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Abstract— This paper considers a two-hop interference net-
work, where two users transmit independent messages to their
respective receivers with the help of two relay nodes. The
transmitters do not have direct links to the receivers; instead,
two relay nodes serve as intermediaries between the transmitters
and receivers. Each hop, one from the transmitters to the relays
and the other from the relays to the receivers, is modeled as a
Gaussian interference channel, thus the network is essentially a
cascade of two interference channels. For this network, achievable
symmetric rates for different parameter regimes under decode-
and-forward relaying and amplify-and-forward relaying ar e
proposed and the corresponding coding schemes are carefully
studied. Numerical results are also provided.

I. I NTRODUCTION

The wireless mesh networks are being extensively studied
recently due to their potential to improve the performance and
throughput of the cellular networks by borrowing the features
of ad-hoc networks [1]. The two-hop interference network
was recently proposed to model the mesh network from an
information theoretic perspective [2]. The model is in essence
a cascade of two interference channels: the transmitters com-
municate to two relay nodes through an interference channel
and the two relay nodes communicate to the two receivers
through another interference channel.

In [2], the authors studied the achievable region for the
model where the relays apply decode-and-forward scheme. For
the interference channel in the first hop, since the messages
of the two users are independent, the largest achievable region
to date was proposed by Han and Kobayashi [3]. The basic
idea is for each user to split their message into two parts: the
private message, which is only to be decoded by the intended
receiver, and the common message, which is to be decoded
by both receivers. Although the unintended user’s common
message is discarded by the receivers in the classic interference
channel model, [2] made use of this common message at the
two relay nodes as knowledge of them can help boost the rate
in the second hop through cooperative transmission. In [2],the
authors proposed the superposition coding scheme for each
relay node to transmit not only the intended user’s private and
common messages but also the other user’s common message,
in order to obtain the coherent combining gain of the common
message at the intended receiver.

[4] also considered the two-hop interference network
model. Instead of considering the end-to-end transmission
rate, the authors focused on the the second hop and explored
the possibilities for the two relays to utilize the common
message from the unintended user and proposed multiple
transmission schemes, such as MIMO broadcast strategy, dirty
paper coding, beamforming, and further rate splitting.

However, both [2] and [4] only considered decode-and-
forward relaying and focused on the weak interference case
for both hops, i.e., the interference link gain is less than the
direct link gain. In this paper, we study the model under
various parameter regimes using decode-and-forward relaying
as well as amplify-and-forward relaying. [2] and [4] also
suggested that, if the interference channel in the first hop has
strong interference (interference link gain greater than direct
link gain), by the standard results for the classic interference
channel, it is optimal for the two relays to decode both users
messages. Contrary to this, we will show in later sections
that this approach can be easily outperformed by switching
the roles of the two relays which essentially converts the
strong interference channels to weak interference channels. For
amplify and forward, we demonstrate that the end-to-end rate
may exceed the naive use of cut-set bound which applies to
only the decode and forward approach.

The rest of the paper is organized as follows. In section II,
we introduce the model for the two-hop interference network.
In section III, we focus on the end-to-end transmission rate
and analyze the decode-and-forward relaying scheme for the
network under different parameter regimes. In section IV,
we analyze the amplify-and-forward scheme under various
parameter regimes. Section V provides numerical examples
to compare various proposed coding schemes. Concluding
remarks are given in section VI.

II. CHANNEL MODEL

The standard two-hop interference network is a cascade
of two interference channels with direct transmission link
coefficient equal to1, as shown in Fig. 1.
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Fig. 1. Two-hop interference network in standard form

Transmitter 1 (T1) has messageW1 ∈ {1, 2, · · ·, 2nR1} to
be transmitted to destinationD1 and transmitter 2 (T2) has
messageW2 ∈ {1, 2, ···, 2nR2} to be transmitted to destination
D2. a1, a2, b1 andb2 are fixed positive numbers,Z1, Z2, Z3

and Z4 are independent Gaussian distributed variables with
zero mean and unit variance. The average power constraints
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for the input signalsX1, X2, X3 andX4 areP11, P12, P21

andP22, respectively.
In order to simplify the analysis of this complicated channel

model and better compare our results with the existing ones,
we follow the convention of [2] and [4] by only considering
the symmetric interference channels, i.e.,

a1 = a2 , a (1)

b1 = b2 , b (2)

P11 = P12 , P1 (3)

P21 = P22 , P2 (4)

In addition, we focus primarily on the symmetric rate, i.e.,the
case withR1 = R2.

III. D ECODE AND FORWARD

In this section, we propose capacity bounds for the two-
hop interference network in various parameter regimes using
decode-and-forward relaying. Under the full duplex condition,
the transmission is conducted across a large number of blocks.
In each block, the relays receive the new messages of the cur-
rent block from the transmitters, and transmit the information
of the previous block to the desitnation. We assume the number
of blocks is large enough to ignore the penalty incurred in the
first and the last blocks.

A. 0 < a < 1, 0 < b < 1

In [2], the authors proposed achievable transmission rates
for the case that both hops have weak interference, i.e.,a < 1
andb < 1. Specifically, they applied Han-Kobayashi’s scheme
to the first hop by splitting each user’s message into two parts,
namely,W1 into private messageW1p ∈ {1, · · ·, 2nR1p} and
common messageW1c ∈ {1, · · ·, 2nR1c} andW2 into private
messageW2p ∈ {1, · · ·, 2nR2p} and common messageW2c ∈
{1, · · ·, 2nR2c}. Each relay not only decodes the private and
common messages from the intended user, but also decodes
the common message from the other user. Since the Han-
Kobayashi region is based on simultaneous decoding of the
three messages (1 private message and 2 common messages),
which is very complicated to compute, [4] simplified it by
proposing sequential decoding: each relay first decodes the
two common messages, subtract them out, then decode the
private message. By restricting the analysis to the symmetric
rate [4], i.e.,R1p = R2p = R

(1)
p , R1c = R2c = R

(1)
c , we have

achievable rates in the first hop

R(1)
p = γ

(

αP1

1 + a2αP1

)

(5)

R(1)
c =min

{

γ

(

a2ᾱP1

σ2
1

)

,
1

2
γ

(

(1 + a2)ᾱP1

σ2
1

)}

(6)

whereαP1 is the power allocated to the private message and
ᾱP1 = (1 − α)P1 is the power allocated to the common
message.σ2

1 = 1+(1+a2)αP1. γ(x) is defined as12 log(1+x).
The superscript “(1)” denotes the first hop. (6) is from the
capacity region of the MAC channel consisting of the two
common messages, treating the private messages as noise; (5)

is the decoding of the private message treating the other private
message as noise.

For the second hop, [2] proposed superposition scheme at
the two relays such that coherent combining can be achieved
at the destinations. This scheme was outperformed by the
dirty paper coding (DPC) scheme proposed in [4] for the very
weak interference case, i.e., whenb is very small. The idea
is for the two relays to encode one of the common messages
using DPC, thus treating the other common message as known
interference. Therefore, this known interference will notaffect
the unintended destination. However, due to the nonlinearity
of the DPC, the dirty paper decoded common message cannot
be subtracted out. Thus, [4] also suggested to dirty paper code
the private message treating both common messages as known
interference. Besides, the common message that is treated as
known interference is decoded at its intended destination by
treating the other common message (dirty paper coded) as well
as the two private messages as noise. Since either common
message can be dirty paper coded against the other common
message, there are two transmission modes and one should
time share between them to maximize the sum rate [4]. Again,
by only considering the symmetric rates, the achievable rates
under the DPC scheme for the second hop are [4]

R
(2)
p,DPC = γ

(

βP2

1 + b2βP2

)

(7)

R
(2)
c,DPC =

1

2
γ

(

(1− b2)2β̄2P 2
2

σ4
2

+
2(1 + b2)β̄P2

σ2
2

)

(8)

where βP2 is the power allocated to the private message,
σ2
2 = 1 + (1 + b2)βP2 since the private messages from both

users are treated as noise when decoding common messages.
(7) is decoding the private message treating the other user’s
private message as noise, since the effect of the two common
messages disappears due to the DPC; (8) is from the opti-
mization problem which maximizes the sum rate of the two
common messages.

In the DPC scheme, the common message that is treated as
known interference is decoded by its intended receiver treating
the other user’s common message and private messages as
noise. However, when the interference link of the second hop
gets stronger, i.e.,b gets larger, the interference incurred by
the common message and private message from the other user
may be too strong to be treated as noise. Therefore, it may be
beneficial for the receivers to decode the common message
and even the private message from the other user, like in
the strong interference channel, whose capacity is that of the
compound MAC. To make the coding scheme more general,
we do not let the receivers decode all the private messages.
Instead, we further split the private messageW1p from the
first hop into two parts,W1pp ∈ {1, 2, ···, 2nR1pp} andW1pc ∈
{1, 2, ···, 2nR1pc}, whereW1pp is the sub-private message only
decoded at the intended receiver, andW1pc is the sub-common
message decoded at both receivers. The private messageW2p

is split in the same fashion intoW2pp and W2pc. There
are five messages (two common messages, two sub-common
messages and one sub-private message) to be decoded by each



receiver, which yields very complex expression for the rate
region if we use simultaneous decoding. Instead, we will adopt
sequential decoding and fix the decoding order as follows:
first, simultaneously decode the two common messagesW1c

andW2c, subtract them out; second, simultaneously decode the
two sub-common messagesW1pc andW2pc, subtract them out;
third, decode the sub-private messageW1pp by receiver 1 (or
W2pp by receiver 2). Consequently, the symmetric achievable
rate region is

Rc ≤ γ

(

(
√
Pc1 + b

√
Pc2)

2

1 + (1 + b2)Pp

)

(9)

Rc ≤ γ

(

(
√
Pc2 + b

√
Pc1)

2

1 + (1 + b2)Pp

)

(10)

2Rc ≤ γ

(

(
√
Pc1 + b

√
Pc2)

2 + (
√
Pc2 + b

√
Pc1)

2

1 + (1 + b2)Pp

)

(11)

Rpc ≤ γ

(

Ppc

1 + (1 + b2)Ppp

)

(12)

Rpc ≤ γ

(

b2Ppc

1 + (1 + b2)Ppp

)

(13)

2Rpc ≤ γ

(

(1 + b2)Ppc

1 + (1 + b2)Ppp

)

(14)

Rpp ≤ γ

(

Ppp

1 + b2Ppp

)

(15)

where powerPp is allocated to the private message,Pc1 is
allocated to the intended common message,Pc2 is allocated
to the interfering common message, andPp + Pc1 + Pc2 =
P2. Also, Ppc is for the sub-common message andPpp is for
the sub-private message andPpc + Ppp = Pp. If we fix Pp

and maximizeRc underPc1 + Pc2 ≤ P2 − Pp, the optimal

R∗

c = 1
2γ
(

(1+b)2(P2−Pp)
1+(1+b2)Pp

)

is achieved whenPc1 = Pc2 =
1
2 (P2−Pp) [4]. Therefore, the symmetric rates for the second
hop under the MAC scheme is

R
(2)
p,MAC = max

α

{

min

[

γ

(

b2ᾱβP2

σ2
3

)

,
1

2
γ

(

(1 + b2)ᾱβP2

σ2
3

)]

+ γ

(

αβP2

1 + b2αβP2

)}

(16)

R
(2)
c,MAC =

1

2
γ

(

(1 + b)2β̄P2

1 + (1 + b2)βP2

)

(17)

whereσ2
3 = 1 + (1 + b2)αβP2 andα, β ∈ [0, 1].

This scheme is more general than the cooperative trans-
mission scheme in [2] in that we further split the first hop’s
private messages into two parts in the second hop. This scheme
is similar to the “layered coding with beamforming” scheme
in [4], with the difference that we only consider the coherent
beamforming here and disregard the zero forcing beamforming
scheme which proves to be always worse than the DPC
scheme.

Theorem 1: The achievable symmetric rate (R1 = R2 = R)
for the symmetric interference network is the solution to the

following optimization problem:

R = max
α,β∈[0,1]

Rp +Rc (18)

s.t.(Rp, Rc) ∈ R(R(1)
p , R(1)

c ) ∩R(R(2)
p , R(2)

c )(19)

where R
(1)
p and R

(1)
c are given in (5)-(6).R(R

(2)
p , R

(2)
c )

is defined as the convex closure of the union of
R(R

(2)
p,DPC , R

(2)
c,DPC) and R(R

(2)
p,MAC , R

(2)
c,MAC), where

R
(2)
p,DPC andR

(2)
c,DPC are given in (7)-(8), andR(2)

p,MAC and

R
(2)
c,MAC are given in (16)-(17).

B. a > 1, b > 1

If the first hop has strong interference, i.e.,a > 1, both [2]
and [4] let both relays decode both users’ messages in the first
hop, as this is the optimal scheme for interference channels
with strong interference. Using this scheme, for the symmetric
rates(R1 = R2 = R(1)), we have

R(1) ≤ γ(P1) (20)

R(1) ≤ γ(a2P1) (21)

R(1) +R(1) ≤ γ(P1 + a2P1) (22)

Thus,

R(1) = min

(

γ(P1),
1

2
γ((1 + a2)P1)

)

(23)

In other words, for very strong interference casea2 ≥ 1+P1,
R(1) = γ(P1); for 1 < a2 < 1 + P1, R(1) = 1

2γ((1 + a2)P1).
After the first hop, since both relays have knowledge of

both users’ messages, the second hop reduces to the Gaussian
vector broadcast channel with per antenna power constraint,
for which we know the DPC scheme is optimal. By time
sharing between the two DPC modes and maximizing the sum
rate, we obtain the achievable symmetric rate for the second
hop

R(2) =
1

2
γ((b2 − 1)2P 2

2 + 2P2(1 + b2)). (24)

Therefore the achievable rate for the entire network is

R = min{R(1), R(2)}. (25)

The above analysis seems to be a natural way to deal with
the strong interference case, and for each hop, the transmission
scheme is optimal. However, optimality in each hop does not
guarantee optimality of the entire network. Indeed, for the
entire system, the combination of the two optimal schemes
is no longer optimal. An easy way to outperform the above
scheme is to switch the role of the two relays. Specifically,
we make relayR2 as the “intended” relay for the first user
T1, and relayR1 as the intended relay for the second user
T2. In this way, the first hop is converted into an interference
channel with weak interference. Consequently, the second hop
is converted into another weak interference channel as shown



in Fig.2. After some simple scaling, this two-hop network
becomes

Y
′

1 = X1 +
1

a
X2 + Z

′

1 (26)

Y
′

2 =
1

a
X1 +X2 + Z

′

2 (27)

Y
′

3 = X3 +
1

b
X4 + Z

′

3 (28)

Y
′

4 =
1

b
X3 +X4 + Z

′

4 (29)

where Z
′

1, Z
′

2 ∼ N(0, 1/a2), Z
′

3, Z
′

4 ∼ N(0, 1/b2) are
independent.
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Fig. 2. Two-hop interference network transformation

Therefore, this strong interference two-hop network reduces
to case III-A where both hops are weak interference channels.
Using Han-Kobayashi scheme in the first hop and combining
DPC and MAC in the second hop, and going through the same
derivation, we obtain the symmetric rates in the first hop

R(1)
p = γ

(

a2αP1

1 + αP1

)

(30)

R(1)
c = min

{

γ(
ᾱP1

σ2
1

),
1

2
γ

(

(1 + a2)ᾱP1

σ2
1

)}

(31)

whereα ∈ [0, 1] andσ2
1 = 1 + (1 + a2)αP1.

The symmetric rates in the second hop under DPC is

R
(2)
p,DPC = γ

(

b2βP2

1 + βP2

)

(32)

R
(2)
c,DPC =

1

2
γ

(

(b2 − 1)2β̄2P 2
2

σ4
2

+
2(1 + b2)β̄P2

σ2
2

)

(33)

whereβ ∈ [0, 1] andσ2
2 = 1 + (1 + b2)βP2.

The symmetric rates in the second hop under MAC is

R
(2)
p,MAC = max

α

{

min

[

γ

(

ᾱβP2

σ2
3

)

,
1

2
γ

(

(1 + b2)ᾱβP2

σ2
3

)]

+ γ

(

b2αβP2

1 + αβP2

)}

(34)

R
(2)
c,MAC =

1

2
γ

(

(1 + b)2β̄P2

1 + (1 + b2)βP2

)

(35)

whereσ2
3 = 1 + (1 + b2)αβP2 andα, β ∈ [0, 1].

Theorem 2: The solution to the following optimization
problem is achievable for the two-hop network whena > 1

andb > 1:

R = max
α,β∈[0,1]

Rp +Rc (36)

s.t.(Rp, Rc) ∈ R(R(1)
p , R(1)

c ) ∩R(R(2)
p , R(2)

c )(37)

whereR
(1)
p and R

(1)
c are given in (30)-(31).R(R

(2)
p , R

(2)
c )

is defined as the convex closure of the union of
R(R

(2)
p,DPC , R

(2)
c,DPC) and R(R

(2)
p,MAC , R

(2)
c,MAC), where

R
(2)
p,DPC and R

(2)
c,DPC are given in (32)-(33), andR(2)

p,MAC

andR(2)
c,MAC are given in (34)-(35).

Note that whenα = β = 0, let R(R
(2)
p , R

(2)
c ) =

R(R
(2)
p,DPC , R

(2)
c,DPC), the rateR defined in (36) reduces to

that of (25). SinceR(R
(2)
p , R

(2)
c ) is always a superset of

R(R
(2)
p,DPC , R

(2)
c,DPC), the achievable rate (25) is always a

subset of (36).

C. 0 < a < 1, b > 1

For the first hop, it is a weak interference channel, the
transmission strategy is the same as case III-A: the Han-
Kobayashi scheme. Thus, the symmetric achievable rate is
(R

(1)
p , R

(1)
c ) given in (5)-(6).

For the second hop, we can still use DPC scheme, thus
yielding rates(R(2)

p,DPC , R
(2)
c,DPC) given in (7)-(8). Now con-

sider the MAC scheme. From the standard result of strong
interference channel, the capacity is achieved when both user’s
messages are decoded by both receivers, as in the case of
compound MAC. Thus, for the MAC scheme proposed in
section III-A, we should modify it by letting both receivers
decode all the messages, both private and common, instead of
further splitting the private message. As such, we should set
α = 0 in (16)-(17). Also notice thatb > 1, the symmetric
achievable rates for the MAC scheme become

R
(2)
p,MAC = min

{

γ(βP2),
1

2
γ((1 + b2)βP2)

}

(38)

R
(2)
c,MAC =

1

2
γ

(

(1 + b)2β̄P2

1 + (1 + b2)βP2

)

(39)

Therefore, for the case0 < a < 1, b > 1, the symmetric
achievable rate for the two hop network has the same form
of that in Theorem 1, except thatR(2)

p,MAC andR
(2)
c,MAC are

given in (38)-(39).

D. a > 1, 0 < b < 1

If we stick to the roles of the two relays, for the first hop,
the two relays should decode both users’ messages; for the
second hop, we apply DPC scheme for the weak interference
channel. However, similar to case III-B, it can be verified that
this scheme is easily outperformed if we switch the role of
the two relays. Consequently, the first hop becomes a weak
interference channel and the second hop becomes a strong
interference channel. We can directly apply the results from
case III-C, with only minor modifications: change the channel
gains a and b into 1

a and 1
b respectively, and change the

variance of noiseZ1 andZ2 to 1
a2 , and change the variance of

noiseZ3 andZ4 to 1
b2 . Thus, the total symmetric rate of the



two hop network becomes the same form of that in Theorem
2 except thatR(2)

p,MAC andR(2)
c,MAC are given in (40)-(41).

R
(2)
p,MAC = min

{

γ(b2βP2),
1

2
γ((1 + b2)βP2)

}

(40)

R
(2)
c,MAC =

1

2
γ

(

(1 + b)2β̄P2

1 + (1 + b2)βP2

)

(41)

For the second hop, the DPC scheme and the MAC scheme
are both needed for all the parameter regimes. Neither scheme
can dominate the other.

From the previous analysis of the four parameter regimes,
we have the following theorem.

Theorem 3: For the two hop interference network with the
transmission scheme of decode and forward relaying, if the
first hop has weak interference, one should apply the HK
scheme directly; if the first hop has strong interference, itis
always favorable to convert it into a weak interference channel
by switching the roles of the two relays, as in Fig. 2, and then
apply the HK scheme. In other words, with strong interference
in the first hop, rate splitting after role switching of the two
relays can always achieve a rate region no smaller than that
achieved by both relays decoding all the messages without
role switching.

Proof: If the two relays do not switch roles, for strong
interference in the first hop, the optimal scheme is for both
the two relays to decode all the messages of the two users.
Then, the optimal scheme for the second hop is to use DPC
scheme as in the MIMO broadcast channel. However, these
schemes are special cases of the transmission schemes if we
switch the roles of the two relays and apply the HK scheme
to the first hop(simply by allocating zero power to the private
messages after rate splitting). Therefore, role exchange for the
two relay nodes is always preferred for strong interferencein
the first hop.

E. Half Duplex

If the transmission is conducted in the half duplex fashion,
the two relays cannot receive and transmit at the same time.
In this case, the transmission in the two hops cannot proceed
simultaneously. When transmitting in the first hop, the relays
are in the listening mode and the two usersT1, T2 transmit
their messages withN1 channel uses to the relays. In the
second hop, after decoding the received messages, the two
relays R1, R2 transmit with N2 channel uses to the two
destinationsD1, D2. Thus, the transmission schemes discussed
for the full duplex case can be directly applied to the half
duplex case, only with the overall rates reduced due to the
extra channel uses needed.

Following the schemes proposed for the full duplex mode,
we always do rate splitting and transmit private as well as
common messages in the first hop. Thus, both private and
common messages should be successfully delivered to the
destinations in the second hop, which yields:

R(1)
p N1 ≤ R(2)

p N2 (42)

R(1)
c N1 ≤ R(2)

c N2 (43)

The minimum channel uses needed in the second hop is

N2 = N1 ·max

(

R
(1)
p

R
(2)
p

,
R

(1)
c

R
(2)
c

)

(44)

Therefore, the overall rate achieved for the entire system is

R =
(R

(1)
p +R

(1)
c )N1

N1 +N2
=

R
(1)
p +R

(1)
c

1 + max

(

R
(1)
p

R
(2)
p

, R
(1)
c

R
(2)
c

) (45)

Theorem 4: R∗ = maxR is the achievable symmetric rate
(R1 = R2 = R∗) in the half duplex two-hop interference
network, whereR is defined in (45).

IV. A MPLIFY AND FORWARD

In this section, we focus on the transmission rates achieved
by amplify and forward relaying. We show that this scheme
can outperform decode and forward relaying under certain
conditions.

For amplify and forward relaying, we still focus on the
symmetric channel model as defined in (1)-(4).

A. In-phase Relaying

We first analyze the achievable rates for the so-called in-
phase transmission, where the two relays simply scale their
received signals with the same polarity. This is the usual
amplify and forward scheme and we emphasize in-phase here
to contrast with the out-of-phase approach described later. In
the first hop, the received signals at the relays are

Y1 = X1 + aX2 + Z1 (46)

Y2 = aX1 +X2 + Z2 (47)

If they use the full power for amplifying in the second hop,
we have

X3 = cY1 (48)

X4 = cY2 (49)

wherec =
√

P2

(1+a2)P1+1 . Therefore

Y3 = cY1 + bcY2 + Z3 (50)

Y4 = bcY1 + cY2 + Z4 (51)

after scaling,

Y
′

3 = (1 + ab)X1 + (a+ b)X2 + Z1 + bZ2 + Z3/c(52)

Y
′

4 = (a+ b)X1 + (1 + ab)X2 + bZ1 + Z2 + Z4/c(53)

Due to the fact that receiversD1 andD2 do not talk to each
other, we can modify the model in (52)-(53) to the following
one without affecting its capacity region:

Y3 = (1 + ab)X1 + (a+ b)X2 + Z
′

3 (54)

Y4 = (a+ b)X1 + (1 + ab)X2 + Z
′

4 (55)

whereZ3, Z4 ∼ N(0, 1+b2+1/c2) are independent variables.



1) Strong Interference: It is clear that the model in (54)-
(55) will be a strong interference channel ifa + b > 1 + ab,
i.e.,

{a < 1, b > 1} or {a > 1, b < 1} (56)

For this model, the optimal scheme is for the two receivers to
decode both users messages, and the capacity region is known
as

R1 ≤ γ

(

(1 + ab)2P1

1 + b2 + 1/c2

)

(57)

R2 ≤ γ

(

(1 + ab)2P1

1 + b2 + 1/c2

)

(58)

R1 +R2 ≤ γ

(

((1 + ab)2 + (a+ b)2)P1

1 + b2 + 1/c2

)

(59)

Thus, the symmetric achievable rate(R1 = R2 = R) is

R = min
{

γ
(

(1+ab)2P1

1+b2+1/c2

)

, 1
2γ
(

((1+ab)2+(a+b)2)P1

1+b2+1/c2

)}

(60)
2) Weak Interference: On the other hand, ifa+b < 1+ab,

i.e.,

{a > 1, b > 1} or {a < 1, b < 1} (61)

the model (54)-(55) becomes a weak interference channel, for
which the Han-Kobayashi’s scheme is the best known scheme.
Similar to the analysis in III-A, the symmetric private rateand
common rate are

Rp ≤ γ

(

(1 + ab)2αP1

(a+ b)2αP1 + b2 + 1 + 1/c2

)

(62)

Rc ≤ min

{

γ

(

(a+ b)2ᾱP1

σ2
1

)

,
1

2
γ

(

σ2
2

σ2
1

)}

(63)

whereσ2
1 = ((1 + ab)2 + (a + b)2)αP1 + b2 + 1 + 1/c2 and

σ2
2 = ((1 + ab)2 + (a+ b)2)ᾱP1. The symmetric rate for the

whole system is

R = max
α∈[0,1]

Rp +Rc. (64)

It is interesting to note that for the method of amplify and
forward relaying, the analysis also shows the four parameter
regimes can actually be divided into two categories, in the
sense of transmission and decoding schemes, where(a <
1, b < 1) and (a > 1, b > 1) belong to one category, and
(a < 1, b > 1) and (a > 1, b < 1) belong to the other
category. This coincides with the analysis of the decode and
forward relaying in the previous section.

B. Out-of-phase Relaying

Besides in-phase relaying, the two relays can also purposely
make the relayed signal out of phase by exactly180o, i.e.,
change the sign of the relay output. We show in this subsection
that this scheme can have very nice performance under certain
conditions.

Again, by using full power at the two relays and making
the relayed signals out of phase by180o, we have

X3 = −cY1 (65)

X4 = cY2 (66)

wherec =
√

P2

(1+a2)P1+1 . Therefore,

Y3 = −cY1 + bcY2 + Z3 (67)

Y4 = −bcY1 + cY2 + Z4 (68)

which, after scaling, is

Y
′

3 = (ab − 1)X1 + (b− a)X2 − Z1 + bZ2 + Z3/c(69)

Y
′

4 = (a− b)X1 − (ab − 1)X2 − bZ1 + Z2 + Z4/c(70)

SinceD1 andD2 cannot talk to each other, we can modify the
model (69)-(70) to the following model with the same capacity
region:

Y3 = (ab− 1)X1 + (b− a)X2 + Z
′

3 (71)

Y4 = (a− b)X1 + (1− ab)X2 + Z
′

4 (72)

whereZ3, Z4 ∼ N(0, 1+ b2 + 1/c2) are independent random
noises.

1) Strong Interference: For model (71)-(72), this becomes
a strong interference channel if|ab− 1| < |b− a|, i.e.,

{a < 1, b > 1} or {a > 1, b < 1}. (73)

This is exactly the same condition as the strong interference
case in section IV-A. Similar to the analysis of IV-A, we can
express the symmetric rate for the strong interference caseas

R = min
{

γ
(

(1−ab)2P1

1+b2+1/c2

)

, 1
2γ
(

((1−ab)2+(a−b)2)P1

1+b2+1/c2

)}

.

(74)
Obviously, the rate in (74) is less than that in (60). Thus, for
amplify and forward relaying, under condition (73), we should
employ in-phase relaying at the two relays.

2) Weak Interference: When |ab− 1| > |b− a|, the model
(71)-(72) becomes a weak interference channel, i.e.,

{a > 1, b > 1} or {a < 1, b < 1} (75)

which is also consistent with the condition of the weak
interference case in section IV-A. Using Han-Kobayashi’s
scheme, we get the symmetric private rate and common rate

Rp ≤ γ

(

(1− ab)2αP1

(a− b)2αP1 + b2 + 1 + 1/c2

)

(76)

Rc ≤ min

{

γ

(

(1− ab)2ᾱP1

σ2
1

)

,
1

2
γ

(

σ2
2

σ2
1

)}

(77)

whereσ2
1 = ((1 − ab)2 + (a − b)2)αP1 + b2 + 1 + 1/c2 and

σ2
2 = ((1 − ab)2 + (a− b)2)ᾱP1.
Comparing rates of (76)-(77) and that of (62)-(63), it can

be easily verified that whena = b andab >> 1(or ab << 1),
(76)-(77) will outperform (62)-(63).

If we consider this two hop interference channel network as
two water pipes cascaded with each hop as one pipe, it is very
nature to think the total throughput of the entire system should



be bounded by the capacities of both pipes (e.g., min cut),
which is exactly the case for the decode and forward relaying.
However, for the amplify and forward relaying, we show that
this natural analogy is not valid, i.e., the total throughput can
be larger than the capacities of both “pipes”.

If a = b, the model (71)-(72) becomes two parallel AWGN
channels and the rates for both channels are the same:

R = γ

(

(1− a2)2P1

1 + a2 + 1/c2

)

= γ

(

(1− a2)2P1P2

(1 + a2)(P1 + P2) + 1

)

(78)

If a = b > 1, according to Theorem 3, the capacity of
each of the two hops is always less than or equal to that
of the transformed channel where we switch the roles of
the two relays, thus converting the strong interference into
weak interference for both hops. Therefore, without loss of
generality, we only consider the case whena = b < 1. For the
interference channel of the first hop, by [5]–[7], the channel
has “noisy interference” when

a(a2P1 + 1) ≤ 1

2
i.e.,P1 ≤ 1

a2

(

1

2a
− 1

)

(79)

Under noisy interference, we know the sum rate capacity of
the channel [5]–[7], which is achieved by treating the other
user’s signal as pure noise. Thus, the corresponding symmetric
capacity is

C1 = γ

(

P1

1 + a2P1

)

(80)

If P2 = P1, the symmetric capacity of the second hop is
also C2 = C1 = γ

(

P1

1+a2P1

)

. In order for the rate (78) to
exceed the capacity of both hops forP1 = P2, i.e.,

γ

(

(1− a2)2P1P2

(1 + a2)(P1 + P2) + 1

)

> γ

(

P1

1 + a2P1

)

(81)

we need to satisfy

P1 >
1 + 4a2 − a4 +

√

(1 + 4a2 − a4)2 + 4a2(1− a2)2

2a2(1− a2)2
(82)

Combining (79), we get

1+4a2
−a4+

√
(1+4a2−a4)2+4a2(1−a2)2

2a2(1−a2)2 < P1 < 1
a2

(

1
2a − 1

)

(83)
We can easily check that whena is close to 0, the lower
bound of (83) isO( 1

a2 ) and the upper bound of (83) isO( 1
a3 ),

which indicates that whena is close to 0, suchP1 does exist.
For example, whena = 0.15, the bound in (83) becomes
51.6 < P1 < 103.7.

The above example is fora = b < 1. Similarly, for a =
b > 1, due to the previous analysis that these two cases are
essentially identical (by switching the roles of the two relays),
it can be verified that whena = b >> 1, the transmission rate
for the whole system can also exceed the capacity of each
individual interference channel. The details are omitted here.

Although the above results are obtained fora = b, we
comment that even whena 6= b but are close, one can still
find parameter regimes for which the out-of-phase scheme is
favored, i.e., has a larger symmetric rate.

V. NUMERICAL EXAMPLES

For both decode-and-forward relaying and amplify-and-
forward relaying, when the the first hop has strong interfer-
ence, i.e.,a > 1, it is always preferred to switch the roles of
the two relays and convert the channel into a weak interference
channel. Without loss of generality, we only focus on the weak
interference case of the first hop, i.e.,a < 1. First, we compare
the effect of the two schemes in the second hop, namely DPC
scheme and MAC scheme, under different channel parameters
for the decode-and-forward relaying.
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Fig. 3. Comparison of DPC scheme and MAC scheme in the second hop
for the decode-and-forward relaying.

Fig. 3 (a) shows that when the interference gain of the
second hopb is very small, the DPC scheme is dominating
for a ∈ [0, 1] and the symmetric rate for combining DPC
and MAC will coincide with that of DPC scheme only. The
difference between DPC and MAC becomes dramatic when
a > 0.5. That is because in this regime, the HK scheme will
produce significant amount of common information in the first
hop, and MAC scheme requires the common information to
be decoded by both receivers, which negatively affects the
total rate sinceb is small at the second hop. However, whenb
gets larger, as shown in (b), MAC scheme will beat DPC for
a < 0.5 but will be outperformed by DPC fora > 0.5. Since
for a < 0.5, there is significant amount of private messages
produced by HK scheme in the first hop, which will be treated
as noise in the DPC scheme, but will be partially decoded in
the MAC scheme, thus MAC will perform better. However for
a > 0.5, the common messages from the first hop dominates.
Since DPC scheme can cancel the interference effect of other
user’s common messages, this advantage beats the MAC
scheme where the common messages need to be decoded by
both receivers whenb is not strong enough(b = 0.8). Note
that the combination of DPC and MAC will outperform both
of the individual schemes fora > 0.5 because of the time



sharing effect of the two rate regions. Whenb gets strong
enough as in (c), the MAC scheme will far outperform DPC
whena is small, but will be close to DPC whena gets larger.

Next, we show in Fig. 4 the comparison of decode-and-
forward relaying and amplify-and-forward relaying (both in
phase and180o out of phase) in low SNR regime.
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Fig. 4. Comparison of decode-and-forward relaying and amplify-and-forward
relaying in low SNR regime

It can be seen that for the low SNR regime, whenb is small,
the amplify-and-forward relaying scheme (for both in phase
and 180o out of phase) will always be outperformed by the
decode-and-forward scheme, as shown in (a) and (b). When
b gets strong enough, as shown in (c), the in phase amplify-
and-forward relaying may outperform, but not by much, the
decode-and-forward scheme whena is close to 1. In other
words, for the low SNR regime, decode-and-forward scheme
is preferred over amplify-and-forward scheme. However, at
high SNR regime, it is a different story.

As shown in Fig. 5, in the high SNR regime, whenb < 1,
the performance of amplify-and-forward relaying with180o

out of phase is the best whena is close tob. This is because
when a = b, the channel becomes two parallel AWGN
channels, which has the best performance under the high SNR
regime. However, away from the peak ofa = b, the amplify-
and-forward relaying with180o out of phase is still the worst.
Whenb ≥ 1, sincea ∈ [0, 1], the peak ofa = b does not exist
any more, thus, the performance of the out of phase amplify-
and-forward relaying becomes the worst for all values ofa.
In this case, the decode-and-forward scheme remains the best
of all.

VI. CONCLUSION

In this paper, we investigated and compared coding schemes
for the two hop interference network under various channel
parameters regimes. Our analysis shows that if the first hop has
strong interference, i.e.,a > 1, it is always beneficial to switch
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Fig. 5. Comparison of decode-and-forward relaying and amplify-and-forward
relaying in high SNR regime

the roles of the two relays so that the channel is converted toa
weak interference channel with interference gain of1/a, and
the strength of the second hop is also changed accordingly.

For the decode-and-forward relaying, the DPC scheme and
MAC scheme are both needed for the second hop. The
combination of the two may sometimes outperform both of the
individual schemes due to the time sharing effect. Generally
however, DPC scheme dominates whenb is small and MAC
scheme dominates whenb is large.

The comparison of decode-and-forward relaying and
amplify-and-forward relaying showed that decode-and-forward
relaying always has better performance except whena is close
to b in the high SNR regime.
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