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On Detection With Partial Information In The Gaussian Setup

Onur Özyeşil, M. Kıvanç Mıhçak, Yücel Altuğ

Abstract— We introduce the problem of communication with
partial information, where there is an asymmetry between the
transmitter and the receiver codebooks. Practical applications
of the proposed setup include the robust signal hashing problem
within the context of multimedia security and asymmetric
communications with resource-lacking receivers. We studythis
setup in a binary detection theoretic context for the addi-
tive colored Gaussian noise channel. In our proposed setup,
the partial information available at the detector consists of
dimensionality-reduced versions of the transmitter codewords,
where the dimensionality reduction is achieved via a linear
transform. We first derive the corresponding MAP-optimal
detection rule and the corresponding conditional probability
of error (conditioned on the partial information the detector
possesses). Then, we constructively quantify an optimal class
of linear transforms, where the cost function is the expected
Chernoff bound on the conditional probability of error of th e
MAP-optimal detector.

I. I NTRODUCTION

In this paper, we introduce a communication-theoretic
paradigm, which we name as “communication with partial
information”, and subsequently study it within a detection-
theoretic context (therefore the term “detection with partial
information”) in a particular case of the Gaussian setup.
In the proposed paradigm, there is an inherent asymmetry
between the information the transmitter and the receiver pos-
sess in terms of the utilized codebooks. In particular, in the
“detection with partial information” setup, the codebook of
the receiver is formed via applying a non-invertible process
on the codebook of the transmitter; hencethe codebooks are
different. Thus, the information available at the transmitter
forms a “superset” of the information available at the re-
ceiver. Note that, a reminiscent asymmetric structure between
the transmitter and the receiver also exists in the well-known
family of problems, termed as “communication with side
information” [1], [2], [3], [4]. However, in the paradigm of
“communication with side information” (unlike the proposed
“communication with partial information” setup), the utilized
codebooks at the receiver and the transmitter are the same;
in addition, either the transmitter or the receiver is “favored”
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with the presence of “extra” information (which amounts to
the “side information”).

It appears that, there are at least two significant applica-
tions that motivate the formulation of the “communication
with partial information” approach:

• The first application can be viewed to fall within the
category of “robust signal hashing” in the signal pro-
cessing & multimedia security literature [5], [6], [7],
[8]. In robust signal hashing, a content owner provides
“robust hash value”s of the protected content (that is
some dimensionality-reduced versions of the protected
content) to a third party, which searches the content
using its robust hash values asthe partial information
at the receiver end. These robust hash values repre-
sent “the content’s significant features” and are ideally
approximately-invariant under acceptable modifications
to the content. In practical applications, the third party
that performs the hash-based search is usuallynot
trusted; hence, there is a significant issue of privacy. In
particular, given a robust hash value, it should ideally
be impossible to retrieve the original protected content
from a privacy viewpoint. The setup proposed in this
paper can be used as a detection-theoretic model to
analyze the hash-based detection problem: the protected
content is represented by the transmitted signal; the
robust hash values used in the search are represented
by the partial information available at the receiver; a
perceptually-acceptable modification to the protected
content is represented by the channel noise.

• The second application includes all instances of point-
to-point communications, where there is an inherent
asymmetry between the transmitter and the receiver in
terms of their storage capabilities and computational
resources. In particular, the cases, when the receiver
is unable to store the codebook used by the encoder
(due to a limit on the memory) or utilize the codebook
used by the encoder (due to a limit on the computa-
tional resources), can be studied within the framework
of “communication with partial information”. In such
cases, one potential remedy is the receiver’s using a
“simplified” (i.e., dimensionality-reduced) version of
the codebook of the encoder. In practice, such situations
may typically arise, for instance, when there is a bi-
directional communication between a sensor and the
base station (the resource-limited receiver representing
the sensor) or when there is a bi-directional communi-
cation between a controller and a remote measurement
unit. In such applications, the simplified version of
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the encoder codebook is represented by the partial
information at the receiver side.

Our contributions in this paper can be listed as follows:

• We introduce the paradigm of “communication with
partial information” and study it within the context
of binary detection in the Gaussian setup. We believe
the main philosophy behind this formulation (i.e., in-
troducing an asymmetry between the transmitter and
the receiver in the sense of utilized codebooks) can
be used to analyze various problems of interest in
communication theory and signal processing.

• Within the binary hypothesis testing setup, we study a
case, where the disturbance on the transmitter output
consists of additive colored Gaussian noise, and the
detector partial information is produced via applying
a linear (dimensionality-reducing) transform on the en-
coder codebook. Consequently, we present the follow-
ing results:

– We derive the MAP-optimal detection rule and the
corresponding probability of error, both of which
are conditioned on the partial information available
at the detector.

– We construct a class ofoptimal linear transforms,
which minimize the expected (with respect to the
joint distribution of the detector partial information)
Chernoff bound on the aforementioned probability
of detection error.

In Sec. II, we present the notation that is used throughout
the paper and specify the formal problem statement. In
Sec. III, we derive the MAP-optimal detection rule condi-
tioned on the partial information available at the receiver. In
Sec. IV, we quantify an optimal (in the sense of the expected
value of the Chernoff bound on the detection error probabil-
ity) class of linear transforms that are used to generate the
receiver partial information. We present illustrative numerical
results in Sec. V, followed by discussions and conclusion in
Sec. VI.

II. N OTATION AND PROBLEM STATEMENT

A. Notation

Boldface lowercase and uppercase letters denote vectors
and matrices, respectively; the corresponding regular let-
ters with subscripts denote their individual elements. For
instance, given a vectora, ai represents itsi-th element;
given a matrixA, Aij denotes its(i, j)-th element. Note
that, we do not use a separate notation for random vectors;
we assume that it is clear from the context.

Given a matrixA, AT , r (A) and det(A) denote its
transpose, rank and determinant, respectively; further,In
denotes the identity matrix of sizen× n. Given the vectors
x,y ∈ R

m, 〈x,y〉 indicates the inner product that induces
the Euclidean norm, i.e.,〈x,y〉 =

∑

i xiyi; accordingly the
induced Euclidean norm is denoted by‖x‖ = 〈x,x〉1/2.

Definition 2.1: GivenA ∈ R
m×n, such thatr (A) = k ≤

min (m,n), Singular Value Decomposition(SVD) of A is

unique (up to ordering) and defined as

A
△
=UΛVT , (2.1)

whereU ∈ R
m×k, V ∈ R

n×k, Λ ∈ R
k×k are called the

left-singular vector matrix (orthonormal), the right-singular
vector matrix (orthonormal) and the singular value matrix of
A, respectively. The matrixΛ is positive-definite diagonal;
we denote its entries along the diagonal by{σi (A)}ki=1,
which are the non-zero singular values ofA, and assumed
to be in non-increasing order without loss of generality.

For a square matrixA of size k × k and of rankr ≤ k,
{λi (A)}ri=1 denote its non-zero eigenvalues; in caseA is a
symmetric matrix,{λi} are assumed to be in non-decreasing
order. We useN (µ,Σ) to denote a multivariate Gaussian
distribution, with mean vectorµ and covariance matrix
Σ. Furthermore, Q(·) denotes the standardQ-function:

Q(α)
△
=
∫∞
α

1√
2π

e−x2/2dx.

B. Problem Statement

We analyze a binary communication system, where the
encoder selects one of the two codewords,x0 and x1,
representing the message biti ∈ {0, 1}, wherePr (i = 0) =
Pr (i = 1) = 1/2; the selected codeword,x = xi, is
sent through a channel. The encoder outputx is corrupted
by an additive, signal-independent, (not necessarily white)
Gaussian noise, denoted bye, thereby yielding the overall
channel outputy. Observingy, the receiver acts as a detector
and makes a binary decision, as to the origins of received
signal. We pursue a detection-theoretic approach to solve this
problem and assume uniform costs. We assume thatx0, x1,
e, andy are all length-n real-valued vectors, wherex0 and
x1 are independent of each other andx0,x1 ∼ N (0,Σx),
e ∼ N (0,Σe) is independent of bothx0 andx1. Here, we
also assume that the covariance matrix of the original signals
Σx and the covariance matrix of the noiseΣe are positive
definite(they are also symmetric by construction). See Fig. 1
for a schematic illustration of the proposed problem.

Message Bit

i ∈ {0,1} 
Codebook

{x0,x1}

Encoder

zi = Txi,  i=0,1

Codebook

{z0,z1}

Detector
x = x

i

Noise

e ~      (0,∑
e
)

i  ∈ {0,1} 
^

+

Received

Signal

y

Fig. 1. Block diagram representation of the problem of “binary detection
with partial information”.

In the considered setup,the detector does not know the
original codewords{x0,x1}, but only their distributions
and their dimensionality-reduced versions,{z0, z1}, where
zi = T ·xi, i = 0, 1, andT is a deterministic real matrix of
sizem× n, m < n, r (T) = m. Note that, this implies,z0
and z1 are both length-m real-valued vectors. As such, the
proposed problem is radically different from the conventional
binary detection scenario due to themismatch between the
codebooks of the encoder and the detector. Consequently,



we term the problem at hand as “detection with partial
information” for the Gaussian case.

An important point here is that, since the receiver fully
knows the statistical characterization of the whole system,
it is able to apply the MAP decoding rule. In particular, in
Sec. III, we derive the MAP detection rule, which is given
as a function of the partial information(z0, z1), and the
corresponding conditional probability of error (conditioned
on z0 and z1). Subsequently, in Sec. IV, we derive the
optimal linear transform,T, in the sense of the expected
Chernoff bound on the conditional probability of error of
the MAP detector.

Remark 2.1:In [9], the authors study a closely-related
problem, which can be viewed as the “deterministic variant”
of the aforementioned setup. In particular, in [9] the authors
assume that the encoder codewords{xi} are deterministic,
unknown and the subsequent analysis is based on the proba-
bility of error induced by the GLRT (generalized likelihood
ratio test) rule. On the other hand, in this paper, we assume
that the encoder codewords{xi} are random (in particular
Gaussian) and perform a MAP-based analysis.

Remark 2.2:Although the problem imposed in this paper
is the binary detection case, the analysis can be extended
to apply a “union bound based approach” for theL-ary
case with little or no difficulty1. A similar approach and
discussion was provided in [9] for the case of deterministic
{xi}.

III. O PTIMAL DETECTION CONDITIONED ON THE

PARTIAL INFORMATION

At the detector side, we are given{z0, z1}, which yield
partial information about the true codewords{x0,x1}. The
binary hypothesis testingapproach on the detector side uti-
lizes the MAP detection rule [10]: It operates on the observed
data y (generated by the process explained in Sec. II-B),
and makes a binary decision regarding the message bit
given {z0, z1}. Thus, we aim to solve the following binary
hypothesis testing problem:

H0 : y = x0 + e ; given {z0, z1},

H1 : y = x1 + e ; given {z0, z1}.

The corresponding MAP detection rule is given by

p (y|H0)
H0

≷
H1

p (y|H1) . (3.1)

since we have equal priors and uniform costs. Note that, (3.1)
is also known as the maximum-likelihood detection rule [10].
Note that, for alli ∈ {0, 1}, we have

p (y |Hi) = p
(

xi + e
∣

∣ zi
)

∣

∣

∣

xi+e=y
,

which implies that (3.1) can be rewritten as

p (x0 + e|z0)|x0+e=y

H0

≷
H1

p (x1 + e|z1)|x1+e=y . (3.2)

1In the L-ary case, the message islogL bits long; the encoder and
receiver codebooks are{xi}

L−1

i=0
and{zi}

L−1

i=0
, respectively.

Theorem 3.1:The maximum likelihood detection
rule (3.2) is given by

‖Σ
−1/2
y|z

(

y − µy0|z0
)

‖
H1

≷
H0

‖Σ
−1/2
y|z

(

y − µy1|z1
)

‖ (3.3)

The corresponding (conditional) probability of error (condi-
tioned onz0 andz1) is given by

Pe|z0,z1 = Q





‖Σ
−1/2
y|z

(

µy0|z0 − µy1|z1
)

‖

2



 (3.4)

where, for i ∈ {0, 1}, µyi|zi = E(yi | zi)|yi=xi+e =

ΣxT
T
(

TΣxT
T
)−1

zi; Σy|z is positive definite and given
by Σy|z = Cov(yi | zi)|yi=xi+e, i=0,1 = Σx + Σe −

ΣxT
T
(

TΣxT
T
)−1

TΣx.
Proof: See Appendix I.

Remark 3.1:Using Theorem 3.1, we see that, ifz0 = z1,
conditional probability of error is1/2, which is meaningful.
Then, there is nothing to discriminate from the detector’s
perspective thereby converting the detection to a fair coin
toss.

Remark 3.2:The argument of theQ-function in (3.4) is
always non-negative. This allows us to set a tight bound on
the expected probability of error, and analyze it in Sec. IV.

IV. OPTIMAL L INEAR OPERATORSIN THE EXPECTATION

SENSE

In this section, our performance criterion is based on the
expected(unconditional) probability of error of the MAP
detector, denoted byPe, given by

Pe = E{z0,z1}
[

Pe|z0,z1
]

,

= E{z0,z1}



Q





‖Σ
−1/2
y|z

(

µy0|z0 − µy1|z1
)

‖

2







(4.1)

where E{z0,z1} (.) denotes expectation with respect to the
joint distribution ofz0 andz1, and the right hand side follows
from (3.4).

Remark 4.1:It appears to be manageable to find a lin-
ear transform that minimizes the conditional probability of
error, Pe|z0,z1 (see, for instance, [9]) as a function of the
transmitted signals,x0 andx1, which would yield an “input-
adaptive optimal transform”. On the other hand, the expected
probability of error given by (4.1) is not tractable for an
analogous analysis, carried out to characterize the optimal
linear transformT that minimizes it. This stems from the
fact that, such an optimalT would be a function of the
overall statistics of the system (corresponding to applying
the operator of E{z0,z1} (.) in (4.1)) rather than individual
realizations, which yields a “complicated” cost function to
minimize; the result of the expectation operation, i.e., the
m × m-fold integration in (4.1) is not given in terms of
standard analytical functions. Therefore, we continue our
analysis by characterizing linear operator(s) that minimize
a tight upper boundon the expected probability of error
defined by (4.1)



Hence, we proceed with the following approach: We
first boundPe|z0,z1 for any given pair of{z0, z1} from
above and make use of the fact that expected value of this
upper bound is an upper bound onPe (since, by definition,
Pe|z0,z1 ≥ 0). Also, note that the use of anupper bound
clearly makes sense since we aim tominimize Pe. The
upper bound onPe|z0,z1 that we use is theChernoff bound
on the Q-function (seeBasic Inequalityin [12]), which is
an exponentially decaying and a sufficiently tight bound.
The expected Chernoff bound, which replaces the primary
objective functionPe in the design of optimal linear transfom
T due to its analytical tractability and sufficient tightness, is
derived in the following proposition.

Proposition 4.1:The Chernoff bound onPe|z0,z1 is

Pe|z0,z1 ≤
1

2
exp



−
‖Σ

−1/2
y|z

(

µy0|z0 − µy1|z1
)

‖2

8



 , (4.2)

yielding the following corresponding “expected Chernoff
bound” onPe

Pe ≤
1

2

{

det

(

Im +
1

2
W

)}−1/2

(4.3)

whereW
△
=TΣxΣ

−1
y | zΣxT

T
(

TΣxT
T
)−1

Proof: See Appendix II.
Remark 4.2:The bound on expected (unconditional)

probability of error of the MAP detector, given by (4.3) is the
objective function we aim to minimize in this section. The
minimization (overT) is carried out over a class of linear
transformations that posses certain properties imposed bythe
physical structure of the analyzed system. The obvious one
of these properties is the dimension of the transformation
(i.e., the fact thatT is a m × n matrix); the other one is
the constraint on its rank (i.e., the fact thatr (T) = m). The
rank constraint is set to ensure that the dimensionality of
the subspace (which is equal tor (T)), to which the partial
information shared by the two sides of the communication
belongs, is at a certain desired level; this is because of
the following fact: the performance of a system, which
utilizes a rank-deficient transformation, is analogous to the
performance of another system, the transformation of which
is full-rank and has the same rank as the previous rank-
deficient transformation.

Definition 4.1: The “expected probability of error bound
minimizing transformTopt” is given by

Topt = argmax
T∈R

m×n

r(T)=m

det

(

Im +
1

2
W

)

(4.4)

Proposition 4.2:LetST
△
=
{

T
∣

∣T ∈ R
m×n, r (T) = m

}

,

SM
△
=
{

M
∣

∣M ∈ R
n×m,MTM = Im

}

, P
△
=Λ−1FT (Σx

+Σe)FΛ
−1. Let the SVD of Σx and P be given by

Σx = FΛ2FT and P = UpΛpU
T
p , respectively, and

Λ̂p
△
= In −Λ−1

p . Also define

G (M)
△
=

(

1

2

)m m
∏

i=1



1 +
1

λi

(

MT Λ̂pM
)





J (T)
△
= det

[

Im +
1

2
W

]

.

Suppose there exists

M∗ = argmax
M∈SM

G (M) . (4.5)

Then, letting T∗ △
=ED (M∗)T UT

p Λ
−1FT , where E ∈

R
m×m is an arbitrary unitary matrix andD ∈ R

m×m

is an arbitrary diagonal positive-definite matrix, we have
T∗ = argmaxT∈ST

J (T).
Proof: See Appendix III.

Proposition 4.2 allows us to deduce the existence ofTopt

with the sufficiency of the existence ofM∗. Then, in order
to find an optimal linear transformation, which is the main
goal of this section, we first need to show the existence of
M∗, and then constructTopt usingM∗ that is the solution
for the reduced problem (4.5).

Proposition 4.3:A set of solutions for (4.5) is given by

M =

{

M ∈ SM

∣

∣

∣

∣

∣

M = QT

[

Γm

0(n−m)×m

]

}

,

whereΓm ∈ R
m×m is a unitary matrix,Q ∈ {0, 1}n×n

denotes a permutation matrix s.t. the eigenvalues ofQΛ̂pQ
T

are in non-decreasing order. Moreover,

max
M∈SM

m
∏

i=1



1 +
1

λi

(

MT Λ̂pM
)



 =
∏

i∈I



1 +
1

λi

(

Λ̂p

)



 ,

(4.6)
whereI ⊆ {1, 2, . . . , n} denotes the cardinality-m index set
corresponding to them-smallest eigenvalues of̂Λp.

Proof: See Appendix IV.
Theorem 4.1:A set of optimal linear transforms, in the

sense of expected Chernoff bound on the probability of
errorPe, for communication with partial information in the
Gaussian setup is given by

T =
{

T ∈ ST | T = EDMTUT
p Λ

−1FT
}

(4.7)

where E ∈ R
m×m is unitary, D ∈ R

m×m is diagonal,
M ∈ M, ST = {T ∈ R

m×n | r (T) = m}, M is given by
Proposition 4.3 andF, Λ andUp denote matrix of eigen-
vectors and diagonal matrix of eigenvalues ofΣx and the
matrix of eigenvectors ofP = Λ−1FT (Σx +Σe)FΛ

−1,
respectively.

Proof: By Proposition 4.2 we know thatT 6= ∅.
We also know for a givenM∗, i.e. M satisfying (4.5),
T = EDM∗T

UT
p Λ

−1FT satisfies (4.4), i.e.,T = Topt

(cf. Appendix III). Moreover, a set ofM satisfying (4.5),
namelyM, is given by Proposition 4.3. This clearly implies
thatT , induced byM, is a set of optimal linear transforms,
in the sense of expected Chernoff bound on the probability
of errorPe.



V. NUMERICAL RESULTS

Optimality ofT∗: Theorem 4.1 gives a set of optimal linear
transforms, however does not address the “denseness” of
T in ST: “is it easy to find an optimal transform inST

randomly, and how much is the performance of transforms
in ST\T separated from that of optimal transforms?”. The
computational provided in Fig. 2 provide an experimental
basis. In Fig. 2, the simulations are performed withΣx and
Σe having uniformly distributed eigenvalues, and the result
is given using the reciprocal of the Chernoff bound onPe to
improve visibility. The first observation is that it is not “easy”
to guess an element ofT randomly (we actually simulated
over much larger number of trials, however give here the
result for a set of1000 trials for illustrative purposes). This
is clear by observing that none of the transforms chosen
randomly fromST achieves the optimal value calculated
from (4.6) in Proposition 4.3, exceptTopt constructed
by (4.7) and indicated as the transform in the middle of
set of transforms, i.e.T500. Also, the minimum value of the
bound onPe achieved by arbitrary choices is not even close
to that achieved byTopt, it is around4 times larger than the
minimum bound onPe. Thus, we experimentally conjecture
that T is not “dense” inST.
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Fig. 2. Performance ofTopt compared to arbitraryT ∈ ST

Pe vs. E
(

‖x‖2
)

/E
(

‖e‖2
)

: In this part we observe the effect

of SNR = E
(

‖x‖2
)

/E
(

‖e‖2
)

on the optimality ofTopt.
Fig. 3 is given to discuss this effect. Similar to the setup of
top-left panel, the simulations are performed withΣx and
Σe having uniformly distributed eigenvalues. As expected,
the performance at optimality improves with increasing SNR
since it gets easier to differentiatez0 from z1 in that case.

Pe vs.m: In this case, we study the effects of the amount
of partial information shared by the detector side on the
bound on the expected performance of the detector. This
case is studied forΣx andΣe having uniformly distributed
eigenvalues andSNR = 1. For n = 50, we constructTopt

for particular values ofm and evaluate its performance in the
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sense of expected Chernoff bound onPe. Results are shown
in Fig. 4. As expected, the capability of the detector improves
as the amount of partial information increases. Also, asm
tends ton, the performance at optimality converges to that
for m = n, which is the Gaussian bound (the case whenT

is invertible).
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Fig. 4. Performance ofTopt vs. m (length of partial information)

Pe vs.n: In this part we study the effect of changes in
signal length on the performance ofTopt. The simulation
results, for variousΣx and Σe all having uniformly dis-
tributed eigenvalues, are shown in Fig. 5. At first glance, the
results might seem counter-intuitive. The crucial point isthat
sincem (the dimension of the partial information space) is
constant, asn increases we get more degrees of freedom to
constructTopt (i.e. the number of eigenvalues ofP increases
and so does (4.6), improving the detector performance).

VI. CONCLUSIONS

We introduce the concept of communication with partial
information. The main idea is that the codebooks used by
the transmitter and the receiver are different. This concept is
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Fig. 5. Performance ofTopt vs. n (signal length)

different from that of communication with side information,
where the utilized codebooks are the same but there is extra
information available to one of the communicating parties.

Within the context of communication with partial infor-
mation, we particularly concentrate on a binary detection
theoretic scenario. The transmitter sends one of the two
codewords (which are independent realizations of a colored
multivariate Gaussian distribution) to the additive colored
Gaussian noise channel. The receiver acts as a detector, using
dimensionality reduced versionsof the encoder codewords,
where the dimensionality reduction is achieved via a linear
transform. We first find the optimal (in the sense of prob-
ability of error) detection rule. Then we derive the optimal
class of linear transforms in the sense of the expected value
of the Chernoff bound on the conditional probability of error
of the detector.

Although the focus here is on binary detection, we believe
that the proposed “communication with partial information”
covers several setups of interest, especially the cases where
there is an inherent asymmetry between the transmitter and
the receiver due to the unbalanced limitations on the physical
resources, such as memory and computational power. In our
future research, we plan to explore various communication
theoretic setups where asymmetry is a crucial feature.

APPENDIX I
PROOF OFTHEOREM 3.1

Throughout the proof, we use the definitions ofyi
△
= xi+e

for i ∈ {0, 1}. Accordingly, we useµyi|zi = E(yi|zi) and
Σyi|zi = Cov(yi|zi). We start with the following lemma.

Lemma 1.1:For i ∈ {0, 1}, conditioned onzi, yi is a
normal random vector. Furthermore

Σyi|zi = Σx +Σe −ΣxT
T (TΣxT

T )−1TΣx, (I.1)

is independent ofi and positive definite.
Proof: The crucial point is to show that, fori ∈

{0, 1}, yi andzi are jointly normal with a positive definite

covariance matrix. First, consider

[

xi

e

]

∈ R
2n. Sincexi

and e are both normal and are independent, they are also

jointly normal with zero mean and the covariance matrix

of H
△
=

[

Σx 0

0 Σe

]

∈ R
2n×2n. Note that,H is clearly

positive definite, since for anyv =

[

v1

v2

]

∈ R
2n where

v1,v2 ∈ R
n, vTHv = vT

1 Σxv1 + vT
2 Σev2 ≥ 0 by

the positive definiteness ofΣx andΣe (that we assumed).
By the same token,

[

vT
1 Σxv1 + vT

2 Σev2 = 0
]

⇐⇒
[v1 = v2 = 0] ⇐⇒ [v = 0], yielding the positive defi-
niteness ofH.
Now, consider the linear transformation from the normal

random vector

[

xi

e

]

∈ R
2n to the vector

[

yi

zi

]

∈ R
n+m

represented byF =

[

In In
T 0m×n

]

∈ R
(n+m)×2n, where

0m×n denotes them× n zero matrix. This linear transform

establishes the normality of

[

yi

zi

]

∈ R
n+m (by the proper-

ties of jointly normal random vectors) with zero mean and the

covariance matrix ofFHFT =

[

Σx +Σe ΣxT
T

TΣx TΣxT
T

]

.

To deduce the positive definiteness of this covariance matrix,
i.e.,FHFT , it is sufficient to show thatF is full rank. This
stems from the fact that ifF is full rank (i.e., ifr (F) = m+n
sincem < n), for any nonzero vectors ∈ R

m+n we have
FT s = w 6= 0 ∈ R

2n sinceFT has a trivialnull-space, so
we end-up withsTFHFT s = wTHw > 0 by the positive
definiteness ofH.

To establish the full-rank property ofF (equivalent to hav-

ing “FT has a trivial null-space”), considera =

[

a1
a2

]

∈

R
m+n wherea1 ∈ R

n anda2 ∈ R
m. In this case,FTa =

[

a1 +TTa2
a1

]

. Suppose there exists somea 6= 0 such that

FTa = 0. This implies,a1 = 0 andTTa2 = 0. However,
sincer(T) = m,

[

TTa2 = 0
]

⇐⇒ [a2 = 0]. Therefore,
[

FTa = 0
]

⇐⇒ [a = 0] and hence contradiction. Thus,F
is necessarily full-rank implying positive-definiteness of the

covariance matrix of

[

yi

zi

]

, i.e.,FHFT .

Finally, the normality of[yi | zi] follows from the prop-
erties of normal distributed random variables. The positive
definiteness of the corresponding covariance matrixΣyi|zi =
Σx +Σe −ΣxT

T (TΣxT
T )−1TΣx follows from the fact

that it is the inverse of a principal submatrix of the inverse
of FHFT , which is positive definite (see (7.1.2) and (7.7.5)
in [11]). Also, Σyi|zi is clearly independent ofi ∈ {0, 1}.

Per Lemma 1.1, sinceΣy|z = Σyi|zi is positive definite,
it is invertible and it has an invertible square root.

Remark 1.1:From properties of normal random vectors,
we have

µyi|zi = E(yi | zi) = ΣxT
T (TΣxT

T )−1zi. (I.2)

Now let β
△
= [(2π)n/2 det(Σy|z)

1/2]−1, θ
△
=
(

µy0|z0−

µy1|z1
)T

Σ−1
y|zy, and αi

△
= (y − µyi|zi)

TΣ−1
y|z(y − µyi|zi),



κi
△
= µT

yi|ziΣ
−1
y|zµyi|zi for i = 0, 1; whereΣy|z andµyi|zi are

given in (I.1) and (I.2), respectively. Then, using Lemma 1.1
and Remark 1.1, giveny is observed we have

p (yi|zi)
∣

∣

∣

yi=y
= β exp

[

−
αi

2

]

. (I.3)

Then, using the above distribution of[yi | zi] the maximum
likelihood detection rule (3.2) can be written as

β exp
[

−
α0

2

]H0

≷
H1

β exp
[

−
α1

2

]

which is equivalent to (3.3) sincedet
(

Σy|z
)

6= 0 andexp(.)
is a strictly increasing function in its argument. Moreover,

Pe|H0
= Pr

[

α0 > α1

∣

∣

∣
y ∼ N

(

µy0|z0 ,Σy|z
)

]

= Pr

[

θ <
κ0 − κ1

2

∣

∣

∣ y ∼ N (µy0|z0 ,Σy|z)

]

,

wherePe|H0
denotes the probability of error conditioned on

H0. Here, conditioned onH0, the random variableθ is nor-
mal since

(

µy0|z0 − µy1|z1
)T

Σ−1
y|z is a linear transformation

from R
n to R andy|H0 is normal. Conditioned onH0, the

mean and variance ofθ are given by

µθ|H0
=

(

µy0|z0 − µy1|z1
)T

Σ−1
y|zµy0|z0 ,

σ2
θ|H0

=
(

µy0|z0 − µy1|z1
)T

Σ−1
y|z
(

µy0|z0 − µy1|z1
)

.

Then, Pr [error|H0] is given in terms of the standardQ-
function. As a result, after some algebraic manipulations we
get

Pe|H0
= Q





‖Σ
−1/2
y|z

(

µy0|z0 − µy1|z1
)

‖

2



 = Q
(σθ|H0

2

)

.

Furthermore, from symmetry, we havePe|z0,z1 = Pe|H0
.

APPENDIX II
PROOF OFPROPOSITION4.1

First, we recall the standard Chernoff bound on Q(·)

function: Q(x) ≤ 1
2 exp

(

−x2

2

)

for x ≥ 0 [12]. Then, (4.2)
is obvious via using it in (3.4). Next, we have

Pe ≤ E{z0,z1}

[

1

2
exp

(

−
σ2
θ|H0

8

)]

, (II.4)

= E{z0,z1}

[

1

2
exp

(

−
[Aγ]T B−1 [Aγ]

8

)]

, (II.5)

= Eγ

[

1

2
exp

(

−
[Aγ]T B−1 [Aγ]

8

)]

, (II.6)

=

∫

Rm

1/2

(2π)
m
2 det (2Σz)

1

2

exp

(

−
1

2
γT

[

(2Σz)
−1

+
ATB−1A

4

]

γ

)

dγ, (II.7)

where (II.4) follows from using (4.2) in (4.1), (II.5) fol-
lows from using the definitions ofΣy|z, µy0|z0 , µy0|z0

(cf. Theorem 3.1) and definingA
△
=ΣxT

T (TΣxT
T )−1,

B
△
=Σy | z , γ

△
= z0 − z1, (II.6) follows since the only source

of randomness is due toγ per our reparametrization, (II.7)
follows sinceγ ∼ N (0, 2Σz) whereΣz = Cov(z0) =
Cov(z1) = TΣxT

T .
Next, we proceed by showing the positive definiteness of

the matrix
[

(2Σz)
−1

+ ATB−1A
4

]−1

, which would ensure
that it is a valid covariance matrix. First, by assumption,
Σx is positive definite andT is full-rank. Hence, using
similar steps to the ones that are used in the proof of positive
definiteness ofFHFT within the proof of Lemma 1.1,
we conclude thatΣz = TΣxT

T is positive definite. Fur-
thermore,

[

Σz = TΣxT
T > 0

]

⇐⇒ [2Σz > 0] ⇐⇒
[

(2Σz)
−1 > 0

]

. Next, note thatA is full-rank using straight-
forward linear algebra. Using this result and the positive defi-
niteness ofB, and applying similar arguments to those above,
we conclude thatATB−1A is positive definite as well.

Thus,
[

(2Σz)
−1 + ATB−1A

4

]−1

is positive definite since it
is the inverse of the sum of two positive definite matrices,
which is itself positive definite. As a result, the quantity
[

(2Σz)
−1

+ ATB−1A
4

]−1

is a valid covariance matrix and
the integral (II.7) converges, yielding

Pe ≤
1

2

{

det

(

Im +
ΣzA

TB−1A

2

)}− 1

2

,

by properties of determinants; hence the proof.

APPENDIX III
PROOF OFPROPOSITION4.2

Our first goal is to show thatT∗ ∈ ST. First, note that,
T∗ is a m × n matrix by construction. Next, observe that,
by definition ED is a m × m, non-singular matrix and
UT

p Λ
−1FT is a n × n, non-singular matrix. Furthermore,

M∗ is of sizen × m and r (M∗) = m, i.e., it is full-rank
by definition. Hence,T∗ is also of rank-m, implying that
T∗ ∈ ST. Next, usingΣx = FΛ2FT and the definition of
T∗, after some algebraic manipulations we get

FΛUpM
∗ = Σx (T

∗)T ED−1, (III.8)

ED−2ET =
(

T∗Σx (T
∗)T
)−1

. (III.9)

Lemma 3.1:For any M ∈ SM, letting T =
EDMTUT

p Λ
−1FT , where E ∈ R

m×m is an arbitrary
unitary matrix andD ∈ R

m×m is an arbitrary diagonal
positive-definite matrix, we haveG (M) = J (T).

Proof: We have

G (M) =

(

1

2

)m

det

[

Im +
(

MT Λ̂pM
)−1

]

, (III.10)

= det

[

Im +
1

2
EDMTUT

p Λ
−1FTFΛΛFT

[

Σx +Σe −ΣxT
TED−2ETTΣx

]−1

ΣxT
TED−2ET

]

(III.11)



= J (T) (III.12)

where (III.10) follows from the definition of determinant
and properties of positive definite matrices; (III.11) follows
from our auxiliary definitions, properties of the defined
matrices and the matrix inversion lemma; (III.12) follows
from the substitution of the auxiliary matrices in (III.11).

Lemma 3.2:For anyT ∈ ST, there existsM ∈ SM, such
that J (T) = G (M).

Proof: For anyT ∈ ST, let Ẽ and D̃ be given by
the SVD ofTΣxT

T , i.e., TΣxT
T = ẼD̃2ẼT . Naturally,

Ẽ ∈ R
m×m andD̃ ∈ R

m×m are unitary and positive-definite

diagonal, respectively. Then letM
△
=UT

p ΛFTTT ẼD̃−1.
First, we show thatM ∈ SM. Clearly,M ∈ R

n×m. Here,

MTM = D−1ẼTTFΛUpU
T
p ΛFTTT ẼD̃−1

= D−1ẼTTFΛ2FTTT ẼD̃−1

= D−1ẼTTΣxT
T ẼD̃−1,

= D−1ẼT ẼD̃2ẼT ẼD̃−1 = Im,

implying M ∈ SM. Now, note that we haveT =
ẼD̃MTUT

p Λ
−1FT due to the wayM was defined; this

meansT is of the functional form given in the statement of
Prop. 4.2. Also,̃E is unitary andD̃ is diagonal and positive
definite. Therefore, we necessarily haveG (M) = J (T) per
Lemma 3.1. Hence the proof.
Now, we go back to the proof of Prop. 4.2 and use proof
by contradiction. Suppose, there exists someT̄ ∈ ST such
that J

(

T̄
)

> J (T∗). By Lemma 3.1, we necessarily have
J (T∗) = G (M∗). Furthermore, by Lemma 3.2, there exists
M̄ ∈ SM such thatJ

(

T̄
)

= G
(

M̄
)

. But this implies
G
(

M̄
)

= J
(

T̄
)

> J (T∗) = G (M∗) which contradicts
with the way M∗ was defined in the first place. Hence
contradiction and proof.

APPENDIX IV
PROOF OFPROPOSITION4.3

First, observe that,G (M) is a product of positive real

numbers sinceλi

(

MT Λ̂pM
)

> 0 for all i by the positive

definiteness ofMT Λ̂pM (becauseM is orthonormal, full-
rank andΛ̂p is positive definite). So, in order to maximize
G (M), we follow the strategy of maximizing each posi-

tive factor

(

1 + 1

λi(MT Λ̂pM)

)

for all i, which clearly is

equivalent to minimizingλi

(

MT Λ̂pM
)

for all i. Here, let

Q ∈ R
m×m denote a permutation matrix such thatΛ̂p =

QT ˆ̂
ΛpQ, the matrix ˆ̂Λp is diagonal, and its eigenvalues (i.e.,

the diagonal entries) are in non-decreasing order2. Then,
G (M) can be rewritten as

G (M)
△
= 2−m

m
∏

i=1






1 +

1

λi

(

MTQT ˆ̂
ΛpQM

)






. (IV.13)

2See [11] for the existence of such aQ. Note that, such aQ is unique
iff the eigenvalues of̂Λp are distinct.

Next, we recall thePoincaŕe seperation theorem(see [11],
pp. 190–191) which is crucial in completing the proof.

Theorem 4.1:Let A ∈ R
n×n be symmetric, and letm be

a given integer with1 ≤ m ≤ n, andBm = UTAU, where
U ∈ R

n×m is orthonormal. If eigenvalues ofA andBm are
arranged in non-decreasing order, we have

λi (A) ≤ λi (Bm) ≤ λi+n−m (A) i = 1, 2, ...,m (IV.14)

Using (IV.14) in (IV.13), we get

G (M) ≤ 2−m
m
∏

i=1






1 +

1

λi

(

ˆ̂
Λp

)






. (IV.15)

Choosing QM =
[

Im 0m×(n−m)

]T
clearly satisfies

λi

(

MTQT ˆ̂
ΛpQM

)

= λi

(

ˆ̂
Λp

)

for 1 ≤ i ≤ m, thereby
achieving (IV.15) with equality. Furthermore, since eigen-
values are invariant under similarity transformations, for any
unitaryΓ ∈ R

m×m choosingQM =
[

ΓT
m×m 0m×(n−m)

]T

also satisfies (IV.15) with equality. Also, the resulting
M = QT

[

ΓT
m×m 0m×(n−m)

]T
clearly satisfiesM ∈ SM.

Hence, any suchM is a solution to (4.5) where the maximum
value is the RHS of (IV.15).
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