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Abstract

This paper considers the problem of throughput optimal routing/scheduling in a multi-hop constrained queueing network

with random connectivity whose special case includes opportunistic multi-hop wireless networks and input-queued switch

fabrics. The main challenge in the design of throughput optimal routing policies is closely related to identifying appropriate

and universal Lyapunov functions with negative expected drift. The few well-known throughput optimal policies in the literature

are constructed using simple quadratic or exponential Lyapunov functions of the queue backlogs and as such they seek to balance

the queue backlogs across network independent of the topology.

By considering a class of continuous, differentiable, and piece-wise quadratic Lyapunov functions, this paper provides a

large class of throughput optimal routing policies. The proposed class of Lyapunov functions allow for the routing policy to

control the traffic along short paths for a large portion of state-space while ensuring a negative expected drift. This structure

enables the design of a large class of routing policies. In particular, and in addition to recovering the throughput optimality of

the well known backpressure routing policy, an opportunistic routing policy with congestion diversity is proved to be throughput

optimal.

I. INTRODUCTION

This paper considers the problem of throughput optimal routing/scheduling in a general constrained queueing network

with random connectivity whose special case includes opportunistic routing in multi-hop wireless network and input-queued

switch scheduling. While it is often possible to intuitively design and propose various routing/scheduling policies, providing

theoretical guarantees for the corresponding controlled Markov chains is far from straight forwards with the exception of the

throughput optimality of backpressure routing [1] and maximum weight scheduling [2]. These guarantees are obtained using

Foster-Lyapunov Theorem which ensures the stability of a controlled Markov chain if a Lyapunov function with negative

expected drift is shown to exist. More specifically, the throughput optimal backpressure-based policies [1], [3]–[6] as well as

maximum weight schedules [2], [7] are reverse-engineered to be the very rule under which the known quadratic Lyapunov

function is ensured a negative expected drift.

While reverse engineering routing/scheduling in this function has the advantage of obtaining theoretical guarantees, it may

result in schemes with undesirable structure. In particular, under the strict Schur-convexity of quadratic Lyapunov function

[1], [2] (as well as the exponential Lyapunov functions [8]) with respect to the (weighted) backlog vector, the negativity
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of the expected drift is only achieved when nodes with large queues are prioritized in favor of those with small number

of buffered packets (e.g. a node with small backlog must refrain from routing packets to a neighbor with large backlog).

This very need to ensure a negative drift of the Lyapunov function (equivalently to balance the queues in a network), goes

against the intuition behind many promising routing/scheduling schemes. For instance, consider the wired network in Fig. 1

where packets are to be routed from node 1 to node 8. It is intuitively desirable for the routing decisions in this network to

be such that the bottle-neck link (7,8) is maximally utilized. Indeed, in Subsection V-B we discuss an opportunistic routing

policy (ORCD) which attempts to achieve this goal. However, these very intuitive properties cause a positive expected drift

in the quadratic Lyapunov function in an infinite number of states. This means that theoretical guarantee for this algorithm

requires a significantly different approach (non-Schur-convex Lyapunov function).

Fig. 1. A network of eight nodes. Packets are to be routed from node 1 to node 8.

In this paper, we provide a large class of throughput optimal policies by considering a class of piece-wise quadratic

Lyapunov functions. The proposed class of Lyapunov functions are constructed by grouping the queues based on their

relative size and the network topology and as such are not strictly Schur-convex. This allows for the Lyapunov function to

have an expected negative drift even when packets are routed from a node with small backlog to one with large backlog so

long as the queues are grouped together. We will see that the proposed class of Lyapunov functions establish the throughput

optimality of a large class of routing/scheduling policies by indirectly incorporating the critical information about topology. In

particular, we specialize our result to recover the throughput optimality of two known routing policies, backpressure (already

known to be throughput optimal) and ORCD (discussed above and whose throughput optimality only was conjectured in

[9]).

Before we close, we note that using the methodology in this paper, it is always possible to find uncountably many

throughput optimal routing/scheduling policies among which most will suffer from an unreasonable complexity and overhead.

In light of this observation, we believe that (even though beyond the scope of this paper) the contribution and utility of the

proposed Lyapunov construction is of two folds: 1) The proposed class of Lyapunov functions can be used systematically

to establish the throughput optimality of many intuitive solutions which do not locally balance the backlogs in the network.

Furthermore, 2) the nature of the constructed Lyapunov function concretely establishes the intuition that queue stability in

a network is only affected by the control applied at the boundaries of the state space where inevitable idling is likely to

occur (these are the states in which one or more of the queues are near empty while others have extremely large backlogs).

The consequence of the former is more flexibility when proving the throughput optimality of various routing/scheduling

solutions such as the multi-hop schemes that would favor short paths, while the latter establishes a qualitative characterization
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of throughput optimality.

The remainder of this paper is organized as follows. In Section II, we formulate the problem for the general case of

routing/scheduling in constrained queueing network with multiple destinations. For ease of exposition, the results are first

presented in Section III for the multi-hop routing in a single destination network with orthogonal channels. The extensions

of the results to the general constrained queueing is provided in Section IV where we also show that scheduling for input-

queued switches is a special case of our framework. Section V discusses the structure of our proposed piece-wise quadratic

Lyapunov function and provides a (alternative) proof of throughput optimality for some of the existing routing/scheduling

policies. Finally, we conclude the paper and discuss future work in Section VI.

We close this section with a note on the notations used. Let [x]+ = max{x, 0}. The indicator function 1{X} takes the

value 1 whenever event X occurs, and 0 otherwise. For any set S, |S| denotes the cardinality of S, while for any vector v,

‖v‖ denotes the euclidean norm of v. For matrices A and B, let 〈A,B〉 =
∑
i,j AijBij denote the inner product. For any set

S, int(S) is the set of all interior points of S. When dealing with a sequence of sets C1, C2, . . . , we define Ci = ∪ij=1Cj .

Lastly, we use bold letters to discriminate vectors from scalar quantities as well as their components.

II. PROBLEM FORMULATION

We consider a time slotted system with slots indexed by t ∈ {0, 1, 2, . . .} where slot t refers to the time interval [t, t+ 1).

There are N nodes in the network labeled by Ω := {1, 2, . . . , N}. We denote the set of all destinations by D, D ⊆ Ω.

Let random variable Adi (t) represent the amount of data (in units of packets) that exogenously arrives to node i and

destined for node d, d ∈ D during time slot t. Arrivals are assumed to be i.i.d. over time and bounded by a constant Amax.

All packets destined for node d, d ∈ D are referred to as commodity d packets. Let λdi = E[Adi (t)] denote the exogenous

arrival rate of commodity d packets to node i. We define λ = [λdi ]d∈D,i∈Ω to be the arrival rate matrix (of size |D|×N ). We

assume that each node maintains a separate buffer (with infinite queuing space) for each destination in which packets that

arrive exogenously at that node as well as packets routed to that node from other nodes in the network are queued. Without

loss of generality, we assume that after a packet is successfully received at its destination, the packet would be ejected from

the network. Let Qdi (t) denote the queue backlog of node i corresponding to destination d at time slot t, i.e. Qdi (t) denotes

the number of commodity d packets in node i at time slot t. Any data that is successfully delivered to its destination will

exit the network and hence, Qdd(t) = 0 for all d ∈ D and all time slots t. We define Q(t) = [Qdi (t)]d∈D,i∈Ω to be the matrix

(of size |D| ×N ) of all queue backlogs and Qd(t) to be the row of this matrix corresponding to commodity d packets, i.e.

Qd(t) = [Qd1(t), Qd2(t), . . . , QdN (t)].

We define a routing decision µdij(t) to be the (potential) number of commodity d packets whose relaying responsibility

is shifted from node i to node j during time slot t. We assume each node transmits at most one packet during a single time

slot which can be selected from any of the |D| buffers maintained at that node. Note that µdij(t) forms the departure process

from node i, while it is an element of the endogenous arrival to node j. Hence,

µdij(t) ∈ {0, 1} ,
∑
d∈D

µdij(t) ≤ 1 ,

N∑
j=0

µdij(t) ≤ 1. (1)

Here we assume a simple on-off channel model and we assume a perfect channel state information at every transmitter.

More specifically, let Si(t) represent the (random) set of nodes the channel to whom from node i at time slot t is in good

state. We refer to Si(t) as the set of potential forwarders for node i and we assume that node i has perfect knowledge of
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Si(t). Due to a perfect recall at any node i, we assume i ∈ Si(t) for all time t. We characterize the behavior of the wireless

channel using the probabilistic model of local broadcast model [10]. The local broadcast model is defined using a marginal

probability mass functions P (S|i) := Prob({Si(t) = S when i transmits a packet at time t}), S ⊆ Ω, i ∈ Ω. Note that, by

definition, for all S 6= S′, successful reception at S and S′ are mutually exclusive and
∑
S⊆Ω P (S|i) = 1. We say node i

reaches node j (we write i→ j), if there exists a set of nodes S ⊆ Ω such that j ∈ S and P (S|i) > 0.

Under the simple on-off channel model considered here, the routing of packets can only occur over links in an on state.

Often there might also be some constraints on the simultaneous activation of the links, i.e. certain links cannot provide

service at the same time. Let an activation set be a set of links which can be activated in the same slot. We assume that at

any time t the collective routing decisions {µdij(t)}i,j∈Ω,d∈D must be such that the set of links (i, j) for which µdij(t) = 1,

d ∈ D, belong to an activation set. Letting Γ denote the set of all such allowable routing decisions, the above constraints

can be written as

µdij(t) ≤ 1{j∈Si(t)} , {µ
d
ij(t)}i,j∈Ω,d∈D ∈ Γ. (2)

The selection of routing decisions together with the exogenous arrivals impact the queue backlog of node i corresponding

to commodity d in the following manner:

Qdi (t+ 1) = [Qdi (t)−
∑
j∈Ω

µdij(t)]
+ +

∑
j∈Ω

µdji(t)1{Qd
j (t)≥µd

ji(t)} +Adi (t). (3)

Definition 1. A routing policy is a collection of routing decisions ∪i,j∈Ω ∪d∈D ∪∞t=0{µdij(t)} where for all i, j ∈ Ω, d ∈ D,

and θ ∈ {0, 1}, the decisions {µdij(t) = θ} belong to the σ-field generated byH(t) = ∪i,j∈Ω∪d∈D{Qdi (0), Si(0), µdij(0), . . . ,

Qdi (t− 1), Si(t− 1), µdij(t− 1), Qdi (t), Si(t)}.

Definition 2. A routing policy Π is said to stabilize the network if the time average queue backlog of each node remains

finite when packets are routed according to Π. The stability region of the network is the set of all arrival rate matrices λ

for which there exists a routing policy that stabilizes the network.

Definition 3. A routing policy is said to be throughput optimal if it stabilizes the network for all arrival rate matrices that

belong to the interior of the stability region.

Fact 1 (Corollary 1 in [3]). Let S denote the stability region of the network. An arrival rate matrix λ is in the stability

region S if and only if there exists a stationary randomized routing policy that makes routing decisions {µ̃dij(t)}i,j∈Ω,d∈D

solely based on the collection of potential forwarders at time t, {Si(t)}i∈Ω, and for which

E

∑
j∈Ω

µ̃dkj(t)−
∑
i∈Ω

µ̃dik(t)

 ≥ λdk, ∀k ∈ Ω,∀d ∈ D, k 6= d.

Fact 1 provides a linear program whose solutions always stabilize the network, but requires a full knowledge of the arrivals

statistics. In this paper, we are interested in a class of routing policies which are throughput optimal but do not require

knowledge of the arrival rates.

Now we are ready to provide the main analytical results of the paper. For simplicity of exposition, we first consider the

single destination scenario with no activation constraints. The generalization of the results to the multi-destination scenario

with activation constraint is provided in Section IV.
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Before we proceed, we introduce the following notations in the interest of simplicity: For a set C of nodes, we define

AdC(t) =
∑
i∈C A

d
i (t), QdC(t) =

∑
i∈C Q

d
i (t), µdC,in(t) =

∑
j /∈C

∑
k∈C µ

d
jk(t), and µdC,out(t) =

∑
j∈C

∑
k/∈C µ

d
jk(t).

III. SINGLE DESTINATION AND ORTHOGONAL CHANNEL SCENARIO

In this section, we consider the single destination with orthogonal channel scenario and provide an overview of the results.

The analysis of the results is provided in Subsection III-E while the generalization of the results to the multi-destination

scenario with parallel transmission constraints is discussed in Section IV.

Without loss of generality, we consider node N to be the destination, i.e. D = {N}. Since each node maintains only

one buffer (corresponding to destination N ), we drop the commodity superscript d = N when denoting various random

variables such as routing decisions µij(t), i, j ∈ Ω. Furthermore, in this section we assume that all channels are orthogonal

and there are no activation set constraints on simultaneous packet transmissions, i.e. Γ = Ω× Ω.

A. Priority-Based Routing

In this subsection, we introduce the class of priority-based routing policies. To define the priority-based routing policy,

we need the following definitions.

A rank ordering R = (C1, C2, . . . , CM ) is an ordered list of non-empty sets C1, C2, . . . , CM (1 ≤ M ≤ N), referred

to as ranking classes, that create a partition of Ω = {1, 2, . . . , N}, i.e. ∪Mi=1Ci = {1, 2, . . . , N} and Ci ∩ Cj = ∅, i 6= j.

We denote the set of all possible rank orderings of {1, 2, . . . , N} by R. Note that when Ci’s are singleton, R reduces to a

simple permutation of the nodes {1, 2, . . . , N}. Given a rank ordering R = (C1, C2, . . . , CM ), we write a ≺R b to indicate

that node a ∈ Ci has a lower rank than b ∈ Cj , i < j. We write a �R b, if a ≺R b or a, b ∈ Ci for some i.

Definition 4. A priority-based routing policy Π{R(t)} is a routing policy under which node i, at time t and among its set of

potential forwarders Si(t), selects a node with the lowest rank according to R(t). In other words, under Π{R(t)}, µij(t) = 1,

only when j ∈ Si(t) and j �R(t) k for all k ∈ Si(t).

Next we introduce a class of priority-based routing policies under which R(t) is chosen as a time-invariant function of

Q(t), i.e. there exists a function π : RN+ → R such that R(t) = π(Q(t)). In Subsection III-D, we proceed to establish the

throughput optimality of this class of routing policies.

B. f -policy

In this section, we introduce a class of priority-based routing policies each of which is associated with a bivariate function f ,

hence referred to as an f -policy. Each such policy partitions the space of queue backlogs, RN+ , into |R| routing decision

cones to each of which a unique rank ordering of nodes R ∈ R is assigned. In other words, it is possible to define the

mapping πf : RN+ → R such that at any time t and for all Q(t) in the cone associated with R, πf (Q(t)) = R. The specific

shape of each cone (i.e. the set of its defining hyperplanes) is dictated by the corresponding function f . In order to give the

precise description of f -policy, we need the following definitions which allow us to compare rank orderings R and R′:

Definition 5. Let R = (C1, C2, . . . , CM ) and R′ = (C ′1, C
′
2, . . . , C

′
M ′). We define a mismatch m : R×R → N as

m(R,R′) = min {i ∈ N : Ci 6= C ′i} .
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For two rank orderings R and R′, m(R,R′) compares ranking classes of R and R′ from low to high and determines the

index of the first ranking class in which they differ.

Definition 6. Given two rank orderings R and R′, we say R′ is a refinement of R (and R is a confinement of R′) if i ≺R j

implies that i ≺R′ j for any i, j ∈ Ω.

Definition 7. Given two rank orderings R = (C1, C2, . . . , CM ) and R′ = (C ′1, C
′
2, . . . , C

′
M+1), we say R′ is a one-step

refinement of R (and R is a one-step confinement of R′) with regard to ranking class Ci (1 ≤ i ≤M) if
Ck = C ′k if 1 ≤ k ≤ i− 1

Ci = C ′i ∪ C ′i+1

Ck = C ′k+1 if i+ 1 ≤ k ≤M

.

The union of the sets of all one-step refinements and one-step confinements of R, denoted by B1(R) and B2(R) respectively,

is referred to as adjacency of R and is denoted by A(R).

Definition 8. Given a bivariate function f , a penalty function Λf is defined on backlog vector Q ∈ RN+ , rank ordering

R = (C1, C2, . . . , CM ) ∈ R, and natural number n, n ≤M :

Λf (Q, R, n) =

n∑
i=1

f(|Ci−1|, |Ci|)QCi ,

where |C0| = 0.

Definition 9. Consider two rank orderings R and R′ and a bivariate function f . We say R penalizes Q less than R′ and

write R <Q R′ if

• Λf (Q, R,m(R,R′)) < Λf (Q, R′,m(R,R′)),

or if

• Λf (Q, R,m(R,R′)) = Λf (Q, R′,m(R,R′)) and R is a one-step refinement of R′.

Let Df (R), R ∈ R, be a subset of RN+ such that for all Q ∈ Df (R) and all R′ ∈ A(R), R <Q R′, i.e.

Df (R) =
{
Q ∈ RN+ : R <Q R′ for all R′ ∈ A(R)

}
. (4)

Remark 1. Let R and R′ be two rank orderings and let γ ∈ R+ be a constant. If R <Q R′ then R <γQ R′. In other

words, Df (R) is a cone in RN+ .

Remark 2. Due to the linearity of Λf (·, R, n) and finiteness of A(R), the boundaries of the cone corresponding to rank

ordering R consists of finitely many hyperplanes of the form

Λf (Q, R,m(R,R′)) = Λf (Q, R′,m(R,R′)),

where R′ ∈ A(R).

Lemma 1. Let bivariate function f satisfy the following two conditions

• (C1) For all m ≥ 0 and n1, n2 > 0

1

f(m,n1 + n2)
=

1

f(m,n1)
+

1

f(m+ n1, n2)
,
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• (C2) For all m ≥ 0 and n1, n2 > 0

f(m,n1) ≥ f(m+ n1, n2).

Then for any Q ∈ RN+ , there exists a unique R ∈ R such that Q ∈ Df (R).

Proof: The proof is given in Appendix B.

Remark 3. By Lemma 1, {Df (R)}R∈R forms a partition of RN+ . Hence, it is meaningful to define a function πf : RN+ → R

such that πf (Q) = R⇔ Q ∈ Df (R).

Now we are ready to provide the precise definition of f -policy as discussed earlier.

Definition 10. f -policy is a priority-based routing policy Π{R(t)} where R(t) = πf (Q(t)).

Example 1. Consider a network of three nodes as given in Fig. 2(a). Let R be the set of all rank orderings of {1, 2, 3},

and f(m,n) = 1
3m(3n−1) (it is easy to show that function f satisfies (C1) and (C2)). Since node 3 is the destination and

Q3(t) = 0 for all time slots t, the space of queue backlogs can be reduced to R2
+. Furthermore, it suffices to restrict R to

the set of all rank orderings in which the first ranking class only consists of node 3, i.e. C1 = {3}. Fig. 2(b) shows the

structure of the cones {Df (R)}R∈R.

2

1

3

(a) A network of three nodes

({3},{1},{2})

({3},{1,2})

({3},{2},{1})

Q
2

Q
1

Q2= Q1 f(1,1)/f(2,1) = 3Q1

Q2= Q1 f(2,1)/f(1,1) = 1/3 Q1

(b) Structure of the cones

Fig. 2. Structure of the cones for a network of three nodes

Example 2. Consider a network of four nodes as given in Fig. 3(a). Let R be the set of all rank orderings of {1, 2, 3, 4},

and f(m,n) = 1
3m(3n−1) . Similar to Example 1 and since Q4(t) = 0 for all time slots t, the space of queue backlogs can

be reduced to R3
+. Furthermore, it suffices to restrict R to the set of all rank orderings in which the first ranking class only

consists of node 4, i.e. C1 = {4}. Fig. 3(b) shows the structure of the cones {Df (R)}R∈R.

By construction, f -policy orders the nodes based only on their queue backlogs using a bivariate function f independently of

the topological characteristic of the network. In certain cases, this may cause packets to be routed away from the destination.

In the next section, we introduce a modified version of f -policy, referred to as path-connected f -policy, which does not allow

packets to be routed away from the destination. The main idea behind path-connected f -policy is that the rank orderings
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2

3

1

4

(a) A network of four nodes

Q1

Q2

Q3

({4},{1},{2,3})

({4},{1},{3},{2})

({4},{2},{1},{3})

({4},{3},{1},{2})

({4},{1},{2},{3})

({4},{2},{3},{1})

({4},{3},{1,2})

({4},{3},{2},{1})

({4},{1,2,3})

({4},{1,3},{2})

({4},{2},{1,3})

({4},{1,2},{3})({4},{2,3},{1})

(b) Structure of the cones

Fig. 3. Structure of the cones for a network of four nodes

are limited to those under which there exists a path from any node i to the destination through the nodes with lower or the

same rank as i. The precise description of path-connected f -policy is provided in the next section.

C. Path-connected f -policy

In order to give a detailed description of path-connected f -policy, we have to define a path-connected rank ordering.

Definition 11. A rank ordering R is referred to as path-connected if for each node i there exist distinct nodes j1, j2, . . . , jl

such that i→ j1 → j2 → . . .→ jl → N and jn �R i for all 1 ≤ n ≤ l.

The set of all path-connected rank orderings is denoted by Rc, Rc ⊆ R. Let Ac(R) ⊆ A(R) be the union of the sets

of all path-connected one-step refinements and one-step confinements of R, denoted by Bc1(R) and Bc2(R) respectively. We

define Dc
f (R), R ∈ Rc, as

Dc
f (R) =

{
Q ∈ RN+ : R <Q R′ for all R′ ∈ Ac(R)

}
.

Definition 12. The network is said to be connected if for each node i there exist nodes i1, i2, . . . , il such that i → i1 →

i2 → . . .→ il → N .

Next lemma renders the set of cones as a partition of RN+ .

Lemma 2. Assume the network is connected.1 If bivariate function f satisfies conditions (C1) and (C2), then for all Q ∈ RN+ ,

there exists a unique R ∈ Rc such that Q ∈ Dc
f (R).

1If a node has no path to the destination, it cannot sustain any traffic and can be ignored without loss of generality.
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Proof: The proof is given in Appendix B.

In other words, {Dc
f (R)}R∈Rc is the set of cones that partition RN+ and it is possible to define a function πcf : RN+ → Rc

such that πcf (Q) = R⇔ Q ∈ Dc
f (R).

Definition 13. A priority-based routing policy Π{R(t)} is said to be a path-connected f -policy if R(t) = πcf (Q(t)).

Example 3. Consider the network of four nodes given in Example 2. Note that ({4}, {2}, {1}, {3}), ({4}, {2}, {3}, {1}),

and ({4}, {2}, {1, 3}), are not path-connected. Figure 3 shows the structure of the cones {Dc
f (R)}R∈Rc where Rc is the

set of all path-connected rank orderings of {1, 2, 3, 4} in which C1 = {4} and f(m,n) = 1
3m(3n−1) . Note the difference

with Fig. 3(b) depicting {Df (R)}R∈R.

Q1

Q2

Q3

({4},{1},{2,3})

({4},{1},{3},{2})

({4},{1,2},{3})

({4},{3},{1},{2})

({4},{1},{2},{3})

({4},{2,3},{1})

({4},{3},{1,2})

({4},{3},{2},{1})

({4},{1,2,3})

({4},{1,3},{2})

Fig. 4. Structure of the path-connected cones for the network of Example 2

Next we state the main results of this paper.

D. Overview of the Results

Theorem 1. Let f be a bivariate function that satisfies conditions (C1) and (C2). Then the associated f -policy (path-

connected f -policy) is throughput optimal.

Theorem 1 introduces a new class of throughput optimal routing policies. The sketch of the proof is provided in

Subsection III-E, with the details provided in the appendix.

Definition 14. Let Π{R(t)} and Π′{R′(t)} be two priority-based routing policies. We say Π′{R′(t)} respects Π{R(t)} if R′(t)

is a refinement of R(t) for all time slots t.

Theorem 2. Suppose Π{R(t)} is a priority-based routing policy that is throughput optimal. Any priority-based routing policy

that respects Π{R(t)} is also throughput optimal.



10

Note that Theorem 2 enables the proof of throughput optimality of specific routing policies. For example, in Subsection V-B,

Theorems 1 and 2 are used to prove the throughput optimality of two known routing policies, backpressure [1] and ORCD [9].

The proof of Theorem 2 is fairly straight forward and is given in Appendix F.

E. Throughput Optimality of f -policy

In this section, we assume that routing decisions {µ∗ij(t)}i,j∈Ω, are made under an f -policy for which f is a bivariate

function satisfying conditions (C1) and (C2). In this setting, we prove that f -policy is throughput optimal. The proof is

based on the following corollary to Foster-Lyapunov Theorem.

Fact 2 (Lemma 4.1 in [11]). Let L∗ : RN+ → R+ be a Lyapunov function. If there exist constants B > 0, ε > 0, such that

for all time slots t we have:

E [L∗(Q(t+ 1))− L∗(Q(t))|Q(t)] ≤ B − ε
N∑
k=1

Qk(t),

then the network is stable, i.e. the time average queue backlog of each node remains finite.

To prove Theorem 1, we identify a class of Lyapunov functions that under the corresponding f -policy satisfy the conditions

of Fact 2 for all arrival rate vectors λ ∈ int(S). In particular, we construct a piece-wise Lyapunov function, L∗f : RN+ → R+,

by assigning to each cone Df (R), R = (C1, C2, . . . , CM ), a quadratic function of the queue backlogs:

Lf (Q, R) =

M∑
i=1

f(|Ci−1|, |Ci|)Q2
Ci
.

Since the collection of cones form a partition of RN+ , we can combine the above quadratic functions to arrive at a piece-wise

quadratic function

L∗f (Q) = Lf (Q, πf (Q)) =
∑
R∈R

Lf (Q, R)1{Q∈Df (R)}. (5)

Lemma 3. L∗f (·) is continuous and differentiable.

Note that the continuity and differentiability of L∗f (·) follow 1) the continuity and differentiability of the construction of

Lf (·, R) inside the cone corresponding to R, as well as 2) the construction of penalty function on the separating hyperplanes

at the boundary of Df (R). The details are given in Appendix C.

Next we provide the main steps in showing L∗f has a negative expected drift.

Let us consider the Lyapunov drift when Q(t) ∈ Df (R) for some R = (C1, C2, . . . , CM ) ∈ R. By Lemma 3, L∗f (·) is

continuous and differentiable. Thus, we can write L∗f (Q(t+1)) in terms of its first-order Taylor expansion around L∗f (Q(t))

and we obtain

L∗f (Q(t+ 1))− L∗f (Q(t))

= (Q(t+ 1)−Q(t)) · ∇L∗f (Q(t)) +O(‖Q(t+ 1)−Q(t)‖2)

=

M∑
i=1

f(|Ci−1|, |Ci|)2QCi
(t)(QCi

(t+ 1)−QCi
(t)) +O(‖Q(t+ 1)−Q(t)‖2)

=

M∑
i=1

f(|Ci−1|, |Ci|)
[
Q2
Ci

(t+ 1)−Q2
Ci

(t)− (QCi
(t+ 1)−QCi

(t))2
]

+O(‖Q(t+ 1)−Q(t)‖2)



11

=

M∑
i=1

f(|Ci−1|, |Ci|)
[
Q2
Ci

(t+ 1)−Q2
Ci

(t)
]

+O(‖Q(t+ 1)−Q(t)‖2)

(a)

≤ Bf − 2

M∑
i=1

f(|Ci−1|, |Ci|)QCi(t)
(
µ∗Ci,out(t)− µ

∗
Ci,in(t)−ACi(t)

)
+O(‖Q(t+ 1)−Q(t)‖2)

(b)

≤ Bf − 2

M∑
i=1

f(|Ci−1|, |Ci|)QCi(t) (µ̃Ci,out(t)− µ̃Ci,in(t)−ACi(t)) +O(‖Q(t+ 1)−Q(t)‖2), (6)

where Bf is a constant bounded real number, {µ̃ij(t)}i,j∈Ω are routing decisions made according to the stabilizing

randomized rule given in Fact 1, and inequalities (a) and (b) follow respectively from Lemmas 4 and 5 below.

Lemma 4. Let R = (C1, C2, . . . , CM ) ∈ R and Q(t) ∈ Df (R). We have

Q2
Ci

(t+ 1)−Q2
Ci

(t) ≤ βf − 2QCi(t)(µ
∗
Ci,out(t)− µ

∗
Ci,in(t)−ACi(t)),

where βf is a constant bounded real number.

Proof: The proof is given in Appendix D.

Lemma 5. Let R = (C1, C2, . . . , CM ) ∈ R, Q(t) ∈ Df (R), and let {µ∗ij(t)}i,j∈Ω represent routing decisions made under

an f -policy. For any collection of routing decisions {µij(t)}i,j∈Ω, we have

M∑
i=1

f(|Ci−1|, |Ci|)QCi
(t)(µ∗Ci,out(t)− µ

∗
Ci,in(t)) ≥

M∑
i=1

f(|Ci−1|, |Ci|)QCi
(t)(µCi,out(t)− µCi,in(t)). (7)

Proof: The proof is given in Appendix D.

Since λ ∈ int(S), there exists a positive vector ε (vector of length N with all elements equal to ε, ε > 0) such that

λ+ ε ∈ S. Thus, from Fact 1

E [µ̃Ci,out(t)− µ̃Ci,in(t)−ACi
(t)|Q(t)] ≥ ε. (8)

Now taking expectation from both sides of (6) and using (8) we obtain,

E
[
L∗f (Q(t+ 1))− L∗f (Q(t))|Q(t)

]
≤ Bf − 2ε

M∑
i=1

f(|Ci−1|, |Ci|)QCi
(t) +O(‖Q(t+ 1)−Q(t)‖2). (9)

Since ‖Q(t+ 1)−Q(t)‖ is bounded, there exists a constant, say B′f , such that Bf +O(‖Q(t+ 1)−Q(t)‖2) ≤ B′f for all

time slots t. Moreover, property (C2) of function f implies that

f(0, |C1|) ≥ f(|C1|, |C2|) ≥ · · · ≥ f(|CM−1|, |CM |) ≥ f(|CM |, 1) = f(N, 1). (10)

Therefore, we can rewrite (9) as

E
[
L∗f (Q(t+ 1))− L∗f (Q(t))|Q(t)

]
≤ B′f − ε′

N∑
k=1

Qk(t),

where ε′ = 2εf(N, 1). Now from Fact 2, the proof of Theorem 1 is complete.

Note that the proof of throughput optimality for path-connected f -policy follows similar lines above and is provided in

Appendix E.
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IV. GENERALIZATION: MULTI-DESTINATION CONSTRAINED f -POLICY

In this section, we introduce multi-destination constrained f -policy as a generalization of f -policy in a multi-destination

scenario with parallel transmission constraints. Next we provide a precise definition of multi-destination f -policy.

Suppose Qd(t) ∈ Df (Rd), Rd = (Cd1 , C
d
2 , . . . , C

d
|Rd|), d ∈ D, and let Ci−1,d = ∪i−1

j=1C
d
j . Multi-destination constrained

f -policy is defined as to select routing decisions {µdij(t)} such that for any global channel state {Si(t)}i∈Ω, they maximize

∑
d∈D

|Rd|∑
i=1

∑
k∈Cd

i

|Rd|∑
j=1

∑
l∈Cd

j

µdkl(t)
[
f(|Ci−1,d|, |Cdi |)QCd

i
(t)− f(|Cj−1,d|, |Cdj |)QCd

j
(t)
]
,

while satisfying (1) and (2). Note that due to the global nature of the activation set constraints, the policy does not have the

decentralized structure of the f -policy.

Theorem 3. Let f be a bivariate function that satisfies conditions (C1) and (C2). Then the associated multi-destination

constrained f -policy is throughput optimal.

Proof: The proof is very similar to the proof of Theorem 1 provided in Subsection III-E. Similar to (5), we define a

piece-wise quadratic function L∗f as follows:

L∗f (Q) =
∑
d∈D

L(Qd, πf (Qd)). (11)

Let {µ∗dij (t)}i,j∈Ω,d∈D represent routing decisions made under a multi-destination constrained f -policy. Let us consider the

Lyapunov drift when Qd(t) ∈ Df (Rd), Rd = (Cd1 , C
d
2 , . . . , C

d
|Rd|), d ∈ D. Following similar steps as that of the proof of

Theorem 1, we obtain

E
[
L∗f (Q(t+ 1))− L∗f (Q(t))|Q(t)

]
≤ Bf − 2

∑
d∈D

|Rd|∑
i=1

f(|Ci−1,d|, |Cdi |)QdCd
i
(t)E

[
µ∗dCd

i ,out
(t)− µ∗dCd

i ,in
(t)−AdCd

i
(t)|Q(t)

]
+ o(‖Q(t+ 1)−Q(t)‖), (12)

where Bf is a constant bounded real number. However, the term

∑
d∈D

|Rd|∑
i=1

f(|Ci−1,d|, |Cdi |)QdCd
i
(t)
(
µdCd

i ,out
(t)− µdCd

i ,in
(t)
)

=
∑
d∈D

|Rd|∑
i=1

∑
k∈Cd

i

|Rd|∑
j=1

∑
l∈Cd

j

µdkl(t)
[
f(|Ci−1,d|, |Cdi |)QCd

i
(t)− f(|Cj−1,d|, |Cdj |)QCd

j
(t)
]

is maximized by the multi-destination constrained f -policy for any global channel state {Si(t)}i∈Ω. Hence, the negative drift

term in (12) is bounded by the negative drift under any other set of routing decisions, including the stabilizing randomized

rule. Now from Facts 1 and 2, the proof of Theorem 3 is complete.

As a special case of routing in constrained queueing networks, scheduling for single-hop networks (e.g. wireless uplinks

and downlinks) and input-queued switches have also been of great interest [2], [7], [12]–[15]. Next, we show that throughput

optimal scheduling for input-queued switches is a special case of our framework and discuss the f -scheduling. In particular,

we specialize our result to derive a class of throughput optimal scheduling policies for input-queued switches which will be

compared with some of the existing scheduling policies.
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A. Input-Queued Switches

Consider the input-queued switch studied in [2] and as depicted in Fig. 5. A scheduling decision ηdi (t) is defined to be

the (potential) number of packets sent from input i, i ∈ I to output d, d ∈ D during time slot t. In a crossbar switch, each

input can send to at most one output and each output can receive from at most one input and hence,

ηdi (t) ∈ {0, 1} ,
N∑
d=1

ηdi (t) ≤ 1 ,

M∑
i=1

ηdi (t) ≤ 1. (13)

input 1
scheduling1Q

MM

scheduling1
1Q
2
1Q

N
1Q

M

input M
O

input M

2
MQ

1
MQ

MM

K

N
MQ

output 1 output N

Fig. 5. M ×N input-queued switch.

This is nothing but a single-hop example of the setup introduced in Section II where the nodes in the network are

partitioned into M inputs labeled by I = {1, 2, . . . ,M} to N outputs (destinations) labeled by D = {1, 2, . . . , N}, with

λdd′ = 0 for all d, d′ ∈ D and a deterministic and fully connected local broadcast model P (D|i) = 1 for all i ∈ I. In this

setup, choice of routing decisions µdid(t) are equivalent to scheduling decisions ηdi (t), while the set of allowable routing

decisions Γ is the space of all permutation matrices. This means that, in the input-queued switch problem, (1) and (2) reduce

to (13). Now for any bivariate function f , we introduce a class of scheduling policies each of which is constructed using

our proposed framework, hence referred to as an f -scheduling. Let R denote the set of all possible rank orderings of I.

f -scheduling partitions the space of queue backlogs corresponding to each destination, RM+ , into |R| scheduling decision

cones to each of which a unique rank ordering R ∈ R is assigned. Similar to (4) in Subsection III-B, we can define Df (R),

R ∈ R, such that {Df (R)}R∈R forms a partition of RM+ . Suppose Rd = (Cd1 , C
d
2 , . . . , C

d
|Rd|) ∈ R and Qd(t) ∈ Df (Rd)

for all d ∈ D. Then f -scheduling selects scheduling decisions {ηdi (t)}i∈I,d∈D in order to maximize

N∑
d=1

|Rd|∑
i=1

f(|Ci−1,d|, |Cdi |)QdCd
i
(t)ηdCd

i
(t), (14)

where Qd
Cd

i
(t) =

∑
k∈Cd

i
Qdk(t) and ηd

Cd
i
(t) =

∑
k∈Cd

i
ηdk(t).
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Corollary 1. Let f be a bivariate function that satisfies conditions (C1) and (C2). Then the associated f -scheduling given

by (14) is throughput optimal.

V. f -POLICY AND THE DESIGN FOR THROUGHPUT OPTIMALITY

A. Examples: The Structure of Lyapunov Function

In Examples 1-3, we considered two different networks and showed the structure of (path-connected) cones for those

networks. In this section, we study the Lyapunov function as defined in (5) for the same networks. Figure 6 illustrates

routing decision cones Df (R) and the associated quadratic function L(·, R) for the network of Example 1. In addition,

Fig. 6 shows the contour lines of the Lyapunov function. In the central cone where nodes 1 and 2 belong to the same

ranking class, the contour of the Lyapunov function is a straight line with slope 135 degrees. The Lyapunov drift in this

case is the same for all non-idling routing policies. The contours of the Lyapunov function in the two corner cones are

elliptic. Furthermore, the contours are perpendicular to the Q axis. This implies that when one of the queues is close to

empty, to most efficiently reduce the Lyapunov drift, the policy tends to give a higher rank to the other queue. In other

words, the longer queue is served more often and the shorter queue is more likely to stay away from empty state in future.

On the boundaries between the cones, i.e. lines Q2 = 3Q1 and Q2 = 1
3Q1, the contours are still smooth indicating that the

Lyapunov function is continuous and differentiable on the boundaries.

({3},{1},{2})

1/6 Q
1
2 + 1/18 Q

2
2

({3},{1,2})

1/24 (Q
1
 + Q

2
)2

({3},{2},{1})

1/18 Q
1
2 + 1/6 Q

2
2

Q
2

Q
1

Fig. 6. Structure of the Lyapunov function for the network of Example 1

Figure 7 illustrates routing decision cones Df (R) and the associated quadratic function L(·, R) for the network of

Example 2. As shown in Fig. 7, f -policy groups the queues based on their backlogs consistent with the cone in which the

backlog state lies. Given such a grouping, the Lyapunov function is constructed by considering the sum of quadratic group

backlogs. For instance, in the central cone, 13, where all nodes belong to the same ranking class, the Lyapunov function

is nothing but the squared sum of all queue backlogs. It is clear that the Lyapunov drift in this case is the same (and

negative from Theorem 1) for all non-idling routing policies. This property allows a routing policy to potentially deviate

from backpressure decisions while still ensuring the throughput optimality. However, when one of the queues becomes
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relatively large in comparison to the other nodes’ backlogs, the backlog vector falls in one of the cones 2, 6, or 10, in which

the node with large backlog is in a separate ranking class. The Lyapunov function over each of these cones is the squared

queue backlog of the node with large backlog plus the squared sum of other queue backlogs. Hence, in cones 2, 6, or 10,

the negative expected drift is ensured only when packets are routed away from the node with disportionately large backlog.

Similarly one can analyze the behavior of the Lyapunov function in the remaining cones.

Q1

Q2

Q3

f(1,1) Q1
2+ f(2,2) (Q2 +Q3)2

f(1,1) Q1
2+ f(2,1) Q3
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f(1,1) Q2
2+ f(2,1) Q1

2 + f(3,1) Q3
2

f(1,1) Q3
2+ f(2,1) Q1

2 + f(3,1) Q2
2

f(1,1)Q1
2+ f(2,1)Q2

2 + f(3,1)Q3
2

f(1,1) Q2
2+ f(2,2) (Q1 +Q3)2

f(1,1) Q2
2+ f(2,1) Q3
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f(1,3) (Q1+Q2 +Q3)2

f(1,2) (Q1+Q3)2 + f(3,1) Q2
2

13

45

67

8

9 11

12

10

3

2 1

Fig. 7. Structure of the Lyapunov function for the network of Example 2

It is important to observe that the Lyapunov function in cones 1, 3, 5, 7, 9, and 11 is a weighted quadratic function and

closely related to the quadratic Lyapunov function associated with backpressure routing. In contrast, the Lyapunov function

in cone 13 is closely related to the total network backlog whose negative drift can be ensured so long as the routing policy

does not allow idling. In this construction, we were strongly motivated by the discussion in [16] on the piece-wise structure

of the value function and its properties near the subspaces of the form {Qi = 0}i∈I , for some I ⊆ {1, 2, . . . , N − 1}. In

particular, we have carefully constructed a smooth Lyapunov function by “stitching” a backpressure-like behavior at the

neighborhood of the subspaces {Qi = 0}i∈I , i.e. in cones 1, 3, 5, 7, 9, and 11, while allowing for an arbitrary non-idling

behavior far from these subspaces, e.g. cone 13. Furthermore, function f determines the size of cones associated with various

rank orderings and provides flexibility in the relative occupancy time spent in non-idling cone 13 versus backpressure-like

cones 1, 3, 5, 7, 9, and 11. Note that, however, the flexibility in cone 13 and non-uniqueness of the policy which ensures a

negative Lyapunov drift, in effect, prevent the proposed Lyapunov function to lead to a unique policy construction; instead,

the proposed Lyapunov construction is useful either in verifying the throughput optimality of a given policy or in modification
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of existing policies.

B. Single Commodity Multi Hop Networks: Known Routing Policies

Opportunistic routing for multi-hop wireless ad-hoc networks has seen recent research interest to overcome deficiencies

of conventional routing [3], [9], [10], [17]–[20]. Under opportunistic routing, the routing decisions are made in an online

manner by choosing the next relay based on the channel state realization during that time slot as well as a rank ordering of

neighboring nodes. Within the opportunistic routing frame work, however, the rank ordering of the neighbors, or equivalently

the selection criterion when selecting the next hop, remains an important design problem. While some authors advocated for

relaying packets via the neighbor with the minimum expected transmissions [17], [19], the neighbor with minimum expected

cost [10], or the shortest (geographic) distance to the destination [18], others have pointed out that when multiple streams

of packets are to traverse the network, however, it might be necessary to route some packets along longer paths, especially

if these paths eventually lead to links that are less congested. More precisely, [3], [9] have 1) showed that the above routing

schemes fail to stabilize otherwise stabilizable traffic (see examples given in [9]), and 2) proposed selecting the relay based

on a time varying notion of congestion, such as the queue backlog differentials [3] or the estimated draining time [9]. In

other words, when multiple streams of packets are to traverse the network, it is critical for the routing solution to ensure

queue stability for all stabilizable traffic conditions.

While one can intuitively design and propose various time variant notions of congestion, it is far from straight forward to

verify the throughput optimality of such solutions. This is mainly due to the difficulty in analyzing multi-hop, multi-server,

and multi queue systems in time. In particular, the analytic guarantees usually depend on the construction of a Lyapunov

function with an expected negative drift; a task far from trivial! This has meant that many successful strategies are reverse

engineered to be the very rule for which a known Lyapunov function is ensured to have a negative expected drift. In fact

backpressure [1] and its variants [3]–[6], with quadratic Lyapunov function, and randomized strategies [8] with an exponential

Lyapunov function remain to be the only known throughput optimal routing policies. In this section, we use Theorems 1 and

2 to prove the throughput optimality of two known routing policies, backpressure [1] and ORCD [9] in a single destination

with orthogonal channel scenario.

In the opportunistic variant of backpressure routing, DIVBAR [3], among the set of nodes that have received a packet

transmitted by node i, one of the nodes with the largest positive differential queue backlog is selected as the next forwarder.

Therefore, backpressure is a priority-based routing policy Π{Rb(t)} where Rb(t) is a partitioning of the nodes based on their

queue backlogs, with smaller backlog meaning lower rank, i.e. Qi(t) < Qj(t) implies that i ≺Rb(t) j. This policy is shown

to provide throughput optimality [3]. Here, however, we give an alternative proof which relies on Theorem 2. In other words,

backpressure routing is proved to be throughput optimal by showing that for any bivariate function f that satisfies conditions

(C1) and (C2), backpressure respects f -policy. More precisely, we show that if node j has a lower rank than node k under

any f -policy, then Qj < Qk. The proof is immediate using Lemma 8 in Appendix A.

In the rest of this section, we give a brief description of another congestion-based routing policy, known as ORCD [9]

and prove its throughput optimality. In [9], ORCD was introduced as an alternative to backpressure routing to improve the

delay performance. However, the throughput optimality of ORCD was left as a conjecture.

ORCD is a priority-based routing policy Π{RCD(t)} in which nodes are ordered according to a cost measure of congestion

“down the stream” from each node i denoted by Vi(t). In other words, i ≺RCD(t) j if Vi(t) < Vj(t). The congestion cost
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measures for nodes i ∈ Ω at time t, Vi(t)’s, form a vector [V1(t), V2(t), . . . , VN (t)] that satisfies the following fixed point

equation:

VN (t) = 0, (15)

Vi(t) = Qi(t) +
∑
S⊆Ω

P (S|i) min
j∈S

Vj(t), for i = 1, 2, . . . , N − 1. (16)

Here, we prove the throughput optimality of ORCD by showing that ORCD respects path-connected f -policy corresponding

to any bivariate function f that satisfies condition (C1) and for all m ≥ 0 and n1, n2 > 0

f(m,n1)

f(m+ n1, n2)
≥ 1

pmin
, (17)

where pmin = min {P (S|i) : i ∈ Ω, S ⊆ Ω, P (S|i) > 0}. Note that, for instance, function f(m,n) = 1
Km(Kn−1) , K ≥

1 + 1
pmin

, is such a function. In other words, we show that ORCD respects the path-connected f -policy for all such f .

Mathematically, for all j, k ∈ Ω such that j ≺π
c
f (Q(t)) k, then j ≺RCD(t) k as well. Let πcf (Q(t)) = (C1, C2, . . . , CM ) ∈ Rc,

and let k ∈ Ci and j ∈ Ci−1. We consider two cases:

Case I. Node k reaches a node in Ci−1. In such a case, we need to show

Vk(t) ≥ Qk(t) >
QCi−1(t)

pmin
≥ Vj(t). (18)

The first inequality in (18) is immediate from (83). The second and third inequalities follow from the arguments below.

Lemma 9 in the appendix implies the second inequality in (18), i.e.

Qk(t) >
f(0, |Ci−1|)
f(|Ci−1|, 1)

QCi−1(t) ≥ QCi−1(t)

pmin
. (19)

On the other hand, since πcf (Q(t)) is path-connected, there exist distinct intermediate nodes j1, j2, . . . , jl ∈ Ci−1 such that

j → j1 → j2 → . . . → jl → N . Using Lemma 12 in the appendix recursively and noting that VN (t) = 0, we have the

following upper bound of Vj(t),

Vj(t) ≤
Qj(t)

pmin
+
Qj1(t)

pmin
+ · · ·+ Qjl(t)

pmin
≤ QCi−1(t)

pmin
, (20)

which gives the last inequality in (18).

Case II. Node k does not reach any node in Ci−1. Let Ĉi be the set of nodes in Ci that reach a node in Ci−1. All the

paths from node k to the destination are through the nodes in Ĉi, hence, Vk(t) ≥ minm∈Ĉi
Vm(t). However, from Case I,

for each node j ∈ Ci−1 and m ∈ Ĉi, Vm(t) ≥ Vj(t). This completes the proof.

C. Input-Queued Switches: Known Scheduling policies

In this subsection, we compare f -scheduling with two known throughput optimal scheduling policies: 1) Longest Queue

First (LQF) [2]; and 2) Projective Cone Scheduling (PCS) [15]. Before we proceed, a brief overview of LQF and PCS is

provided. Let η(t) and Q(t) be respectively the matrices of the scheduling decisions and the queue backlogs, i.e. η(t) :=

[ηdi (t)]M×N and Q(t) := [Qdi (t)]M×N . PCS is a class of scheduling policies each of which is parameterized with a positive-

definite symmetric matrices (of size M ×M ) with negative or zero off-diagonal elements, W . Associated with matrix W ,

PCS selects scheduling decisions {ηdi (t)} such that 〈η(t),WQ(t)〉 is maximized. When W is set to be equal to identity,

PCS coincides with LQF policy which selects scheduling decisions {ηdi (t)} such that
∑
d

∑
iQ

d
i (t)η

d
i (t) is maximized.
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To compare the candidate scheduling policies, we consider a 2 × 1 switch. It can be easily shown that in this case it is

sufficient and necessary to consider matrix W of the form
[

α −γ
−γ β

]
where α, β, γ ≥ 0 and αβ > γ2. Figure 8 shows

the scheduling decisions, [η1, η2], made by f -scheduling, LQF, and PCS for different values of Q in the backlog space.

[0 , 1]

[0 , 1] or [1 , 0]

[1 , 0]

Q
2

Q
1
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(a) f -scheduling
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(b) LQF

[0 , 1]
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2

Q
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Q2= Q1 (α+γ)/(β+γ)

(c) PCS

Fig. 8. Scheduling decisions made by f -scheduling, LQF, and PCS for a 2× 1 switch

Figure 8 shows that for a 2 × 1 switch, LQF and PCS are consistent with f -scheduling and for bivariate functions f

satisfying f(1,1)
f(0,1) <

α+γ
β+γ <

f(0,1)
f(1,1) (for instance, function f(m,n) = 1

Km(Kn−1) , K ≥ max{α,β}+γ
min{α,β}+γ , is such a function). This

result can be generalized to M × 1 switches: for any bivariate function f that satisfies conditions (C1) and (C2), LQF is

always an f -schedule. Similarly with an appropriate choice of f , PCS is also an f -schedule. In other words, Theorems 3

and 2 provide an alternative method of proof for the throughput optimality of LQF and PCS for M × 1 switches.

Remark 4. For M × N , N > 1 switches, LQF and PCS policies might not, in general, be consistent with f -scheduling.

Moreover, the class of f -scheduling provides a new set of throughput optimal policies whose allocation in much of the

queue state space coincide with that under a maximum size matching2 (note that balancing becomes necessary when the

queue state visits one of the side f -cones with strict priorities).

VI. DISCUSSION AND FUTURE WORK

In this paper, we provided a large class of throughput optimal policies by considering a class of piece-wise quadratic

Lyapunov functions. We also specialized our result to recover and prove the throughput optimality of two known routing

policies, backpressure and ORCD. The delay performance improvements of ORCD, reported in [9], shed light on the

importance of the path-connected structure of f -policy. In a parallel area of research, we have used the insight obtained by

considering a path-connected f -policy to design throughput optimal policies with low overhead and complexity [21], [22]. For

instance, an interesting research question involves the throughput and delay performance of distributed and low-complexity

variants of ORCD [21], [22].

APPENDIX

A. Preliminary Lemmas

In this appendix, we provide some preliminary lemmas. These lemmas are technical and only helpful in proving the main

lemmas of the paper, i.e. Lemmas 1-5.

2Maximum size matching is a scheduling policy under which the number of non-empty inputs that send packet to the outputs is maximized.
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Lemma 6. Let R = (C1, . . . , Ci, Ci+1, . . . , CM ) and R′ = (C1, . . . , Ci−1, Ci ∪Ci+1, Ci+2, . . . , CM ) be two adjacent rank

orderings.

• If R <Q R′, then

f(|Ci−1|, |Ci|)QCi
≤ f(|Ci−1|, |Ci|+ |Ci+1|)(QCi

+QCi+1
) ≤ f(|Ci|, |Ci+1|)QCi+1

.

• If R′ <Q R, then

f(|Ci−1|, |Ci|)QCi
> f(|Ci−1|, |Ci|+ |Ci+1|)(QCi

+QCi+1
) > f(|Ci|, |Ci+1|)QCi+1

.

Proof:

Suppose R <Q R′. From definitions 5 and 9, m(R,R′) = i and we have

Λf (Q, R, i) ≤ Λf (Q, R′, i), (21)

or equivalently

f(|Ci−1|, |Ci|)QCi
≤ f(|Ci−1|, |Ci|+ |Ci+1|)(QCi

+QCi+1
). (22)

Using (22) and property (C1) of function f , however,

1

f(|Ci−1|, |Ci|+ |Ci+1|)
QCi+1 =

1

f(|Ci−1|, |Ci|
QCi+1 +

1

f(|Ci−1|+ |Ci|, |Ci+1|)
QCi+1

≥
(

1

f(|Ci−1|, |Ci|+ |Ci+1|)
− 1

f(|Ci−1|, |Ci|)

)
QCi

+
1

f(|Ci−1|+ |Ci|, |Ci+1|)
QCi+1

=
1

f(|Ci−1|+ |Ci|, |Ci+1|)
(QCi

+QCi+1
). (23)

Combining (22) and (23) completes the proof for the case R <Q R′. Now suppose R′ <Q R. From Definition 9, we

have

Λf (Q, R, i) > Λf (Q, R′, i). (24)

The rest of the proof follows (22) and (23) identically.

Lemma 7. Let R = (C1, C2, . . . , CM ) ∈ R (or ∈ Rc) and Q ∈ Df (R)
(

or Q ∈ Dc
f (R)

)
. Then

f(|Ci−1|, |Ci|)QCi
≤ f(|Ci|, |Ci+1|)QCi+1

i = 1, 2, . . . ,M − 1.

Proof: For all 1 ≤ i ≤ M − 1, R′i = (C1, . . . , Ci−1, Ci ∪ Ci+1, Ci+2 . . . , CM ) is a one-step confinement of R. Note

that if R ∈ Rc ⊆ R then R′i ∈ Rc ⊆ R. Now, since Q ∈ Df (R)
(
Q ∈ Dc

f (R)
)

, we have R <Q R′i for all 1 ≤ i ≤M −1,

and from Lemma 6, we have the assertion of the lemma.

Lemma 8. Let R = (C1, C2, . . . , CM ) ∈ R and Q ∈ Df (R). For any node k in ranking class Ci,

Qk >
f(0, |Ci−1|)
f(|Ci−1|, 1)

QCi−1 ≥ QCi−1 .

Proof: Consider R′ = (C1, . . . , Ci−1, {k}, Ci − {k}, Ci+1, . . . , CM ). Since Q ∈ Df (R), we have R <Q R′. Using

Lemma 6, we have

f(|Ci−1|, 1)Qk > f(|Ci−1|, |Ci|)QCi
. (25)
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On the other hand and since Q ∈ Df (R), Lemma 7 implies that

f(|Ci−1|, |Ci|)
f(|Cj−1|, |Cj |)

QCi ≥ QCj j = 1, 2, . . . , i− 1. (26)

Summing over j = 1, 2, . . . , i− 1 yields

f(|Ci−1|, |Ci|)

i−1∑
j=1

1

f(|Cj−1|, |Cj |)

QCi
≥

i−1∑
j=1

QCj
= QCi−1 . (27)

However, condition (C1) implies that
i−1∑
j=1

1

f(|Cj−1|, |Cj |)
=

i−1∑
j=1

1

f(
∑j−1
l=1 |Cl|, |Cj |)

=
1

f(0,
∑i−1
j=1 |Cj |)

=
1

f(0, |Ci−1|)
. (28)

Combining (27) and (28), we obtain

QCi
≥ f(0, |Ci−1|)
f(|Ci−1|, |Ci|)

QCi−1 , (29)

which together with (25) and condition (C2) completes the proof.

Lemma 9. Let R = (C1, C2, . . . , CM ) ∈ Rc and Q ∈ Dc
f (R). For any node k in ranking class Ci that reaches a node in

Ci−1,

Qk >
f(0, |Ci−1|)
f(|Ci−1|, 1)

QCi−1 ≥ QCi−1 .

Proof: Consider R′ = (C1, . . . , Ci−1, {k}, Ci − {k}, Ci+1, . . . , CM ). Note that R′ is path-connected since R is path-

connected and node k reaches a node in Ci−1. Since Q ∈ Dc
f (R), we have R <Q R′, which together with Lemma 6

gives,

f(|Ci−1|, 1)Qk > f(|Ci−1|, |Ci|)QCi
. (30)

The rest of the proof is similar to the proof of Lemma 8 and is omitted for brevity.

Lemma 10. Let R = (C1, . . . , Ci, Ci+1, . . . , CM ) and R̃ = (C1, . . . , Ci−1, Ci ∪ Ci+1, Ci+2, . . . , CM ). Suppose following

assumptions hold:

1) R <Q R′ for all R′ ∈ B1(R).

2) For any node k ∈ Ci+1, Qk > QCi .

3) R̃ <Q R.

Then R̃ <Q R′ for all R′ ∈ B1(R̃).

Proof:

It is sufficient to show that R̃ penalizes Q less than its one-step refinements with regard to Ci ∪ Ci+1. Let R̃1 =

(C1, . . . , Ci−1, A∪C,B∪D,Ci+2, . . . , CM ) be a one-step refinement of R̃ where A, B, C, D are sets of nodes satisfying A 6=

∅, D 6= ∅, Ci = A∪B, and Ci+1 = C∪D. Then we can write R and R̃ as R = (C1, . . . , Ci−1, A∪B,C∪D,Ci+2, . . . , CM )

and R̃ = (C1, . . . , Ci−1, A ∪ B ∪ C ∪ D,Ci+2, . . . , CM ). Let R1 = (C1, . . . , Ci−1, A,B,C ∪ D,Ci+2, . . . , CM ) and

R2 = (C1, . . . , Ci−1, A ∪ B,C,D,Ci+2, . . . , CM ) be one-step refinements of R. Let
∑i−1
j=1 |Cj | = m, |A| = a, |B| = b,

|C| = c, and |D| = d. We consider three cases based on sets B and C:
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Case I. B and C are not empty.

Since R <Q R2, by lemma 6, we have

f(m+ a+ b, c)QC > f(m+ a+ b, c+ d)(QC +QD) > f(m+ a+ b+ c, d)QD. (31)

Let assume that R̃1 <Q R̃. By Lemma 6, we have

f(m, a+ c)(QA +QC) ≤ f(m+ a+ c, b+ d)(QB +QD). (32)

After proper arrangement,

QB ≥
f(m, a+ c)

f(m+ a+ c, b+ d)
QC −QD. (33)

By property (C1) of function f ,

1

f(m+ a+ c, b+ d)
=

1

f(m+ a+ c, b)
+

1

f(m+ a+ b+ c, d)
. (34)

Combining (31), (33), and (34), we obtain

QB >

(
f(m, a+ c)

f(m+ a+ c, b+ d)
− f(m+ a+ b, c)

f(m+ a+ b+ c, d)

)
QC

=

(
f(m, a+ c)

f(m+ a+ c, b)
+
f(m, a+ c)− f(m+ a+ b, c)

f(m+ a+ b+ c, d)

)
QC . (35)

By property (C2) of function f ,

f(m, a+ c)

f(m+ a+ c, b)
≥ 1. (36)

By Property (C1) and (C2) of function f ,

2

f(m, a+ c)
≤ 1

f(m, a+ c)
+

1

f(m+ a+ c, b)

=
1

f(m, a+ c+ b)

=
1

f(m, a+ b)
+

1

f(m+ a+ b, c)
≤ 2

f(m+ a+ b, c)
. (37)

Combining (35), (36), and (37), we obtain

QB > QC . (38)

By assumption 2 of the lemma, queue backlog of any node in set C is larger than QA +QB . But this is in contradiction

with (38). Therefore, assumption R̃1 <Q R̃ cannot hold and we have R̃ <Q R̃1.

Case II. B is empty.

Since R̃ <Q R, we have the following inequality by Lemma 6,

f(m, a+ b)(QA +QB) > f(m+ a+ b, c+ d)(QC +QD). (39)

Using (31), (39), and the fact that B = ∅, we obtain following inequalities

f(m+ a, c)QC > f(m+ a+ c, d)QD, (40)

f(m, a)QA > f(m+ a+ c, d)QD. (41)
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By (40), (41), and property (C1) of function f ,

f(m, a+ c)(QA +QC) > f(m, a+ c)

(
1

f(m, a)
+

1

f(m+ a, c)

)
f(m+ a+ c, d)QD

= f(m+ a+ c, d)QD. (42)

By Lemma 6, R̃ <Q R̃1.

Case III. C is empty.

Since R <Q R1, we have

f(m, a)QA > f(m, a+ b)(QA +QB) > f(m+ a, b)QB . (43)

Using (32), (43), and the fact that C = ∅ we obtain following inequalities

f(m, a)QA > f(m+ a, b)QB , (44)

f(m, a)QA > f(m+ a+ b, d)QD. (45)

Combining (44) and (45), we obtain

QB +QD < f(m, a)

(
1

f(m+ a, b)
+

1

f(m+ a+ b, d)

)
QA

=
f(m, a)

f(m+ a, b+ d)
QA. (46)

By Lemma 6, R̃ <Q R̃1.

Lemma 11. Let R = (C1, . . . , Ci, Ci+1, . . . , CM ) ∈ Rc and R̃ = (C1, . . . , Ci−1, Ci ∪ Ci+1, Ci+2, . . . , CM ). Suppose

following assumptions hold:

1) R <Q R′ for all R′ ∈ Bc1(R).

2) For any node k ∈ Ci+1 such that it reaches a node in Ci, Qk > QCi
.

3) R̃ <Q R.

Then R̃ <Q R′ for all R′ ∈ Bc1(R̃).

The proof of Lemma 11 is very similar to the proof of Lemma 10. Here we let R̃1 = (C1, . . . , Ci−1, A ∪ C,B ∪

D,Ci+2, . . . , CM ) be a path-connected one-step refinement of R̃ where A, B, C, D are sets of nodes satisfying A 6= ∅,

D 6= ∅, Ci = A∪B, and Ci+1 = C∪D. Let R1 = (C1, . . . , Ci−1, A,B,C∪D,Ci+2, . . . , CM ) and R2 = (C1, . . . , Ci−1, A∪

B,C,D,Ci+2, . . . , CM ) be one-step refinements of R. We know that R and R̃1 are path-connected. This implies that R2

is path-connected and R1 is path-connected when C = ∅. To get a contradiction to (38), we should note that since R2

is path-connected, there exists at least one node in C such that it reaches a node in Ci and hence, by assumption 2 of

Lemma 11 we have QC > QA +QB .

B. Proof of Lemmas 1 and 2

This appendix is dedicated to the proof of Lemmas 1 and 2. These lemmas contain extended algebraic manipulation to

show that cones Df (·) partition RN+ , i.e. for ∀Q ∈ RN+ , ∃! R ∈ R such that Q ∈ Df (R). The existence proofs are inductive,

while the uniqueness proofs are done by contradiction.
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Lemma 1. Let bivariate function f satisfy conditions (C1) and (C2). Then for all Q ∈ RN+ , there exists a unique R ∈ R

such that Q ∈ Df (R).

Proof of Existence:

The proof is done by induction. Let n denote the total number of nodes in the network excluding the destination. For

n = 1 there exists only one rank ordering and the proof for this case is trivial. Now suppose for all n ≤ N − 1 and all

Q ∈ Rn+ there exists a rank ordering R such that Q ∈ Df (R). Next we constructively show that for all Q ∈ RN+ , there

exists a rank ordering R such that Q ∈ Df (R).

1. Let R0 = ({1, 2, . . . , N}).

2.

2.1. Initialize l = 1.

2.2. Is there a rank ordering R̂ of the form R̂ = (Ĉ1, Ĉ2), where |Ĉ1| = N − l, |Ĉ2| = l, and R̂ <Q R0?

2.3. If yes, go to step 3. Otherwise, go to step 2.4.

2.4. l = l + 1. Is l < N?

2.5. If yes, go to step 2.2. Otherwise, Q ∈ Df (R0).

3. Consider nodes in class Ĉ1 of rank ordering R̂. Since |Ĉ1| < N , by the assumption of the induction, there exists

a rank ordering for the nodes in Ĉ1 such that it penalizes Q less than all its adjacent rank orderings. Let R∗ =

(C∗1 , C
∗
2 , . . . , C

∗
M−1) be this rank ordering. Let R∗0 = (C∗1 , C

∗
2 , . . . , C

∗
M ) = (C∗1 , C

∗
2 , . . . , C

∗
M−1, Ĉ2). Furthermore,

let R∗i = (C1, C2, . . . , CM−i−1, CM−i ∪ . . . ∪ CM ) denote the rank ordering generated by merging the last i classes

of R∗0.

4. Find m such that R∗i <Q R∗i−1 for for i = 1, 2, . . . ,m, but R∗m <Q R∗m+1. Claim 1 below and Lemma 10 in

Appendix A establish that Q ∈ Df (R∗m).

Claim 1. R∗0 <Q R′ for all R′ ∈ B1(R∗0). Moreover, for i = 1, 2, . . . ,M−1, and for any node k ∈ C∗i+1, Qk >
∑i
j=1QC∗j .

By Claim 1, Lemma 10, and using the fact that R∗i <Q R∗i−1 i = 1, 2, . . . ,m, we can recursively show that R∗i <Q R′

for all R′ ∈ B1(R∗i ), for i = 1, 2, . . . ,m. By construction, we also know that R∗m <Q R∗m+1. Moreover, R∗m penalizes Q

less than its one-step confinements with regard to C∗i , i = 1, 2, . . . ,m − 2, since R∗ <Q R′ for all R′ ∈ B2(R∗). Hence,

R∗m <Q R′ for all R′ ∈ A(R∗m), and by definition, Q ∈ Df (R∗m). Now what remains is to verify Claim 1.

Proof of Claim 1: Note that following results are immediate using Lemmas 7, 8, and the fact that R∗ <Q R′ for all

R′ ∈ B1(R∗):

• R∗0 penalizes Q less than all its one-step refinements with regard to ranking class C∗i for i = 1, 2, . . . ,M − 1.

• For i = 1, 2, . . . ,M − 2, and for any node k ∈ C∗i+1, Qk >
∑i
j=1QC∗j .

What is left is to show that

1) R∗0 penalizes Q less than all its one-step refinements with regard to ranking class C∗M .

2) For any node k ∈ C∗M , Qk >
∑M−1
j=1 QC∗j .

Let R̃ = (C∗1 , C
∗
2 , . . . , C

∗
M−1, A,B) be a one-step refinement of R∗0 with regard to C∗M , i.e. A ∪ B = C∗M . Note that

∪M−1
i=1 C∗i = Ĉ1 and C∗M = Ĉ2. Suppose R̃ <Q R∗0. By Lemma 6, we have

f(|Ĉ1|, |A|)QA ≤ f(|Ĉ1|, |Ĉ2|)QĈ2
≤ f(|Ĉ1|+ |A|, |B|)QB . (47)
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On the other hand, since R̂ <Q R0, by Lemma 6, we have

f(0, |Ĉ1|)QĈ1
≤ f(|Ĉ1|, |Ĉ2|)QĈ2

. (48)

Combining (47) and (48), and using property (C1) of function f , we obtain

f(|Ĉ1|+ |A|, |B|)
f(0, |Ĉ1|+ |A|)

QB = f(|Ĉ1|+ |A|, |B|)QB

(
1

f(0, |Ĉ1|)
+

1

f(|Ĉ1|, |A|)

)

≥ QĈ1
+QA. (49)

After proper arrangement we have

f(0, |Ĉ1|+ |A|)
(
QĈ1

+QA

)
≤ f(|Ĉ1|+ |A|, |B|)QB , (50)

which implies that rank ordering (Ĉ1 ∪ A,B) penalizes Q less than R0. But this is a contradiction (look at step 2 of the

given procedure and note that |B| < |Ĉ2| ). Therefore, R∗0 penalizes Q less than all its one-step refinements with regard to

ranking class C∗M .

Now consider node k ∈ C∗M and let R̃ = (C∗1 , C
∗
2 , . . . , C

∗
M−1, {k}, C∗M − {k}). From the result of the previous part,

R∗0 <Q R̃. By Lemma 6, we have

f(|Ĉ1|, 1)Qk > f(|Ĉ1|, |Ĉ2|)QĈ2
. (51)

Combining (48) and (51), we have

Qk >
f(0, |Ĉ1|)
f(|Ĉ1|, 1)

QĈ1
≥ QĈ1

, (52)

where the last inequality follows from property (C2) of function f . Hence, for all k ∈ C∗M , Qk >
∑M−1
j=1 QC∗j .

Proof of Uniqueness:

Consider R = {C1, C2, . . . , CM} and R̂ = {Ĉ1, Ĉ2, . . . , ĈM̂}. We will prove by contradiction that Q cannot be in Df (R)

and Df (R̂) simultaneously.

Case I. There exist nodes a and b such that b ≺R a and a ≺R̂ b, i.e. b ∈ Ci−1 , a ∈ ∪Ml=iCl
a ∈ Ĉj−1 , b ∈ ∪M̂l=jĈl

.

If Q ∈ Df (R), by Lemma 8, we have

Qa > QCi−1 ≥ Qb. (53)

Similarly, if Q ∈ Df (R̂), by Lemma 8, we have

Qb > QĈj−1 ≥ Qa. (54)

Clearly (53) and (54) cannot hold simultaneously.

Case II. There are no nodes a, b, such that b ≺R a and a ≺R̂ b. In this case, it is not difficult to see that, there exist n,

n ≤ M , consecutive classes Ci+1, . . . , Ci+n ∈ R, and Ĉj ∈ R̂ such that for some sets of nodes A1, A2, B1, . . ., Bn, the
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following relationships hold 
Ci+1 = A1 ∪B1

Ci+l = Bl 2 ≤ l ≤ n− 1

Ci+n = Bn ∪A2

,

and

Ĉj = ∪nl=1Bl,

where B1, . . ., Bn are non-empty while A1 and A2 could be empty.

In rank ordering R, Ci and A1 have lower rank than ∪nl=2Bl. Because of the condition of Case II, none of the nodes in

Ci ∪A1 can have a higher rank than a node in ∪nl=2Bl under rank ordering R̂. Hence, we have

Ci ∪A1 = Ĉj−1, (55)

|Ci|+ |A1| = |Ĉj−1|. (56)

Furthermore,

|Ci+n−1| = |Ci|+ |A1|+ | ∪n−1
l=1 Bl|

= |Ĉj−1|+
n−1∑
l=1

|Bl|. (57)

Now suppose Q ∈ Df (R). Let R1 = {C1, . . . , Ci, A1, B1, Ci+2, . . . , CM} and R2 = {C1, . . . , Ci+n−1, Bn, A2, Ci+n+1,

. . . , CM} be one-step refinements of R. Since Q ∈ Df (R), R <Q R1 and R <Q R2. By Lemma 6, we have

f(|Ci|, |Ci+1|)QCi+1
≥ f(|Ci|+ |A1|, |B1|)QB1

, (58)

f(|Ci+n−1|, |Bn|)QBn
≥ f(|Ci+n−1|, |Ci+n|)QCi+n

, (59)

where equality in (58) and (59) hold when A1 and A2 are empty respectively. Moreover, since Q ∈ Df (R), by Lemma 7

we have

f(|Cl|, |Cl+1|)QCl+1
≥ f(|Cl−1|, |Cl|)QCl

l = 1, 2, . . . ,M − 1. (60)

Combining (58)-(60), we obtain

f(|Ci+n−1|, |Bn|)QBn ≥ f(|Ci|+ |A1|, |B1|)QB1 . (61)

However, we also have assumed that Q ∈ Df (R̂). Let R̂1 = {Ĉ1, . . . , Ĉj−1, B1,∪nl=2Bl, Ĉj+1, . . . , ĈM̂} and R̂2 =

{Ĉ1, . . . , Ĉj−1,∪n−1
l=1 Bl, Bn, Ĉj+1, . . . , ĈM ′} be one-step refinements of R̂. By Lemma 6, we have

f(|Ĉj−1|,
n∑
l=1

|Bl|)
n∑
l=1

QBl
< f(|Ĉj−1|, |B1|)QB1

, (62)

f(|Ĉj−1|+
n−1∑
l=1

|Bl|, |Bn|)QBn < f(|Ĉj−1|,
n∑
l=1

|Bl|)
n∑
l=1

QBl
, (63)

whose direct consequence is

f(|Ĉj−1|+
n−1∑
l=1

|Bl|, |Bn|)QBn
< f(|Ĉj−1|, |B1|)QB1

. (64)
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Substituting (56) and (57) in (64), we obtain

f(|Ci+n−1|, |Bn|)QBn
< f(|Ci−1|+ |A1|, |B1|)QB1

, (65)

which contradicts (61). Therefore, Q cannot be in Df (R) and Df (R̂) simultaneously.

Next, we provide a brief sketch of the proof of Lemma 2.

Lemma 2. If bivariate function f satisfies conditions (C1) and (C2), then for all Q ∈ RN+ , there exists a unique R ∈ Rc

such that Q ∈ Dc
f (R).

Note that this proof is very similar to the proof of Lemma 1 and the only difference is the limitation to the set of

path-connected rank orderings. To prove Lemma 2, we only need to show that the rank orderings used in Lemma 1 can be

identically selected from path-connected rank orderings.

Proof of Existence:

The proof is done by induction. Let n denote the total number of nodes in the network excluding the destination. For

n = 1 there exists only one rank ordering and the proof for this case is trivial. Now suppose for n ≤ N − 1 and for any

Q ∈ Rn+ there exists a path-connected rank ordering R such that R <Q R′ for all R′ ∈ Ac(R). For n = N and for any

Q ∈ RN+ , using the procedure below, we will constructively show that there exists a path-connected rank ordering R such

that Q ∈ Dc
f (R).

1. Let R0 = ({1, 2, . . . , N}).

2.

2.1. Initialize l = 1.

2.2. Is there a path-connected rank ordering R̂ of the form R̂ = (Ĉ1, Ĉ2), where |Ĉ1| = N − l, |Ĉ2| = l, and

R̂ <Q R0?

2.3. If yes, go to step 3. Otherwise, go to step 2.4.

2.4. l = l + 1. Is l < N?

2.5. If yes, go to step 2.2. Otherwise, Q ∈ Dc
f (R0).

3. Consider nodes in class Ĉ1 of rank ordering R̂. Since |Ĉ1| < N , by the assumption of the induction, there exists a path-

connected rank ordering for the nodes in Ĉ1 such that it penalizesQ less than all its adjacent path-connected rank order-

ings. Let R∗ = (C∗1 , C
∗
2 , . . . , C

∗
M−1) be this rank ordering. Let R∗0 = (C∗1 , C

∗
2 , . . . , C

∗
M ) = (C∗1 , C

∗
2 , . . . , C

∗
M−1, Ĉ2).

Furthermore, let R∗i = (C1, C2, . . . , CM−i−1, CM−i ∪ . . . ∪ CM ) denote the rank ordering generated by merging the

last i classes of R∗0. (It is clear that rank orderings R∗i , i = 0, 1, . . . ,M − 1, are path-connected.)

4. Find m such that R∗i <Q R∗i−1 for for i = 1, 2, . . . ,m, but R∗m <Q R∗m+1. Modified version of Claim 1 below and

Lemma 11 in Appendix A establish that Q ∈ Dc
f (R∗m).

Claim 2. R∗0 <Q R′ for all R′ ∈ Bc1(R∗0). Moreover, for i = 1, 2, . . . ,M − 1, and for any node k ∈ C∗i+1 such that it

reaches a node in ∪ij=1C
∗
j , Qk >

∑i
j=1QC∗j .

The proof of Claim 2 is very similar to the proof of Claim 1. The difference is that we have to use Lemma 9 instead

of Lemma 8. Furthermore, R̃ = (C∗1 , C
∗
2 , . . . , C

∗
M−1, {k}, C∗M − {k}) is path-connected only for node k ∈ C∗M such that it

reaches a node in ∪M−1
j=1 C∗j .

Proof of Uniqueness:
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Consider two path-connected rank orderings R = {C1, C2, . . . , CM} and R̂ = {Ĉ1, Ĉ2, . . . , ĈM̂}. We will prove by

contradiction that Q cannot be in Dc
f (R) and Dc

f (R̂) simultaneously.

Case I. There exist nodes a and b such that b ≺R a and a ≺R̂ b, i.e. b ∈ Ci−1 , a ∈ ∪Ml=iCl
a ∈ Ĉj−1 , b ∈ ∪M̂l=jĈl

.

If a and b reach a node in Ci−1 and Ĉj−1 respectively, then by Lemma 9, we have

Qa > QCi−1 ≥ Qb, (66)

Qb > QĈj−1 ≥ Qa, (67)

which are contradictory.

If a does not reach a node in Ci−1, we will show that there exists a node, say ã, such that it reaches a node in Ci−1

and it satisfies

ã ∈ ∪Ml=iCl , ã ∈ Ĉj−1. (68)

Since a ∈ ∪Ml=iCl and a does not reach a node in Ci−1, all paths from node a to the destination include at least a node

k ∈ ∪Ml=iCl such that it reaches a node in Ci−1. On the other hand, since a ∈ Ĉj−1 and R̂ is path-connected, there exists a

path from node a to the destination which only consists of nodes from Ĉj−1. Now it is clear that there exists a node, say

ã, on this path such that it reaches a node in Ci−1 and it satisfies (68).

Similarly we can show that if b does not reach a node in Ĉj−1, then there exists a node, say b̃, such that it reaches a

node in Ĉj−1 and it satisfies

b̃ ∈ Ci−1 , b̃ ∈ ∪M̂l=jĈl.

As before we can use Lemma 9 for nodes ã and b̃ to show that Q cannot be in Dc
f (R) and Dc

f (R̂) simultaneously.

Case II. There are no nodes a, b, such that b ≺R a and a ≺R̂ b.

Proof of uniqueness for this case is similar to the one provided for Lemma 1. We only need to show that rank orderings

R1, R2, R̂1, and R̂2, defined identically, are path-connected. Suppose R1 = {C1, . . . , Ci, A1, B1, Ci+2, . . . , CM} is not

path-connected. Since R = {C1, . . . , Ci, A1 ∪B1, Ci+2, . . . , CM} is path-connected, the only possibility is that some node

in A1 has no path to the destination via nodes in Ci. On the other hand, the fact that R̂ is path-connected implies that

all nodes in A1 must have a path to the destination via nodes with rank not higher than that of A1, which results in a

contradiction. In a similar way we can show that rank orderings R2, R̂1, and R̂2 are path-connected.

C. Proof of Lemma 3

Lemma 3. L∗f (·) is continuous and differentiable.

Proof: For all R ∈ R, Lf (·, R) is a simple quadratic function in Q. Hence, to prove continuity and differentia-

bility of L∗f (·), it suffices to show that L∗f (·) is continuous and differentiable at any Q on the hyperplane separating

Df (R) and Df (R′), for any adjacent rank orderings R = (C1, . . . , Ci, Ci+1, . . . , CM ) and R′ = (C1, . . . , Ci−1, Ci ∪

Ci+1, Ci+2, . . . , CM ).
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The hyperplane separating Df (R) and Df (R′) is given by Λf (Q, R, i) = Λf (Q, R′, i). From Lemma 6, this hyperplane

can be written as

f(|Ci−1|, |Ci|)QCi
= f(|Ci−1|, |Ci|+ |Ci+1|)(QCi

+QCi+1
) = f(|Ci|, |Ci+1|)QCi+1

. (69)

On one side of this hyperplane, L∗f (·) = Lf (·, R), and on the other side, L∗f (·) = Lf (·, R′). For any Q on this hyperplane,

Lf (Q, R)− Lf (Q, R′) = f(|Ci−1|, |Ci|)Q2
Ci

+ f(|Ci|, |Ci+1|)Q2
Ci+1

− f(|Ci−1|, |Ci|+ |Ci+1|)(QCi
+QCi+1

)2

= f(|Ci−1|, |Ci|+ |Ci+1|)
(
(QCi

+QCi+1
)QCi

+ (QCi
+QCi+1

)QCi+1
− (QCi

+QCi+1
)2
)

= 0, (70)

where the last equality follows from (69). Equation (70) implies that L∗f (·) is continuous on the hyperplane separating

Df (R) and Df (R′).

Similarly, to prove the differentiability of L∗f (·), we have to show that Lf (·, R) and Lf (·, R′) have same partial derivatives

at any Q on the hyperplane separating Df (R) and Df (R′). We have,

∂Lf (Q, R)

∂Qk
= 2f(|Cj−1|, |Cj |)QCj

for all k ∈ Cj , j = 1, 2, . . . ,M, (71)

and,

∂Lf (Q, R′)

∂Qk
=

 2f(|Cj−1|, |Cj |)QCj
for all k ∈ Cj , j 6= i, i+ 1

2f(|Ci−1|, |Ci|+ |Ci+1|)(QCi +QCi+1) for all k ∈ Ci ∪ Ci+1

. (72)

From (69),(71), and (72), we have

∇Lf (Q, R) = ∇Lf (Q, R′). (73)

D. Proof of Lemmas 4 and 5

In this appendix we prove the main steps in establishing the negative expected drift in Lf under the f -policy.

Lemma 4. Let R = (C1, C2, . . . , CM ) ∈ R and Q(t) ∈ Df (R). We have

Q2
Ci

(t+ 1)−Q2
Ci

(t) ≤ βf − 2QCi
(t)(µ∗Ci,out(t)− µ

∗
Ci,in(t)−ACi

(t)),

where βf is a constant bounded real number.

Proof:

For all Ci, if QCi
≥ f(|Ci−1|,1)

f(|Ci−1|,|Ci|) , then (25) implies that for all k ∈ Ci,

Qk ≥
f(|Ci−1|, |Ci|)
f(|Ci−1|, 1)

QCi ≥ 1.

Let

α = max
0≤m<N

max
0<n≤N

f(m, 1)

f(m,n)
.

If QCi
(t) ≥ α, then using (3) we obtain

QCi(t+ 1) ≤ QCi(t)− µ∗Ci,out(t) + µ∗Ci,in(t) +ACi
(t). (74)
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The expression above is an inequality rather than an equality because the actual number of packets routed to Ci from other

ranking classes may be less than µ∗Ci,in
(t) if there are no actual packets transmitted from the nodes in those ranking classes.

After taking the square of both sides of (74) and appropriate arrangements of terms, we have

Q2
Ci

(t+ 1)−Q2
Ci

(t) ≤ (µ∗Ci,out(t)− µ
∗
Ci,in(t)−ACi(t))

2 − 2QCi(t)(µ
∗
Ci,out(t)− µ

∗
Ci,in(t)−ACi(t))

≤ N2 +N2(1 +Amax)2 − 2QCi(t)(µ
∗
Ci,out(t)− µ

∗
Ci,in(t)−ACi(t)). (75)

When QCi
(t) < α, then again using (3), we have

QCi
(t+ 1) ≤ QCi

(t) + µ∗Ci,in(t) +ACi
(t). (76)

This implies that,

Q2
Ci

(t+ 1)−Q2
Ci

(t) ≤ (µ∗Ci,in(t) +ACi
(t))2 + 2QCi

(t)µ∗Ci,out(t)− 2QCi
(t)(µ∗Ci,out(t)− µ

∗
Ci,in(t)−ACi

(t))

≤ N2(1 +Amax)2 + 2αN − 2QCi
(t)(µ∗Ci,out(t)− µ

∗
Ci,in(t)−ACi

(t)). (77)

Denoting βf := N2 +N2(1 +Amax)2 + 2αN , (75) and (77) result in the assertion of the lemma.

Lemma 5. Let R = (C1, C2, . . . , CM ) ∈ R, Q(t) ∈ Df (R), and let {µ∗ij(t)}i,j∈Ω represent routing decisions made under

an f -policy. For any collection of routing decisions {µij(t)}i,j∈Ω, we have

M∑
i=1

f(|Ci−1|, |Ci|)QCi
(t)(µ∗Ci,out(t)− µ

∗
Ci,in(t)) ≥

M∑
i=1

f(|Ci−1|, |Ci|)QCi
(t)(µCi,out(t)− µCi,in(t)). (78)

Proof: Switching the sums in the right-hand side of (78) and using (1), we have
M∑
i=1

f(|Ci−1|, |Ci|)QCi(t)(µCi,out(t)− µCi,in(t))

=

M∑
i=1

∑
k∈Ci

M∑
j=1

∑
l∈Cj

µkl(t)
[
f(|Ci−1|, |Ci|)QCi(t)− f(|Cj−1|, |Cj |)QCj (t)

]
≤

M∑
i=1

∑
k∈Ci

max
1≤j≤M

max
l∈Cj

1{l∈Sk(t)}
[
f(|Ci−1|, |Ci|)QCi

(t)− f(|Cj−1|, |Cj |)QCj
(t)
]
. (79)

Since Q(t) ∈ Df (R), by Lemma 7, we have

f(|Ci−1|, |Ci|)QCi
(t) ≤ f(|Ci|, |Ci+1|)QCi+1

(t) i = 1, 2, . . . ,M − 1. (80)

However, from (80), the upper bound in (79) is achieved under the f -policy, i.e. µ∗kl(t) = 1 only when l ∈ Sk(t) and

l �R m for all m ∈ Sk(t).

E. Proof of Theorem 1 for path-connected f -policy

Theorem 1. Let f be a bivariate function that satisfies conditions (C1) and (C2). Then the associated path-connected

f -policy is throughput optimal.

The proof is done in the same way as described in Subsection III-E. The only differences appear in the number of cones

partitioning RN+ and in the proof of Lemma 4.
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Given restrictions to path-connected rank orderings, we have the following Lyapunov function

L∗f (Q) = Lf (Q, πcf (Q)) =
∑
R∈Rc

Lf (Q, R)1{Q∈Dc
f (R)}. (81)

Proof of Lemma 4 is modified as explained below:

If QCi(t) ≥ α, then for any node k ∈ Ci that reaches a node in Ci−1, by (30), we have Qk ≥ 1. Now consider the nodes

in Ci that do not reach a node in Ci−1. Under path-connected f -policy, these nodes may route their packets only to nodes

in Ci. Hence, (74) holds. The rest of the proof remains unchanged.

F. Proof of Theorem 2

This short appendix establishes the following:

Theorem 2. Suppose Π{R(t)} is a priority-based routing policy that is throughput optimal. Any priority-based routing policy

that respects Π{R(t)} is also throughput optimal.

Proof: Suppose Π′{R′(t)} is a priority-based routing policy that respects Π{R(t)}. Let S∗i (t) = {k ∈ Si(t) : k �R(t)

j for all j ∈ Si(t)} and S∗
′

i (t) = {k ∈ Si(t) : k �R′(t) j for all j ∈ Si(t)}. Since R′(t) is a refinement of R(t), S∗
′

i (t) is a

subset of S∗i (t). By definition of the priority-based routing, Π′{R′(t)} selects one of the nodes in S∗
′

i (t) as the next forwarder.

Since S∗
′

i (t) ⊆ S∗i (t), this routing decision is consistent with Π{R(t)}, hence, guarantees throughput optimality.

G. Proof of Lemma 12

Lemma 12. For any two nodes a and b, if a→ b, then

Va(t) ≤ Qa(t)

pmin
+ Vb(t). (82)

Proof: If Va(t) ≤ Vb(t), then (82) follows trivially.

Now suppose b ∈ Ua(t) := {a′ : a → a′ and Va′(t) < Va(t)}. Without loss of generality, let Ua(t) = {a1, a2, . . . , aK}

such that Vai(t) ≤ Vai+1
(t) for all i ≤ K. We can rewrite (16) as:

Va(t) = Qa(t) +

K∑
i=1

Vai(t)

 ∑
S:i=min{l: al∈S}

P (S|a)

+ Va(t)

 ∑
S:S∩Ua(t)=∅

P (S|a)

 (83)

≤ Qa(t) + Va1(t)

 ∑
S:1=min{l: al∈S}

P (S|a)

+ Va(t)

 K∑
i=2

∑
S:i=min{l: al∈S}

P (S|a) +
∑

S:S∩Ua(t)=∅

P (S|a)

 .

Rearranging terms, and putting

P0 = 1−

 K∑
i=2

∑
S:i=min{l: al∈S}

P (S|a) +
∑

S:S∩Ua(t)=∅

P (S|a)

 =
∑

S:1=min{l: al∈S}

P (S|a),

we have,

Va(t) ≤ Qa(t)

P0
+
Va1(t)

P0

 ∑
S:1=min{l: al∈S}

P (S|a)


=

Qa(t)

P0
+ Va1(t)

≤ Qa(t)

pmin
+ Vb(t),

where the last inequality holds because b ∈ Ua(t), and P0 ≥ pmin.
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