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Abstract— We study a multi-source Gaussian relay network
consisting of K source–destination pairs having K unicast
sessions. We assumeM layers of relays between the sources and
the destinations. We find achievable degrees of freedom of the
network. Our schemes are based on interference alignment atthe
transmitters and symbol extension and opportunistic interference
cancellation at the relays. For K-L-K networks, i.e., 2-hop
network with L relays, we showmin{K,K/2 + L/(2(K − 1))}
degrees of freedom are achievable. ForK-hop networks with K
relays in each layer, we show the fullK degrees of freedom are
achievable provided thatK is even and the channel distribution
satisfies a certain symmetry.

I. I NTRODUCTION

Capacity characterization of multi-source networks is one
of the fundamental problems in network information theory.
However the capacity is not fully characterized even for
the simplest setting of the two-user interference channel [1]
that leads to surging interests and demands on approximate
capacity characterization. Recently there has been a series of
significant progress on approximate capacity characterization
[2], [3], [4], [5], [6], [7], [8], [9]. The capacity region ofthe
two-user Gaussian interference channel was characterizedby
Etkin, Tse, and Wang within one bit precision [2] and the
sum capacityCΣ(P ) of the K-user time-varying Gaussian
interference channel was characterized as

CΣ(P ) =
K

2
log(P ) + o(log(P ))

by Cadambe and Jafar [5], whereP denotes the signal to
noise ratio (SNR). That is, the degrees of freedom (DoF) or
capacity pre-log term of theK-user interference channel is
given by K/2 1. To achieveK/2 DoF, a new interference
management technique called the interference alignment was
used, which minimizes the dimensions occupied by interfer-
ence at destinations by aligning the interference from multiple
unintended sources. The interference alignment can also be
used to compute achievable DoF of some other channels such
as theK-user multiple-input multiple-output (MIMO) channel
[6], the deterministicK-user interference channel [7], and the
X-network [8] in which each ofS sources has messages for
D destinations, i.e., total ofSD message sets.

1Unless otherwise stated, we assume time-varying channel inthe rest of
the paper

In this paper, we consider relay networks consisting of mul-
tiple sources, multiple corresponding destinations, and multi-
ple relays. Relays have been traditionally used for extending
coverage in wireless environments, e.g., amplify-and-forward
(AF) based relays. Although the DoF is upper bounded byK

2
for fully connectedK-user interference channels [10], with
help of relays it may be possible to improve the DoF also.

The work [8] has applied theirX network results to a two-
hop network withS sourcesD destinations withL relays
between them. AssumingK = S = D, they showed that

KL
K+L−1 DoF is achievable2. Notice that whereas a trivial
upper bound assuming perfect cooperation between relays is
K if L ≥ K, the achievable DoF of KL

K+L−1 converges to
K only if L → ∞. Hence one of the basic questions about
relay networks is the minimum number of required relays
for achieving the optimalK DoF. The works [11], [12] have
addressed similar questions and shown that withK fixed the
sum rate ofK log(L) +O(1) is achievable ifL → ∞ [11].3

The main contributions of this paper are the follows.
• ForK-L-K networks, i.e.,2-hop network withL relays,

we show thatmin
{

K, K
2 + L

2(K−1)

}

DoF is achievable.
Hence the optimalK DoF is achievable ifL ≥ K(K −
1). To show the achievability, interference alignment
combined with distributed interference cancellation using
multiple relays is used over multiple symbols (symbol
extension) to utilize more diversity provided by time-
varying channels. A similar interference cancellation
technique called interference neutralization was used for
deterministic and non-fading Gaussian2-user2-hop net-
works [13], [14], where multiple relays are cooperatively
used to cancel interference. In our case, such distributed
interference cancellation is combined with symbol exten-
sion in a more general network.

• For K-hop networks withK relays in each layer, we
show that the optimalK DoF is achievable ifK is
even and the probability of channel matrix is a function
of its Frobenius norm only. We apply a new technique
called opportunistic interference cancellation where the

2In [8] it was half of this. Since we assume full duplex relaying in this
paper, we have adjusted it accordingly.

3Some assumptions such as the availability of channel state information are
different from ours.
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relays in each layer delay-amplify-and-forward their re-
ceived signal vector by waiting for an appropriate channel
instance in the next hop such that the overall channel
matrix from the sources to destinations become a scaled
identity matrix. HenceK source–destination (S–D) pairs
can communicate concurrently without interference. This
is related to the opportunistic interference cancellationfor
finite-field networks [15], but our scheme for Gaussian
relay networks in this paper works differently. For both
cases, opportunistic interference cancellation is applied
and the optimal DoF of Gaussian networks and the
optimal sum rate of finite-field networks are achieved
in certain cases. Notice thatK(K − 1) relays are again
required to obtainK DoF.

The concept of opportunistic channel pairing can be found
in [16], [17], [18] for the finite-field interference channeland
in [18], [19] for the Gaussian interference channel, which it
was called ergodic interference alignment. For the multi-hop
case, opportunistic interference cancellation was applied for
finite-field networks in [17].

II. SYSTEM MODEL

Throughout the paper, we use notationsA anda to denote
a matrix and a vector, respectively. The transpose, conjugate
transpose, and Frobenius norm ofA (or a) are denoted byAT ,
A†, and‖A‖F (or aT , a†, and‖a‖F ), respectively. The diag-
onal matrix havingai as thei-th diagonal element, then1×n1

identity matrix, and then1 × n2 all-zero matrix are denoted
by diag(a1, · · · , an1

), In1
, and0n1×n2

, respectively. We also
useĀ and ā to denoteN -symbol-extended matrix and vector
consisting ofa[t = 1] througha[t = N ], respectively. That is,
Ā = diag(a[1], · · · , a[N ]) and ā = [a[1], · · · , a[N ]]T .

A. Gaussian Relay Networks

We study aM -hop relay network havingM +1 layers with
Km nodes in them-th layer. The nodes in the first and the last
layer are the sources and the destinations, respectively. Thus
K = K1 = KM+1 is the number of S–D pairs. For simplicity,
let us denote thei-th node in them-th layer by node(i,m).

Form ∈ {1, · · · ,M}, let xi,m[t] denote the transmit signal
of node(i,m) at time t. Then the received signalyj,m[t] of
node(j,m+ 1) at time t is given by4

yj,m[t] =

Km
∑

i=1

hji,m[t]xi,m[t] + zj,m[t],

where hji,m[t] is the channel from node(i,m) to node
(j,m+1) at timet andzj,m[t] is the noise at node(j,m+1)
at timet. The noise termszj,m[t]’s are independent and iden-
tically distributed (i.i.d.) complex Gaussian with zero-mean
and unit-variance. We assume time-varying channels such that
hji,m[t]’s are i.i.d. drawn from a continuous distribution and
Pr(hji,m[t] = h) = 0 for all h ∈ C. We assume every source
and relay has the same power constraintP .

4The subscriptm in yj,m[t] means them-th hop.

Let us denote the transmitted and received signal vectors
of the m-th hop by xm[t] = [x1,m[t], · · · , xKm,m[t]]T and
ym[t] = [y1,m[t], · · · , yKm+1,m[t]]T , respectively. Then the
input output relation of them-th hop can be represented as

ym[t] = Hm[t]xm[t] + zm[t], (1)

where Hm[t] is the channel matrix of them-th hop
whose (j, i)-th element is given byhji,m[t] and zm[t] =
[z1,m[t], · · · , zKm+1,m[t]]T is the noise vector of them-th hop.
The channel state information (CSI) is assumed to be available
at all nodes, i.e., each node knowsH1[t] to HM [t] at time t.
For simplicity, we omit time indext in the rest of the paper.

B. Degrees of Freedom

The i-th source sends a messageWi ∈ {1, 2, . . . , 2nRi(P )}
to its destination at a rate ofRi(P ) duringn channel uses. The
rate tuple(R1(P ), · · · , RK(P )) is said to be achievable if the
probability of error for all S–D pairs can be made arbitrarily
small by choosing large enoughn. The capacity regionC(P )
is the convex hull of the closure of all achievable rate tuples
and the sum capacityCΣ(P ) is the supremum of all achievable
sum rates. Then the DoF is defined as

dΣ , lim
P→∞

CΣ(P )

logP
.

III. A CHIEVABILITY FOR K -L-K NETWORKS

In this section, we consider a two-hop network withK1 =
K3 = K andK2 = L and assumeL ≥ K, which is denoted
by theK-L-K network.

A. Interference Cancellation and Alignment

We assume AF relaying. Because multiple replicas of a
transmit signal interfere with unintended destinations through
multiple relays, we can make the replicas cancel each other by
appropriately choosing the gains at relays. Since we assume
symbol extension, i.e., we send messages using multiple
channel instances, we have vectorized AF, i.e., each relay can
multiply its received vector by a matrix.

1) AF Based Relay:ConsiderN symbol extension. Then
the received signal vector of thej-th relay can be represented
as

ȳj,1 =

K
∑

i=1

H̄ji,1x̄i,1 + z̄j,1, (2)

wherej ∈ {1, · · · , L} and

x̄i,1 = [xi,1[1], · · · , xi,1[N ]]T

ȳj,1 = [yj,1[1], · · · , yj,1[N ]]T

z̄j,1 = [zj,1[1], · · · , zj,1[N ]]T

H̄ji,1 = diag(hji,1[1], · · · , hji,1[N ]).

Each relay transmitsN linear combinations of itsN received
signals to the destinations. Specifically, the transmit signal
vector of thej-th relay is given by

x̄j,2 = Γj ȳj,1, (3)



Fig. 1. Interference cancellation using relays.

where

Γj =







γj [1, 1] · · · γj [1, N ]
...

. . .
...

γj [N, 1] · · · γj [N,N ]







represents the gain matrix of thej-th relay.5 Similarly, the re-
ceived signal vector of thek-th destination can be represented
as

ȳk,2 =

L
∑

j=1

H̄kj,2x̄j,2 + z̄k,2, (4)

wherek ∈ {1, · · · ,K}. Combining (2) through (4), we obtain

ȳk,2 =

L
∑

j=1

H̄kj,2ΓjH̄jk,1x̄k,1 +

K
∑

i=1,i6=k

L
∑

j=1

H̄kj,2ΓjH̄ji,1x̄i,1

+

L
∑

j=1

H̄kj,2Γj z̄j,1 + z̄k,2. (5)

Notice that the first term is the intended signals and the second
term is the interfering signals and the third term is the noise
propagation due to AF based relaying. Note that the following
condition guarantees that the interference from thei-th source
to thek-th destination (i 6= k) will be nullified.

L
∑

j=1

H̄kj,2ΓjH̄ji,1v̄i = 0N×1. (6)

Fig. 1 illustrates this. The detailed analysis will be givenin
Lemma 1.

2) Transmission scheme:For transmission, we only use the
time slots where channel gains satisfygmin ≤ |hji,m[t]| ≤
gmax for all i andj, wheregmin > 0, gmax > 0, andgmax >
gmin. Since we assumePr(hji,m[t] = h) = 0, the probability
of slot utilization can be arbitrarily close to one by setting
gmin andgmax as arbitrarily small and large, respectively. As
a result introducinggmin andgmax does not affect the DoF.

For N symbol extension, we allocateN1 + N2 symbols
to the first S–D pair andN1 + N3 symbols to each of
the remainingK − 1 S–D pairs. The first source transmits
N1 symbols without transmit beamforming and transmitsN2

5We assume block Markov coding is used at relays, i.e., each relay collects
N symbols, applies a linear transform, and sends it in the nextN time slots.
Therefore, there will be one block delay at the relays. To simplify notations,
we omit block indices.

symbols via beamforming vectorsv(1)
1 to v

(N2)
1 . Similarly,

for i ∈ {2, · · · ,K}, the i-th source transmitsN1 symbols
without beamforming andN3 symbols viav

(1)
i to v

(N3)
i .

The interference caused by theN1 symbols will be cancelled
by using relay coefficients and the interference caused by
the remaining symbols will be aligned by using transmit
beamforming.

B. DoF ofK-L-K networks

The following lemma shows that each source can transmit
N1 symbols without interfering with unintended destinations
if we setN1 ≤ min

{⌊

LN2−1
K(K−1)N

⌋

, N
}

.
Lemma 1:Suppose aK-L-K network withN time exten-

sion. Then there existΓi’s such that each source transmits up
to min

{⌊

LN2−1
K(K−1)N

⌋

, N
}

symbols without interfering with
unintended destinations.

Proof: we refer readers to the full paper [20].
Then we apply the interference alignment technique to the

remaining interference and obtain the achievable DoF in the
following theorem.

Theorem 1:Suppose aK-L-K network. Then dΣ ≥

min
{

K, K
2 + L

2(K−1)

}

.
Proof: First of all, we briefly discuss the power con-

straint issue. Since each channel used for transmission satisfies
gmin ≤ |hji,m| ≤ gmax and the absolute value of each relay
coefficient can also be bounded between some minimum and
maximum values, the noise term in (5) does not affect the
DoF. For detailed proof, we refer readers to the full version
of this paper.

For L > K(K − 1) we setN1 = 1, N2 = N3 = 0, and
N = 1. Then, from the result of Lemma 1,

min

{⌊

LN2 − 1

K(K − 1)N

⌋

, N

}

= 1 (7)

symbol can be cancelled at each unintended destination. Thus
K DoF is achievable without symbol extension.

For L = K(K − 1), we setN1 = n, N2 + N3 = 0, and
N = n+ 1, wheren > 0 is an arbitrary integer. Then

min

{⌊

LN2 − 1

K(K − 1)N

⌋

, N

}

≥ n

symbols can be cancelled. Thus the achievable DoF is given
by

sup
n

K
n

n+ 1
= K.

For K ≤ L < K(K − 1), we setN1 =
⌊

(N2+N3)L−1
K(K−1)−L

⌋

,

N2 = (n + 1)T , andN3 = nT , andN =
⌈

(N2+N3)L−1
K(K−1)−L

⌉

+

N2 +N3, with T = (K − 1)(K − 2)− 1, wheren > 0 is an
arbitrary integer. ThenN1 symbols can be cancelled at each
unintended destination because

min

{⌊

LN2 − 1

K(K − 1)N

⌋

, N

}

≥ N1,

where we use the fact thatN ≥ (N2+N3)L−1
K(K−1)−L

+N2 +N3.



Notice that since the relays transmit linear combinations of
their received signals, theN -symbol-extended channel matrix
from the i-th source to thek-th destination is given by

Ḡki =

L
∑

j=1

H̄kj,2ΓjH̄ji,1,

which means one can regard the resulting network as the
K-user interference channel having theN -symbol-extended
channel matrixḠki. Hence the remaining interference from
K − 1 unintended sources can be aligned at each destination.
We apply the interference alignment technique in [5] to align
the remaining interference and refer Appendix III in [5] forthe
detailed proof. Letdi(n) be the number of transmit symbols
of the i-th source divided byN . Then,

d1(n) =
N1 +N2

N

≥

(N2+N3)L−1
K(K−1)−L

+N2 − 1

(N2+N3)L−1
K(K−1)−L

+N2 +N3 + 1

=
K(K − 1)N2 + LN3 − (K(K − 1) + L+ 1)

K(K − 1)(N2 +N3) + (K(K − 1)− L− 1)
. (8)

Similarly, we obtain

di(n) =
N1 +N3

N

≥
LN2 +K(K − 1)N3 − (K(K − 1) + L+ 1)

K(K − 1)(N2 +N3) + (K(K − 1)− L− 1)
(9)

for i ∈ {2, · · · ,K}. Thus, from (8) and (9), the achievable
DoF is given by

sup
n

K
∑

i=1

di(n) =
K

2
+

L

2(K − 1)
.

By combining the above three cases, we show that the
achievable DoF ismin

{

K, K2 + L
2(K−1)

}

, which completes
the proof.

Remark 1: If L ≥ K(K − 1), thendΣ = K. The achiev-
ability is given by Theorem 1. The converse can be shown
straightforwardly from the cut-set bound.

Let us compare the resulting DoF with that of the decode-
and-forward (DF) based relaying of [8], which is given by

KL
K+L−1 . Notice that if K ≤ 5 than the AF based relaying
provides better DoF but ifK > 5 there exist values ofL for
which the DF based scheme is better. Specifically, if the num-
ber of relays is less than12 (K−1)(K−1−

√

K(K − 6) + 1)

or greater than12 (K − 1)(K − 1+
√

K(K − 6) + 1), the AF
based relaying is better and the DF is better otherwise.

IV. A CHIEVABILITY FOR K -USERK -HOP NETWORKS

In this section, we consider aK-userK-hop network having
K nodes in each layer and assumeK is even.

Fig. 2. Opportunistic interference cancellation using relays.

A. Opportunistic Interference Cancellation

In this scheme, relays in each layer transmit their received
symbols without any modification. However, they transmit
them when the channel matrix of the next hop satisfies a
certain condition. Since the relays may have to wait for such
a channel instance for a long time, they need to store some of
their past received symbols. To achieve this, we assume block
Markov coding is used at relays, i.e., each relay receives a
block ofN symbols and transmits them (in a permuted order)
in the nextN time slots. Therefore, there will be one block
delay at each hop. To simplify notations, we omit the block
indices as before. In the following we only describe how a set
of transmitted symbols at any given time at the sources flows
through the network.

Let x1 denote the vector of transmit symbols at any given
time at the source nodes. Furthermore, assume it is transmitted
through channel matricesH1 (first hop) throughHK (last
hop). We define the channel pairing rule fromH1 to HK

so that the resultingHK · · ·H1 becomes a scaled identity
matrix. Fig. 2 illustrates the basic pairing rule. Applyingthe
singular value decomposition (SVD),H1 can be represented
asH1 = UΣ1V

†, whereU consists of left singular vectors,
Σ1 = diag{λ1 λ2, · · · , λK} is the diagonal matrix with
ordered singular values, andV consists of right singular
vectors. Then we choose the next hop channel matrix to be
H2 = VΣ2U

†, where Σ2 is given as the singular value
matrix of H1 by cyclic shifting the singular values, i.e.,
Σ2 = diag(λ2, λ3, · · · , λ1). In the same manner,H3 can
be determined fromH2, and so on. Notice that these paired
channels provideHK · · ·H1 = (

∏K

i=1 λi)IK meaningK S–
D pairs can communicate concurrently without interference.
Similar concepts of opportunistic channel pairing can be found
in [18], [19], [16] for single-hop networks and in [15] for
finite-field multi-hop networks.

1) Definition ofFm(H): Let H ∈ CK×K be a channel
instance whose SVD is given byH = UΣV†. For m ∈
{1, · · · ,K}, we define

Fm(H) ,

{

UPm−1Σ(Pm−1)TV† if m = odd

VPm−1Σ(Pm−1)TU† if m = even
(10)

where

P =

[

0(K−1)×1 IK−1

1 01×(K−1)

]



is the permutation matrix such that the diagonal elements of
PΣPT are equal to the cyclic shift of the diagonal elements
of Σ. From the definition,F1(H) is given byH, where we
assumeP0 = IK . Note that

K
∏

m=1

Fm(H) = | det(H)|IK ,

which is a scaled identity matrix6. For notational simplicity,
we will use the notationPr(Fm(H)) to denotePr(Hm =
Fm(H)). For m = 1, we will also usePr(H) to denote
Pr(H1 = H) becauseF1(H) = H.

Lemma 2:Suppose that the channel coefficients are i.i.d.
drawn from a continuous distribution andPr(Hm) is a func-
tion of ‖Hm‖F only. ThenFm(H) is uniquely determined by
H and

Pr(H) = Pr(F1(H)) = · · · = Pr(FK(H))

for all H ∈ CK×K .
Proof: we refer readers to the full paper [20].

Remark 2:Suppose that the channel coefficients are i.i.d.
drawn fromCN (0, 1), i.e., Rayleigh fading. ThenPr(Hm) is
a function of‖Hm‖F only.

2) Transmission scheme:Let H∆ denote the quantized
channel matrix in∆(ZK×K + jZK×K) andH1(H

∆) denote
the set of allH1 whose closest point in∆(ZK×K + jZK×K)
is equal toH∆, respectively. We further define

Hm(H∆) =
{

Hm

∣

∣Hm = Fm(H),H ∈ H1(H
∆)
}

(11)

for m ∈ {2, · · · ,K}. From Lemma 2, one can easily derive

Pr(H1(H
∆)) = · · · = Pr(HK(H∆)) , Pr(H∆) (12)

for all H∆ ∈ ∆(ZK×K + jZK×K).
For transmission, we use the channelHm(H∆) only when

gminK ≤ ‖H∆‖F ≤ gmaxK. SincePr(hji,m = h) = 0,
the probability of channel utilization can be arbitrarily close
to one by settinggmin and gmax arbitrarily small and large,
respectively, which does not affect the DoF.

For all H∆ satisfying gminK ≤ ‖H∆‖F ≤ gmaxK, the
sources transmit their messages to the nodes in the next layer
through H1 ∈ H1(H

∆) and the relays in them-th layer
amplify and forward their received signals to the nodes in the
next layer throughHm ∈ Hm(H∆), wherem ∈ {2, · · · ,K}.
That is, we set

xm = γmym−1. (13)

Suppose that messages are transmitted through a series
of particular channel matricesH1 to HK such thatHm ∈
Hm(H∆). Then from (1) and (13), we obtain

yK =

(

K
∏

m=2

γm

)(

K
∏

m=1

Hm

)

x1 + zAF + zK ,

where

zAF =

K
∑

i=2





K
∏

j=i

γj









K
∏

j=i

Hj



 zi−1 (14)

6 In this paper,
QK

m=1
Am denotesAKAK−1 · · ·A1.

denotes the accumulated noise due to AF relaying. LetH1 =
H andHm = Fm(H)+∆m for m ∈ {1, · · · ,K}, where∆m

is the quantization error matrix ofHm with respect toFm(H).
From the definition ofFm(H), we know that∆1 = 0K×K .
Then we obtain

yK =

(

K
∏

m=2

γm

)

| det(H)|x1 +∆totx1 + zAF + zK ,

where

∆tot =
K
∑

i=1

∆i

K
∏

j=1,j 6=i

Fj(H)

+

K
∑

i=1

K
∑

j<i

∆i∆j

K
∏

k=1,k 6=i,j

Fk(H)

+ · · ·+
K
∏

i=1

∆i, (15)

which is the total quantization error matrix. Then the signal
to interference and noise ratio (SINR) of thek-th destination
is lower bounded by

SINR∆
k ≥

(

∣

∣

∏K
m=2 γm

∣

∣| det(H)| − ‖∆tot‖F
)2

P

1 + ‖∆tot‖2FKP + E (‖zAF ‖2F )
. (16)

The following two lemmas show achievable rates when the
quantization interval∆ tends to zero.

Lemma 3:As ∆ → 0, ‖∆tot‖F converges to zero.
Proof: we refer readers to the full paper [20].

Lemma 4:As ∆ → 0, the following rate is achievable:

Rk =

∫

gminK≤‖H‖F≤gmaxK

log (1 + SINRk) Pr(H)dH− ǫn,

where

SINRk = 1 +

∏K

m=2 γ
2
m det(H)2P

1 + E (‖zAF ‖2F )
(17)

andǫn > 0 converges to zero asn tends to infinity.
Proof: we refer readers to the full paper [20].

B. DoF ofK-userK-hop networks

Based on the previous lemmas, we derive the achievable
DoF of theK-userK-hop network.

Theorem 2:Suppose aK-user K-hop network withK
nodes in each layer. IfK is even andPr(H) is a function
of ‖H‖F only, thendΣ = K.

Proof: Because we choose channel matrices satisfying
gminK ≤ ‖Hm‖F ≤ gmaxK for transmission, the relay
coefficients satisfying power constraintP can be bounded
between strictly positive finite minimum and maximum values.
Hence the terms

∏K
m=2 γ

2
m andE

(

‖zAF ‖2F
)

in (17) does not
affect the DoF.

Let us now considerdet(H) in (17) that can be represented
as

det(H) =

K
∑

j=1

hijCij ,



where hij denotes(i, j)-th element ofH and Cij is the
cofactor, which is a function of∪k 6=i,l 6=j{hkl}. Hence, for
givenCi1 to CiK andhi2 to hik, det(H) becomes zero if and
only if

hi1 = −
hi2Ci2 + · · ·+ hiKCiK

Ci1
.

However this event occurs with probability0. Therefore, this
does not affect the DoF and we can show DoF ofK is
achievable. For detailed proof, we refer readers to the full
version of this paper. The converse can be shown similarly as
in Remark 1, which completes the proof.

Notice that, from Remark 2, the network with i.i.d. Gaussian
channel distributions is a special class of Theorem 2.
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