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Abstract— We investigate the problem of Multiple Descrip-
tion (MD) coding of discrete ergodic processes. We introduce
the notion of MD stationary coding, and characterize its
relationship to the conventional block MD coding. In stationary
coding, in addition to the two rate constraints normally consid-
ered in the MD problem, we consider another rate constraint
which reflects the conditional entropy of the process generated
by the third decoder given the reconstructions of the two
other decoders. The relationship that we establish between
stationary and block MD coding enables us to devise a universal
algorithm for MD coding of discrete ergodic sources, based on
simulated annealing ideas that were recently proven useful for
the standard rate distortion problem.

I. INTRODUCTION

Consider a packet network where a signal is to be de-

scribed to several receivers. In a basic setup, the source

is coded by a lossy encoder, and several copies of the

packet containing the source description is sent over the

network to make sure that each receiver gets at least one

copy. Receiving more than one copy of these packets is

not advantageous, because all the packets contain similar

information. In contrast to this setup, one can think of a

more reasonable scenario where the packets flooded into the

network are not exactly the same; They are designed such

that receiving each one of them is sufficient for recovering

the source, but receiving more packets improves the quality

of the reconstructed signal. The described scenario is referred

to as multiple description.

The information-theoretic statement of the MD problem,

and early results on the MD problem can be found in [1]-

[4]. Even for the seemingly simple case where there are only

two receivers, and the source is i.i.d., the characterization of

the achievable rate-distortion region is not known in general.

For this case, there are two well-known inner bounds due

to El Gamal-Cover [5] and Zhang-Berger [6]. There is also

a combined region, introduced in [7], which includes both

regions, but recently shown to be no better than the Zhang-

Berger region [8]. In any case, full characterization of the

achievable region is not yet known.

Since even for i.i.d. sources, the single-letter characteri-

zation of the achievable rate-distortion region is not known

in general, there are few works done on the MD of non-

i.i.d. sources. The rate-distortion region of Gaussian pro-

cesses is derived in [10], and is shown to be achievable

using a scheme based on transform lattice quantization. In
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[9], a multi-letter characterization of the achievable weighted

rate-distortion region of discrete stationary ergodic sources

is derived.

In this paper, we consider the MD of discrete ergodic

processes where the distribution of the source is not known

to the encoder and decoder. We introduce a universal al-

gorithm which can asymptotically achieve any point in the

achievable rate-distortion region. In order to get this result,

we start by defining two notions of MD coding, namely,

(i) conventional block coding, and (ii) stationary coding.

In the normal block-coding MD, there are two rates but

three reconstruction processes. In the stationary coding setup,

there are three rates and three reconstruction processes. The

additional rate corresponds to the conditional entropy rate

of the the ergodic process reconstructed by the privileged

decoder, which receives two descriptions of the source, given

the two other ergodic reconstruction processes. We show that

these two setups are closely related and, in fact, characterize

each other. The beneficial point of the new definition is

that it enables us to devise a universal MD algorithm. The

introduced algorithm takes advantage of simulated annealing

which was used recently in [15] to design an asymptotically

optimal universal algorithm for lossy compression of discrete

ergodic sources.

The outline of this paper is as follows: In Section II some

preliminary notation, and definitions are presented. Section

III studies a simple example, which, as made clear later,

is closely related to the MD problem. Section IV formally

defines the MD problems, and the two notions of block MD

coding and stationary MD coding, and shows the relationship

between the two. Based on these results, a universal MD

algorithm is described in Section V, and in Section VI some

simulation results demonstrating the performance of the

proposed algorithm on simulated data are presented. Finally,

Section VII discusses some future research directions.

II. NOTATION

Let X = {Xi; ∀ i ∈ N
+} be a stochastic process

defined on a probability space (X, Σ, µ), where µ is a

probability measure defined on Σ, the σ-algebra generated

by the cylinder sets C. For a process X, let X denote the

alphabet set of Xi, which is assumed to be finite in this

paper. The shift operator T : X∞ → X∞ is defined by

(Tx)n = xn+1, x ∈ X∞, n ≥ 1.

Moreover, for a stationary process X, let H̄(X) denote its

entropy rate defined as H̄(X) = lim
n→∞

H(Xn+1|X
n).

Let X and X̂ denote the source and reconstruction alpha-

bets respectively. For yn ∈ Yn, define the matrix m(yn) to

Forty-Seventh Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 30 - October 2, 2009

978-1-4244-5871-4/09/$26.00 ©2009 IEEE 1256

Authorized licensed use limited to: CALIFORNIA INSTITUTE OF TECHNOLOGY. Downloaded on August 03,2010 at 19:12:03 UTC from IEEE Xplore.  Restrictions apply. 



be the |Y| × |Y|k matrix representing the (k + 1)th order

empirical distribution of yn, i.e., its (β,b)th element is

defined as

mβ,b(yn) =
1

n

∣

∣

{

1 ≤ i ≤ n : yi−1
i−k = b, yi = β]

}∣

∣ , (1)

where b ∈ Yk, and β ∈ Y . In (1) and throughout we assume

a cyclic convention whereby yi , yn+i for i ≤ 0. Let

Hk(yn) denote the conditional empirical entropy of order

k induced by yn, i.e.

Hk(yn) = H(Yk+1|Y
k), (2)

where Y k+1 on the right hand side of (2) is distributed

according to

P(Y k+1 = [b, β]) = mβ,b(yn). (3)

The conditional empirical entropy in (2) can be expressed as

a function of m(yn) as follows

Hk(yn) =
1

n

∑

b

H (m·,b(yn)) 1
T
m·,b(yn), (4)

where 1 and m·,b(yn) denote the all-ones column vector

of length |Y|, and the column in m(yn) corresponding to

b respectively. For a vector v = (v1, . . . , vℓ)
T with non-

negative components, we let H(v) denote the entropy of the

random variable whose probability mass function (pmf) is

proportional to v. Formally,

H(v) =

{

∑ℓ
i=1

vi

‖v‖1
log ‖v‖1

vi

if v 6= (0, . . . , 0)T

0 if v = (0, . . . , 0)T .
(5)

Let m(wn|yn, zn) denote the conditional kth order

empirical distribution of wn given yn and zn, whose

(β,b0,b1,b2)
th element is defined as

mβ,b0,b1,b2 =

1

n

∣

∣

∣

{

i : wi = β, wi−1
i−k = b0, y

i+k1

i−k1
= b1, z

i+k1

i−k1
= b2

}∣

∣

∣
,

(6)

where β ∈ W , b0 ∈ W
k, b1 ∈ Y

2k1+1, and b2 ∈ Z
2k1+1.

Now define the conditional empirical entropy of wn given

yn and zn, Hk,k1 (y
n|wn, zn), in terms of m(wn|yn, zn) as

Hk,k1(w
n|yn, zn) =

∑

b0,b1,b2

1
T
m·,b0,b1,b2H (m·,b0,b1,b2) .

(7)

R1 bits

R2 bits

(S1, S2, S0)

Ŝ1

Ŝ2

Ŝ0

Fig. 1. Example setup

III. SIMPLE EXAMPLE

Before formally defining the MD problem, consider the

setup shown in Fig. 1. This example is meant to provide

some insight into the MD problem. Also, the results of

this section will be used in the proof of Theorem 2 in

Appendix A. Here S1 ∈ S1, S2 ∈ S2 and S0 ∈ S0

denote three correlated discrete-valued random variables, and

(S1, S2, S0) ∼ P(s1, s2, s0). The Encoder’s goal is to send

R1 bits to Decoder 1, and R2 bits to Decoder 2 such

that Decoder 1 and 2 are able to reconstruct S1 and S2

respectively. Moreover, the transmitted bits are required to

be such that receiving both of them enables Decoder 0 to

reconstruct S0. In all three cases, the probability of error

is assumed to be zero. Let M1 ∈ {1, . . . , 2R1}, and M2 ∈
{1, . . . , 2R2} denote the messages sent to the decoders 1 and

2 respectively. The question is to find the set of achievable

rates (R1, R2). The following theorem states some necessary

conditions for (R1, R2) to be achievable. It is very similar

to Theorem 2 of [5], and the two theorems are in fact easily

seen to prove each other. The version we give here is most

suited for our later needs.

Theorem 1: For any achievable rate (R1, R2) for the setup

shown in Fig. 1,

R1 ≥H(S1)

R2 ≥H(S2)

R1 + R2 ≥H(S1) + H(S2) + H(S0|S1, S2). (8)

Proof: R1 ≥ H(M1) and R2 ≥ H(M2) follow from

Shannon’s lossless coding Theorem. It is also clear that we

should have

R1 + R2 ≥ H(S1, S2, S0)

= H(S1, S2) + H(S0|S1, S2). (9)

But, perhaps somewhat counterintuitively, (9) is just an outer

bound, and is not enough. R1+R2 in fact satisfies the tighter

condition stated in (8), as can be seen via the following chain

of inequalities:

R1 + R2 ≥ H(M1) + H(M2),

= H(M1, S1) + H(M2, S2),

= H(S1) + H(M1|S1) + H(S2) + H(M2|S2),

≥ H(S1) + H(S2) + H(M1|S1, S2)+

H(M2|S1, S2),

≥ H(S1) + H(S2) + H(M1, M2|S1, S2),

≥ H(S1) + H(S2) + H(M1, M2, S0|S1, S2),

≥ H(S1) + H(S2) + H(S0|S1, S2). (10)

IV. MULTIPLE DESCRIPTION PROBLEM

Consider the basic setup of MD problem shown in Fig. 2.

In this figure, Xn is generated by a stationary ergodic source

X.

Remark: In order to see the connection between the

example described in Section III, and the MD problem, note
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Xn

M1

M2

Encoder

Decoder 1

Decoder 2

Decoder 0

X̂n
1

X̂n
2

X̂n
0

Fig. 2. MD coding setup

that letting Si = X̂n
i , i ∈ {1, 2}, and S0 = X̂n

0 , the

MD problem can be described as the problem of describing

(S1, S2, S0) to the respected receivers error-free. In other

words, for each code design, we have a problem equivalent

to the one described in Section III.

A. Block coding:

MD coding problem can be described in terms of encoding

mapping f , and decoding mappings (g1, g2, g0) as follows

1) f : Xn → [1 : 2nR1 ]× [1 : 2nR2 ],
2) gi : [1 : 2nRi ]→ X̂n, for i = 1, 2,

3) g0 : [1 : 2nR1 ]× [1 : 2nR2 ]→ X̂n,

4) (M1, M2) = f(Xn),
5) X̂n

i = gi(Mi), for i = 1, 2,

6) X̂n
0 = g0(M1, M2).

(R1, R2, D1, D2, D0) is said to be achievable for this

setup, if there exists a sequence of codes

(f (n), g
(n)
1 , g

(n)
2 , g

(n)
0 ) such that

lim sup
n

E dn(Xn, X̂n
i ) ≤ Di, for i = 1, 2,

lim sup
n

E dn(Xn, X̂n
0 ) ≤ D0.

Let RB be the set of all (R1, R2, D1, D2, D0) that are

achievable by block MD coding of source X.

B. Stationary coding:

Define (R11, R22, R0, D1, D2, D0) to be achievable by

stationary coding of source X, if for any ǫ > 0,

there exist processes X̂
(ǫ)
1 , X̂

(ǫ)
2 and X̂

(ǫ)
0 such that

(X, X̂
(ǫ)
1 , X̂

(ǫ)
2 , X̂

(ǫ)
0 ) are jointly stationary ergodic pro-

cesses, and

H̄(X̂
(ǫ)
1 ) ≤ R11 + ǫ (11)

H̄(X̂
(ǫ)
2 ) ≤ R22 + ǫ (12)

H̄(X̂
(ǫ)
0 |X̂

(ǫ)
1 , X̂

(ǫ)
2 )+ ≤ R0 + ǫ (13)

E d(X0, X̂
(ǫ)
1,0) ≤ D1 + ǫ (14)

E d(X0, X̂
(ǫ)
2,0) ≤ D2 + ǫ (15)

E d(X0, X̂
(ǫ)
0,0) ≤ D0 + ǫ. (16)

Let RP denote the set of all (R11, R22, R0, D1, D2, D0)
that are achievable by stationary MD coding of source X.

The following theorem characterizes RB in terms of RP .

Theorem 2: Let X be a stationary ergodic source.

For any (R1, R2, D1, D2, D0) ∈ RB, there exists

(R11, R22, R0, D1, D2, D0) ∈ RP such that

R11 ≤ R1 (17)

R22 ≤ R2 (18)

R11 + R22 + R0 ≤ R1 + R2 (19)

On the other hand, if (R11, R22, R0, D1, D2, D0) ∈ RP,

any point (R1, R2, D1, D2, D0) satisfying (17)-(19) belongs

to RB.

Proof: Refer to Appendix A for an outline of the proof.

Remark: The theorem implies that RB can be character-

ized as the set of (R1, R2, D1, D2, D0) such that

H̄(X̂1) ≤ R1

H̄(X̂2) ≤ R2

H̄(X̂1) + H̄(X̂2) + H̄(X̂0|X̂1, X̂2) ≤ R1 + R2,

for some jointly stationary ergodic processes

(X, X̂1, X̂2, X̂0) which satisfy (14)-(16).

V. UNIVERSAL MULTIPLE DESCRIPTION

CODING

Equipped with the characterization of the achievable re-

gion established in the previous section, we now turn to our

construction of a universal scheme for this problem. Consider

the following MD algorithm for the setup shown in Fig. 2.

Let

(x̂n
1 , x̂n

2 , x̂n
0 ) ,

arg min
(yn,zn,wn)

[γ1Hk(yn) + γ2Hk(zn) + γ0Hk,k1(w
n|yn, zn)

+α1dn(xn, yn) + α2dn(xn, zn) + α0dn(xn, wn)] , (20)

Assume that γi ≥ 0 and αi ≥ 0, for i ∈ {0, 1, 2}, are

given Lagrangian coefficients. Also, assume that k1 ≤ k =
o(log n) such that k1 →∞ as n→∞.

Theorem 3: Let X be a stationary ergodic process, and

(X̂n
1 , X̂n

2 , X̂n
0 ) denote the output of the above algorithm to

input sequence Xn. Then,

lim sup
n

[

γ1Hk(X̂n
1 ) + γ2Hk(X̂n

2 ) + γ0Hk,k1 (X̂
n
0 |X̂

n
1 , X̂n

2 )+

α1dn(Xn, X̂n
1 ) + α2dn(Xn, X̂n

2 ) + α0dn(Xn, X̂n
0 )

]

= min [γ1R11 + γ2R22 + γ0R0 + α1D1 + α2D2 + α0D0]
(21)

almost surely, where the minimization is over all

(R11, R22, R0, D1, D2, D0) ∈ RP.

The proof of Theorem 3 is presented in Appendix B.

After finding (x̂n
1 , x̂n

2 , x̂n
0 ), x̂n

1 and x̂n
2 will be described to

Decoders 1 and 2 respectively using one of the well-known

universal lossless compression algorithms, e.g., Lempel Ziv

algorithm. Then Encoder forms a description of x̂n
0 con-

ditioned on knowing x̂n
1 and x̂n

2 using conditional Lempel
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Ziv algorithm or some other universal algorithm for lossless

coding with side information [11]. A portion 0 ≤ θ ≤ 1 of

these bits will be included in the message M1 and the rest

in message M2.

For finding an approximate solution of (20) instead of

doing the required exhaustive search directly, as done in [15],

one can employ simulated annealing [14]. To do this, we

assign a cost to each (yn, zn, wn) ∈ X̂n × X̂n × X̂n as

follows

E(yn, zn, wn) :=

γ1Hk(yn) + γ2Hk(zn) + γ0Hk,k1 (w
n|yn, zn)

+ α1dn(xn, yn) + α2dn(xn, zn) + α0dn(xn, wn),

and then define the Boltzmann probability distribution at

temperature T = 1/β as

pβ(yn, zn, wn) :=
1

Z
e−βE(yn,zn,wn), (22)

where Z is a normalizing constant. Sampling from this

distribution at a very low temperature yields (X̂n
1 , X̂n

2 , X̂n
0 )

with energy close to the minimum possible energy, i.e.,

E(X̂n
1 , X̂n

2 , X̂n
0 ) ≈ min

(yn,zn,wn)
E(yn, zn, wn). (23)

Since sampling from (22) at low temperatures is almost as

hard as doing the exhaustive search, we turn to simulated

annealing (SA) which is a known method for solving discrete

optimization problems. The SA procedure works as follows:

it first defines Boltzmann distribution over the optimization

space, and then tries to sample from the defined distribution

while gradually decreasing the temperature from some high

T to zero according to a properly chosen annealing schedule.

Given E(yn, zn, wn), similarly as in [15], the number of

computations required for calculating

E(yi−1ayn
i+1, z

i−1bzn
i+1, w

i−1cwn
i+1) , when only one of the

following is true: a 6= yi, b 6= zi, or c 6= wi, for some

i ∈ {1, . . . , n} and a, b, c ∈ X̂ , is linear in k and k1, and is

independent of n. Therefore, this energy function lends itself

to a heat bath type algorithm as simply and naturally as the

one in the original setting of [15] did.

Now consider Algorithm 1 which is based on the

Gibbs sampling method for sampling from pβ , and let

(X̂n
1,r, X̂

n
2,r, X̂

n
0,r) denote its random outcome for the input

sequence Xn after r iterations1 , when taking k1 = k1,n

, k = kn and β = {βt}t to be deterministic sequences

satisfying k1,n = o(log n), kn = o(log n) such that k, k1 →
∞ as n → ∞, and βt = 1

T
(n)
0

log(⌊ t
n⌋ + 1), for some

1Here and throughout it is implicit that the randomness used in the
algorithms is independent of the source, and the randomization variables
used at each drawing are independent of each other.

T
(n)
0 > n max(∆1, ∆2, ∆0), where

∆1 = max
∣

∣E(yi−1ayn
i+1, z

n, wn)− E(yi−1byn
i+1, z

n, wn)
∣

∣ ,

i ∈ {1, . . . , n}

yi−1 ∈ X̂ i−1, yn
i+1 ∈ X̂

n−i,

a, b ∈ X̂ ,

zn ∈ X̂n, wn ∈ X̂n, (24)

∆2 = max
∣

∣E(yn, zi−1azn
i+1, w

n)− E(yn, zi−1bzn
i+1, w

n)
∣

∣ ,

i ∈ {1, . . . , n}

zi−1 ∈ X̂ i−1, zn
i+1 ∈ X̂

n−i,

a, b ∈ X̂ ,

yn ∈ X̂n, wn ∈ X̂n, (25)

∆0 = max |E(yn, zn, wi−1awn
i+1)− E(y

n, zn, wi−1bwn
i+1)|.

i ∈ {1, . . . , n}

wi−1 ∈ X̂ i−1, wn
i+1 ∈ X̂

n−i,

a, b ∈ X̂ ,

yn ∈ X̂n, zn ∈ X̂n, (26)

As discussed before, the computational complexity of the

algorithm at each iteration is independent of n and linear in

k and k1. Following exactly the same steps as in the proof

of Theorem 2 in [15], we can prove the following theorem

which established universal optimality of Algorithm 1.

Theorem 4: For any ergodic process X,

lim
n→∞

lim
r→∞

E(X̂n
1 , X̂n

2 , X̂n
0 )

= min [γ1R11 + γ2R22 + γ0R0 + α1D1 + α2D2 + α0D0]
(27)

almost surely, where the minimization is over all

(R11, R22, R0, D1, D2, D0) ∈ RP(X).

Algorithm 1 Generating the reconstruction sequences

Require: xn, k1, k, {αi}
2
i=0, {βi}

2
i=0 {βt}

r
t=1, r

Ensure: a reconstruction sequences (x̂n
1 , x̂n

2 , x̂n
0 )

1: yn ← xn

2: zn ← xn

3: wn ← xn

4: for t = 1 to r do

5: Draw an integer i ∈ {1, . . . , n} uniformly at random

6: For each y ∈ X̂ compute q1(y) = pβt
(Yi = y|Y n\i =

yn\i, Zn = zn, Wn = wn)
7: Update yn by letting yi = V1, where V1 ∼ q1

8: For each z ∈ X̂ compute q2(z) = pβt
(Zi = z|Y n =

yn, Zn\i = zn\i, Wn = wn)
9: Update zn by letting zi = V2, where V2 ∼ q2

10: For each y ∈ X̂ compute pβt
(Yi = y|Y n\i = yn\i)

11: Update wn by letting wi = V0, where V0 ∼ q0

12: Update m(yn), m(zn) and m(wn|yn, zn)
13: end for

14: x̂n ← yn
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VI. SIMULATION RESULTS

In this section, we present some results showing the actual

implementation of the algorithm described in Section V. The

simulated source here is a sym metric binary Markov source

with transition probability p = 0.2. The considered block

length is n = 104, and the context sizes are k = 5 and

k1 = 1. The annealing schedule was chosen according to

T (t) =
1

2nt1/10
,

where t is the iteration number. The number of iterations, r,

is equal to 50n. The algorithm with the specified parameters,

for γ1 = γ2 = γ0 = α1 = α2 = a0 = 1, achieves the

following set of rates and distortions:

Hk(x̂n
1 ) = 0.5503,

Hk(x̂n
2 ) = 0.5586,

Hk,k1(x̂
n
0 |x̂

n
1 , x̂n

2 ) = 0.0038,

dn(xn, x̂n
1 ) = 0.0505,

dn(xn, x̂n
2 ) = 0.0483,

dn(xn, x̂n
0 ) = 0.0036.

Fig. 3 shows how the total cost is reducing in this case, as the

number of iterations increases. One interesting thing to note

here is that although the sequences x̂n
1 and x̂n

2 have almost

the same distance from the original sequence xn, they are far

from being equal. In fact, dn(x̂n
1 , x̂n

2 ) = 0.0966, which, given

dn(xn, x̂n
1 ) = 0.0505 and dn(xn, x̂n

2 ) = 0.0483, suggests

that they are almost maximally distant.

As another example, consider the case where n = 5 ×
104 and α1 = α2 = 2. The rest of the parameters are left

unchanged. The achieved point in this case is going to be

Hk(x̂n
1 ) = 0.6091,

Hk(x̂n
2 ) = 0.5951,

Hk,k1(x̂
n
0 |x̂

n
1 , x̂n

2 ) = 0,

dn(xn, x̂n
1 ) = 0.0200,

dn(xn, x̂n
2 ) = 0.0240,

dn(xn, x̂n
0 ) = 0.0010.

Here, Hk,k1(x̂
n
0 |x̂

n
1 , x̂n

2 ) = 0 implies that x̂0,i is a determin-

istic function of its context, (x̂i−1
0,i−k1

, x̂i+k1

1,i−k1
, x̂i+k1

2,i−k1
). This

of course does not mean that no additional rate is required

for describing x̂n
0 when the decoder already knows x̂n

1 and

x̂n
2 , because this deterministic mapping itself is not known

to the decoder beforehand. Here again x̂n
1 and x̂n

2 are almost

maximally distant because dn(x̂n
1 , x̂n

2 ) = 0.0436.

Note that the fundamental performance limits are unknown

even for memoryless sources and, a fortiori, for the Markov

source in our experiment. Thus the performance of our

algorithm cannot be compared to the corresponding optimum

performance. The results of the preceding section, however,

imply that our algorithm attains that performance in the

limit of many iterations and large block length. Thus, the

performance attained by our algorithm, can alternatively be

viewed as approximating the unknown optimum.
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Fig. 3. Reduction in the cost. At the end
of the process, the final achived point is:
(Hk(x̂n

1
), Hk(x̂n

2
), Hk,k1

(x̂n
0

|x̂n
1
, x̂n

2
), dn(xn, x̂n

1
), dn(xn, x̂n

2
),

dn(xn, x̂n
0
)) = (0.5503, 0.5586, 0.0038, 0.0505, 0.0483, 0.0036)

VII. FUTURE DIRECTIONS

Simulated annealing was recently employed in [15] to

design a universal lossy compression algorithm. In this paper,

we proved that in fact the same tool can be applied to

devise a universal MD algorithm. We started by defining

the equivalent of MD problem for ergodic processes, and

defined the idea of stationary MD coding which includes

three rate constraints instead of two. Extensions of these

results to additional distributed coding scenarios are under

current investigation.
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APPENDIX A: OUTLINE OF THE PROOF OF THEOREM 2

Outline of the proof of the first part: Let

(R1, R2, D1, D2, D0) ∈ RB. We need to find (R11, R22, R0)
such that (R11, R22, R0, D1, D2, D0) ∈ RP, and (17) -(19)

are satisfied.

Let (f (n), g
(n)
1 , g

(n)
2 , g

(n)
0 ) be a sequence of codes at rate

(R1, R2) that achieves the point (R1, R2, D1, D2, D0) ∈
RB. Note that for a given code, (X̂n

1 , X̂n
2 , X̂n

0 ) is a deter-

ministic function of Xn. Using the same method used in

[12], we can generate jointly stationary ergodic processes

(X̂
(n)
1 , X̂

(n)
2 , X̂

(n)
0 ) by appropriately embedding these block

codes into ergodic processes. Here the superscript (n) indi-

cates the dependence of the constructed processes on n. In

order to code an ergodic process into another ergodic process

using a block code of length n, we need to cover an infinite

length sequence by non-overlapping blocks of length n up to

a set of negligible measure, and then replace each block by its

reconstruction generated by the block code. The challenging
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part is the partitioning which should preserve the ergodicity.

This can be done using R-K Theorem [13] which states that:

Theorem 5 (Rohlin-Kakutani Theorem): Given the

ergodic source X, integers N , n ≤ N , and ǫ > 0, there

exists an event F (called the base) such that

1) F, TF, . . . , T N−1F are disjoint,

2) P

(

N−1
⋃

i=0

T iF

)

≥ 1− ǫ,

3) P (S(an)|F ) = P (S(an)), where S(an) = {x : xn =
an}.

Since the sequence of MD block codes were as-

sumed to achieve the point (R1, R2, D1, D2, D0), the con-

structed process (X̂
(n)
1 , X̂

(n)
2 , X̂

(n)
0 ) satisfies the distor-

tion constraints given in (14)-(16) at (D1 + ǫn, D2 +
ǫn, D0 + ǫn), where ǫn → 0 as n → ∞. There-

fore, (H̄n(X̂
(n)
1 ), H̄n(X̂

(n)
2 ), H̄n(X̂

(n)
0 |X̂

(n)
1 , X̂

(n)
2 ), D1 +

ǫn, D2 + ǫn, D0 + ǫn) ∈ RP. Let

R
(n)
11 :=

1

n
H(X̂n

1 ), (A-1)

R
(n)
22 :=

1

n
H(X̂n

2 ), (A-2)

R
(n)
0 :=

1

n
H(X̂n

0 |X̂
n
1 , X̂n

2 ), (A-3)

where X̂n
i = g

(n)
i (Mi), for i ∈ {1, 2} and

X̂n
0 = g

(n)
0 (M1, M2). Note that since the encoder

knows (X̂n
1 , X̂n

2 , X̂n
0 ), by Theorem 1, R

(n)
11 ≤ R1,

R
(n)
22 ≤ R2, and R

(n)
11 + R

(n)
22 + R

(n)
0 ≤ R1 +

R2. The only remaining step is to find the relationship

between (H̄n(X̂
(n)
1 ), H̄n(X̂

(n)
2 ), H̄n(X̂

(n)
0 |X̂

(n)
1 , X̂

(n)
2 )) and

(R
(n)
11 , R

(n)
22 , R

(n)
0 ), which is not hard from the way the

processes are constructed.

Outline of the proof of the second part: Let

(R11, R22, R0, D1, D2, D0) ∈ R
P. This means that

there exist processes X̂1, X̂2 and X̂0 jointly stationary and

ergodic with X which satisfy (11)-(16). Based on these

processes, for block length n, we use the following block

coding strategy: For coding sequence Xn, describe X̂n
1 and

X̂n
2 losslessly to the decoders 1 and 2 using n(H̄(X̂1)+ ǫn)

and n(H̄(X̂2) + ǫn) bits respectively. Given X̂n
1 and

X̂n
2 , n(H̄(X̂0|X̂1, X̂2) + ǫn) bits suffice to describe X̂n

0

losslessly to Decoder 0. These bits can be divided into two

parts: the first part will be included in the message M1, and

the rest in the message M2. Decoders 1 and 2 just ignore

these extra bits, but Decoder 0 combines them with the two

other messages to reconstruct X̂n
0 . Since R1 and R2 satisfy

(17)-(19), it is possible to do this.

APPENDIX B: PROOF OF THEOREM 3

For an ergodic source X, let

µ(γ, α) :=

min
RP(X)

[γ1R11 + γ2R22 + γ0R0 + α1D1 + α2D2 + α0D0] .

(B-1)

No coding strategy can beat µ(γ, α) on a set of non-

zero probability. Therefore, the left hand side of (21) is

lower bounded by its right hand side. Therefore, we only

need to prove the other direction. By definition, for any

(R11, R22, R0, D1, D2, D0) ∈ RP(X), there exist processes

X̂1, X̂2 and X̂0 such that (11)-(16) are satisfied. On the

other hand, if (X̂n
1 , X̂n

2 , X̂n
0 ) is generated by jointly ergodic

processes (X̂1, X̂2, X̂0), then for k = o(log n) and k1 =
o(log n) such that k, k1 → ∞ as n → ∞, Hk(X̂n

i ) →
H̄(X̂i), for i ∈ {1, 2}, and moreover Hk,k1(X̂

n
0 |X̂

n
1 , X̂n

2 )→
H̄(X̂0|X̂1, X̂2). This implies that

lim sup min[γ1Hk(X̂n
1 ) + α2dn(Xn, X̂n

2 )+

γ2Hk(X̂n
2 ) + α1dn(Xn, X̂n

1 )+

γ0Hk,k1 (X̂
n
0 |X̂

n
1 , X̂n

2 ) + α0dn(Xn, X̂n
0 )]
(B-2)

is upper-bounded by µ(γ, α)+ǫn, where ǫn → 0. Combining

these two results in the desired conclusion.
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