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Abstract

A simple line network model is proposed to study the downkieKular network. Without base station cooper-
ation, the system is interference-limited. The interfeestimitation is overcome when the base stations are allowed
to jointly encode the user signals, but the capacity-aéhiedirty paper coding scheme can be too complex for
practical implementation. A new linear precoding techeigalled soft interference nulling (SIN) is proposed, which
performs at least as well as zero-forcing (ZF) beamformindeu full network coordination. Unlike ZF, SIN allows
the possibility of but over-penalizes interference. Thil $recoder is computed by solving a convex optimization
problem, and the formulation is extended to multiple-anteshannels. SIN can be applied when only a limited
number of base stations cooperate; it is shown that SIN updgial network coordination can outperform full
network coordination ZF at moderate SNRs.

. INTRODUCTION

Interference management is a fundamental challenge inesgeellular systems. In this paper, we consider the
downlink cellular network, and investigate the performamenefits of allowing cooperation and joint processing
among the base stations. Without base station cooperdkiensystem is interference-limited, i.e., the signal-to-
interference-plus-noise ratio (SINR) at the mobiles cabedmproved simply by increasing the base station transmit
power, since higher transmit power also creates strongerfénence. Given the deployment of a fixed number of
base stations, one approach to increase system throughpaitallow the joint encoding of user signals across
the base stations. In this case, assuming perfect coopetong the base stations, the downlink system can be
modeled as a broadcast channel (BC). However, the thealtgtimptimal dirty paper coding (DPC) transmission
scheme for the BC can be too complex for practical implemimtaZero-forcing (ZF) beamforming is a simple
linear precoding technique that offers good performance BC. In this paper, we propose a new linear precoding
technigue called soft interference nulling (SIN) that peris better than or equal to ZF. The SIN precoder can be
found by solving a convex optimization problem. Moreovee show that SIN can be applied when the terminals
have multiple antennas, as well as in the case when eachausenied by overlapping coordination clusters each
with only a limited number of cooperating base stations.

The time division multiplexing access (TDMA), ZF, and DP@esin downlink cellular networks are compared
in [1], [2], and the performance of ZF is studied in [3], [4]iflerent precoding schemes for multiple-input multiple-
output (MIMO) BCs are presented in [5]-[7]. The optimalityl@PC in a MIMO BC is shown in [8]. For single-cell
multiuser MIMO channels, the optimization of different flmance metrics in terms of the user rates or SINRs
are considered in [9]-[16]. In this paper, we consider theimiation of a general concave utility function of
the user rates under the assumption that interferenceatettes noise. Cooperating base stations for the cellular
uplink channel is considered in [17], [18]. Capacity gaionfr transmitter and receiver cooperation is investigated
in [19]. When the user signals are jointly encoded by sepdase stations, they are under per-antenna power
constraints (PAPC). ZF under PAPC are considered in [2@}-[@nd DPC under PAPC is treated in [23].

The remainder of this paper is organized as follows. The hksystem model and capacity bounds are described
in Sectior 1. Sectiofll considers cooperative base atatiand zero-forcing (ZF) beamforming. Secfioh IV presents
the soft interference nulling (SIN) precoding techniqueemdifferent coordination cluster sizes, with an extensio
to multiple-antenna channels. Numerical results are ptegein Section V, and Sectidn VI concludes the paper.

Notation: In this paperRY is the set of N-dimensional nonnegative real vectol$y is the set ofN x N
positive semidefinite Hermitian matrice§; denotes the complex fieldA]; ; is the (¢, ) entry of the matrixA4;
det, tr denote determinant and trace, respectively; dtag(a) is a diagonal matrix with its diagonal given by the
vectora.
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Fig. 1. A line network of base stations.

II. SYSTEM MODEL
A. Channegl Model

We consider a simple model of the wireless cellular downigtwork. Suppose there aré base stations in
the network, and they are positioned along a line with distal) apart. Each base station serves one mobile user,
and we assume each user is located a distdp@vay from its base station, as illustrated in Fip. 1. To minén
the boundary effects, we consider a line network with wrapad where the distance between Us@nd Basej
is given by

diy 2\/d2 + (d,d(i,5)°, i,j=1,...,N 1)
where

We consider a narrow-band flat-fading channel model. Wigekystems with wider bandwidth may be modeled
as multiple narrow-band channels using modulation schesnel as orthogonal frequency-division multiplexing
(OFDM), and most techniques discussed in this paper remapficable. For now let us assume each terminal
is equipped with a single omnidirectional antenna; mudtiphtenna base stations and mobiles are considered in
Section[IV-C. Suppose; <€ C is the transmit signal at Basg andy; € C is the receive signal at Usér The
discrete-time channel model is then described by

N
yZ:Zhijmj—in, i=1,....M 3)
j=1
where h;; € C is the complex baseband channel, and~ CN(0,1) € C is zero-mean circularly symmetric
complex Gaussian (ZMCSCG) noise normalized with unit varé&a For each User, the desired signal ig;;x;,
and the inter-cell interference from other base stationgiien by Zj-v:L#i hijx;. Therefore, a frequency reuse
factor of 1 is assumed. Alternatively, under other frequency reusteipes, the system model may represent the
group of base stations that occupy the same frequency bdredraidio signal propagation from any base station
to any user is modeled as independent Rayleigh fading witbvéep attenuation factor proportional &, where
d is the propagation distance ands the path loss exponent: i.e., each entry:gfis independent and identically
distributed (i.i.d.) a N (0,d i ). We assume) = 4, which corresponds to the path loss in a typical outdoormrba
cellular environment. Note that in the line network systemdel, each mobile user suffers from two dominant
interferers, which is similar to the case as in a three-sdw®agonal cellular network.

We consider a block-fading channel model: the channel&zee@dependently according to their distribution at
the beginning of each fading block, and they remain unchégéhin the duration of the fading block. In this
paper, we assume the channel states can be estimated alycarat conveyed timely to all base stations: i.e., the
channels are known at all terminals. Each base station isrumdransmit power constraint @¢t. We consider a
short-term power constraint: i.@[|mj|2] < P,j=1,..., M, where the expectation is over repeated channel uses
within a fading block; power allocation across fading bleak not considered. We assume each fading block is
sufficiently long so the transmitters may code at channehcip using random Gaussian codewords.



B. Achievable rates and capacity bounds

In traditional cellular systems, the base stations do nopecate. Assuming each base station transmits at full
power, then Uset receives at the rate

(4)

|hii |2 P; >
L+ PPy )
In this paper, we wish to investigate efficient transmissohemes that exploit base station cooperation and joint
processing. A performance upper bound can be obtained hsidsying the capacity of a cellular network with
perfect base station cooperation. Suppose each basenstattws the messages of all users, and we allow joint
encoding at the base stations. Then this cooperative aelyistem may be modeled as a broadcast channel (BC)
with N single-antenna receivers, and AhRantenna transmitter under per-antenna power consti@ARC). For a
Gaussian multiple-input multiple-output (MIMO) BC, itspacity region [8] is achieved by the dirty paper coding
(DPC) scheme [24]. In DPC, the messages for the users arelemhdo a given order, and the interference from
the previously encoded users are pre-subtracted at themitier for the subsequently encoded users. We consider
the sum rate of the MIMO BC as a performance metric for the ecafve cellular system. In [23], it is shown
that the sum rate of a MIMO BC under PAPC can be found by soltliegfollowing convex minimax optimization
problem

Rt = log<1 +

N N
mqin max log det(z sihihH + diag(q)) - Zlog i (5)
i=1 i=1

over g€ RY, se RY (6)

N
subjectto > s; < NP (7)

=1

N
Z G <N (8)

i=1

where

hi 2 [hit ... hin]" € OV, g% [q-..qv)" €RY, s [s1.sn]" €RY. ©)

The achievable rat&; |, and the BC sum rate are shown in Hig. 2 (solid lines) as a fonaf the SNRP for a
cellular line network withV = 19 base stations, and geometty = d,, = 1. In Fig.[2, 50 sets of random channel
realizations are generated. For each set of channel réatizathe non-cooperative and the cooperative sum rates
are calculated. Then the rates are averaged over the rarfulnmel realizations, and normalized by the number of
base stations. The normalized per-base non-cooperative@operative rates are not particularly sensitive to the
number of base stations, which justifies the consideration of a wraparound line mekamodel of moderate size.
For comparison, also shown in Flg. 2 (dotted line) is the Istiigput single-output (SISO) rate in the absence of
interference

R No-int = log(1 + | hy|* P). (10)

Without base station cooperation, at increasing SREhe average SINR at the mobile saturates at approximately
2 dB. It matches well with the typical operating SINR of curremlalar systems, which justifies the choice of
dz, d,. Henceforth, we assumé, = d, = 1. Fig.[2 illustrates the interference-limited nature ofldekr systems:
the user rates under interference fail to keep increasitiy 8NR as in the case when interference is absent. On
the other hand, the interference limitation can be overcbgnallowing the base stations to cooperate, as shown
by the DPC rates when the cooperative system is modeled as &l®&ever, as the complexity of DPC can be
challenging for practical implementation, in this paperaexglore efficient linear precoding techniques that achieve
near the DPC performance.
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Fig. 2. Single-user rates (with and without interferenaa) 8C capacity in the downlink line networkM = 19, d, = dy = 1).

I1l. COOPERATIVE BASE STATIONS

In this section, let us consider the case where all bas@staparticipate in the joint encoding of the messages
of all users. Partial network coordination is consideredsection(IV-B. When the base stations cooperate, it is

convenient to consider the transmit signals of all baseéostaointly as a vector. For notational convenience, we
define

z2 [z ...zn]" e CV, y 2y ...ynt eV, 22 [z...2n]F e OV, (12)
Hence the channel written in matrix form is
y=Hzx+ z, H 2 hy.. hy]f e ¢V (12)
wherez is encoded jointly by all base stations, but eaglis decoded separately by User

A. Zero-Forcing Beamforming

A simple linear transmit precoding technique is zero-fiogc{ZF) beamforming [5]. Unlike DPC, no interference
pre-subtraction is performed at the transmitter. Instelae,transmitter chooses a set of precoding beamforming
weights such that interference is zeroed out at each mobée Suppose € CV denotes the information signals
for the N users, withE[uu!'] = Iy. Then the ZF beamforming transmit signal is given by

x = W diag(a)u (13)

whereW ¢ CV*V is the beamforming precoding matrix, anc® [a; ...an]" € Rﬁ controls the effective channel
gains of the users. Since we have the same number of userg asitiber of transmit antennas, assumigs
full rank, we setW = H~! to zero out interference at each user. With such choicB’ofthe downlink system

decouples into a set a¥ interference-free parallel channels
yi = a;u; + 25, 1=1,...,N. (14)

Define the effective channel power gain for Useas; = a?. Zero-forcing in MIMO BC subject to PAPC is

considered in [20]-[22]. In particular, the ZF sum rate und&PC can be found by solving the following convex
optimization problem

N
maximize " log(1 + ;) (15)
i=1
over yeRY (16)

subject to |W|*y < P1 (17)



wherey 2 [y, ...vx]T, W = H~!, and1 denotes a vector dfs. The last constraint i (17) represents component-
wise inequality, andi¥ |> denotes the component-wise squared magnitude of the ofri&’: i.e., [W|? £ [|w;;|*].

In general, ZF is suboptimal. However, at high SNR with nusiéir diversity, ZF performs asymptotically close
to the optimal DPC scheme [2]-[4]. Zero-forcing requirek kase stations to cooperate in order to ensure an
interference-free signal at each of the users. In the nedtiosg we consider a linear precoding technique that is
applicable under partial network coordination, where callimited number of base stations cooperate, and the
cooperating base stations may form overlapping clusters.

IV. SOFTINTERFERENCENULLING
A. Full Network Coordination

First we consider the case where all base stations are atomerPartial network coordination is addressed in
the next section. Let the joint transmit signal at the baa#asts be given as follows:

N
v=> Gu;, i=1,....N (18)
i=1

whereG; € CN*N is the precoding matrix for User andu; € CV is Useri's information signals. Note that in
the above formulation we allow a user’s transmission to lmaultiple spatial streams (up to the number of transmit
antennasV). Without loss of generality, entries of a user’s precodingtrix may be set to zero if not all spatial
streams are active. We assume each spatial stream corfsistiependent data signals, i.&[u;ul’] = Iy, and
E[uiuf] =0, i # j. Treating interference as noise, the transmission ratestr4is given by

hHQ;h; >
L+ 30500 i DI Qi
whereh; are as defined if19), ang, € HY is the covariance matrix of the transmit signal to User

Qi = E[Gu;i(Gu)"] = G;GE. (20)

Ri:log(1+ i=1,...,N (19)

It is more convenient to specify the precoder design in teofmthe covariance matriceQ;. To generate transmit
signals with the specified covariances, we may set the pnegodatricesG; to be

Gi=V,D)", i=1,... N (21)

where D; is diagonal, and; = V;D; V" is the eigendecomposition of the covariance mafjix Suppose we
consider as performance metric a general concave utilitgtfon of the user rateé/(R), whereR = [R; ... Ry]7,
then the design goal is to choose the covariance mat€ge® maximize the utility function

maximize U(R) (22)
over ReRY, Q; e HY (23)
: hQ;h;
subjectto R; < log(l—i— e @ s ) (24)
L+ 320500 i it Qb
N

> <p (25)

=1 1,7

wherei = 1,..., N, and the last set of inequalities represents the per-aatpower constraints. However, the

above maximization is not a convex program, and in geneialdifficult to solve efficiently. Instead, we propose
a linear precoding technique called soft interferenceimyll(SIN), which has good performance in the sense that
SIN precoding performs at least as well as ZF beamformingeufdl network coordination.



The main idea is that when the interference at each user i, $heatransmission rateB; are well-approximated
by the following:

Qi
Rizlog(1+ - @ o ) (26)

L4325, 2 hit Qihi
N . N oo -

=log(1+ Y RIQih) ~log(1+ > hQ;h) (27)
j=1 j=1,j#i
N B B N B B

Zlog(1+ Y hTQih) - Y A'Qjh (28)
=1 j=1,j#i

s R, (29)

where the inequality in[(28) follows from being a global over-estimator dbg(1 + x), andlog(l + z) ~ =
for small z. We define the SIN precoders as the precoding matrices thegspmnd to the solution of following
optimization problem

maximize U(R) (30)
over ReRY, @, e HY (31)
subject to R; < 1og(1 + Zh{f@jhi) — Y wlQ;h (32)
j=1 J=1,5#i
N

>l <np (33)

=1 1,1
wherei =1,...,N, andR 2 [R; ... Ry]”. Note that the above maximization is a convex optimizatiosbfem,

and its solution can be efficiently computed using standard/ex optimization numerical techniques, e.g., by the
interior point method [25], [26].

When the interference terms are zero, the inequality ih {2&ight, and the SIN rates are the same as the ZF
rates. Unlike ZF, however, SIN allows the possibility of mero interference: ZF can be interpreted as imposing
an infinite penalty on interference, whereas SIN relaxe# sestriction. Nevertheless, as given [inl(28), SIN over-
penalizes interference (i.eR; < R;); hence there is a strong incentive for the SIN precodingtsni to null out
the interference. Since ZF beamforming is in the feasibteof¢he SIN optimization, SIN performs at least as
well as ZF. Note that the SIN solution is not necessarily llgcaptimal in the original problem[{22)E(25): the
utility function may be further improved, for example, byacal gradient search method. However, when there is
sufficient transmit antenna degrees-of-freedom to supphesinterference, such improvements are observed to be
marginal in the numerical experiments.

B. Partial Network Coordination

Having full network coordination implies that all user mages need to be routed to all base stations, which
represents a considerable burden on the backhaul networraktice, it is desirable to involve only a limited
number of base stations cooperating to send to each usese Tdmoperating base stations form a cluster, and
we may have overlapping coordination clusters in the callaetwork. In this section, we consider applying SIN
precoding under partial network coordination. In par@eculwe assume the base stations may exchange channel
state information (CSI) over the backhaul network, but easér's message is routed only to those base stations
in the coordination cluster associated with the user.

Suppose the set of base stations that cooperate to sendrto igsgven by the ordered sét = {j1,72,...,7n, },
wherej; < jo < --- < jn,. Hence onlyN; base stations, withlv; < N, cooperate to send to Usérand we
impose the constraint that base stations naf;ido not participate in the transmission of Ugsrsignals. For each
Useri, the above restriction is represented by an associatiorixm@t defined as follows:

1, I=1,...,N;
Ci c RNXNi7 Cz - ) ) . s 4Ve 34
(il {O, otherwise (34)



Suppose the joint transmit signal for Usemmong its/N; cooperating base stations is characterized by\the ;
covariance matrixQ; € HY", then the full N x N covariance matrix for User with respect to all base stations
is given by:C;Q;CT . Effectively, the matrixC; specifies that the non-participating base stations haveopieg
weights of zero. The SIN precoding covariance matrices updgial base station coordination can then be found
by solving the following convex optimization problem

maximize U(R) (35)
over ReRY, Q; e HY: (36)
N N
subject to R; <log(1+ > hf'C;Q;CThi) — Y. hf'C;Q;C b (37)
j=1 j=Li#i
N
> cQicf] <P (38)
i=1 ’

where: =1,...,N.

For example, suppose there ave= 5 base stations in the network, and in the network Usepecifies that
its coordination cluster consists of Bases3, and4: i.e., Base2, 3, and4 may cooperate and jointly encode the
signals to be sent to Us& but Basesl and2 may not participate to send any message to Bsérhen the the
association matrix for Use} is given by

C3 =

0
0
1 (39)
0

o O = O
— o O O

000

The design variable for Use¥’s signal is given by the covariance matrd; € H3, which describes the joint
signal from Baseg, 3, and4. With respect to all base stations, the overall covarianagimfor User3’s signal
is described by

0 0 0 0 0
0 [@Q3)i1 [@312 [@3)i3 O
C3Q307 = [0 [Q3)21 [Qs)22 [Qs)2s O (40)
0 [@s]31 [Q3]s2 [@3]z3 O
0 0 0 0 0

Numerical examples with limited coordination cluster sae presented in Sectigd V.

C. Multiple-Antenna Channels

In the previous sections, we assume each mobile user hasgke sintenna. The SIN precoding technique
generalizes to the case where the users have multiple astema illustrate the principle, we consider a simple
single-cell scenario. Suppose we have a base station Mjthtransmit antennas, and there @emobile users in
the network each witll/ receive antennas. We assume there is a transmit power @iohgtron the base station.

The multiple-input multiple-output (MIMO) downlink chaehis described by

vy =Hx+z, i=1,...,N (42)

wherey; € CM= is Useri’s receive signaly € CM7 is the transmit signaly; € CM= is additive white Gaussian
noise (AWGN) withE[z;z/] = Inr,, E[z;z)'] = 0 for i # j; and H; € CM=*Mr is the MIMO channel from the
base station to User Based on the Taylor series expansion of the log-deterrhifuenction: log det(/ + X) =



tr X + O(X?), the user rates are approximated as
det(Ins, + Y0, HiQ;HH)

fia = log det (Inr,, + Z;'Vzl,j;éi H;Q;H]) “2)
N N
2 logdet (I, + > HiQHT) = > tr HiQ;HI! (43)
i=1 j=1,j#i
2 R;. (44)

Therefore, the MIMO SIN precoding covariance matrices cafolind by solving the following convex optimization
problem

maximize U(R) (45)
over ReRY, Q; e " (46)
~ N N
subject to R; < log det(IMR +3° HQ,H]! ) — Y teHQH (47)
j=1 j=1,j#i
N
dtrQ; <P (48)
j=1
wherei = 1,..., N. Note that unlike ZF, SIN precoding is well-defined even whiennumber of transmit antennas

is less than the number of users. However, since SIN imposag@ penalty on interference, we expect the SIN
formulation is most useful when there are sufficient degddseedom to suppress the interference among the
users.

V. NUMERICAL RESULTS

Let us consider the line network cellular downlink model #melsimulation settings as described in Sedfibn 1. The
rates obtained from ZF and SIN precoding are shown in[Big.08tlke numerical results, the convex optimization
problems are solved using the software package SDPT3 [2f].cBmparison, the single-user rates (with and
without interference) and the DPC BC capacity discussedeictin[I[-B are also shown on the plot. There are
N =19 single-antenna base stations in the network, and each t&Emserves one single-antenna user. In ZF, all
base stations participate in the cooperation. For SIN pliegp different coordination cluster sizes are considgered
and the cluster sizes are labeled next to their correspgralinves on the plot. Each user chooses the closest base
stations to participate in the coordination cluster. Foairagle, when the coordination cluster size3jsUser1 is
served by Base$19,1,2}, User2 by Bases{1, 2,3}, User3 by Bases{2, 3,4}, and so on.

As illustrated in Fig[B, there is a gap between the ZF ratetaedPC rate, but they both exhibit similar scaling
trends as the SN increases. In particular, the ZF beamforming techniquenalithe network to overcome its
interference-limited performance bottleneck, thus destraing the value of cooperative cellular networks. Under
full network coordination, SIN precoding outperforms ZBpecially at low SNRs where ZF can suffer from noise
amplification. Moreover, at moderate SNRs, SIN with limitsabrdination cluster sizes is able to outperform ZF,
which requires full network coordination. For example,ls# SNRP = 18 dB, a typical operating SNR at the cell
edge in cellular systems, SIN with a coordination clustee sif 7 outperforms ZF with full network coordination.
As the SNR increases, however, it is observed that SIN unaeiapnetwork coordination becomes interference-
limited. It is useful to identify the region to the lower-higof the ZF rate curve as the interference-limited regime.
Therefore, for power efficiency, the coordination clusteesn SIN could be chosen to at least achieve the ZF
rates.

V1. CONCLUSIONS

In this paper, we proposed a simple line network model thaturas the interference-limited behavior of a
cellular downlink system. Base station cooperation allewjsint encoding of user signals that can overcome the
interference limitation; however, the capacity-achigmitirty paper coding scheme in this case may be too complex
for practical implementation. When all base stations in tieéwork cooperate, zero-forcing is a simple linear
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Fig. 3. ZF and SIN (with different coordination cluster siyeates in the downlink line networkM = 19, d, = d, = 1). The SIN cluster
sizes are labeled next to their corresponding curves.

precoding technique that offers good performance relatv@PC. We proposed a new linear precoding technique
called soft interference nulling (SIN) that performs bettean or equal to ZF under full network coordination. SIN
precoding can be applied to maximize any general concaly dtinction of the user rates by solving a convex
optimization problem, and the formulation is extended te ttase when the terminals have multiple antennas.
Moreover, it is shown that SIN precoding with a limited cooation cluster size can outperform ZF with full
network coordination at moderate SNRs.
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