
Explicit Construction of Optimal Exact
Regenerating Codes

for Distributed Storage
K. V. Rashmi†, Nihar B. Shah†, P. Vijay Kumar†, Kannan Ramchandran#

†
Dept. of ECE, Indian Institute Of Science, Bangalore, India.

Email: {rashmikv, nihar, vijay}@ece.iisc.ernet.in
Dept. of EECS, University of California, Berkeley, USA.

Email: kannanr@eecs.berkeley.edu

Abstract—Erasure coding techniques are used to increase the
reliability of distributed storage systems while minimizing stor-
age overhead. Also of interest is minimization of the bandwidth
required to repair the system following a node failure. In a
recent paper, Wu et al. characterize the tradeoff between the
repair bandwidth and the amount of data stored per node. They
also prove the existence of regenerating codes that achieve this
tradeoff.

In this paper, we introduce Exact Regenerating Codes, which
are regenerating codes possessing the additional property of
being able to duplicate the data stored at a failed node. Such
codes require low processing and communication overheads,
making the system practical and easy to maintain. Explicit
construction of exact regenerating codes is provided for the
minimum bandwidth point on the storage-repair bandwidth
tradeoff, relevant to distributed-mail-server applications. A sub-
space based approach is provided and shown to yield necessary
and sufficient conditions on a linear code to possess the exact
regeneration property as well as prove the uniqueness of our
construction.

Also included in the paper, is an explicit construction of re-
generating codes for the minimum storage point for parameters
relevant to storage in peer-to-peer systems. This construction
supports a variable number of nodes and can handle multiple,
simultaneous node failures. All constructions given in the paper
are of low complexity, requiring low field size in particular.

I. INTRODUCTION

Reliability is a major concern in large distributed storage
systems where data is stored across multiple unreliable stor-
age nodes. It is well known that adding redundancy increases
the reliability of the system but at the cost of increased
storage. Erasure coding based techniques [1], [2] (eg. using
Maximum distance separable(MDS) codes) have been used
to minimize this storage overhead.

In a distributed storage system, when a subset of the
nodes fail, the system needs to repair itself using the existing
nodes. In erasure coding based systems, each node stores a
fragment of an MDS code. Upon failure of a node, the failed
fragment can be restored back using the existing fragments.
The amount of data that needs to be downloaded to restore the
system after a node failure is one of the significant parameters
of a distributed storage system. In [3] the authors introduce a

new scheme called Regenerating Codes which store a larger
amount of data at each node compared to an MDS code,
in order to reduce the repair bandwidth. In [4] the authors
establish a tradeoff between the amount of storage required at
each node and the repair bandwidth. Two extreme and practi-
cally relevant points on this storage-repair bandwidth tradeoff
curve are the minimum bandwidth regeneration(MBR) point
which represents the operating point with least possible repair
bandwidth, and the minimum storage regeneration(MSR)
point which corresponds to the least possible amount of
data stored at a node. By an optimal Regenerating Code, we
will mean a Regenerating Code that meets the storage-repair
bandwidth tradeoff.

A principal concern in the practical implementation of
distributed storage codes is computational complexity. A
practical study of the same has been carried out in [7] for
random linear regenerating codes. Although the existence
of optimal regenerating codes was proved in [4], for code
construction, the authors have suggested the use of a general
network-coding-based code construction algorithm due to
Jaggi et al [5]. The drawbacks of such an approach include
high complexity of code construction as well as the require-
ment of a large field size.

In this paper, we introduce Exact Regenerating Codes,
which are regenerating codes possessing the additional prop-
erty of being able to regenerate back the same node upon
failure. We give a low-field-size, low-complexity, explicit
construction for exact regenerating codes at the MBR point.
Using the subspace based approach provided, we also prove
that our code is unique among all the linear codes for this
point. Explicit construction is also given for regenerating
codes at the MSR point for suitable parameters which can
handle multiple node failures. To the best of our knowledge,
our codes are the first explicit constructions of optimal
regenerating codes.

In [6], Wu et al. also independently introduce the notion of
exact regeneration(termed exact repair in [6]) for the MSR
point. However, the codes introduced in their work do not
meet the storage-repair bandwidth tradeoff. The construction

ar
X

iv
:0

90
6.

49
13

v2
 [

cs
.I

T
]

 6
 O

ct
 2

00
9

proposed by them is of high complexity and also has the
disadvantage of a large field size requirement.

The rest of the paper is organized as follows. In Section
II we introduce the notion of Exact Regenerating Codes.
Explicit construction of Exact Regenerating Codes for the
MBR point is given in Section III. The complexity and the
field size requirement of the proposed code construction algo-
rithm are also analyzed here. In Section IV, a subspace based
approach to construction of these codes is provided which
is later used to prove the uniqueness of our construction.
Section V provides a construction of regenerating codes for
the MSR point for certain practically relevant parameters.
Finally, conclusions are drawn in Section VI.

II. EXACT REGENERATING CODES

Fig. 1. An illustration of exact regeneration: On failure of node 5, data
from nodes 1 to 4 is used to regenerate back the same data that node 5
earlier had.

The system description is as follows. All data elements
belong to a finite field Fq of size q. The total size of the
file is B units. The data is stored across n storage nodes
in a distributed manner where each node can store up to α
units of data. A data collector(DC) connects to any k out of
these n nodes to reconstruct the entire data. This property
is termed as ‘reconstruction property’. The data collector is
assumed to have infinite capacity links so that it downloads
all the data stored in these k nodes.

When a node fails, a new node is added in its place by
downloading β units of data from any d(≥ k)1 out of the
remaining n− 1 nodes. In regenerating codes as introduced
in [4], the new node formed need not be identical to the
failed one. It should satisfy the reconstruction property along
with the existing nodes. This property wherein a new node
satisfying reconstruction can be created as a replacement for
a failed node is termed as ‘regeneration property’. Any other
node subsequently regenerated using this node should satisfy
both the properties. Hence the new node along with all other
nodes should satisfy these properties for a possibly infinite
sequence of failures and regenerations.

1From [4], if d < k, the mincut condition will require data reconstruction
to hold for d nodes, hence k can be set as d.

We introduce a desirable property into regenerating codes
wherein the regenerated node is identical to the one which
failed. We will call regenerating codes having this additional
property as ‘Exact Regenerating Codes’. Fig. 1 shows an
example of the this scheme. As a failed node is replaced by an
identical node, Exact Regenerating Codes have to satisfy the
reconstruction property at only one level. Also, the additional
communication and processing overheads required to update
all the other nodes and data collectors about the new node is
completely avoided. This makes the storage system practical
and easy to maintain.

III. EXACT REGENERATING CODES FOR THE MBR POINT

The MBR point is the fastest recovery point (on the
storage-repair bandwidth tradeoff curve) in terms of the data
to be downloaded for regeneration per unit of the source data.
Also, among all the possible values of d, d = n−1 point gives
the fastest recovery as all the existing nodes simultaneously
help in the regeneration of the failed node. Hence the MBR
point with d = n− 1 is highly suitable for applications such
as distributed mail servers, where it is crucial to restore the
system in the shortest possible time.

This section gives the construction of linear exact regen-
erating codes at the MBR point for d = n − 1 and any k.
At the MBR point, optimal α and β on the storage-repair
bandwidth tradeoff curve are given by (from [4]):

(αMBR, βMBR) =
(

2Bd
2kd− k2 + k

,
2B

2kd− k2 + k

)
(1)

Clearly for a feasible system we need β to be an integer2.
Assume β to be the smallest possible positive integer, i.e.
β = 1. Then we have

B = kd− k(k − 1)
2

(2)

and

α = d (3)

For any larger file size, the source file is split into chunks
of size B, each of which can be separately solved using the
construction for β = 1. Reconstruction and regeneration will
be performed separately on these smaller chunks and hence
additional processing and storage required to perform these
operations is greatly reduced.

A. Code construction

Denote the source symbols of the file by f =
(f0 f1 f2 . . . fB−1)t. Let d = n − 1 and θ = d(d+1)

2 .
Let V be a n x θ matrix with the following properties:

1) Each element is either 0 or 1.
2) Each row has exactly d 1’s.
3) Each column has exactly two 1’s.

2It can be seen from equation (1) that if β is an integer, then α and B
are also integers.

node 3

node 4

node 5

node 2

node 1

v5

v6

v7

v8

v9

v10

v1

v2

v3

v4

Fig. 2. Fully connected undirected graph with 5 vertices. Vertices represent
nodes and edges represent vectors corresponding to the common symbol
between two nodes.

4) Any two rows have exactly one intersection of 1’s.

It is easy to see that V is the incidence matrix of a fully
connected undirected graph with n vertices. Our construction
of exact regenerating codes for the MBR point uses the
above described matrix V. Consider a set of θ vectors
{v1, v2, . . . , vθ} which form a B-dimensional MDS code.
The vectors vi (i = 1, . . . , θ) are of length B with the
constituent elements taken from the field Fq . Node j stores
the symbol f tvi if and only if V(j, i) = 1. Thus in the graph
corresponding to V, vertices represent the nodes, and edges
represent the vectors corresponding to the symbols stored.
Thus, by the properties of the matrix V, we get n nodes
each storing d(= α) symbols. Properties 3 and 4 ensure that
each row intersects every other row in distinct columns. The
validity of this code as a exact regenerating code for the
MBR point is shown below.

Data Reconstruction: The DC connects to any k out of
the n storage nodes and downloads all the kα symbols
stored. As any two rows of the matrix V intersect in only
one column and any row intersects all other rows in distinct
columns, out of the kα symbols downloaded, exactly

(
k
2

)
symbols are repetitions and do not add any value. Hence the
DC has kα−

(
k
2

)
= B distinct symbols of a B-dimensional

MDS code, using which the values of the source symbols
f0, . . . , fB−1 can be easily obtained.

Exact Regeneration: The matrix V provides a special
structure to the code which helps in exact regeneration.
Properties 3 and 4 of the matrix V imply that the each
of the existing n − 1 nodes contain one distinct symbol
of the failed node. Thus exact regeneration of the failed
node is possible by downloading one symbol each from the
remaining n− 1 nodes.

In section IV it will be proved that this code construction
scheme is unique for linear exact regenerating codes up to
the choice of vectors {v1, v2, . . . , vθ}. In the above
description we have chosen these set of vectors to form a
B-dimensional MDS code. In fact, it suffices if the vectors
are chosen such that, for any set of k nodes, the constituent
vectors are linearly independent.

B. Example

Let n = 5, k = 3. We get d = n − 1 = 4 and θ = 10.
Putting β = 1 gives α = 4 and B = 9. As described in the
previous section, the matrix V is the incidence matrix of a
fully connected undirected graph with 5 vertices (Fig. 2) as
given below:

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10
n1 1 1 1 1 0 0 0 0 0 0
n2 1 0 0 0 1 1 1 0 0 0
n3 0 1 0 0 1 0 0 1 1 0
n4 0 0 1 0 0 1 0 1 0 1
n5 0 0 0 1 0 0 1 0 1 1

Thus the 5 nodes store the following symbols:
Node 1: {f tv1, f

tv2, f
tv3, f

tv4}
Node 2: {f tv1, f

tv5, f
tv6, f

tv7}
Node 3: {f tv2, f

tv5, f
tv8, f

tv9}
Node 4: {f tv3, f

tv6, f
tv8, f

tv10}
Node 5: {f tv4, f

tv7, f
tv9, f

tv10}

Reconstruction: Suppose the data collector connects to
nodes 1, 2 and 3. It can retrieve the symbols f tv1,. . . ,f tv9,
and using these, recover the source symbols f0, . . . , f8. The
same holds for any choice of 3 nodes.

Regeneration: Suppose node 3 fails. Then, node 1 gives
f tv2, node 2 gives f tv5, node 4 gives f tv8 and node 5 gives
f tv9. All these four symbols are stored as the new node 3.
Thus the regenerated node 3 stores exactly the same symbols
as the failed node.

In this example, θ = B + 1 and hence we can take the
vectors {v1, . . . , v10} to form a single parity check code of
dimension 9. So the exact regenerating code for this set of
parameters can be obtained in F2.

C. Field size required

The required field size is the minimum field size required
to construct a [θ, B] MDS code. If we use a Reed-Solomon
code, the minimum field size required for our construction
turns out to be θ(= n(n−1)/2). In [4] authors have suggested
to cast the problem of constructing deterministic regenerat-
ing codes as a virtual multicast network code construction
problem and then use the algorithm due to Jaggi et al. [5] to
determine the network coefficients. This algorithm requires
field size of the order of number of sinks, which in this
case leads to a very high field size. In fact, the problem of
exact regenerating code construction leads to a non-multicast
network code problem for which there are very few results
available [8], [9].

D. Complexity

Code construction: Code construction is immediate given
the incidence matrix V of a fully connected graph with n
vertices. No arithmetic operations are required.

Node Regeneration: The method used for regeneration
does not require the existing nodes to perform any additional

operations. Each existing node just has to pass one symbol
to the new node from the set of α symbols stored in it.

If the regeneration is not exact, additional communication
to the nodes and data collectors about changes in the code co-
efficients is necessary. Also, all the nodes need to recalculate
the vectors which they have to pass for subsequent regener-
ations. In the case of exact regeneration, these overheads are
avoided.

Data Reconstruction: To facilitate the DC to easily decode
the downloaded data, one set of k nodes can be made
systematic, i.e. these k nodes will store the source symbols
without any encoding. This can be achieved by performing a
change of basis on the B-dimensional vector space spanned
by the vectors {v1, v2, . . . , vθ}, so that the desired k nodes
have entire data in uncoded form. Hence, if the DC preferably
connects to this set of k nodes, no decoding is necessary.

If regeneration is not exact, the systematic property cannot
be maintained. When any of one of the k nodes chosen to
be systematic fails, the regenerated node may not be in the
systematic form and hence the property will be lost.

IV. SUBSPACE VIEWPOINT AND UNIQUENESS

In the construction of exact regenerating codes given in
section III, nodes were viewed to be storing α symbols
each from a finite field. In this section, we provide an
alternative viewpoint based on subspaces which completely
characterizes linear exact regenerating codes for the MBR
point for any values of (n, k, d). By a linear storage code,
we mean that any symbol stored is a linear combination of
the source symbols, and only linear operations are allowed
on them.

The subspace viewpoint will be used to prove the necessary
and sufficient conditions for a linear storage code to be an ex-
act regenerating code for the MBR point. This subsequently
leads to the uniqueness of our construction.

Define a vector f of length B consisting of the source
symbols (as in section III). Since each source symbol can
independently take values from Fq , the B source symbols
can be thought of as forming a B-dimensional vector space
over Fq .

Since the code is linear, any stored symbol can be written
as f t` for some vector `. These vectors which specify the
linear combinations define the code, and the actual symbols
stored depend on the instantiation of f . Since a node stores α
symbols, it can be considered as storing α vectors of the code,
i.e. node i stores the vectors `(i)1 , . . . , `(i)α . Linear operations
performed on the stored symbols are equivalent to the same
operations performed on these vectors. Hence we say that
each node stores a subspace of dimension at most α i.e.

node i: Wi =
〈
`
(i)
1 , . . . , `(i)α

〉
where Wi denotes the subspace stored in node i , i = 1, . . . , n
and 〈.〉 indicates the span of vectors.

For regeneration of a failed node, d other nodes provide β
symbols each. We say that each node passes a subspace of

dimension at most β.
Consider the exact regeneration of some node i using any

d out of the remaining n − 1 nodes. Denote this set of d
nodes by D, and let j ∈ D. Let S(i)

j,D denote the subspace
passed by node j for the regeneration of node i.

In the following lemmas, we prove certain subsapce prop-
erties associated with linear exact regenerating codes at the
MBR point.

Lemma 1: For any (n, k, d) linear exact regenerating
code for the MBR point, each node stores an α-dimensional
subspace, i.e.

dim{Wi} = α, ∀i ∈ {1, . . . , n}.

Proof: Consider data reconstruction by a DC connecting
to any k nodes, Λ1,. . . ,Λk. Let these k nodes store subspaces
with dimensions Ω1,. . . ,Ωk respectively. As each node can
store a subspace of dimesion at most α,

Ωi ≤ α, ∀i ∈ {1, . . . , k} (4)

For the DC to be able to reconstruct all the data, the
dimension of the sum space of these k subspaces should be
B, i.e.

dim{WΛ1 +WΛ2 + · · ·+WΛk
} = B (5)

Using the expression for the dimension of sum of two
subspaces recursively we get,

dim{WΛ1 + · · ·+WΛk
}

= dim{WΛ1}+ dim{WΛ2} − dim{WΛ1 ∩WΛ2}
+dim{WΛ3} − dim{WΛ3 ∩ {WΛ1 +WΛ2}}
· · ·
+dim{WΛk

} − dim{WΛk
∩ {WΛ1 + · · ·+WΛk−1}}

=
k∑
i=1

dim{WΛi
}

−dim{WΛk
∩ {WΛk−1 + · · ·+WΛ1}}

− · · · − dim{WΛ3 ∩ {WΛ2 +WΛ1}}
−dim{WΛ2 ∩WΛ1} (6)

≤
k∑
i=1

Ωi

−(Ωk − (d− (k − 1))β)+

− · · · − (Ω3 − (d− 2)β)+

−(Ω2 − (d− 1)β)+ (7)

≤ Ω1 +
k∑
l=2

(d− (l − 1))β (8)

= Ω1 + (k − 1)dβ − {k − 1 + · · ·+ 2 + 1}β (9)
= Ω1 − α+B (10)
≤ B (11)

In (7), (x)+ stands for max(x, 0). The justification for (7)

is as follows. Suppose nodes Λ1, . . . ,Λl−1 and some other
(d − (l − 1)) nodes participate in the regeneration of node
Λl. The maximum number of linearly independent vectors
that the (d − (l − 1)) nodes (other than Λ1, . . . ,Λl−1) can
contribute is (d − (l − 1))β. If this quantity is less than Ωl
then the l−1 nodes under consideration will have to pass the
remaining dimensions to node l. Hence for any l = 2, . . . , k

dim{WΛl
∩ {WΛl−1 + · · ·+WΛ1}}

≥ (Ωl − (d− (l − 1))β)+ (12)

Equation (8) follows by the property that any two non-
negative numbers y1 and y2 satisfy the inequality (y1−(y1−
y2)+) ≤ y2. Equation (10) follows from (1) and equation (11)
from (4). Now, for equation (5) to hold, (11) should be satis-
fied with equality, which forces Ω1 = α. Similarly, expanding
with respect to other nodes, and considering different sets of
k nodes, we get dim{Wi} = α, ∀i ∈ {1, . . . , n}.

Corollary 2: Let Dm be any subset of D of size m, where
m < k. For any (n, k, d) linear exact regenerating code at
the MBR point,

dim

Wi ∩

 ∑
j∈{Dm}

Wj

 = mβ

.
Proof: Putting Ωl = α = dβ in (12) we get,

dim(WΛl
∩ {WΛl−1 + · · ·+WΛ1}) ≥ (l − 1)β (13)

Using (6) and (13),

dim {WΛ1 + · · ·+WΛk
}

=
k∑
i=1

dim{WΛi
}

−dim{WΛk
∩ {WΛk−1 + · · ·+WΛ1}}

− · · · − dim{WΛ3 ∩ {WΛ2 +WΛ1}}
−dim{WΛ2 ∩WΛ1} (14)

≤ kα− {k − 1 + · · ·+ 2 + 1}β (15)
= B (16)

For equation (5) to hold, (15) should be satisfied with
equality. This along with (13) gives the result.

Note that putting m = 1 gives

dim{Wi ∩Wj} = β (17)

Lemma 3: For any (n, k, d) linear exact regenerating
code at the MBR point,

S
(i)
j,D = Wi ∩Wj

Also, the subspaces Wi∩Wj are linearly independent ∀ j ∈
D.

Proof: Consider the exact regeneration property of node
i. As dβ = α, node i must store all the information passed
by the nodes in D. Hence, the subspace passed by node j

must be a subspace of Wi as well, i.e.

S
(i)
j,D ⊆ (Wi ∩Wj) (18)

Also,

∑
j∈{D}

dim
{
S

(i)
j,D

}
≥ dim

 ∑
j∈{D}

S
(i)
j,D

 (19)

= dim {Wi} (20)
= dβ (21)

which along with the fact that dim{S(i)
j,D} ≤ β implies that

equation (19) should be satisfied with equality and

dim{S(i)
j,D} = β (22)

From equations (17), (18) and (22), it follows that

S
(i)
j,D = Wi ∩Wj (23)

Equality of equation (19) implies that the subspaces S(i)
j,D are

linearly independent ∀ j ∈ D.
Hence for any linear exact regenerating code for the MBR

point, each node should store an α dimensional subspace,
and the intersection subspaces of a node with any d other
nodes should have dimension β each and should be linearly
independent.

The following theorems prove the uniqueness of our code
for the MBR point.

Theorem 4: Any linear exact regenerating code for the
MBR point with d = n − 1 should have the same subspace
properties as our code and hence the same structure as our
code.

Proof: Let C be an exact regenerating code obtained via
our construction. Let C ′ be another optimal exact regenerat-
ing code for the MBR point which satisfies the reconstruction
and exact regeneration properties. Let W ′1, . . . ,W

′
n be the

subspaces stored in nodes 1, . . . , n respectively in code C ′.
Apply Lemma 3 to node 1 in C ′ and let s′2, . . . , s

′
n be the

β-dimensional intersection subspaces of node 1 with nodes
2, . . . , n respectively. As s′2, . . . , s

′
n are linearly independent

subspaces spanning α dimensions, they constitute a basis
for W ′1 and hence can be replaced as the contents of node
1. Now consider node 2. One of the intersection subspaces
will be s′2 (with node 1). Let s′′3 , . . . , s

′′
n be the intersection

subspaces of node 2 with nodes 3, . . . , n. Again, s′2 and
s′′3 , . . . , s

′′
n form a basis for W ′2 and hence node 2 can be

replaced by these. Continuing in the same manner across all
the remaining nodes, it is easy to see that the code C ′ has
the same structure as C.

Hence our code is unique upto the choice of basis for the
node subspaces.

Theorem 5: A necessary and sufficient condition for any
linear code to be (n, k, d) exact regenerating code for the
MBR point is that any set of d + 1 nodes should have the
same structure as our code.

Proof: Necessity: If there exists a linear exact regener-

ating code at the MBR point for some (n, k, d), then any set
of d+ 1 nodes from this code should work as a code for the
parameters (d+ 1, k, d). Hence, from Theorem 4, any set of
d+ 1 nodes is of the same structure as our code.

Sufficiency: Suppose there exists a linear code such that
any set of d+ 1 nodes from this code has the same structure
as our code. Consider a DC connecting to some k nodes.
This set of k nodes can be viewed as a subset of some d+
1 nodes which will have the same structure as our code.
Hence, the DC can reconstruct the entire data. Consider a
failed node, and some d nodes used to regenerate it. Since
this set of d + 1 nodes will also have the same structure as
our code, exact regeneration of the failed node is possible.
Thus, reconstruction and exact regeneration properties are
established.

V. REGENERATING CODES FOR THE MSR POINT

The MSR point requires the least possible storage at the
nodes (with respect to the storage-repair bandwidth tradeoff
curve). This operating point particularly suits applications
like storage in peer-to-peer systems where storage capacity
available from the participating nodes is very low. In such
systems, multiple node failures are quite frequent as nodes
enter and exit the system at their own will. Hence the system
should be capable of regenerating a failed node using only a
small number of existing nodes. Also, the number of nodes
in the system changes dynamically. Hence the code should
work even if the number of nodes keeps varying with time.

In this section we give an explicit construction for regener-
ating codes at the MSR point for d = k+ 1 and any n. This
set of parameters makes the code capable of handling any
number of failures provided that at least k+ 1 nodes remain
functional. Note that, by definition, if less than k nodes are
functional then a part of the data will be permanently lost.
If exactly k nodes are functional, then these nodes will have
to pass all the information stored in them for regeneration,
hence no optimization of the repair bandwidth is possible.

At the minimum storage point, optimal α and β on the
storage-repair bandwidth tradeoff curve are given by (from
[4]):

(αMSR, βMSR) =
(
B

k
,

B

k(d− k + 1)

)
(24)

By the same argument as in the MBR case, we choose
β = 1 for our construction, which gives

B = k(d− k + 1) (25)

and
α = d− k + 1 (26)

A. Code construction:

With d = k + 1, from equations (25) and (26) we have

B = 2k (27)

and
α = 2 (28)

Partition the source symbols into two sets: f0, . . . , fk−1,
and g0, . . . , gk−1. Let f t = (f0 f1 . . . fk−1), and gt =
(g0 g1 . . . gk−1).

Node i (i = 1, . . . , n) stores (f tp
i
, gtp

i
+ f tui) as its

two symbols. We shall refer to the vectors p
i

and ui as the
main vector and the auxiliary vector of a node respectively.
The elements of the auxiliary vectors are known but can take
any arbitrary values from Fq . The main vectors are the ones
which are actually used for reconstruction and regeneration.

Let the set of main vectors p
i
(i = 1, . . . , n) form a k-

dimensional MDS code over Fq . The required field size is
the minimum field size required to construct an [n, k] MDS
code. If we use a Reed-Solomon code, the minimum field
size required turns out to be just n.

For example, consider n = 5, k = 3 and d = 4. We
have B = 6 and f0, f1, f2, g0, g1 and g2 as the source
symbols. Let the main vectors p

i
(i = 1, . . . , n) form a Reed-

Solomon code, with p
i

= (1 θi θ2
i)
t. θi (i = 1, . . . , 5) take

distinct values from Fq(q ≥ 5). We can initialize elements
of ui(i = 1, . . . , 5) to any arbitrary values from Fq .

B. Reconstruction:

A data collector will connect to any k nodes and download
both the symbols stored in each of these nodes. The first
symbols of the k nodes provide f tp

i
at k different values of

i. To solve for f , we have k linear equations in k unknowns.
Since p

i
’s form a k−dimensional MDS code, these equations

are linearly independent, and can be solved easily to obtain
the values of f0, . . . , fk−1 .

Now, as f and ui are known, f tui can be subtracted out
from the second symbols of each of the k nodes. This leaves
us with the values of gtp

i
at k different values of i. Using

these, values of g0, . . . , gk−1 can be recovered.
Thus all B data units can be recovered by a DC which

connects to any k nodes. We also see that reconstruction is
possible irrespective of the values of the auxiliary vectors ui.

C. Regeneration:

In our construction, when a node fails, the main vector
of the regenerated node has the same value as that of the
failed node, although the auxiliary vector is allowed to be
different. Suppose node j fails. The node replacing it would
contain (f tp

j
, gtp

j
+ f tũj) where elements of ũj can take

any arbitrary value from Fq and are not constrained to be
equal to those of uj . As the reconstruction property holds
irrespective of the values of uj , the regenerated node along
with the existing nodes has all the desired properties.

For regeneration of a failed node, some d nodes give one
(as β = 1) symbol each formed by a linear combination of
the symbols stored in them. Assume that node Λd+1 fails
and nodes Λ1, . . . ,Λd are used to regenerate it, where the
set {Λ1, . . . ,Λd+1} is some subset of {1, . . . , n}, with all
elements distinct.

Let ai and bi (i = 1, . . . , d) be the coefficients of the
linear combination for the symbol given out by node Λi. Let
vi = ai(f tpΛi

)+bi(gtpΛi
+f tuΛi

) be this symbol. Let δi and
ρi (i = 1, . . . , d) be the coefficients of the linear combination
used to generate the two symbols of the regenerated node.
Thus the regenerated node will be(

d∑
i=1

δivi ,

d∑
i=1

ρivi

)
(29)

Choose bi = 1 (i = 1, . . . , d). Now choose ρi (i = 1, . . . , d)
such that

d∑
i=1

ρibipΛi
= p

Λd+1
(30)

and δi (i = 1, . . . , d) such that

d∑
i=1

δibipΛi
= 0 (31)

Equations (30) and (31) are sets of k linear equations in
d = k+1 unknowns each. Since p

Λi
’s form a k−dimensional

MDS code these can be solved easily in Fq . This also ensures
that we can find a solution to equation (31) with all δi’s
non-zero.

Now, choose ai (i = 1, . . . , d) such that

d∑
i=1

δi(aipΛi
+ biuΛi

) = p
Λd+1

(32)

i.e
d∑
i=1

δiaipΛi
= p

Λd+1
−

d∑
i=1

δibiuΛi
(33)

Equation (33) is a set of k linear equations in d = k +
1 unknowns which can be easily solved in Fq . Since none
of the δi (i = 1, . . . , d) are zero, the particular choice of
p

Λi
’s used guarantees a solution for ai (i = 1, . . . , d). Hence,

regeneration of any node using any d other nodes is achieved.

VI. CONCLUSION

In this paper, the notion of Exact Regenerating Codes was
introduced in which a failed node is replaced by a new node
which is its exact replica. Optimal Exact Regenerating Codes
meet the storage-repair bandwidth tradeoff and have several
advantages such as the absence of communication overhead
and a low runtime processing requirement in comparison with
more general regenerating codes. An explicit construction of
exact regenerating codes for the MBR point with d = n− 1
was provided, which is well suited for applications such as
mail servers that call for fast recovery upon failure. Subspace
viewpoint was used to prove the uniqueness of our code.
At the MSR point, an explicit construction for regenerating
codes for d = k + 1 was given, that is suitable for peer-to-
peer storage systems where the amount of data stored in each

node is to be minimized and where the number of nodes in
the system varies with time. The codes given for both end
points of the storage-repair bandwidth tradeoff have a low
field size requirement and are of low complexity.

REFERENCES

[1] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J.
Kubiatowicz, “Pond:the OceanStore prototype,” in Proc. USENIXFile
and Storage Technologies(FAST), 2003.

[2] Ranjita Bhagwan, Kiran Tati, Yu Chung Cheng, Stefan Savage, and
Geoffrey M. Voelker, “Total recall: System support for automated
availability management,” in NSDI, 2004.

[3] A. G. Dimakis, P. B. Godfrey, M. J. Wainwright and K. Ramchandran,
“Network Coding for distributed storage systems,” IEEE Proc. INFO-
COM, (Anchorage, Alaska), May 2007.

[4] Y. Wu, A. G. Dimakis and K. Ramchandran, “Deterministic Regen-
erating codes for distributed storage,” in Proc. Allerton Conference
on Control, Computing and Communication, (Urbana-Champaign, IL),
September 2007.

[5] S. Jaggi, P. Sanders, P. A. Chou, M. Effros, S. Egner, K. Jain, and L.
Tolhuizen, “Polynomial time algorithms for network code construction,”
IEEE Trans. Inform. Theory, vol.51, pp.782-795.

[6] Y. Wu and A. G. Dimakis, “Reducing Repair Traffic for Erasure Coding-
Based Storage via Interference Alignment,” in Proc. ISIT 2009.

[7] A. Duminuco and E. Biersack, “A Practical Study of Regenerating
Codes for Peer-to-Peer Backup Systems,” in Proc. ICDCS 2009, 29th
IEEE International Conference on Distributed Computing Systems,
(Montreal, Canada), June 2009

[8] A. R. Lehman and E. Lehman, “Complexity classification of network
information flow problems,” in Proc. Allerton Conference on Con-
trol, Computing and Communication, (Urbana-Champaign, IL), October
2003.

[9] N. Ratnakar, D. Traskov, and R. Koetter, “Approaches to network coding
for multiple unicasts,” in Proc. 2006 International Zurich Seminar on
Communications, Feb. 2006, pp. 7073, invited paper.

	Introduction
	Exact Regenerating Codes
	Exact Regenerating codes for the MBR point
	Code construction
	Example
	Field size required
	Complexity

	Subspace viewpoint and uniqueness
	Regenerating Codes for the MSR point
	Code construction:
	Reconstruction:
	Regeneration:

	Conclusion
	References

