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Abstract—Compressive sensing (CS) is an alternative
to Shannon/Nyquist sampling for acquiring sparse or com-
pressible signals. Instead of taking N periodic samples, we
measure M ≪ N inner products with random vectors and
then recover the signal via a sparsity-seeking optimization
or greedy algorithm. A new framework for CS based
on unions of subspaces can improve signal recovery by
including dependencies between values and locations of the
signal’s significant coefficients. In this paper, we extend this
framework to the acquisition of signal ensembles under
a common sparse supports model. The new framework
provides recovery algorithms with theoretical performance
guarantees. Additionally, the framework scales naturally
to large sensor networks: the number of measurements
needed for each signal does not increase as the network
becomes larger. Furthermore, the complexity of the recov-
ery algorithm is only linear in the size of the network. We
provide experimental results using synthetic and real-world
signals that confirm these benefits.

I. INTRODUCTION

Compressive sensing (CS) is a new approach to

simultaneous sensing and compression that enables a

potentially large reduction in the sampling and com-

putation costs at a sensor for signals having a sparse

representation in some basis. CS builds on the work

of Candès, Romberg, and Tao [1] and Donoho [2],

who showed that a signal having a sparse representation

in one basis can be recovered from a small set of

projections onto a second measurement basis that is

incoherent with the first.1 Random projections play a

central role as a universal measurement basis in the sense

that they are incoherent with any fixed basis with high

probability. The CS measurement process is nonadaptive,

and the recovery process is nonlinear, for which a variety

of algorithms have been proposed [1–6].

While CS has relied mostly on a simplistic sparse

1Roughly speaking, incoherence means that no element of one basis
has a sparse representation in terms of the other basis.

or compressible signal model, there exists a parallel

framework for more general structured sparsity models

that favor certain configurations for the magnitudes and

indices of the significant coefficients of the signal. It is

then possible to design recovery algorithms that exploit

the knowledge of this structure [7–11]. By reducing

the degrees of freedom of a sparse or compressible

signal, structured sparsity models provide two immediate

benefits to CS. First, they enable a reduction in the

number of measurements M required to stably recover a

signal. Second, during signal recovery, they enable us to

better differentiate true signal information from recovery

artifacts, which leads to a more robust recovery.

CS is particularly apt for distributed sensor net-

works [12–14], where multiple sparse or compress-

ible signals generated by a single physical process are

recorded simultaneously. It is possible to improve over

standard CS by leveraging the structure present among

the sensed signals. As an example, the common sparse

supports model for signal ensembles assumes that the

signals share the location of their nonzero coefficients.

In this case, the use of specially tailored signal recovery

algorithms provides better performance than standard

CS, as it is possible to recover strictly sparse signals

from even fewer measurements [15]. Furthermore, this

improvement is achieved without requiring collaboration

between the sensors during the measurement process;

this provides lower communication requirements that are

crucial in sensor network applications.

In this paper, we introduce a CS recovery algo-

rithm for signal ensembles with common sparse supports

that leverages the model-based CS theory of [8] while

conserving the reduced communication requirements of

[15]. The model-based CS theory provides us with

provable guarantees on the recovery performance of

this new algorithm. Additionally, the algorithm reduces

the dependence of the recovery’s computational com-



plexity on the number of sensors to be only linear.

Our theoretical results also show that the number of

measurements needed per sensors does not increase as

the sensor network gets larger. Interestingly, we observe

experimentally that the number of CS measurements per

sensor required for recovery actually decreases as the

number of sensors that communicate with each other

increases; this provides better scalability for applications

that use a large number of sensors, such as surveillance

and monitoring.

This paper is organized as follows. A review of the

CS theory in Section II lays out the foundational con-

cepts. Section III develops the common sparse supports

model as a union of subspaces and introduces a model-

based recovery algorithm with robustness guarantees.

Section IV reports on a series of numerical experiments

that demonstrates the improved performance of the al-

gorithm. We conclude with a discussion in Section V.

II. BACKGROUND

A. Compressive Sensing

Given a basis Ψ, we can represent every signal

x ∈ R
N in terms of the coefficient vector α as x = Ψα.

In this section we will assume without loss of generality

that the signal x is sparse or compressible in the canon-

ical domain so that the sparsity basis Ψ is the identity

and α = x. A signal x is K-sparse if only K ≪ N
entries of x are nonzero. We call the set of indices

corresponding to the nonzero entries the support of x
and denote it by supp(x). The set ΣK of all K-sparse

signals is the union of the
(
N
K

)
, K-dimensional subspaces

aligned with the coordinate axes in R
N . While many

natural and manmade signals are not strictly sparse, the

absolute magnitude of their coefficients decay quickly

and therefore can be approximated as such; we say that

such signals are compressible.

Compressive sensing (CS) integrates the signal ac-

quisition and compression steps into a single process [1–

3]. In CS we do not acquire x directly but rather acquire

M < N linear measurements y = Φx using an M ×N
measurement matrix Φ. We then recover x by exploiting

its sparsity or compressibility. Our goal is to push M as

close as possible to K in order to perform as much signal

“compression” during acquisition as possible. In order to

recover a good estimate of x from the M compressive

measurements, the measurement matrix Φ should satisfy

the restricted isometry property (RIP):

Definition 1: [1] An M ×N matrix Φ has the K-

RIP with constant δK if, for all x ∈ ΣK ,

(1− δK)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δK)‖x‖22. (1)

In words, the K-RIP ensures that all submatrices of Φ
of size M ×K are close to an isometry, and therefore

distance (and information) preserving. Practical recov-

ery algorithms typically require that Φ have a slightly

stronger 2K-RIP or higher-order RIP in order to preserve

differences of K-sparse vectors (which are 2K-sparse in

general) and other higher-order structures [1, 5, 16].

While checking whether a measurement matrix Φ
satisfies the K-RIP for a fixed value of δK is an

NP-Complete problem in general [1], random matri-

ces whose entries are i.i.d. subgaussian random vari-

ables2 work with high probability, provided M =
O (K log(N/K)). These random matrices also have a

so-called universality property in that, for any choice

of orthonormal basis matrix Ψ, ΦΨ has the K-RIP

with high probability. This is useful when the signal

is sparse in a basis other than the identity. A random

Φ corresponds to an intriguing data acquisition protocol

in which each measurement yj is a randomly weighted

linear combination of the entries of x.

A number of different CS signal recovery al-

gorithms, both from optimization and greedy ap-

proaches [1–5], offer provably stable signal recovery

with performance close to optimal K-term sparse ap-

proximation. For a matrix Φ that holds the 2K-RIP and

noisy measurements y = Φx + n, the recovered signal

x̂ has the guarantee

‖x− x̂‖2 ≤ C1‖x− xK‖2 +
C2√
K
‖x−xK‖1 +C3‖n‖2,

where xK denotes the K-sparse approximation to x,

and C1 and C2 denote constants. This result has many

implications. Under noiseless measurements, K-sparse

signals are recovered perfectly; for compressible signals,

the recovery has distortion close to that of sparse ap-

proximation; and when noise is present, the effect on

recovery distortion is bounded.

B. Distributed Compressive Sensing

Distributed compressive sensing (DCS) [15] is an

extension of the CS acquisition framework to correlated

signal ensembles. Let x1, . . . , xJ be a set of sparse or

2A random variable X is called subgaussian if there exists c >

0 such that E
`

eXt
´

≤ ec2t2/2 for all t ∈ R. Examples include
the Gaussian and Bernoulli random variables, as well as any bounded
random variable.
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compressible signals that are acquired simultaneously by

a group of sensors. Since the different signals corre-

spond to different recordings of the same event, we can

expect significant structure to be present between their

significant values and coefficients. A relevant example

is the common sparse supports model, which assumes

that all signals share the locations of their significant

coefficients. A practical situation that follows this model

is where multiple sensors acquire the same Fourier-

sparse signal but with phase shifts and attenuations

caused by signal propagation.

While it is possible to perform CS acquisition at

each sensor and then perform separate recovery for each

individual signal, this naive approach would ignore the

structure present between the signals in the ensemble.

In DCS, we employ this additional structure through

specially tailored signal recovery algorithms. To reduce

the communication required between the sensors during

the measurement process, each sensor obtains measure-

ments of its own signal yj = Φjxj independently;

these measurements are then sent to a central location

that is interested in recovering the signal. We stack

the signal and measurement vectors into single vectors

X = [xT
1 . . . xT

J ]T and Y = [yT
1 . . . yT

J ]T . The

distributed measurement structure yields a single mea-

surement matrix Φ of the form

Φ =




Φ1 0 . . . 0

0 Φ2 . . . 0

...
...

. . .
...

0 0 . . . ΦJ


 (2)

that provides us with the standard CS measurement equa-

tion Y = ΦX . We then can recover the signal ensemble

from Y using the matrix Φ with standard CS recovery

algorithms. For example, the Simultaneous Orthogonal

Matching Pursuit (SOMP) [17] algorithm is a greedy

algorithm for recovery of signal ensembles with common

sparse supports that exploits the structure of the matrix Φ
shown in (2). While SOMP provides good experimental

performance [15], the theoretical guarantees obtained for

greedy algorithms in [6] do not apply due to the non-

dense structure of the matrix Φ.

C. Model-based Compressive Sensing

While many natural and manmade signals and

images can be described to first-order as sparse or

compressible, the support of their large coefficients

often has an underlying inter-dependency structure. A

new framework for CS captures such structure using

a union-of-subspaces model [8]. Such a model reduces

the degrees of freedom of a sparse/compressible signal

by permitting only certain configurations of supports

for the large coefficients. We also develop the example

union-of-subspaces model of common sparse supports

for signal ensembles. As we will show, a model allows

us to reduce — in some cases significantly — the number

of measurements M required to stably recover a signal.

Recall that a K-sparse signal vector x lives in

ΣK ⊂ R
N , which is a union of

(
N
K

)
subspaces of

dimension K . Other than its K-sparsity, there are no

further constraints on the support or values of its co-

efficients. A union-of-subspaces signal model (a signal

model in the sequel for brevity) endows the K-sparse

signal x with additional structure that allows certain K-

dimensional subspaces in ΣK and disallows others [9,

10]. More formally, let x|Ω represent the entries of x
corresponding to the set of indices Ω ⊆ {1, . . . , N},
and let ΩC denote the complement of the set Ω. A signal

modelMK is then defined as the union of mK canonical

K-dimensional subspaces

MK =

mK⋃

m=1

Xm, Xm := {x : x|Ωm
∈ R

K , x|ΩC
m

= 0};

each subspace Xm contains all signals x with supp(x) ∈
Ωm. Thus, the signal model MK is defined by the set

of possible supports {Ω1, . . . , ΩmK
}. Signals fromMK

are called K-model sparse. Clearly, MK ⊆ ΣK and

contains mK ≤
(

N
K

)
subspaces. In the sequel, we will

use an algorithm M(x, K) that returns the best K-term

approximation of the signal x under the model MK .

If we know that the signal x being acquired is K-

model sparse, then we can relax the RIP constraint on

the CS measurement matrix Φ and still achieve stable

recovery from the compressive measurements y = Φx. A

model-based RIP requires that (1) holds only for signals

x ∈MK [9, 10]; we denote this new property as MK-

RIP to specify the dependence on the chosen signal

model, and change the model-based RIP constant from

δK to δMK
for clarity. Blumensath and Davies [9] have

quantified the number of measurements M necessary

for a subgaussian CS matrix to have the MK-RIP with

constant δMK
and with probability 1− e−t to be

M ≥ 2

cδ2
MK

(
ln(2mK) + K ln

12

δMK

+ t

)
. (3)

This bound can be used to recover the conventional CS

result by substituting mK =
(
N
K

)
≈ (Ne/K)K .

To take practical advantage of signal models in CS,

we need to integrate them into a standard CS recovery
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algorithm. For most greedy algorithms, the key modi-

fication is simple: we merely replace the best K-term

approximation step (usually applied using thresholding)

with a best K-term model-based approximation. Since

at each iteration we need to search only over the mK

subspaces of MK rather than
(
N
K

)
subspaces of ΣK ,

fewer measurements will be required for the same degree

of robust signal recovery. Or, alternatively, using the

same number of measurements, more accurate recovery

can be achieved.

We choose to modify the CoSaMP algorithm [5]

for two reasons. First, it has robust recovery guarantees

based on the K-RIP that are on par with the best convex

optimization-based approaches. Second, it has a simple

iterative, greedy structure based on a best BK-term

approximation (with B a small integer) that is easily

modified to incorporate a best BK-term model-based

approximation.

III. COMMON SPARSE SUPPORTS MODEL

In this section, we formulate the common sparse

supports model for signal ensembles as a union of

subspaces. This enables us to leverage the model-based

CS framework of [8] to obtain recovery algorithms with

provable guarantees.

A. Formulation as union of subspaces

Consider once again an ensemble of length-N sig-

nals {x1, . . . , xJ} that are captured simultaneously. It

is possible to stack the signals as rows of a matrix

X̃ ∈ R
N×J or into a single vector X ∈ R

NJ , where

we assign indices to the entries of X that identify both

the signal j ∈ {1, . . . , , J} and entry n ∈ {1, . . . , N}
that is observed. Under the common sparse supports

model, all signals share the locations of their nonzero

coefficients. We formalize the model using a union-of-

subspaces formulation:

Definition 2: Define the set of K-sparse signals

with common supports as

SK = {X = [xT
1 . . . xT

N ]T ∈ R
JN s.t. xj(n) = 0

for n /∈ Ω, Ω ⊆ {1, . . . , N}, |Ω| = K}.

In a slight abuse of notation, we label this model

SK even though the dimensionality of the subspaces

contained is JK .

To formulate a model-based recovery algorithm, we

must obtain model-based approximations using SK . For

this purpose, we define the mixed norm of a matrix:

Definition 3: The (p, q) mixed norm of the matrix

X̃ = [x1 x2 . . . xN ] is defined as

‖X̃‖(p,q) =

(
N∑

n=1

‖xn‖qp

)1/q

.

When q = 0, ‖X̃‖(p,0) simply counts the number

of nonzero columns in X . We immediately find that

‖X̃‖(p,p) = ‖X‖p.

Intuitively, we pose the algorithm S(X, K) to obtain

the best approximation of the signal X under the model

SK as follows:

X̃S
K = arg min

X′∈RJ×N

‖X̃ −X ′‖(2,2) s.t. ‖X ′‖(2,0) ≤ K,

with XK denoting the row-concatenated vector corre-

sponding to the matrix X̃K . It is easy to show that to

obtain the approximation, it suffices to perform column-

wise hard thresholding: let ρ be the K th largest ℓ2-norm

among the columns of X̃ . Our approximation algorithm

is S(X̃, K) = X̃S
K = [T (x1) . . . T (xN )], where

T (x) =

{
x ‖x‖2 ≥ ρ,
0 ‖x‖2 < ρ,

for each 1 ≤ j ≤ J and 1 ≤ n ≤ N . Alternatively,

a recursive approximation algorithm can be obtained

by sorting the rows of X by their ℓ2 norms, and then

selecting the rows with largest norm. The complexity of

this sorting process is O (NJ + N log N).

B. Model-based Recovery

Pseudocode for a modified version of the CoSaMP

algorithm tailored to the common sparse supports model

is given in Algorithm 1, where it has been specialized

for matrices with the structure given in (2). Thanks to

this structure, the operations on the matrix Φ can be dis-

tributed into the individual matrices Φj , thus making the

computational complexity of the recovery algorithm only

linear in the number of sensors J . Due to its resemblence

to SOMP, we dub this new algorithm CoSOMP.

We obtain the following guarantee for signal recov-

ery using CoSOMP, proven in [8].

Theorem 1: Let X be a signal from model S, and

let Y = ΦX + n be a set of noisy CS measurements. If

Φ has the S4
K-RIP with δS4

K

≤ 0.1, then the estimate

X̂ obtained from iteration i of CoSOMP, using the

approximation algorithm (4), satisfies

‖X − X̂i‖2 ≤ 2−i‖X‖2 + 20‖X −XK‖2
+

20√
K
‖X −XK‖1 + 20‖n‖2.
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Algorithm 1 CoSOMP algorithm. A(x, K) obtains the best K-term approximation of the vector x.

Inputs: CS matrices {Φ}Jj=1, measurements {yj}Jj=1

Output: K-sparse approximations {x̂j}Jj=1 to true signals {xj}Jj=1

For each j = 1, . . . , J : x̂j,0 = 0 , rj = yj ; i = 0 {initialize}
while halting criterion false do

1. i← i + 1
2. ej ← ΦT

j rj , j = 1, . . . , J {form signal residual estimates}
3. e =

∑J
j=1(ej · ej) {merge signal residual estimates in squared ℓ2 norm}

4. Ω← supp(A(e, 2K)) {prune merged signal residual estimates}
5. T ← Ω ∪ supp(x̂j,i−1) {merge supports}
6. bj|T ← Φj |†T yj , bj |T C ← 0, j = 1, . . . , J {form signal estimates}
7. b =

∑J
j=1(bj · bj) {merge signal estimates in squared ℓ2 norm}

8. Λ← supp(A(b, K)) {obtain pruned signal estimate support}
9. x̂j,i|Λ ← bj |Λ, x̂j,i|ΛC ← 0, j = 1, . . . , J {prune signal estimates}
10. rj ← yj − Φj x̂j,i, j = 1, . . . , J {update measurement residuals}

end while

return x̂j ← x̂j,i, j = 1, . . . , J

For DCS matrices Φ that have the structure de-

scribed in (2), it is easy to show that requiring Φ to have

the S4
K-RIP with constant δ is equivalent to requiring

each matrix Φj , 1 ≤ j ≤ J to have the 4K-RIP with

the same constant. Remarkably, this implies that the

number of measurements required per sensor does not

increase as the number of sensors increases; in fact, the

experimental results in the next section show that the

number of measurements required will decrease as the

network becomes larger.

Previous research has developed several algorithms

for the recovery of signals with common sparse sup-

ports [11, 15, 17, 18]. However, the robustness guarantees

for such algorithms either are restricted to exactly sparse

signals and noiseless measurements, do not have explicit

bounds on the number of necessary measurements, or are

asymptotic in nature.

IV. EXPERIMENTS

In this section, we consider three datasets [19] for

temperature, humidity, and light readings from a group

of 48 nodes deployed at the offices of Intel Research

Labs in Berkeley, CA.3 The signals were recorded in an

office environment and therefore exhibit periodic behav-

ior caused by the activity levels during day and night.

Therefore, we expect the signals to be compressible in

3For the purposes of our experiments, we select signals of length
N = 1024 and interpolate small amounts of missing data.

TABLE I
PERFORMANCE COMPARISON FOR STANDARD COSAMP AND

COSOMP RECOVERY ON 49 ENVIRONMENTAL SENSING SIGNALS

FROM THE INTEL BERKELEY DATASET.

Dataset M CoSaMP CoSOMP

Light 200 14.07dB 17.87dB

Humidity 80 20.45dB 26.68dB

Temperature 400 19.10dB 26.40dB

the wavelet domain. Since the signals are observations

of physical processes, they are smoothly varying in time

and space; this causes the sensor readings to be close

in value to each other, a situation well captured by the

common sparse supports model.

We consider the recovery from CS measurements

for these signals. We obtain M CS measurements for

each signal using a matrix with random Gaussian dis-

tributed entries. We then compare model-based recovery

using CoSOMP with standard CoSaMP recovery, where

the parameter K is chosen to achieve best performance.4

Figure 1 shows the recovery for a representative ex-

ample: the light intensity signal from sensor 35. The

CoSOMP algorithm exploits the common sparse sup-

ports structure, recovering salient common features for

all signals in the ensemble, and thus obtaining better

recovery performance than standard CoSaMP from the

same sets of measurements. Table I summarizes similar

results for the different datasets.

We also study the performance of these algorithms

4We use Daubechies-8 wavelets for compression throughout this
section.
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(a) Original signal

(c) CoSaMP recovery, distortion = 15.1733 dB

(d) CoSOMP recovery, distortion = 16.3197 dB

Fig. 1. Recovery of light intensity signal 35 from the Intel
Berkeley sensor network using the CoSaMP and CoSOMP
algorithm. N = 1024, M = 400. When the common sparse
supports model is used in CoSOMP, the features that are salient
in all signals are preserved.
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Fig. 2. Performance of CoSaMP, SOMP and CoSOMP on a
group of light signals from the Intel Berkeley sensor network as
a function of the number of measurements M .

for different numbers of measurements. Figures 2 – 4

plot the probability of exact recovery for the standard

CoSaMP and CoSOMP algorithms for the three environ-

mental sensing datasets; we also show the performance

of SOMP as a baseline. CoSOMP recovery is superior at

low and moderate rates, yet it is surpassed by standard

CoSaMP at high rates. This illustrates the applicability of

the common sparse supports model, which becomes less

valid as the very fine features of each signal (which vary

between sensors) are incorporated. While the perfor-

mance of CoSOMP is similar to that of SOMP, CoSOMP

has the added benefit of the proven recovery guarantees.
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Fig. 3. Performance of CoSaMP, SOMP and CoSOMP on
a group of humidity signals from the Intel Berkeley sensor
network as a function of the number of measurements M .
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Fig. 4. Performance of CoSaMP, SOMP and CoSOMP on
a group of temperature signals from the Intel Berkeley sensor
network as a function of the number of measurements M .

Finally, we study the dependence of CoSOMP per-

formance on the number of signals in the ensemble. Fig-

ure 5 compares the performance of the standard CoSaMP

and CoSOMP algorithms on synthetically generated

exactly sparse signals with common sparse supports.

Over 100 repetitions, we select the signal supports at

random and assign coefficients from a standard Gaussian

distribution. We then obtain CS measurements for each

signal using matrices with entries following a standard

Gaussian distribution. The figure shows that while stan-

dard CoSaMP recovery requires more measurements to

achieve high probability of successful recovery — as

each sensor must succeed independently — the CoSOMP

algorithm requires fewer measurements as the number

of signals increases, as it is simpler to establish the

common sparse support structure. We also see that the
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Fig. 5. Performance of CoSaMP (dashed lines) and CoSOMP
(solid lines) on a class of signals with common sparse support
(K = 5) as a function of M for several numbers of sensors
J . While more measurements are required with CoSaMP as J

increases, CoSOMP requires a decreasing number of measure-
ments, appearing to converge to M = 2K as J → ∞.

number of measurements necessary for recovery appears

to converge to M = 2K as the number of sensors

becomes larger; in comparison, for the SOMP algorithm

this number of measurements converged to M = K [12].

We believe that this increase in the bound is due to the

enlarged support estimate obtained in step 4 of CoSOMP.

V. CONCLUSIONS

In this paper, we have aimed to demonstrate that

there are significant performance gains to be made

by exploiting more realistic and richer signal models

beyond the simplistic sparse and compressible models

that dominate the CS literature. Building on the model-

based CS theory of [8], we have provided an algorithm

for recovery of signal ensembles under a common sparse

support model for which we can provide state-of-the-art

guarantees on recovery performance. When distributed

sensing is performed, we can reduce the dependence

of the recovery computational complexity to be linear

in the number of signals present. Furthermore, one can

obtain a distributed recovery algorithm when sensors

communicate efficiently to each other; we only need to

share the proxy estimates for each signal obtained in

steps 2 and 6 of CoSOMP.
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