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Abstract— This paper considers the following stochastic con-  The application of the above problem abstraction to mul-
trol problem that arises in opportunistic spectrum access:a  tichannel opportunistic access is as follows. Each Markov
system consists ofn_channels where the state (‘good” or , cegs represents a wireless channel, whose stateivassit

“bad”) of each channel evolves as independent and identidgl flect d ic ch - h | diti d b
distributed Markov processes. A user can select exactly reriect dynamic changes in channel condiions caused by

channels to sense and access (based on the sensing result) ifading, interference, and so on. Specifically, we will coesi
each time slot. A reward is obtained whenever the user senses statel as the “good” state, in which a user (or transmitter)
and accesses a “good” channel. The objective is to design acan successfully communicate with a receiver; stai the
channel selection policy that maximizes the expected disgoted “pad” state. in which communication will fail. The channel
total reward accrued over a finite or infinite horizon. In our . ' . Ly . .
previous work we established the optimality of a greedy potiy ;tate is assumed tp remain constant W|th!n a smglel discrete
for the special case ofk = 1 (i.e., single channel access) under time step. A multichannel system consists wof distinct
the condition that the channel state transitions are positiely —channels. A user who wishes to use a particular channel at
correlated over time. In this paper we show under the same the beginning of a time step must first sense or probe the state
condition the greedy policy is optimal for the general case 0 ¢ the channel, and can only transmit in a channel probed
k > 1; the methodology introduced here is thus more general. . " " . .
This problem may be viewed as a special case of the restless© be in the “good” state in the same time step.. The user
bandit problem, with multiple plays. We discuss connections Cannot sense and access more thamannels at a time due
between the current problem and existing literature on this to hardware limitations. If alk selected channels turn out to
class of problems. be in the “bad” state, the user has to wait till the beginning
of the next time step to repeat the selection process.

This model captures some of the essential features of

We consider the following stochastic control problemmultichannel opportunistic access as outlined above. @n th
there aren uncontrolled Markov chains, each an indepenether hand, it has the following limitations: the simplcit
dent, identically-distributed, two-state discrete-tiMarkov of the iid two-state channel model; the implicit assumption
process. The two states will be denoted as statnad statd)  that channel sensing is perfect and the lack of penalty if the
and the transition probabilities are given py, i, =0,1.  user transmits in a bad channel due to imperfect sensing;

The system evolves in discrete time. In each time instancend the assumption that the user can select an arbitrary
a user selects exactlyout of then processes and is allowed set of k£ channels out ofn (e.g., it may only be able to
to observe their states. For each selected process thatmappaccess a contiguous block of channels due to physical layer
to be in statel the user gets a reward; there is no penalty folimitations). Nevertheless this model does allow us to iobta
selecting a channel that turns out to be statrit each such analytical insights into the problem, and more importantly
occurrence represents a lost opportunity because the sisesdme insight into the more general problem of restless
limited to selecting onlyk of them. The ones that the userbandits with multiple plays.
does not select do not reveal their true states. Out obgeigtiv. This model has been used and studied quite extensively
to derive a selection strategy whose total expected digedun in the past few years, mostly within the context of oppor-
rewarded over a finite or infinite horizon is maximized.  tunistic spectrum access and cognitive radio networks, see

This is a Markov decision process (or MDP) problem [1]for example [7], [8], [9], [10]. [7] studied the same problem
Furthermore, it is a partially observed MDP (or POMDP)and proved the optimality of the greedy policy in the special
problem [2] due to the fact that the states of the underlyingase ofk = 1,n = 2, [11] proved the optimality of the
Markov processes are not fully observed at all times and thgteedy policy in the case of = n — 1, while [9], [10]
as a consequence the syststateas perceived by the user looked for provably good approximation algorithms for a
is in the form of a probability distribution, also commonlysimilar problem. Furthermore, the indexability (in the texi
referred to as thénformation stateof the system [3]. This of Whittle’s heuristic index and indexability definition ]}
problem is also an instance of the restless bandit probleai the underlying problem was studied in [12], [13].
with multiple plays [4], [5], [6]. More discussion on this  Our previous work [8] established the optimality of the
literature is provided in section V. greedy policy for the special case bf= 1 for arbitraryn

and under the conditiop;; > pg1, i.e., when a channel’s
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greedy policy under the same condition but for any> It follows that the information state of the system evolves a
k > 1. The main thought process used to prove this mor®llows. Given that the state at tintés () and action”(¢)
general result derives from that used in [8]. However, thens taken,w;(t + 1) for i € a*(¢) can take on two values: (1)
were considerable technical difficulties we had to overcome; if the observation is that channgls in a “good” state;
to reach the conclusion. this occurs with probabilityw; (¢); (2) po1 if the observation is

In the remainder of this paper we first formulate the probthat channel is in a “bad” state; this occurs with probability
lem in Section II, present preliminaries in Section Ill, andl — w;. For any other channgl ¢ a*(t), with probability 1
then prove the optimality of the greedy policy in Section IVthe corresponding, (¢t + 1) = 7(w;(t)) where the operator
We discuss our work within the context of restless bandit : [0,1] — [0, 1] is defined as
problems in Section V. Section VI concludes the paper.

T(w) =wpi1+ (1 —w)por, 0<w<1. Q)
Il. PROBLEM FORMULATION

As outlined in the introduction, we consider a user trying}e
to access the wireless spectrum pre-divided mtmdepen-
dent and statistically identical channels, each given lwaa t

The objective is to maximize its total discounted expected
ward over a finite horizon given in the following problem
(P) (extension to infinite horizon is discussed in Section V)

state Markov chain. The collection afchannels is denoted T

by A, each indexed by =1,2,--- ,n. (P): maxJz(w) = mEXEW[Z B Ry, (@(t))@(1) = @
The system operates in discrete time steps indexet] by t=1

t=1,2,---,T, whereT is the time horizon of interest. At where() < 8 < 1 is the discount factor, an®,, (o(t)) is

timet¢~, the channels go through state transitions, and at timBe reward collected under statét) when channels in the

¢ the user makes the channel selection decision. Specificald¢tq*(t) = m, (o (t)) are selected.

at timet the user selects of the n channels to sense, the  The maximization in (P) is over the class of deterministic

set denoted by* C V. Markov policies2. An admissible policyr, given by the
For channels sensed to be in the “good” state (styte vector 7 = [ry, 7o, , 77|, is such thatr, specifies a

the user transmits in those channels and collects one unit @apping from the current information statét) to a channel

reward for each such channel. If none is sensed good, the usglection actiona®(t) = m(@(t)) < {1,2,---,n}. This

does not transmit, collects no reward, and waits untill to s done without loss of optimality due to the Markovian

make another choice. This process repeats sequentially umature of the underlying system, and due to known results

the time horizon expires. on POMDPs [3, Chapter 6].
The underlying system (i.e., the channels) is not fully

observable to the user. Specifically, channels go through [1l. PRELIMINARIES

state transition at time~ (or anytime betweem_t — 1,t)_),_ The dynamic programming (DP) representation of prob-
thus when the user makes the channel sensing decision|&gt, (P) is given as follows:

time ¢, it does not have the true state of any channel at

time ¢t. Furthermore, upon its action (at time) only & Vr(@) = max  E[R.(@)]
channels reveal their true states. The user's action space ateN latl=k
at time t is given by the finite set*(t) c N, where Vi) = max (D wi+p-
a*(t) = {i1, ..., ix). ateN latl=k I
We know (see e.g., [2], [14], [3]) that a sufficient statis-
tic of such a system for optimal decision making, or the Z H wﬁ?‘(l —wy)t7h
information stateof the system [14], [3], is given by the l;€{0,1},icak \icak
conditional probabilities of the state each channel is e Vit1(pots - - po1, T(w;), p1ts - - -, 011)), (2)

all past actions and observations. Since each channel can
be in one of two states, we denote this information state
by w(t) = [wi(t), - ,wn(t)] € [0,1]", wherew;(t) is the In the last term, the channel state probability vector ciBasi
conditional probability that channélis in statel at timet of three parts: a sequence @f,’s that represent those
given all past states, actions and observatforEhroughout channels sensed to be in stétat time¢ and the length of
the paperw;(t) will be referred to as the information statethis sequence is the numberlgé equaling zero; a sequence
of channeli at timet, or simply the channel probability of of valuesr(w,) for all j ¢ a*; and a sequence @f;’s that
¢ at timet. represent those channels sensed to be in statdimet and
Due to the Markovian nature of the channel model, theéhe length of this sequence is the numberl¢g equaling
future information state is only a function of the currenione. Note that the future expected reward is calculated by
information state and the current action; i.e., it is indegEnt summing over all possible realizations of tle selected
of past history given the current information state andoscti channels.

t=1,2,.-

) 3

T —1.

INote that it is a standard way of turning a POMDP problem intteasic 2A Markov policy is a policy that derives its action only degérg on
MDP problem by means of the information state, the main iogpion being  the current (information) state, rather than the entiréohysof states, see
that the state space is now uncountable. e.g., [3].



The value functionV;(w) represents the maximum ex-
pected future reward that can be accrued starting from tinaf

Below we present a number of lemmas used in the proof
this theorem. The first lemma introduces a notation that

t when the information state i$. In particular, we have allows us to express the expected future reward under the
V1(@) = max, J7 (@), and an optimal deterministic Markov greedy policy.

policy exists such that = 7} (@) achieves the maximum in
(3) (see e.g., [1] (Chapter 4)).

Lemma 1:There existl’ n-variable functions, denoted by

For simplicity of representation, we introduce the follow-order £ and can be represented recursively in the following

ing notations: fo
o poti[z]: this is the vectofpo1, po1, - - - , po1] Of lengthz;
o p11[z]: this is the vectofpi1, p11,- - - , p11] Of lengthz.
o We will use the notation:
a0 = [T (wh@—w)™)
1<i<k
forly,---,lx € {0,1}. That is, given a vector dfs and

1s (total of k elements)g() is the probability that a set
of k channels are in states given by the vector.
With the above notation, Eqn (3) can be written as

Vi(@) = akﬁ%:k(zwﬁg.

icak

q(lla . alk) .
lie{(),l},ieak

Vit1(poi[k — le‘], T ,T(Wj)vpu[z L) -

Solving (P) using the above recursive equation can be
computationally heavy, especially considering the faeit th
@ is a vector of probabilities. It is thus common to consider
suboptimal policies that are easier to compute and imple-
ment. One of the simplest such heuristics is a greedy policy

7(

where at each time step we take an action that maximizes

the immediate one-step reward. Our focus is to examine the
optimality properties of such a simple greedy policy.
For problem (P), the greedy policy under state =

[wi,wa, - ,wy] is given by
Zwi .

icak
That is, the greedy policy seeks to maximize the revasd
if there were only one step remaining in the horizon. In
the next section we investigate the optimality of this pplic
Specifically, we will show that it is optimal in the case of
p11 > po1- This extends the earlier result in [8] that showed
this to be true for the special case fof= 1.

a¥(©) = arg  max

akCN,|a*|=k

®3)

IV. OPTIMALITY OF THE GREEDY PoLICY

In this section we show that the greedy policy is optimal
when p1; > po1. The main theorem of this section is as
follows.

Theorem 1:The greedy policy is optimal for Problem
(P) under the assumption that; > py;. That is, for
t=1,2,---,T, k <n, andVo = [wy, - ,wy] € [0,1]",
we have

VE(@; 2 (@) = VF(@;a¥),  Va* c N, 4)

where z*(©) is the subset whose elements (indices) cor-
respond to thek largest values ino, and V;*(w;a*) the

Wk(@), t =1,2,--- ,T, each of which is a polynomial of
rm:
Wii(@) = Z Wi
n—k+1<i<n
W (@) = Z w;+ -
n—k+1<i<n
Z Q(lna aln—k+1) .
lndn—1, Jlntr—1€{0,1}

Wi (porlk =Y L) m(@i), -+ s (wnr), pra D L) -

The proof is easily obtained using backward induction on

t given the recursive equation and noting that the mapping

) is linear. The detailed proof is thus omitted for brevity.
A few remarks are in order on this functidi’ (o).

i) Firstly, when @ is given by an ordered vector
[wi,wa, wp] With wy < wy < -+ < wyp, WF(@) is
the expected total discounted future reward (froto
T) by following the greedy policy.
This follows from how the greedy policy works in
the special case gf;; > po1- Note that in this case
the conditional probability updating functiariw) is a
monotonically increasing function, i.ez(w1) > 7(w2)
for w; > ws. Therefore the ordering of channel
probabilities is preserved among those that are not
observed.
If a channel has been observed to be in state “1”
(respectively “0"), its probability at the next step
becomesp;; > 7(w) (respectivelypy; < 7(w)) for
anyw € [0, 1]. In other words, a channel observed to
be in state “1” (respectively “0”) will have the highest
(respectively lowest) possible probability among all
channels.
Therefore if we take the initial information state1),
order the channels according to their probabilities
wi(1), and sense the highektchannels (topk of the
ordered list) with ties broken randomly, then following
the greedy policy means that in subsequent steps we
will keep a channel in its current position if it was
sensed to be in statein the previous slot; otherwise,
it was observed to be in stateand gets thrown to the
bottom of the ordered list. The policy then selects the
next top most (or rightmost} channels on this new
ordered list. This procedure is essentially the same as
that given in the recursive expression1df().

i) Secondly, whenw is not ordered, W} () reflects a
policy that simply goes down the list of channels by
the order fixed inv, while each time tossing the ones

3Each functioni¥; is affine in each variable, when all other variables are

expected value of actiom® followed by behaving optimally. held constant.



observed to b@ to the end of the list and keeing those This lemma is the key to our main result and its proof,

observed to bd at the top of the list. which uses a sample path argument, highly instructive. It is
iii) Thirdly, the fact thatW/X is a polynomial of order 1 however also lengthy, and for this reason has been relegated
and affine in each of its elements implies that to the Appendix.
WE (w1, wn_2,y, ) With the above lemmas, Theorem 1 is easily proven:
_WtK(wl e Wne2, T, Y) Proof of Theorem 1We prove by induction o’. When

t = T, the greedy policy is obviously optimal. Suppose

fr— —_ K PR J—
= (@ y)IEWt (Wi, wn2,0,1) it is also optimal for all timest + 1,¢ + 2,---,T, under
Wit (w1, ,wn—2,1,0)] . the assumptiorp;; > po1. Then at timet, by Lemma 2,
Similar results hold when we change the positiong of I .Z,ufﬁces to show thatVj(wi, -, wj, 2.y, ’w"), <
. . c Wi (wr, - wh Y,y wy) Torall z >y and0 < j <
andy. To see this, consider the above as two functions 0 .
n — 2. But this is proven in Lemma 3. O

of x andy, each having arr term, ay term, anxy
term and a constant term. Since we are only swapping V. DISCUSSION

the positions ofr andy in these two functions, the . _ . o _
constant term remains the same, and so dOGSE:&hE While the formulation (P) is a finite horizon prOblem,

term. Thus the only difference is the term and the the same result applies to the infinite horizon discounted
y term, as given in the above equation. This Iinearityeward case using standard techniques as we have done in
result is used later in our proof. our previous work [15], [8].

The next lemma establishes a sufficient condition for the In th_e calse Olf infinite _horldzon_, ;hehprollalem s]'Eud|eId_|n th'sd
optimality of the greedy policy. paper is closely associated with the class of multi-arme

bandit problems [16] and restless bandit problems [4]. &his
Lemma 2:Consider Problem (P) under the assumptiom class of problems where controlled Markov chains (also
that p11 > po1. To show that the greedy policy is optimal called machines or arms) are activated (or played) one at a

at time ¢ given that it is optimal at + 1,¢ +2,---,7, it  time. A machine when activated generates a state dependent
suffices to show that at timewe have reward and moves to the next state according to a Markov
A rule. A machine not activated either stays frozen in itsenirr
Wiiwr, - w2y, s wn) state (a rested bandit) or moves to the next state according
< Wi, W), Y Ty W), (5) to a possibly different Markov rule (a restless bandit). The

problem is to decide the sequence in which these machines
are activated so as to maximize the expected (discounted or
average) reward over an infinite horizon.

The multi-armed bandit problem was originally solved by
Gittins (see [16]), who showed that there exists index
ssociated with each machine that is solely a function df tha
individual machine and its state, and that playing the nrehi
currently with the highest index is optimal. This index has
since been referred to as ti@ttins index The remarkable
raature of this result lies in the fact that it decomposes the
€% dimensional problem inte: 1-dimensional problems, as
. - . . an index is defined for a machine independent of others.
channels not included in .klt%am:uns to SI?OW that if BN e restless bandit problem on the other hand was proven
(5) is true then we havéV*(a¥,a") < Wf—(w}ﬁ’ ~%n)-  much more complex, and is PSPACE-hard in general [17].
This is easily done since the ordered lisf" {a") may b_e Relatively little is known about the structure of its optima
converted w1, - W through a sequence of s_W|tch|n_gs olicy in general. In particular, the Gittins index policy i
between two neighboring elements that are not increasin tin | optimal

N O general optimal [4].

orde:‘re:j. Eac_;h su_ch switch invokes (5), thereby maintaining When multiple machines are activated simultaneously, the
the *<” relationship. - resulting problem is referred to as multi-armed bandithwit

Lemma 3:For0 < wy; < wy < ... < w, < 1, we have multiple plays Again optimal solutions to this class of

forall z > y and all0 < j < n — 2, with j = 0 implying
WE(z,y,ws, - ,wn) < Wy, 2,ws, -+ ,wp).

Proof: Since the greedy policy is optimal from+ 1
on, it is sufficient to show that selecting the bésthannels
followed by the greedy policy is better than selecting an
other set ofk channels followed by the greedy policy. If
channels are ordered; < --- < w; < --- < w, then the
reward of the former is precisely given By (w1, ..., wy,).
On the other hand, the reward of selecting an arbitrary/set
of & channels followed by acting greedily can be express
asWF(a*,a*), wherea? is the (increasingly) ordered set of

the following two inequalities for alt = 1,2,--- , T problems are not known in general. A natural extension to
the Gittins index policy in this case is to play the machines
(A 1+ Wf (s, wn,w1) = W (wr, - wn) with the highest Gittins indices (this will be referred tothe
(B) : Wh(wy, - Wi Yy Ty Wigg, e, Wh) > extended Gittins index polidyelow). This is not in general

optimal for multi-armed bandits with multiple plays and an
infinite horizon discounted reward criterion, see e.g.,],[18
wherez > 9, 0 < j < n—2,andj = 0 implies [19]. However, it may be optimal in some cases, see e.g.,
WE(y, w03, -+ wn) > Wz y, w3, -+, wh). [19] for conditions on the reward function, and [20] for an

k
Wt (wlv"' y Ly Yy Wj43, " ,W'n.),



undiscounted case where the Gittins index is always actlievg 4]
at time 1. Even less is known when the bandits are restless,
though asymptotic results for restless bandits with midtip
plays were provided in [4] and [21]. [15]
The problem studied in the present paper is an instance
of the restless bandits with multiple plays (in the infinite
horizon case). Therefore what we have shown in this papgs]
is an instance of the restless bandits problem with multiple
plays, for which the extended Gittins index policy is optima [

VI. CONCLUSION [18]

In this paper we studied a stochastic control problem that
arose in opportunistic spectrum access. A user can se
and accesg out of n channels at a time and must select
judiciously in order to maximize its reward. We extend d20]
previous result where a greedy policy was shown to be
optimal in the special case &f= 1 under the condition that 21
the channel state transitions are positively correlategr ov
time. In this paper we showed that under the same condition
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wherez > 3, 0 < 57 < n-—2, andj
Wk, w3, wn) > Wz, y,ws, -, wn).

The two inequalities (A) and (B) will be shown together
using an induction on. Fort = T, part (A) is true because
LHS = 14wi43 0, o Wi Z Wno ki1 +D i o @i =
RHS. Part (B) is obviously true fot = T" sincez > y.

Suppose (A) and (B) are both true for+ 1,--- 7.
Consider timet, and we will prove (A) first. Note that in
the next step, channel 1 is selected by the action on the LHS
of (A) but not by the RHS, while channel — k + 1 is
selected by the RHS of (A) but not by the LHS. Other than
this difference both sides select the same set of channels
indexedn — k + 2,--- ,n. We now consider four possible
cases in terms of the realizations of channels land + 1.

Case (A.1l): channels 1 and — k& + 1 have the state
realizations “0” and “1”, respectively.

We will use a sample-path argument. Note that while
these two channels are not both observed by either side, the
realizations hold for the underlying sample path regasdles
In particular, even though the LHS does not select channel
n —k + 1 and therefore does not get to actually observe the
realization of “1”, the fact remains that channel k£ + 1
is indeed in state 1 under this realization, and therefare it
future expected reward must reflect this. It follows thatemd
this realization channet — k + 1 will have probabilityp;;
for the next time step even though we did not get to observe
the state 1. The same is true for the RHS. This argument

0 implies

IEEE Conference on Sensor, Mesh and Ad Hoc Communicationgpplies to the other three cases and is thus not repeated.
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Conditioned on this realization, the LHS and RHS
are evaluated as follows (denoted &&HS|qq)} and



{RHS|(0,1)}, respectively):
{LHS|0,1)}

= 1+ >

n—k+2<i<n

>

-, 1n€{0,1}

W (por [k Zl
T(Wn—kt1) = pllapll[z li]) ;

wi-l-ﬁ-

q(In—kt2, - 5 ln) -

ln k425"

{RHS|0,1)}
= 1+ > w+p
n—k+2<i<n
Z qan—k-‘rQu e 7ln) .
lpn— k425" Syl 6{0 1}
WEL (poilk Zl —1], = Poo,
T(w2), -, T(Wn—k), P11 Zzi +1))
= {LHS|o)}

Case (A.2): channels 1 and — 1 + 1 have the state
realizations “1” and “1”, respectively.

{LHS|1,1)}

= 1+1+ >

n—k+2<i<n

>

ln—k42,,ln€{0,1}
WE L (porlk =Y 1= 1], 7(wa), -+,
T(Wn—k+1) = p11,p11[z l; +1])

wi+ -

q(ln—k+27 T 7ln) :

{RHS|q,1)}
= 1+ Z wi + 8-
n—k+2<i<n
Z q(ln—k+27 T 7ln) :
ln—k42,5ln€{0,1}
WE (poi[k Zl = p11,
T(wa), ,T(wnfk P11 Zzi +1))
< 1+ Z wi+ G-
n—k+2<i<n
Z q(ln—k+27 e 7ln) :
ln—k42,5ln€{0,1}
W (por [k Zl S T(Wn—k),

P11, P11 le‘"‘l
= {LHS|an} —1<{LHS|q11)}

where the first inequality is due to the induction hypothesithe distributiong(l, k42, -,

of (B).

Case (A.3): channels 1 and — 1 + 1 have the state
realizations “0” and “0”, respectively.

{RHS|0,0)}

= Z wi+ G-

n—k+2<i<n

>

-, 1,€{0,1}

=yl

Q(ln—k+27 e 7ln) :

ln k425"

Wt+1 p01 = Po1,T ( ) 7T(Wn7k)7

D11 Zli

{LHS|0,0)}

= 1+ >

n—k+2<i<n

>

In— kg2, 5ln 6{0 1}

WE L (por[k = > LT
T(Wn—k+1) = p017p11[z li])

Z wi + 8-

n—k+2<i<n

>

-,1,€{0,1}

Wi (pou [k Zl
P11 Zli ,Pot)
Z w;+ -

n—k+2<i<n

>

q(ln—k+2,"
ln—k+2,,ln€{0,1}

(1+Wt+1 p01 Zl
pu>_ Ll por )
Z wi—i—ﬁ-

n—k+2<i<n

>

In— kg2, sln 6{0 1}

wi + -
q(ln—k+27 e 7ln) :

(wn—k)a

Y

1+

q(ln—k+27 e 7ln) :

ln—k+2,

(ank)v

Y

Jn)

(wn k)

Y

q(In—ky2, - 5 ln) -

Wt+1 p017p01 Zl 7T(wn—k)u

pu[Y L)

= {RHS|0)}

where the first inequality is due to the induction hypothesis

(B), the last inequality due to the induction hypothesisff (

Also, the second inequality utilizes the total probabibier

l,) and the fact thatp < 1.
Case (A.4): channels 1 and — 1 + 1 have the state



realizations “1” and “0”, respectively.
{RHS|(1.,O)}

= Z wi-i-ﬁ-

n—k+2<i<n

Z q(ln*kJrQa te 7ln) :

ln—k+2,,ln€{0,1}

t+1 p01

T(wn—k)apll[z lz‘])

{LHsl(l,O)}
= 1+1+ > wi+p-

n—k+2<i<n

Z q(ln*kJrQa te aln) :

ln—kg2,,ln€{0,1}
WE (por[k =D li—

T(Wn—k+1) = Po1, P11 Z li +1])
1+1+ > wi+8

n—k+2<i<n

Z qan—k-l-?a ce aln) .

ln—kt2,:ln€{0,1}

Wt+1 pOl Zl
P11 Zli +1] ,p01)
1+ Y wi+f-

n—k+2<i<n

Z Q(ln—k+2, T aln) :

ln k42, l 6{0 1}
(1+Wt+1p01 Zl—l ey

T(wn—k)vpll[z li+ 1],p01))
I+ ) wi+th:

n—k+2<i<n

Z q(ln*k+2; te ;ln) :

ln—ky2,5ln€{0,1}

Wh (porlk = > LT
P11 Zli +1]

1+ > wi+p-

n—k+2<i<n
E q(ln—k+2, o ;ln) .
ln—k+2,,ln€{0,1}
W (por [k

Zl P11, T(w2),
P11 Zli

L+ {RHS|q,0)} = {RHS|(1,0)}

Y

Y

Y

Y

where the first and last inequalities are due to the induction = (x
hypothesis of (B), the third due to the induction hypothesis

Zl = p11, 7(wa), - -

) T(wn—k)a

) T(wn*k)a

3 T(wn—k)a

of (A).

With these four cases, we conclude the induction step of
proving (A). We next prove the induction step of (B). We
consider three cases in terms of whetheandy are among
the topk channels to be selected in the next step.

Case (B.1): bothr andy belong to the topk positions on
both sides. In this case there is no difference between the
LHS and RHS along each sample path, since both channels
will be selected and the result will be the same.

Case (B.2): neithex nor y is among the togk positions
on either side. This implies that< n — k — 2. We have:

Y

LHS

Z wi+ -

n—k+2<i<n

Z q(ln*kJrQa te aln) :

ln—k+2,,ln€{0,1}

t+1 (po1[k Zl (wj)a
7(y), 7(2), T(wj43), -+ P11 Zl

RHS

Z wi+ 8-

n—k+2<i<n

Z q(ln*k+2; te aln) :

ln—kt2,,ln€{0,1}
Wi (por [k Zl (W),

(@), 7(y), T(wj+3), -+, P11 Zl
LHS

where the last inequality is due to the monotonicityrdj
and the induction hypothesis of (B).

Case (B.3): exactly one of the two belongs to the the top
k channels on each side. This implies that n — k — 1.
By the linearity of the functiori¥/* we have the following:

W (w1, W b1, Yy Ty Wi kg2, -+, Wh)

—Wtk(wl,“' Wn ks Ty Yy Wik 2, - 5 Wn)
—y)(Wtk(m,--- W k1,0, 1, Wn g, W) —

Wi (w1, s wWnek=1,1,0,Wn_kg2,++  wn)) (6)



However, we have

k
Wt (wlu o, Wn—k—1, 17 O7wn—k+27 e 7wn)
= E wi +B-
n—k+2<i<n

Z Q(ln—k+2a te aln) :

ln—k+2,,ln€{0,1}
Wt+1 po1 [k Zl T (Wn—k—1),

P11, P11 Zli
Z w;+06-

n—k+2<i<n

Z Q(ln—k+2a te aln) :

ln—k+2,,ln€{0,1}

(1+Wt+l po1[k Zl R
T(wn—k-1),p1a[d_ L+ 1],1?01))
Z w;+ -

n—k+2<i<n

Z Q(ln*k+27 c ;ln) :

lpn_ k425" ln 6{0 1}

(1+Wt+1p01 Zl S,
T(ankfl),pm,pu[z lLi + 1]))
1+ > witp

n—k+2<i<n

Z Q(ln—k+2a te aln) :

ln—k+y2,,ln€{0,1}
Wt’il(pOl[k - Z lZ - 1]77-(“}1)5 e aT(wn7k71)7
p01,p11[z l; +1])

k
= Wt (wlu"' 7wn—k—170717wn—k+27"' 7wn)

IN

IN

IN

Sincex > y, we haveLHS > RHS in Egn (6). This
concludes the induction step of (B).



