arXiv:0910.5261v1 [cs.IT] 27 Oct 2009

On Detection With Partial Information In The Gaussian Setup

Onur Ozyesil, M. Kivang Mihcak, Yucel Altug

Abstract— We introduce the problem of communication with ~ with the presence of “extra” information (which amounts to
partial information, where there is an asymmetry between tte  the “side information”).

transmitter and the receiver codebooks. Practical applicions

of the proposed setup include the robust signal hashing prdem |t @ppears that, there are at least two significant applica-
within the context of multimedia security and asymmetric ~ tions that motivate the formulation of the “communication
communications with resource-lacking receivers. We studyhis  with partial information” approach:

setup in a binary detection theoretic context for the addi-

tive colored Gaussian noise channel. In our proposed setup, o The first application can be viewed to fall within the

the partial information available at the detector consists of

dimensionality-reduced versions of the transmitter codewrds,

where the dimensionality reduction is achieved via a linear
transform. We first derive the corresponding MAP-optimal

detection rule and the corresponding conditional probabiity

of error (conditioned on the partial information the detector

possesses). Then, we constructively quantify an optimal ads
of linear transforms, where the cost function is the expeci
Chernoff bound on the conditional probability of error of th e

MAP-optimal detector.

I. INTRODUCTION

In this paper, we introduce a communication-theoretic
paradigm, which we name as “communication with partial
information”, and subsequently study it within a detection
theoretic context (therefore the term “detection with jadrt
information”) in a particular case of the Gaussian setup.
In the proposed paradigm, there is an inherent asymmetry
between the information the transmitter and the receiver po
sess in terms of the utilized codebooks. In particular, & th
“detection with partial information” setup, the codebodk o
the receiver is formed via applying a non-invertible praces
on the codebook of the transmitter; herlbe codebooks are
different Thus, the information available at the transmitter

forms a “superset” of the information available at the re-

ceiver. Note that, a reminiscent asymmetric structure betw

the transmitter and the receiver also exists in the wellkno
family of problems, termed as “communication with side
information” [1], [2], [3], [4]. However, in the paradigm of
“communication with side information” (unlike the propase
“communication with partial information” setup), the ugiéd
codebooks at the receiver and the transmitter are the same;
in addition, either the transmitter or the receiver is “feady
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category of “robust signal hashing” in the signal pro-
cessing & multimedia security literature [5], [6], [7],
[8]. In robust signal hashing, a content owner provides
“robust hash value”s of the protected content (that is
some dimensionality-reduced versions of the protected
content) to a third party, which searches the content
using its robust hash values #w partial information

at the receiver end. These robust hash values repre-
sent “the content’s significant features” and are ideally
approximately-invariant under acceptable modifications
to the content. In practical applications, the third party
that performs the hash-based search is usuaby
trusted hence, there is a significant issue of privacy. In
particular, given a robust hash value, it should ideally
be impossible to retrieve the original protected content
from a privacy viewpoint. The setup proposed in this
paper can be used as a detection-theoretic model to
analyze the hash-based detection problem: the protected
content is represented by the transmitted signal; the
robust hash values used in the search are represented
by the partial information available at the receiver; a
perceptually-acceptable modification to the protected
content is represented by the channel noise.

The second application includes all instances of point-
to-point communications, where there is an inherent
asymmetry between the transmitter and the receiver in
terms of their storage capabilities and computational
resources. In particular, the cases, when the receiver
is unable to store the codebook used by the encoder
(due to a limit on the memory) or utilize the codebook
used by the encoder (due to a limit on the computa-
tional resources), can be studied within the framework
of “communication with partial information”. In such
cases, one potential remedy is the receiver's using a
“simplified” (i.e., dimensionality-reduced) version of
the codebook of the encoder. In practice, such situations
may typically arise, for instance, when there is a bi-
directional communication between a sensor and the
base station (the resource-limited receiver representing
the sensor) or when there is a bi-directional communi-
cation between a controller and a remote measurement
unit. In such applications, the simplified version of
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the encoder codebook is represented by the partimhique (up to ordering) and defined as
information at the receiver side.

Our contributions in this paper can be listed as follows:

« We introduce the paradigm of “communication withwhereU € R™**, 'V e R"** A e R*** are called the
partial information” and study it within the context left-singular vector matrix (orthonormal), the right-girar
of binary detection in the Gaussian setup. We believéector matrix (orthonormal) and the singular value matffix o
the main philosophy behind this formulation (i.e., in-A, respectively. The matrid is positive-definite diagonal;
troducing an asymmetry between the transmitter ardie denote its entries along the diagonal fy; (A)};_,,
the receiver in the sense of utilized codebooks) cawhich are the non-zero singular values Af and assumed
be used to analyze various problems of interest itp be in non-increasing order without loss of generality.
communication theory and signal processing. For a square matrif\ of sizek x k and of rankr < k,

« Within the binary hypothesis testing setup, we study 4\ (A)};_, denote its non-zero eigenvalues; in cases a
case, where the disturbance on the transmitter outpgymmetric matrix{\;} are assumed to be in non-decreasing
consists of additive colored Gaussian noise, and thgrder. We useV (i, ) to denote a multivariate Gaussian
detector partial information is produced via applyingdistribution, with mean vectop, and covariance matrix
a linear (dimensionality-reducing) transform on the enX. Furthermore Q) denotes the standar@-function:
coder codebook. Consequently, we present the follov@ (« j L o220y

\/ﬁ
ing results:

— We derive the MAP-optimal detection rule and theB Problem Statement

corresponding probability of error, both of which We analyze a binary communication system, where the
are conditioned on the partial information availableencoder selects one of the two codeworss, and x;,
at the detector. representing the message bit {0, 1}, wherePr (i = 0) =

— We construct a class afptimal linear transforms, Pr(i=1) = 1/2; the selected codewordsy = x;, is
which minimize the expected (with respect to thesent through a channel. The encoder outpus corrupted
joint distribution of the detector partial information) by an additive, signal-independent, (not necessarily eyhit
Chernoff bound on the aforementioned probability>aussian noise, denoted ky thereby yielding the overall
of detection error. channel outpuy. Observingy, the receiver acts as a detector

In Sec[Il, we present the notation that is used throughoﬂpd makes a binary decision, as to the origins of received
the paper and specify the formal problem statement. Iﬁlgnal We pursue a detection-theoretic approach to shige t
Sec.Tll, we derive the MAP-optimal detection rule condiProblém and assume uniform costs. We assumesthak:,
tioned on the partial information available at the receiver © @ndy are all lengthn real-valued vectors, where, and
Sec[IV, we quantify an optimal (in the sense of the expectegt '€ independent of each other ang x; ~ N (0, %),
value of the Chernoff bound on the detection error probabif ~ /' (0, =) is independent of botl, andx;. Here, we
ity) class of linear transforms that are used to generate tfis0 assume that the covariance matrix of the original $sgna
receiver partial information. We present illustrative reninal > and the covariance matrix of the nois& are positive
results in Sed_V, followed by discussions and conclusion iqeﬁmte(they are also symmetric by construction). See Hig. 1

AZ2UAVT, 2.1)

Sec[V. for a schematic illustration of the proposed problem.
II. NOTATION AND PROBLEM STATEMENT Received
M . (_ Encoder Signal
essage Bit

A. Notation
ie {01}

Boldface lowercase and uppercase letters denote vec
and matrices, respectively; the corresponding regular |
ters with subscripts denote their individual elements. F..
instance, given a vectos, a; represents its-th element, Fig. 1. Block diagram representation of the problem of “pyndetection
given a matrixA, A;; denotes its(i, j)-th element. Note with partial information.
that, we do not use a separate notation for random vectors;
we assume that it is clear from the context. In the considered setuphe detector does not know the

Given a matrixA, A”, r(A) and det(A) denote its original codewords{xg,x;}, but only their distributions
transpose, rank and determinant, respectively; furthgr, and their dimensionality-reduced version, z; }, where
denotes the identity matrix of size x n. Given the vectors z; = T -x;, i = 0,1, andT is a deterministic real matrix of
x,y € R™, (x,y) indicates the inner product that inducessizem x n, m < n, r (T) = m. Note that, this impliesz
the Euclidean norm, i.e{x,y) = >, z;y;; accordingly the andz; are both lengthn real-valued vectors. As such, the
induced Euclidean norm is denoted hy|| = (x,x)/2. proposed problem is radically different from the convemdib

Definition 2.1: Given A € R™*™, such that (A) = k < binary detection scenario due to th@smatch between the
min (m,n), Singular Value Decompositio(SVD) of A is codebooks of the encoder and the detec@onsequently,



we term the problem at hand as “detection with partial Theorem 3.1:The maximum likelihood detection
information” for the Gaussian case. rule (3:2) is given by

An important point here is that, since the receiver fully o
knows the statistical characterization of the whole system HE;‘BQ (¥ = Hyolzo) | 2 HE;‘BQ (y = tyrp20) | (33)
it is able to apply the MAP decoding rule. In particular, in Ho
Sec.[Tll, we derive the MAP detection rule, which is givenThe corresponding (conditional) probability of error (don
as a function of the partial informatiofe,,z,), and the tioned onz, andz,) is given by
corresponding conditional probability of error (conditex

on z, and z;). Subsequently, in Se€_JV, we derive the szém (Hyolzo = thy]z0) |

optimal linear transformT, in the sense of the expected elzo.z = Q 2 (3-4)
Chernoff bound on the conditional probability of error of

the MAP detector. where, fori € {0,1}, py,., = E(yi|zi)|yi:xi+e =

Remark 2.1:In [9], the authors study a closely-relatedEwTT (TEmTT)_lzi; 3, is positive definite and given
problem, which can be viewed as the “deterministic variantE)y %, = Cov(y; |Zi)f B oy = S+ 3, —
of the aforementioned setup. In particular, in [9] the amho s TTy (TS TT)—l s yisxite, =0,
assume that the encoder codewofats} are deterministic, “~* Proof- mSee Appenfj.iﬂl -

unknown and the subsequent analysis is based on the probah ) :

o ; : o emark 3.1:Using Theorem 311, we see thatzif = z,
bility of error induced by the GLRT (generalized likelihood nditional probabil?ty of error i4 /2, which is mézgnin;;ul

tio test) rule. On the other hand, in thi ) : : L )
ratio tesp) rule. On the other hand, in this paper, we assu %en, there is nothing to discriminate from the detector's

that the encoder codewords;} are random (in particular . : ! T
Gaussian) and perform a MAP-based analysis perspective thereby converting the detection to a fair coin
' toss.

Remark 2.2:Although the problem imposed in this paper ] L .
is the binary detection case, the analysis can be extende emark 3.2.Th§ argument of the)-function n (3.4) is
to apply a “union bound based approach” for theary always non-negative. This allows us to set a tight bound on

case with little or no diﬁicult@. A similar approach and the expected probability of error, and analyze it in $eg. IV.
discussion was provided in [9] for the case of deterministi¢yy OpTIMAL LINEAR OPERATORSIN THE EXPECTATION

{xi}. SENSE
[1l. OPTIMAL DETECTION CONDITIONED ON THE In this section, our performance criterion is based on the
PARTIAL INFORMATION expected(unconditional) probability of error of the MAP
At the detector side, we are givelzo, z; }, which yield —detector, denoted by, given by
partial information about the true codeworfls;,x;}. The P. = E P ]
binary hypothesis testingpproach on the detector side uti- ooz} L7 eleo 2 _’1/2
lizes the MAP detection rule [10]: It operates on the obsgérve _E ||2y|z (My0|zo = My, |zl) | 41
datay (generated by the process explained in $ec]ll-B), ~ —{zo.=1} Q 2 (4.1)

and makes a binary decision regarding the message bit
given {zo,z: }. Thus, we aim to solve the following binary where g, ,,; (.) denotes expectation with respect to the

hypothesis testing problem: joint distribution ofzy andz,, and the right hand side follows
o _ , from (3.4).

Hy : y=x0+e ; gfven {z0,21}, Remark 4.1:It appears to be manageable to find a lin-

Hy : y=xi1+e ; given{zyz}. ear transform that minimizes the conditional probabilify o

The corresponding MAP detection rule is given by error, P, 2, (See, for instance, [9]) as a function of the

u transmitted signalsxy, andx;, which would yield an “input-
0 H H ”

p(y|Ho) = p(y|H1). (3.1) adaptlv_g optimal transform .On the _other hand, the expmkecte

H probability of error given by[(4]1) is not tractable for an

since we have equal priors and uniform costs. Note thai) (3_?11nalogous analysis, carried out to characterize the optima

is also known as the maximum-likelihood detection rule [10]lin€ar transformT that minimizes it. This stems from the
Note that, for alli € {0,1}, we have fact that, such an optimal’ would be a function of the

overall statistics of the system (corresponding to applyin
, the operator of ,, .,y (.) in (4.1)) rather than individual
¥ite=y realizations, which yields a “complicated” cost functian t
which implies that[(3]1) can be rewritten as minimize; the result of the expectation operation, i.eg th
H, m x m-fold integration in [41l) is not given in terms of
p (X0 +e|zo)|y,1emy = P(x1+e€lz1)], 1oy - (32) standard analytical functions. Therefore, we continue our
i analysis by characterizing linear operator(s) that minémi

lin the L-ary case, the message lisg L bits long; the encoder and & ti.ght upper boundon the expected probability of error
receiver codebooks arx; }- " and {z;} ', respectively. defined by [(41)

p(y|Hi) =p(xi+e|z)



Hence, we proceed with the following approach: We&péln —A;l. Also define
first bound P,,, ,, for any given pair of{zg,z;} from
above and make use of the fact that expected value of this A (N1 ) 1
upper bound is an upper bound &b (since, by definition, o ( ) H +
Pe|z,,2, > 0). Also, note that the use of ampper bound
clearly makes sense since we aim nanimize P,. The A 1
upper bound orP,,, ,, that we use is th&€hernoff bound det {I 9 }
on the Q-function (se®asic Inequalityin [12]), which is .
an exponentially decaying and a sufficiently tight bound.Suppose there exists
The expected Chernoff bound, which replaces the primary M* = argmax G (M) . (4.5)
objective functionP, in the design of optimal linear transfom MeSm
T due to its analytical tractability and sufficient tightngiss Then, letting T* 2ED (M*)T UTA-'FT, where E e
derived in the following proposition. R™%™ s an arbitrary unitary rzr)1atrix and € R™X™

Proposition 4.1: The Chernoff bound o, 4, is is an arbitrary diagonal positive-definite matrix, we have
T* = argmaxpes,. J (T).
|12 Proof: See AppendixTll. [ |
, (4.2) Propositior 4.2 allows us to deduce the existence& gf;
with the sufficiency of the existence &fI*. Then, in order
to find an optimal linear transformation, which is the main
yielding the following corresponding “expected Chernoffgoal of this section, we first need to show the existence of

<
=
!
5
+
=

—-1/2
_ sz\z/ (luyO\Zo - My1|z1)
8

Pe|z0,z1 < 5 exp

bound” onP, M*, and then construcT,,, usingM* that is the solution
for the reduced probleni_(4.5).
—1/2 Proposition 4.3: A set of solutions for[(4]5) is given b
P. < % {det (Im + %W)} (4.3) P I‘@ )is g y
M_{MESM M_QT{ m H
O(nfm)xm

whereW = T%, | 3,T7 (TS, T") ' _ _ _
Proof: See Aépendiﬂl m WhereI';, € R™*™ is a unitary matrix,Q € {0,1}
' ' denotes a permutation matrix s.t. the eigenvalue 4f,Q”

are in non-decreasing order. Moreover,

nxn

Remark 4.2:The bound on expected (unconditional)
probability of error of the MAP detector, given Hy (4.3) ith

objective function we aim to minimize in this section. The m 1 1
minimization (overT) is carried out over a class of linear max H I+ - = H L+ —
. . . MeSm - X (MTA M . (A
transformations that posses certain properties imposeideby i=1 i p i€ i (Ap
physical structure of the analyzed system. The obvious one (4.6

of these properties is the dimension of the transformatiothereZ C {1,2,...,n} denotes the cardinality: index set
(i.e., the fact thafT' is a m x n matrix); the other one is corresponding to the:-smallest eigenvalues of,,.

the constraint on its rank (i.e., the fact thatT) = m). The Proof: See Appendix1V. L
rank constraint is set to ensure that the dimensionality of Theorem 4.1:A set of optimal linear transforms, in the
the subspace (which is equal #dT)), to which the partial Sense of expected Chernoff bound on the probability of
information shared by the two sides of the communicatiofTor Fe, for communication with partial information in the
belongs, is at a certain desired level; this is because §faussian setup is given by

th_e_ following fact:_ _the performanc_e of_ a system, which T = {T €8T |T= EDMTUZ“A—IFT} (4.7)
utilizes a rank-deficient transformation, is analogoush® t

performance of another system, the transformation of whichere E € R™*™ is unitary, D € R™*™ is diagonal,

is full-rank and has the same rank as the previous ranRd € M, St = {T € R™*" |r (T) = m}, M is given by
deficient transformation. Propositio 4.8 and®, A and U, denote matrix of eigen-

g vectors and diagonal matrix of eigenvaluesXf and the

Definition 4.1: The “expected probability of error boun X :
matrix of eigenvectors oP = A~'FT (X, + X.)FA 1,

minimizing transformT,,.” is given by

respectively.
1 Proof: By Proposition[4R we know tha? # 0.
T,p = argmax  det <Im + EW) (4.4) We also kno¥v for a givenM*, i.e. M satisfying [4.5),
3(6,1]13*)";;‘ T = EDM* U/A'F” satisfies [(4H4), i.e.T = Top

N A (cf. Appendix[IIl). Moreover, a set oM satisfying [4.5),

Proposition 4.2:LetSy = {T|T € R"™*",r (T) = m}, namely M, is given by Proposition 4.3. This clearly implies
Sm 2 {M|MeR>™" M"™M =1,}, P S AIRT (X, thatT, induced byM, is a set of optimal linear transforms,
+3.)FA~Ll. Let the SVD of X, and P be given by in the sense of expected Chernoff bound on the probability
¥, = FA’F" and P = U,A, U], respectively, and of error P.. ]



Performance at Optimality for Changing SNR

V. NUMERICAL RESULTS , . n=m=s

Optimality of T*: Theoren{ 4.1l gives a set of optimal linear

transforms, however does not address the “denseness” of

T in St: “is it easy to find an optimal transform &t

randomly, and how much is the performance of transforms

in St\7 separated from that of optimal transforms?”. The

computational provided in Fid.] 2 provide an experimental

basis. In Fig[R, the simulations are performed with and

3. having uniformly distributed eigenvalues, and the result

is given using the reciprocal of the Chernoff bound@nto

improve visibility. The first observation is that it is notd'gy”

to guess an element @f randomly (we actually simulated

over much larger number of trials, however give here the

result for a set ofl000 trials for illustrative purposes). This

is clear by observing _that none of .the transforms chosq;iwg. 3. Performance oo vs. SNR (dB),P, indicates Chemoff bound

randomly from St achieves the optimal value calculatedon expected probability of error here

from (4.8) in Proposition[4]3, excepT,,; constructed

by (41) and indicated as the transform in the middle of

set of transforms, i.€T'5o. Also, the minimum value of the sense of expected Chernoff bound Bn Results are shown

bound onP, achieved by arbitrary choices is not even closén Fig.[4. As expected, the capability of the detector imev

to that achieved b¥l',,;, it is around4 times larger than the as the amount of partial information increases. Alsoyas

minimum bound onP,. Thus, we experimentally conjecturetends ton, the performance at optimality converges to that

that 7~ is not “dense” inSr. for m = n, which is the Gaussian bound (the case wHén
is invertible).

=T

=T

10g,,(( ) fo

Reciprocal of the Chernoff Bound on the Probability of Error for Various Linear Transforms

n=15m=5, E(IxI?) / E(llell?) = 1
56 T T T T T
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Fig. 2. Performance dT'op: compared to arbitrarfl” € St Fig. 4. Performance of'y: vs. m (length of partial information)

P, vs. E(||x[|*) /E (|le]|*): In this part we observe the effect p, ys p: In this part we study the effect of changes in

of SNR = E(|x]*) /E(|le[|*) on the optimality ofT,,.. signal length on the performance @f,,;. The simulation

Fig.[3 is given to discuss this effect. Similar to the setup ofesults, for various:, and X. all having uniformly dis-

top-left panel, the simulations are performed wih. and tributed eigenvalues, are shown in Hig. 5. At first glance, th

3. having uniformly distributed eigenvalues. As expectediesults might seem counter-intuitive. The crucial poirthiat

the performance at optimality improves with increasing SNRincem (the dimension of the partial information space) is

since it gets easier to differentiazg from z; in that case. constant, as increases we get more degrees of freedom to
constructT',,; (i.e. the number of eigenvalues Bfincreases

P, vs.m: In this case, we study the effects of the amounénd so doeqd (4.6), improving the detector performance).

of partial information shared by the detector side on the

bound on the expected performance of the detector. This VI. CONCLUSIONS

case is studied foE, and X, having uniformly distributed We introduce the concept of communication with partial

eigenvalues and NR = 1. Forn = 50, we constructl',,;  information. The main idea is that the codebooks used by

for particular values ofn and evaluate its performance in thethe transmitter and the receiver are different. This cohisep




The Effect of Changing Partial Information Length on the Performance

, n=TT.SNR=T jointly normal with zero mean and the covariance matrix

66

Al X 0 Im X2 .
ol e P_for) =) i of H= Ow 5. € R?"x2n_ Note that,H is clearly
0 Pomin . - . v
ol GaussiandBound,dssnvurblul| positive definite, since for any = 'l e R2" where

vi,va € R?, vIHv = vlTZIvl + VgEeVQ > 0 by
the positive definiteness @, and 3. (that we assumed).
By the same token,[viZ,vi + v Z.vs = 0] =
[vi=v2=0] < [v=0], yielding the positive defi-
niteness ofH.

Now, consider the linear transformation from the normal
€ R?" to the vector| Y/ | € R*+™

%

66"

log,(P)

66

66°F

7

%

X
random vecto o

447

I I
represented bff = | 0 " € R(+m)x2n \where
. . m><7l o - .
Fig. 5. Performance oo vs. n (signal length) 0,.xn denotes then x n zero matrix. This linear transform

establishes the normality le € R™*™ (by the proper-

different from that of communication with side information ties of jointly normal random vlectors) with zero mean and the
where the utilized codebooks are the same but there is exgg\/ariance matrix off HF? — 2 +3 2,77
information available to one of the communicating parties. TX, TS, TT

Within the context of communication with partial infor- TO deduce the positive definiteness of this covariance matri
mation, we particularly concentrate on a binary detectioh€-, FHF, it is sufficient to show thaF is full rank. This
theoretic scenario. The transmitter sends one of the twiems fromthe factthat¥ is full rank (i.e., ifr (F) = m+n
codewords (which are independent realizations of a color&#icem < n), for any nonzero vectos € R™*" we have
multivariate Gaussian distribution) to the additive cedr F's = w # 0 € R*" sinceF” has a trivialnull-space so
Gaussian noise channel. The receiver acts as a detectay, ugve end-up withs” FHF”s = w"Hw > 0 by the positive
dimensionality reduced versioms the encoder codewords, definiteness oH.
where the dimensionality reduction is achieved via a linear To establish the full-rank property & (equivalent to hav-
transform. We first find the optimal (in the sense of proby,g “FT has a trivial null-space”), consider = | 2!
ability of error) detection rule. Then we derive the optimal az
class of linear transforms in the sense of the expected vallié " Wherea, € R™ anda, € R™. In this caseF"a =
of the Chernoff bound on the conditional probability of @rro | #1 + T a ]] Suppose there exists some# 0 such that
of the detector. S B T

Although the focus here is on binary detection, we believd. @ = 0- This |mpI|Tes,a1 = 0 andT"a; = 0. However,
that the proposed “communication with partial information SIﬂgEr(T) = [T a2 = 0] = [ar = 0.]' _Therefore,
covers several setups of interest, especially the casesewh Fra= 0] = 2= O] and_hence co ntradl_ct_lon. ThE,
there is an inherent asymmetry between the transmitter a}§dnecessarlly full-rank 'm lying positive-definitenesstioe
the receiver due to the unbalanced limitations on the physiccovariance matrix o y% , i.e.,, FHFT.
resources, such as memory and computational power. In our,
future research, we plan to explore various communicatiogr
theoretic setups where asymmetry is a crucial feature.

3

Finally, the normality ofly; | z;] follows from the prop-
ties of normal distributed random variables. The positiv
definiteness of the corresponding covariance mairjy.., =
APPENDIX | 3+ 2 - 2, TH(TS, TT)-1TX, follows from the fact

PROOF OFTHEOREM[3 .1 that it is the inverse of a principal submatrix of the inverse
of FHFT, which is positive definite (see (7.1.2) and (7.7.5)
for i e {0,1}. Accordingly, we useu,, ., = E(y|z) and in [11]). Also, X, ., is clearly independent of € {0, 1}.
3. = Cov(yi|z:). We start with the following lemma. ] ] . ] ,.

Lemma 1.1:For i € {0,1}, conditioned onz;, y; is a . "€ Lemmd 1l1, sinc&,. = X,,., is positive definite,
normal random vector. Furthermore it is invertible and it has an invertible square root.

Remark 1.1:From properties of normal random vectors,
Eyi\zi = Ez + 26 - EwTT(TEITT)_lTEIa (ll) we have

Throughout the proof, we use the definitionsy@é x;+e

is independent of and positive definite.
Proof: The crucial point is to show that, for €
{0,1}, y; andz; are jointly normal with a positive definite

Hoy;lz; = E(yl |ZZ) = EzTT(TzzTT)ilzi. (|2)

covariance matrix. First, consid rtf € R?", Sincex; Now let 32 [(2m)"/2 det(,,) /2], E (Lo |20—

T N _
and e are both normal and are independent, they are als%1|z1) Eyéy, and a; = (y — ,uyi\zi)sz‘i(y = fyi|z)s



fori = 0,1; whereX, . andp,, ., are (cf Theorem[311) and deﬁning&éZ)ITT(TZ)ITT)*1

A
Ki = |24 y|zﬂyw|zw ylz A
glven in (ﬂ) and[(LP), respectively. Then, using Lenim& 1.5 £ »; y1=» 7 = 2o — 21, (ILB) follows since the only source
and Remark 1l1, givey is observed we have of randomness is due t@ per our reparametrizatior, (11.7)
B a; follows sincey ~ N (0,2X,) whereX, = Cov(zy) =
p(vilzi) vimy B exp [—7} . (1.3) Cov(zy) = T, T7,
Then, using the above distribution pf; | z;] the maximum Next, Yve proceed byASThOV\I"Annge po_smve definiteness of
likelihood detection rule[{3]2) can be written as the matrix [(22 )7 f} , which would ensure
Hy that it is a valid covariance matrix. First, by assumption,
Bexp [_%} = Bexp {_%} 3, is positive definite andI' is full-rank. Hence, using

similar steps to the ones that are used in the proof of pesitiv

which is equivalent td(3]3) sinaéet (£,.) # 0 andexp(.) definiteness ofFHF” within the proof of Lemma 11,

is a strictly increasing function in its argument. Moreqver We conclude that, = TX,T" is positive definite. Fur-
thermore, (X, = T, TT > 0] <+ [2%.>0] <

Peg, = Pr [040 > aq ’ Y ~ N (gl 20 Ey\z)} ([(22Z)1 > 0. Next, note thatA is full-rank using straight-
Ko — K orward linear algebra. Using this result and the positigé-d
= Prig< ‘ Y~ N (byo 205 Byj2) | 5 niteness oB, and applying similar arguments to those above,

we conclude thatATB~'A is positive definite as well.
where P, ;, denotes the probability of error conditioned on

-1
AT B- ‘A
Ho. Here, conditioned oif,, the random variablé is nor- ~ ThusS | (22 )"+ A-5—A| s positive definite since it
mal Since(tiyo |z — Hya |z ) 271 is a linear transformation iS the inverse of the sum of two positive definite matrices,
0]<0 1[(=1

from R to R andy]|Hy is normal Conditioned orfl, the which is itself positive definite. As a result, the quantity

-1
mean and variance df are given by L’(‘22 ) AT%I‘IA is a valid covariance matrix and
T 1 the integral[(Il.Y) converges, yielding
Ho|H, = (:uyo\zo - /Lyl\zl) 2y|z:uyo\207 1
T «—— 1 EZATB_lA 2
03|H0 = ('u‘yo\zo - Myl\zl) Eyé (lu’yo\zo - :u’yﬂzl) : P < 3 {det (Im + f)} )

Then, Pr [error| Hy] is given in terms of the standar@- by properties of determinants; hence the proof. H
function. As a result, after some algebraic manipulatioes w

get APPENDIX I
_ PROOF OFPROPOSITION4. 2
(p> vz (/Lyolm - :um\zl) | O9|H . . .
P, =Q ylz : 5 : =Q (#) ) Our first goal is to show thal™* € St. First, note that,

T* is am x n matrix by construction. Next, observe that,

by definition ED is a m x m, non-singular matrix and
Furthermore, from symmetry, we hav®, ., = Fejn,- U UZA-'F7 is an x n, non-singular matrix. Furthermore,

M* is of sizen x m andr (M*) = m, i.e., it is full-rank

APPENDIXII by definition. Hence T* is also of rankm, implying that
PROOF OFPROPOSITIONA.T T* € St. Next, usingZ, = FA?FT and the definition of
First, we recall the standard Chernoff bound on(-Q T*, after some algebraic manipulations we get
function: Q(z) < = eXp (——) for z > 0 [12]. Then, [4.2) FAUM* — % (T*)T ED! (I11.8)
is obvious via usmg it in[(314). Next, we have ? ’ 2 '
ED 2ET — (T*ZI (T*)T) . (9)

Pe

IN

, (11.4)

g

E{z0.2:} [1 eXp ( %)
Lemma 3.1:For any M € Sy, letting T =
E 1eX [AW]T B! [An] (11.5) EDM"U/A~'F", where E € R™ ™ is an arbitrary
{zo.21} p S A unitary matrix andD € R™*™ is an arbitrary diagonal

T positive-definite matrix, we havé' (M) = J (T).

<_ [Ay]" B! [AW]N (11.6) Proof: We have
— || :

<%>mdet {Im n (MTAPM)_I} ,(111.10)

1
= det [Im + 5 EDM"U, A~ 'F FAAF"

1
= E, l§ exp

_ / 1/2 G (M)
wm (2m)F det (25,3

Tp-—-1
exp (_1% [@zz)l LABTA A] ~y> dv, (17)
2 4 (=, + 2. - =, T"ED *E”TY, |

where [II.4) follows from using[{4]2) in[(4.1)[(T1.5) fol- T — 21T
lows from using the definitions oS, ., fiy1zs tyo|zo %, T"EDE (1.11)

-1



= J(T) (111.12)

where [[I.I0) follows from the definition of determinant
and properties of positive definite matrices; (111.11) ¢oits
from our auxiliary definitions, properties of the define

matrices and the matrix inversion lemm&;_(I11.12) follows

from the substitution of the auxiliary matrices [n_(TIT]11i
Lemma 3.2:For anyT € ST, there existdM € Sy, such
that J (T) = G (M).

Proof: For anyT € S, let E and D be given by
the SVD of TX,T7, i.e., TX,TT = ED2E”. Naturally,
E € R™*™ andD e R™*"™ are unitary and positive-definite
diagonal, respectively. Then I 2 UTAFTTTED L.
First, we show thaM € Sy;. Clearly, M € R™"*". Here,

M™M

= D 'E"TFAU,U'AF"TTED '
D 'ETTFA’FTTTED !

D 'E"TE, T"ED !,

D 'ETED?ETED ' =1,,,

implying M € Sy. Now, note that we havel
EDM”UJA~'F” due to the wayM was defined; this

Next, we recall thePoincae seperation theorertsee [11],
pp. 190-191) which is crucial in completing the proof.
Theorem 4.1:Let A € R"*™ be symmetric, and let: be
a given integer withl < m < n, andB,, = UT AU, where
€ R™*™ is orthonormal. If eigenvalues of andB,,, are
arranged in non-decreasing order, we have

Ai (A) <N (Bp) < Aign—m (A) i=1,2,...,m (IV.14)
Using [[V.14) in [IV.13), we get

1

A (fx,,)

]T

G(M)<2™™ ﬁ 1+ (IV.15)
i=1

Choosing QM [Im 01 (n—m) clearly satisfies
A (MTQTA,,QM = i (A,) for 1 < i < m, thereby
achieving [TV.I5) with equality. Furthermore, since eigen
values are invariant under similarity transformations,efr%y
unitary I' € R™*™ choosingQM = [T'L . 0., (n—m)]
also satisfied (IV.15) with equality. Also, the resulting
M= QT [IL,,, Omx(n,m)]T clearly satisfiesM € Sy;.

meansT is of the functional form given in the statement ofHence, any sucM is a solution to[(4]5) where the maximum
Prop[Z.2. AlsoE is unitary andD is diagonal and positive value is the RHS of (I\.15). O
definite. Therefore, we necessarily havéM) = J (T) per

Lemma[3.1l. Hence the proof. [ | ACKNOWLEDGEMENT

Now, we go back to the proof of Prop. #.2 and use proof Authors wish to thank Tamer Basar, Vishal Monga, Svi-
by contradiction. Suppose, there exists sdihee St such atoslav Voloshynovskiy, Oleksiy Koval, Serdar Kozat and

thatJ (T) > J(T*). By Lemmal3.]L, we necessarily have
J (T*)
M € Sy such thatJ (T) = G (M). But this implies
G (M) = J(T) > J(T*) = G(M*) which contradicts
with the way M* was defined in the first place. Hence
contradiction and proof.

APPENDIX IV
PROOF OFPROPOSITIONZ.3

First, observe thatz (M) is a product of positive real
numbers since\; (MTAPM) > 0 for all i by the positive

definiteness oM’ A,M (becauseM is orthonormal, full-
rank andA, is positive definite). So, in order to maximize
G (M), we follow the strategy of maximizing each posi-

tive factor <1 + 5 for all 4, which clearly is

1
i(MTA,M)
equivalent to minimizing\; (MTAPM) for all 7. Here, let
Q € R™ ™ denote a permutation matrix such thaj, =

Q" A, Q, the matrixA,, is diagonal, and its eigenvalues (i.e.,
the diagonal entries) are in non-decreasing oRieThen,
G (M) can be rewritten as

1
A (MTQT&,QM)

G (M) 22—’”1@[ 1+ . (IV.13)
=1

2See [11] for the existence of such@. Note that, such & is unique
iff the eigenvalues ofA,, are distinct.

Serdar Yiuksel for various helpful discussions and comment

G (M*). Furthermore, by Lemnfa3.2, there exists
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