,0 = ∞ because (p, q) < P fA fB and RB

sum,1 = ∞. For
(p, q) ∈ {1/2} × (0, 1/2), Rsum,∞ = h2(q). In [8, Sec. V.C] it
was shown that this sum-rate can be achieved witht = 2
messages, the first fromB to A and the second fromA
to B. Thus RB

sum,2 = Rsum,∞. Note thatRB
sum,1 = ∞ and in

[1, Sec. IV.C] we showed thatRA
sum,1 = log2 2 = 1. These

examples show that depending on the specific joint pmf and
functions, it may be possible to reach the infinite-message
limit Rsum,∞ with finite t.
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