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Abstract

A simple line network model is proposed to study the downlinkcellular network. Without base station cooper-
ation, the system is interference-limited. The interference limitation is overcome when the base stations are allowed
to jointly encode the user signals, but the capacity-achieving dirty paper coding scheme can be too complex for
practical implementation. A new linear precoding technique called soft interference nulling (SIN) is proposed, which
performs at least as well as zero-forcing (ZF) beamforming under full network coordination. Unlike ZF, SIN allows
the possibility of but over-penalizes interference. The SIN precoder is computed by solving a convex optimization
problem, and the formulation is extended to multiple-antenna channels. SIN can be applied when only a limited
number of base stations cooperate; it is shown that SIN underpartial network coordination can outperform full
network coordination ZF at moderate SNRs.

I. INTRODUCTION

Interference management is a fundamental challenge in wireless cellular systems. In this paper, we consider the
downlink cellular network, and investigate the performance benefits of allowing cooperation and joint processing
among the base stations. Without base station cooperation,the system is interference-limited, i.e., the signal-to-
interference-plus-noise ratio (SINR) at the mobiles cannot be improved simply by increasing the base station transmit
power, since higher transmit power also creates stronger interference. Given the deployment of a fixed number of
base stations, one approach to increase system throughput is to allow the joint encoding of user signals across
the base stations. In this case, assuming perfect cooperation among the base stations, the downlink system can be
modeled as a broadcast channel (BC). However, the theoretically optimal dirty paper coding (DPC) transmission
scheme for the BC can be too complex for practical implementation. Zero-forcing (ZF) beamforming is a simple
linear precoding technique that offers good performance ina BC. In this paper, we propose a new linear precoding
technique called soft interference nulling (SIN) that performs better than or equal to ZF. The SIN precoder can be
found by solving a convex optimization problem. Moreover, we show that SIN can be applied when the terminals
have multiple antennas, as well as in the case when each user is served by overlapping coordination clusters each
with only a limited number of cooperating base stations.

The time division multiplexing access (TDMA), ZF, and DPC rates in downlink cellular networks are compared
in [1], [2], and the performance of ZF is studied in [3], [4]. Different precoding schemes for multiple-input multiple-
output (MIMO) BCs are presented in [5]–[7]. The optimality of DPC in a MIMO BC is shown in [8]. For single-cell
multiuser MIMO channels, the optimization of different performance metrics in terms of the user rates or SINRs
are considered in [9]–[16]. In this paper, we consider the maximization of a general concave utility function of
the user rates under the assumption that interference is treated as noise. Cooperating base stations for the cellular
uplink channel is considered in [17], [18]. Capacity gain from transmitter and receiver cooperation is investigated
in [19]. When the user signals are jointly encoded by separate base stations, they are under per-antenna power
constraints (PAPC). ZF under PAPC are considered in [20]–[22], and DPC under PAPC is treated in [23].

The remainder of this paper is organized as follows. The channel system model and capacity bounds are described
in Section II. Section III considers cooperative base stations and zero-forcing (ZF) beamforming. Section IV presents
the soft interference nulling (SIN) precoding technique under different coordination cluster sizes, with an extension
to multiple-antenna channels. Numerical results are presented in Section V, and Section VI concludes the paper.

Notation: In this paper,RN
+ is the set ofN -dimensional nonnegative real vectors;HN

+ is the set ofN × N

positive semidefinite Hermitian matrices;C denotes the complex field;[A]i,j is the (i, j) entry of the matrixA;
det, tr denote determinant and trace, respectively; anddiag(a) is a diagonal matrix with its diagonal given by the
vectora.
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Fig. 1. A line network of base stations.

II. SYSTEM MODEL

A. Channel Model

We consider a simple model of the wireless cellular downlinknetwork. Suppose there areN base stations in
the network, and they are positioned along a line with distancedx apart. Each base station serves one mobile user,
and we assume each user is located a distancedy away from its base station, as illustrated in Fig. 1. To minimize
the boundary effects, we consider a line network with wraparound where the distance between Useri and Basej
is given by

dij ,
√

d2y +
(

dxd(i, j)
)2
, i, j = 1, . . . , N (1)

where

d(i, j) , min(|i− j|, |i − j +N |, |i − j −N |). (2)

We consider a narrow-band flat-fading channel model. Wireless systems with wider bandwidth may be modeled
as multiple narrow-band channels using modulation schemessuch as orthogonal frequency-division multiplexing
(OFDM), and most techniques discussed in this paper remain applicable. For now let us assume each terminal
is equipped with a single omnidirectional antenna; multiple antenna base stations and mobiles are considered in
Section IV-C. Supposexj ∈ C is the transmit signal at Basej, andyi ∈ C is the receive signal at Useri. The
discrete-time channel model is then described by

yi =
N
∑

j=1

hijxj + zi, i = 1, . . . ,M (3)

where hij ∈ C is the complex baseband channel, andzi ∼ CN (0, 1) ∈ C is zero-mean circularly symmetric
complex Gaussian (ZMCSCG) noise normalized with unit variance. For each Useri, the desired signal ishiixi,
and the inter-cell interference from other base stations isgiven by

∑N
j=1,j 6=i hijxj . Therefore, a frequency reuse

factor of 1 is assumed. Alternatively, under other frequency reuse patterns, the system model may represent the
group of base stations that occupy the same frequency band. The radio signal propagation from any base station
to any user is modeled as independent Rayleigh fading with a power attenuation factor proportional todη, where
d is the propagation distance, andη is the path loss exponent: i.e., each entry ofhij is independent and identically
distributed (i.i.d.) asCN (0, d−η

ij ). We assumeη = 4, which corresponds to the path loss in a typical outdoor urban
cellular environment. Note that in the line network system model, each mobile user suffers from two dominant
interferers, which is similar to the case as in a three-sector hexagonal cellular network.

We consider a block-fading channel model: the channels realize independently according to their distribution at
the beginning of each fading block, and they remain unchanged within the duration of the fading block. In this
paper, we assume the channel states can be estimated accurately and conveyed timely to all base stations: i.e., the
channels are known at all terminals. Each base station is under a transmit power constraint ofP . We consider a
short-term power constraint: i.e.,E[|xj|2] ≤ P , j = 1, . . . ,M , where the expectation is over repeated channel uses
within a fading block; power allocation across fading blocks is not considered. We assume each fading block is
sufficiently long so the transmitters may code at channel capacity using random Gaussian codewords.
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B. Achievable rates and capacity bounds

In traditional cellular systems, the base stations do not cooperate. Assuming each base station transmits at full
power, then Useri receives at the rate

Ri,Int = log

(

1 +
|hii|

2Pi

1 +
∑

j 6=i|hij |
2Pj

)

. (4)

In this paper, we wish to investigate efficient transmissionschemes that exploit base station cooperation and joint
processing. A performance upper bound can be obtained by considering the capacity of a cellular network with
perfect base station cooperation. Suppose each base station knows the messages of all users, and we allow joint
encoding at the base stations. Then this cooperative cellular system may be modeled as a broadcast channel (BC)
with N single-antenna receivers, and anN -antenna transmitter under per-antenna power constraints(PAPC). For a
Gaussian multiple-input multiple-output (MIMO) BC, its capacity region [8] is achieved by the dirty paper coding
(DPC) scheme [24]. In DPC, the messages for the users are encoded in a given order, and the interference from
the previously encoded users are pre-subtracted at the transmitter for the subsequently encoded users. We consider
the sum rate of the MIMO BC as a performance metric for the cooperative cellular system. In [23], it is shown
that the sum rate of a MIMO BC under PAPC can be found by solvingthe following convex minimax optimization
problem

min
q

max
s

log det
(

N
∑

i=1

sih̃ih̃
H
i + diag(q)

)

−
N
∑

i=1

log qi (5)

over q ∈ R
N
+ , s ∈ R

N
+ (6)

subject to
N
∑

i=1

si ≤ NP (7)

N
∑

i=1

qi ≤ N (8)

where

h̃i , [hi1 . . . hiN ]T ∈ C
N , q , [q1 . . . qN ]T ∈ R

N
+ , s , [s1 . . . sN ]T ∈ R

N
+ . (9)

The achievable rateRi,Int and the BC sum rate are shown in Fig. 2 (solid lines) as a function of the SNRP for a
cellular line network withN = 19 base stations, and geometrydx = dy = 1. In Fig. 2,50 sets of random channel
realizations are generated. For each set of channel realizations, the non-cooperative and the cooperative sum rates
are calculated. Then the rates are averaged over the random channel realizations, and normalized by the number of
base stations. The normalized per-base non-cooperative and cooperative rates are not particularly sensitive to the
number of base stationsN , which justifies the consideration of a wraparound line network model of moderate size.
For comparison, also shown in Fig. 2 (dotted line) is the single-input single-output (SISO) rate in the absence of
interference

Ri,No-Int = log(1 + |hii|
2Pi). (10)

Without base station cooperation, at increasing SNRP , the average SINR at the mobile saturates at approximately
2 dB. It matches well with the typical operating SINR of current cellular systems, which justifies the choice of
dx, dy. Henceforth, we assumedx = dy = 1. Fig. 2 illustrates the interference-limited nature of cellular systems:
the user rates under interference fail to keep increasing with SNR as in the case when interference is absent. On
the other hand, the interference limitation can be overcomeby allowing the base stations to cooperate, as shown
by the DPC rates when the cooperative system is modeled as a BC. However, as the complexity of DPC can be
challenging for practical implementation, in this paper weexplore efficient linear precoding techniques that achieve
near the DPC performance.
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Fig. 2. Single-user rates (with and without interference) and BC capacity in the downlink line network (N = 19, dx = dy = 1).

III. C OOPERATIVE BASE STATIONS

In this section, let us consider the case where all base stations participate in the joint encoding of the messages
of all users. Partial network coordination is considered inSection IV-B. When the base stations cooperate, it is
convenient to consider the transmit signals of all base stations jointly as a vector. For notational convenience, we
define

x , [x1 . . . xN ]T ∈ C
N , y , [y1 . . . yN ]T ∈ C

N , z , [z1 . . . zN ]T ∈ C
N . (11)

Hence the channel written in matrix form is

y = Hx+ z, H , [h̃1 . . . h̃N ]T ∈ C
N×N (12)

wherex is encoded jointly by all base stations, but eachyi is decoded separately by Useri.

A. Zero-Forcing Beamforming

A simple linear transmit precoding technique is zero-forcing (ZF) beamforming [5]. Unlike DPC, no interference
pre-subtraction is performed at the transmitter. Instead,the transmitter chooses a set of precoding beamforming
weights such that interference is zeroed out at each mobile user. Supposeu ∈ CN denotes the information signals
for theN users, withE[uuH ] = IN . Then the ZF beamforming transmit signal is given by

x = W diag(a)u (13)

whereW ∈ CN×N is the beamforming precoding matrix, anda , [a1 . . . aN ]T ∈ RN
+ controls the effective channel

gains of the users. Since we have the same number of users as the number of transmit antennas, assumingH is
full rank, we setW = H−1 to zero out interference at each user. With such choice ofW , the downlink system
decouples into a set ofN interference-free parallel channels

yi = aiui + zi, i = 1, . . . , N. (14)

Define the effective channel power gain for Useri as γi , a2i . Zero-forcing in MIMO BC subject to PAPC is
considered in [20]–[22]. In particular, the ZF sum rate under PAPC can be found by solving the following convex
optimization problem

maximize
N
∑

i=1

log(1 + γi) (15)

over γ ∈ R
N
+ (16)

subject to |W |2γ ≤ P1 (17)
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whereγ , [γ1 . . . γN ]T , W = H−1, and1 denotes a vector of1’s. The last constraint in (17) represents component-
wise inequality, and|W |2 denotes the component-wise squared magnitude of the entries ofW : i.e., |W |2 , [|wij |

2].
In general, ZF is suboptimal. However, at high SNR with multiuser diversity, ZF performs asymptotically close
to the optimal DPC scheme [2]–[4]. Zero-forcing requires all base stations to cooperate in order to ensure an
interference-free signal at each of the users. In the next section, we consider a linear precoding technique that is
applicable under partial network coordination, where onlya limited number of base stations cooperate, and the
cooperating base stations may form overlapping clusters.

IV. SOFT INTERFERENCENULLING

A. Full Network Coordination

First we consider the case where all base stations are cooperating. Partial network coordination is addressed in
the next section. Let the joint transmit signal at the base stations be given as follows:

x =
N
∑

i=1

Giui, i = 1, . . . , N (18)

whereGi ∈ CN×N is the precoding matrix for Useri, andui ∈ CN is Useri’s information signals. Note that in
the above formulation we allow a user’s transmission to havemultiple spatial streams (up to the number of transmit
antennasN ). Without loss of generality, entries of a user’s precodingmatrix may be set to zero if not all spatial
streams are active. We assume each spatial stream consists of independent data signals, i.e.,E[uiuHi ] = IN , and
E[uiu

H
j ] = 0, i 6= j. Treating interference as noise, the transmission rate to User i is given by

Ri = log

(

1 +
h̃Hi Qih̃i

1 +
∑N

j=1,j 6=i h̃
H
i Qjh̃i

)

, i = 1, . . . , N (19)

whereh̃i are as defined in (9), andQi ∈ HN
+ is the covariance matrix of the transmit signal to Useri

Qi = E[Giui(Giui)
H ] = GiG

H
i . (20)

It is more convenient to specify the precoder design in termsof the covariance matricesQi. To generate transmit
signals with the specified covariances, we may set the precoding matricesGi to be

Gi = ViD
1/2
i , i = 1, . . . , N (21)

whereDi is diagonal, andQi = ViDiV
H
i is the eigendecomposition of the covariance matrixQi. Suppose we

consider as performance metric a general concave utility function of the user rates:U(R), whereR , [R1 . . . RN ]T ,
then the design goal is to choose the covariance matricesQi to maximize the utility function

maximize U(R) (22)

over R ∈ R
N
+ , Qi ∈ H

N
+ (23)

subject to Ri ≤ log

(

1 +
h̃Hi Qih̃i

1 +
∑N

j=1,j 6=i h̃
H
i Qj h̃i

)

(24)

[

N
∑

j=1

Qj

]

i,i
≤ P (25)

where i = 1, . . . , N , and the last set of inequalities represents the per-antenna power constraints. However, the
above maximization is not a convex program, and in general itis difficult to solve efficiently. Instead, we propose
a linear precoding technique called soft interference nulling (SIN), which has good performance in the sense that
SIN precoding performs at least as well as ZF beamforming under full network coordination.
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The main idea is that when the interference at each user is small, the transmission ratesRi are well-approximated
by the following:

Ri = log

(

1 +
h̃Hi Qih̃i

1 +
∑N

j=1, j 6=i h̃
H
i Qj h̃i

)

(26)

= log
(

1 +
N
∑

j=1

h̃Hi Qjh̃i

)

− log
(

1 +
N
∑

j=1, j 6=i

h̃Hi Qjh̃i

)

(27)

& log
(

1 +
N
∑

j=1

h̃Hi Qjh̃i

)

−
N
∑

j=1, j 6=i

h̃Hi Qj h̃i (28)

, R̃i (29)

where the inequality in (28) follows fromx being a global over-estimator oflog(1 + x), and log(1 + x) ≈ x

for small x. We define the SIN precoders as the precoding matrices that correspond to the solution of following
optimization problem

maximize U(R̃) (30)

over R̃ ∈ R
N
+ , Qi ∈ H

N
+ (31)

subject to R̃i ≤ log
(

1 +
N
∑

j=1

h̃Hi Qjh̃i

)

−
N
∑

j=1, j 6=i

h̃Hi Qj h̃i (32)

[

N
∑

j=1

Qj

]

i,i
≤ P, (33)

wherei = 1, . . . , N , andR̃ , [R̃1 . . . R̃N ]T . Note that the above maximization is a convex optimization problem,
and its solution can be efficiently computed using standard convex optimization numerical techniques, e.g., by the
interior point method [25], [26].

When the interference terms are zero, the inequality in (28)is tight, and the SIN rates are the same as the ZF
rates. Unlike ZF, however, SIN allows the possibility of nonzero interference: ZF can be interpreted as imposing
an infinite penalty on interference, whereas SIN relaxes such restriction. Nevertheless, as given in (28), SIN over-
penalizes interference (i.e.,̃Ri . Ri); hence there is a strong incentive for the SIN precoding solution to null out
the interference. Since ZF beamforming is in the feasible set of the SIN optimization, SIN performs at least as
well as ZF. Note that the SIN solution is not necessarily locally optimal in the original problem (22)–(25): the
utility function may be further improved, for example, by a local gradient search method. However, when there is
sufficient transmit antenna degrees-of-freedom to suppress the interference, such improvements are observed to be
marginal in the numerical experiments.

B. Partial Network Coordination

Having full network coordination implies that all user messages need to be routed to all base stations, which
represents a considerable burden on the backhaul network. In practice, it is desirable to involve only a limited
number of base stations cooperating to send to each user. These cooperating base stations form a cluster, and
we may have overlapping coordination clusters in the cellular network. In this section, we consider applying SIN
precoding under partial network coordination. In particular, we assume the base stations may exchange channel
state information (CSI) over the backhaul network, but eachuser’s message is routed only to those base stations
in the coordination cluster associated with the user.

Suppose the set of base stations that cooperate to send to User i is given by the ordered setJi = {j1, j2, . . . , jNi
},

where j1 < j2 < · · · < jNi
. Hence onlyNi base stations, withNi ≤ N , cooperate to send to Useri, and we

impose the constraint that base stations not inJi do not participate in the transmission of Useri’s signals. For each
User i, the above restriction is represented by an association matrix Ci defined as follows:

Ci ∈ R
N×Ni , [Ci]jl,l =

{

1, l = 1, . . . , Ni

0, otherwise.
(34)
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Suppose the joint transmit signal for Useri among itsNi cooperating base stations is characterized by theNi×Ni

covariance matrix:Qi ∈ H
Ni

+ , then the fullN ×N covariance matrix for Useri with respect to all base stations
is given by:CiQiC

T
i . Effectively, the matrixCi specifies that the non-participating base stations have precoding

weights of zero. The SIN precoding covariance matrices under partial base station coordination can then be found
by solving the following convex optimization problem

maximize U(R̃) (35)

over R̃ ∈ R
N
+ , Qi ∈ H

Ni

+ (36)

subject to R̃i ≤ log
(

1 +
N
∑

j=1

h̃Hi CjQjC
T
j h̃i

)

−
N
∑

j=1, j 6=i

h̃Hi CjQjC
T
j h̃i (37)

[

N
∑

j=1

CjQjC
T
j

]

i,i
≤ P (38)

wherei = 1, . . . , N .
For example, suppose there areN = 5 base stations in the network, and in the network User3 specifies that

its coordination cluster consists of Bases2, 3, and4: i.e., Bases2, 3, and4 may cooperate and jointly encode the
signals to be sent to User3, but Bases1 and2 may not participate to send any message to User3. Then the the
association matrix for User3 is given by

C3 =















0 0 0
1 0 0
0 1 0
0 0 1
0 0 0















. (39)

The design variable for User3’s signal is given by the covariance matrixQ3 ∈ H3
+, which describes the joint

signal from Bases2, 3, and4. With respect to all base stations, the overall covariance matrix for User3’s signal
is described by

C3Q3C
T
3 =















0 0 0 0 0
0 [Q3]1,1 [Q3]1,2 [Q3]1,3 0
0 [Q3]2,1 [Q3]2,2 [Q3]2,3 0
0 [Q3]3,1 [Q3]3,2 [Q3]3,3 0
0 0 0 0 0















. (40)

Numerical examples with limited coordination cluster sizeare presented in Section V.

C. Multiple-Antenna Channels

In the previous sections, we assume each mobile user has a single antenna. The SIN precoding technique
generalizes to the case where the users have multiple antennas. To illustrate the principle, we consider a simple
single-cell scenario. Suppose we have a base station withMT transmit antennas, and there areN mobile users in
the network each withMR receive antennas. We assume there is a transmit power constraintP on the base station.

The multiple-input multiple-output (MIMO) downlink channel is described by

yi = Hix+ zi, i = 1, . . . , N (41)

whereyi ∈ CMR is Useri’s receive signal;x ∈ CMT is the transmit signal;zi ∈ CMR is additive white Gaussian
noise (AWGN) withE[zizHi ] = IMR

, E[zizHj ] = 0 for i 6= j; andHi ∈ CMR×MT is the MIMO channel from the
base station to Useri. Based on the Taylor series expansion of the log-determinant function: log det(I + X) =
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trX +O(X2), the user rates are approximated as

Ri = log
det

(

IMR
+

∑N
j=1HiQjH

H
i

)

det
(

IMR
+

∑N
j=1, j 6=iHiQjH

H
i

) (42)

& log det
(

IMR
+

N
∑

j=1

HiQjH
H
i

)

−
N
∑

j=1, j 6=i

trHiQjH
H
i (43)

, R̃i. (44)

Therefore, the MIMO SIN precoding covariance matrices can be found by solving the following convex optimization
problem

maximize U(R̃) (45)

over R̃ ∈ R
N
+ , Qi ∈ H

MT

+ (46)

subject to R̃i ≤ log det
(

IMR
+

N
∑

j=1

HiQjH
H
i

)

−
N
∑

j=1, j 6=i

trHiQjH
H
i (47)

N
∑

j=1

trQj ≤ P (48)

wherei = 1, . . . , N . Note that unlike ZF, SIN precoding is well-defined even whenthe number of transmit antennas
is less than the number of users. However, since SIN imposes alarge penalty on interference, we expect the SIN
formulation is most useful when there are sufficient degrees-of-freedom to suppress the interference among the
users.

V. NUMERICAL RESULTS

Let us consider the line network cellular downlink model andthe simulation settings as described in Section II. The
rates obtained from ZF and SIN precoding are shown in Fig. 3. For the numerical results, the convex optimization
problems are solved using the software package SDPT3 [27]. For comparison, the single-user rates (with and
without interference) and the DPC BC capacity discussed in Section II-B are also shown on the plot. There are
N = 19 single-antenna base stations in the network, and each base station serves one single-antenna user. In ZF, all
base stations participate in the cooperation. For SIN precoding, different coordination cluster sizes are considered,
and the cluster sizes are labeled next to their corresponding curves on the plot. Each user chooses the closest base
stations to participate in the coordination cluster. For example, when the coordination cluster size is3, User1 is
served by Bases{19, 1, 2}, User2 by Bases{1, 2, 3}, User3 by Bases{2, 3, 4}, and so on.

As illustrated in Fig. 3, there is a gap between the ZF rate andthe DPC rate, but they both exhibit similar scaling
trends as the SNRP increases. In particular, the ZF beamforming technique allows the network to overcome its
interference-limited performance bottleneck, thus demonstrating the value of cooperative cellular networks. Under
full network coordination, SIN precoding outperforms ZF, especially at low SNRs where ZF can suffer from noise
amplification. Moreover, at moderate SNRs, SIN with limitedcoordination cluster sizes is able to outperform ZF,
which requires full network coordination. For example, at the SNRP = 18 dB, a typical operating SNR at the cell
edge in cellular systems, SIN with a coordination cluster size of 7 outperforms ZF with full network coordination.
As the SNR increases, however, it is observed that SIN under partial network coordination becomes interference-
limited. It is useful to identify the region to the lower-right of the ZF rate curve as the interference-limited regime.
Therefore, for power efficiency, the coordination cluster size in SIN could be chosen to at least achieve the ZF
rates.

VI. CONCLUSIONS

In this paper, we proposed a simple line network model that captures the interference-limited behavior of a
cellular downlink system. Base station cooperation allowsa joint encoding of user signals that can overcome the
interference limitation; however, the capacity-achieving dirty paper coding scheme in this case may be too complex
for practical implementation. When all base stations in thenetwork cooperate, zero-forcing is a simple linear
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Fig. 3. ZF and SIN (with different coordination cluster sizes) rates in the downlink line network (N = 19, dx = dy = 1). The SIN cluster
sizes are labeled next to their corresponding curves.

precoding technique that offers good performance relativeto DPC. We proposed a new linear precoding technique
called soft interference nulling (SIN) that performs better than or equal to ZF under full network coordination. SIN
precoding can be applied to maximize any general concave utility function of the user rates by solving a convex
optimization problem, and the formulation is extended to the case when the terminals have multiple antennas.
Moreover, it is shown that SIN precoding with a limited coordination cluster size can outperform ZF with full
network coordination at moderate SNRs.
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