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Abstract— Detection of defective members of large popula-
tions has been widely studied in the statistics community under
the name “group testing”, a problem which dates back to World
War II when it was suggested for syphilis screening. There,
the main interest is to identify a small number of infected
people among a large population using collective samples. In
viral epidemics, one way to acquire collective samples is by
sending agents inside the population. While in classical group
testing, it is assumed that the sampling procedure is fully known
to the reconstruction algorithm, in this work we assume that
the decoder possesses only partial knowledge about the sampling
process. This assumption is justified by observing the fact that in
a viral sickness, there is a chance that an agent remains healthy
despite having contact with an infected person. Therefore, the
reconstruction method has to cope with two different types of
uncertainty; namely, identification of the infected population
and the partially unknown sampling procedure.

In this work, by using a natural probabilistic model for
“viral infections”, we design non-adaptive sampling procedures
that allow successful identification of the infected population
with overwhelming probability 1 − o(1). We propose both
probabilistic and explicit design procedures that require a
“small” number of agents to single out the infected individuals.
More precisely, for a contamination probability p, the number
of agents required by the probabilistic and explicit designs
for identification of up to k infected members is bounded by
m = O(k2(log n)/p2) and m = O(k2(log2 n)/p2), respectively.
In both cases, a simple decoder is able to successfully identify
the infected population in time O(mn).

I. INTRODUCTION

Suppose that we have a large population in which only
a small number of people are infected by a certain viral
disease (e.g., one may think of a flu epidemic), and that
we wish to identify the infected ones. By testing each
member of the population individually, we can expect the
cost of the testing procedure to be large. If we could
instead pool a number of samples together and then test
the pool collectively, the number of tests required might be
reduced. This is the main conceptual idea behind the classical
group testing problem which was introduced by Dorfman
[1] and later found applications in variety of areas. A few
examples of such applications include testing for defective
items (e.g., defective light bulbs or resistors) as a part of
industrial quality assurance [2], DNA sequencing [3] and
DNA library screening in molecular biology (see, e.g., [4],
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Figure 1: Collective sampling using agents. ⊗ symbols represent infected people among healthy
people indicated by • symbols. The dashed lines show the people contacted by the agents.

One way to acquire collective samples is by sending agents inside the population, whose task is
to contact people. Once an agent has made contact with an infected person, there is a chance that
it gets infected, too. By the end of the testing procedure, all the agents are gathered and tested for
the disease. Here, we assume that each agent has a log file by which we can figure out with whom
he has made contact (see Figure 1). One way to implement the log in practice is to use identifiable
devices (for instance, cell phones) that can exchange unique identifiers when in range. This way,
one can for instance ask an agent to randomly meet a certain number of people in the population
and at the end learn which individuals have been met from the data gathered by the device that
is carried by the agent. Note that, even if an agent contacts an infected person, he will not get
infected with certainty. Hence, it may well happen that an agent’s result is negative (meaning that
he is not infected) despite a contact with some infected person. We will assume that when an agent
gets infected, the resulting infection will not be contagious, i.e., an agent will never infect other
people. Then, our ultimate goal is to identify the infected persons with the use of a simple recovery
algorithm, based on the test results.

It is important to notice the basic difference between this setup and the classical group testing
where each contact with an infected person will infect the agent with certainty. In other words, in
the classical group testing the decoder fully knows the sampling procedure, whereas in our setup,
it has only uncertain knowledge. Hence, in this scenario the decoder has to cope simultaneously
with two kinds of uncertainty, the unknown infected people and the partially unknown sampling
procedure.

The collective sampling can be done in adaptive or non-adaptive ways. In the former, the
sampling is made one at a time, using the outcomes of the previous agents while in the latter, the
sampling strategy is specified and fixed before seeing the the outcomes of any of the agents. In this
paper we only focus on non-adaptive sampling methods, which is more favorable for applications.

The idea behind our setup is mathematically related to compressed sensing [2, 7]. Neverthe-
less, they differ in one significant way: in compressed sensing the samples are gathered as linear
observations of a sparse real signal and typically a linear programming method is applied for the
reconstruction. To do so, it is assumed that the decoder knows the measurement matrix a priori.

Fig. 1. Collective sampling using agents. ⊗ symbols represent infected
people among healthy people indicated by • symbols. The dashed lines
show the individuals contacted by the agents.

[5], [6], [7], [8] and the references therein), multiaccess
communication [9], data compression [10], pattern matching
[11], streaming algorithms [12], software testing [13], and
compressed sensing [14]. See the books by Du and Hwang
[15], [16] for a detailed account of the major developments
in this area.

One way to acquire collective samples is by sending agents
inside the population whose task is to contact people (see
Fig. 1). The agents can also be chosen as ATM machines,
cashiers in supermarkets, among other possibilities. Once an
agent has made contact with an “infected” person, there is a
chance that he gets infected, too. By the end of the testing
procedure, all agents are gathered and tested for the disease.
Here, we assume that each agent has a log file by which
one can figure out with whom he has made contact. One
way to implement the log in practice is to use identifiable
devices (for instance, cell phones) that can exchange unique
identifiers when in range. This way, one can for instance ask
an agent to randomly meet a certain number of people in the
population and at the end learn which individuals have been
met from the data gathered by the device that is carried by the
agent. Note that, even if an agent contacts an infected person,
he will not get infected with certainty. Hence, it may well
happen that an agent’s result is negative (meaning that he is
not infected) despite a contact with some infected person. We
will assume that when an agent gets infected, the resulting
infection will not be contagious, i.e., an agent never infects
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other people. Our ultimate goal is to identify the infected
persons with the use of a simple recovery algorithm, based
on the test results1. We remark that this model is applicable
in certain scenarios different from what we described as
well. For instance, in classical group testing, “dilution” of
a sample might make some of the items present in a pool
ineffective. The effect of dilution can be captured by the
notion of contamination in our model.

It is important to notice the difference between this setup
and the classical group testing where each contact with an
infected person will infect the agent with certainty. In other
words, in the classical group testing the decoder fully knows
the sampling procedure, whereas in our setup, it has only
uncertain knowledge. Hence, in this scenario the decoder has
to cope simultaneously with two sources of uncertainty, the
unknown group of infected people and the partially unknown
(or stochastic) sampling procedure.

The collective sampling can be done in adaptive or non-
adaptive fashions. In the former, samplings are carried out
one at a time, possibly depending the outcomes of the
previous agents. However, in the latter, the sampling strategy
is specified and fixed before seeing the the test outcome
for any of the agents. In this paper we only focus on non-
adaptive sampling methods, which is more favorable for
applications.

The idea behind our setup is mathematically related to
compressed sensing [17], [18]. Nevertheless, they differ
in a significant way: In compressed sensing, the samples
are gathered as linear observations of a sparse real signal
and typically tools such as linear programming methods
is applied for the reconstruction. To do so, it is assumed
that the decoder knows the measurement matrix a priori.
However, this is not the case in our setup. In other words,
using the language of compressed sensing, in our scenario the
measurement matrix might be “noisy” and is not precisely
known to the decoder. As it turns out, by using a sufficient
number of agents this issue can be resolved.

II. PROBLEM SETTING AND SUMMARY OF THE RESULTS

To model the problem, we enumerate the individuals from
1 to n and the agents from 1 to m. Let the non-zero
entries of x := (x1, x2, . . . , xn) ∈ Fn

2 indicate the infected
individuals within the population. Moreover, we assume that
x is a k-sparse vector, i.e., it has at most k nonzero entries
(corresponding to the infected population). We refer to the
support set of x as the the set which contains positions of
the nonzero entries.

As typical in the literature of group testing and compressed
sensing, to model the non-adaptive samplings done by the
agents, we introduce an m× n boolean contact matrix M c

where we set M c
ij to one if and only if the ith agent contacts

the jth person. As we see, the matrix M c only shows
which agents contact which persons. In particular it does
not indicate whether the agents eventually get affected by the

1In this work we focus on the exact reconstruction of the set of infected
individuals in the worst case (i.e., regardless of the choice of this set).

contact. Let us assume that at each contact with a sick person
an agent gets infected independently with probability p (a
fixed parameter that we call the contamination probability).
Therefore, the real sampling matrix M s can be thought of
as a variation of M c in the following way:

• Each non-zero entry of M c is flipped to 0 independently
with probability 1− p;

• The resulting matrix M s is used just as in classical
group testing to produce the outcome vector y ∈ Fm

2 ,

y = M s · x, (1)

where the arithmetic is boolean (i.e., multiplication with
the logical AND and addition with the logical OR).

The contact matrix M c, the outcome vector y, the number
of non-zero entries k, and the contamination probability p
are known to the decoder, whereas the sampling matrix M s

(under which the collective samples are taken) and the input
vector x are unknown. The task of the decoder is to identify
the k non-zero entries of x based on the known parameters.

Example 1: As a toy example, consider a population with
6 members where only two of them (persons 3 and 4) are
infected. We send three agents to the population, where the
first one contacts persons 1, 3, 5, the second one contacts
persons 2, 4, 6, and the third one contacts persons 2, 3, 5, 6.
Therefore, the contact matrix and the input vector have the
following form

x = ( 0 0 1 1 0 0 )>,

supp(x) = {3, 4},

M c =

 1 0 1 0 1 0
0 1 0 1 0 1
0 1 1 0 1 1

 .

Let us assume that only the second agent gets infected. This
means that the outcome vector is

y = ( 0 1 0 )>.

As we can observe, there are many possibilities for the
sampling matrix, all of the following form:

M s =

 ? 0 ? 0 ? 0
0 ? 0 ? 0 ?
0 ? ? 0 ? ?

 ,

where the question marks are 0 with probability 1 − p
and 1 with probability p. It is the decoder’s task to figure
out which combinations make sense based on the outcome
vector. For example, the following matrices and input vectors
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fit perfectly with y:

 0
1
0

 =

 1 0 0 0 1 0
0 1 0 1 0 1
0 1 0 0 1 1




0
0
1
1
0
0

 ,

 0
1
0

 =

 1 0 1 0 1 0
0 1 0 1 0 1
0 1 1 0 1 0




0
0
0
1
0
1

 .

More formally, the goal of our scenario is two-fold:
1) Designing the contact matrix M c so that it allows

unique reconstruction of any sparse input x from
outcome y with overwhelming probability (1 − o(1))
over the randomness of the sampling matrix M s.

2) Proposing a recovery algorithm with low computa-
tional complexity.

In this work, we present a probabilistic and a deterministic
approach for designing contact matrices suitable for our
problem setting along with a simple decoding algorithm for
reconstruction. Our approach is to first introduce a rather
different setting for the problem that involves no randomness
in the way the infection spreads out. Namely, in the new
setting an adversary can arbitrarily decide whether a certain
contact with an infected individual results in a contamination
or not, and the only restriction on the adversary is on the
total amount of contaminations being made. In this regard,
the relationship between the adversarial variation of the
problem and the original (stochastic) problem can be thought
of akin to the one between the combinatorial problem of
designing block codes with large minimum distances as
opposed to designing codes for stochastic communication
channels. The reason for introducing the adversarial problem
is its combinatorial nature that allows us to use standard tools
and techniques already developed in combinatorial group
testing. Fortunately it turns out that solving the adversarial
variation is sufficient for the original (stochastic) problem.
We discuss this relationship and an efficient reconstruction
algorithm in Section III.

Our next task is to design contact matrices suitable for
the adversarial (and thus, stochastic) problem. We extend
two standard techniques from group testing to our setting.
Namely, we give a probabilistic and an explicit construction
of the contact matrix in Sections IV and V, respectively.
The probabilistic construction requires each agent to inde-
pendently contact any individual with a certain well-chosen
probability and ensures that the resulting data gathered at the
end of the experiment can be used for correct identification of
the infected population with overwhelming probability, pro-
vided that the number of agents is sufficiently large. Namely,
for contamination probability p, we require O(k2(log n)/p2)
agents, where k is the estimate on the size of the infected
population. The explicit construction, on the other hand,

precisely determines which agent should contact which in-
dividual, and guarantees correct identification with certainty
in the adversarial setting and with overwhelming probability
(over the randomness of the contaminations) in the stochastic
setting. This construction requires O(k2(log2 n)/p2) agents
which is inferior than what achieved by the probabilistic
construction by a factor O(log n).

We point out that, very recently, Atia and Saligrama [19]
developed an information theoretic perspective applicable to
a variety of group testing problems, including a “dilution
model” which is closely related to what we consider in
this work. Contrary to our combinatorial approach, they use
information theoretic techniques to obtain bounds on the
number of required measurements. Their bounds are with
respect to random constructions and typical set decoding as
the reconstruction method. Specifically, in our terminology
with contamination probability p, they obtain an information
theoretic upper bound of O(k2 log n/p2) on the number
measurements, which is comparable to what we obtain in
our probabilistic construction.

Remark: As is customary in the standard group testing
literature, we think of the spartsity k as a parameter that is
noticeably smaller than the population size n; for example,
one may take k = O(n1/3). Indeed, if k becomes comparable
to n, there would be little point in using a group testing
scheme and in practice, for large k it is generally more favor-
able to perform trivial tests on the individuals. Nevertheless
it is easy to observe that our probabilistic scheme can in
general achieve m = O(k2 log(n/k)/p2), but we ignore such
refinements for the sake of clarity.

III. ADVERSARIAL SETTING

The problem described in Section II has a stochastic
nature, in that the sampling matrix is obtained from the
contact matrix through a random process. In this section we
introduce an adversarial variation of the problem that we find
more convenient to work with.

In the adversarial variation of the problem, the sampling
matrix is obtained from the contact matrix by flipping up to
e arbitrary entries to 0 on the support (i.e., the set of nonzero
entries) of each column of M c, for some error parameter e.
The goal is to be able to exactly identify the sparse vector
despite the perturbation of the contact matrix and regardless
of the choice of the altered entries. Note that the classical
group testing problem corresponds to the special case e = 0.
Thus the only difference between the adversarial problem and
the stochastic one is that in the former problem the flipped
entries of the contact matrix are chosen arbitrarily (as long
as there are not too many flips) while in the latter they are
chosen according to a specific random process.

It turns out that the combinatorial tool required for solving
the adversarial problem is precisely the notion of disjunct
matrices that is well studied in the group testing literature.
The formal definition is as follows.

Definition 2: A boolean matrix M with n columns
M1, . . . ,Mn is called (k, e)-disjunct if, for every subset
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S ⊆ [n] of the columns with |S| ≤ k, and every i /∈ S, we
have ∣∣∣∣∣∣supp(M i) \

⋃
j∈S

supp(M j)

∣∣∣∣∣∣ > e,

where supp(M i) denotes the support of the column M i.
The following proposition shows a one-to-one correspon-

dence between contact matrices suitable for the adversarial
problem and disjunct matrices:

Proposition 3: Let M be a (k, e)-disjunct matrix. Then
taking M as the contact matrix solves the adversarial prob-
lem for k-sparse vectors with error parameter e. Conversely,
any matrix that solves the adversarial problem must be
(k − 1, e)-disjunct.

Proof: Let M be a (k, e)-disjunct matrix and con-
sider k-sparse vectors x,x′ supported on different subsets
S, S′ ⊆ [n]. Take an element i ∈ S′ which is not in S. By
Definition 2, we know that the column M i has more than e
entries on its support that are not present in the support of
any M j , j ∈ S. Therefore, even after e bit flips in M i, at
least one entry in its support remains that is not present in
the measurement outcome of x′, and this makes x and x′

distinguishable.
For the reverse direction, suppose that M is not (k −

1, e)-disjunct and take any i ∈ [n] and S ⊆ [n] with |S| ≤
k − 1, i /∈ S which demonstrate a counterexample for M
being (k − 1, e)-disjunct. Consider k-sparse vectors x and
x′ supported on S and S ∪ {i}, respectively. An adversary
can flip up to e bits on the support of M i from 1 to 0, leave
the rest of M unchanged, and ensure that the measurement
outcomes for x and x′ coincide. Thus M is not suitable for
the adversarial problem.

Of course, posing the adversarial problem is only interest-
ing if it helps in solving the original stochastic problem from
which it originates. Below we show that this is indeed the
case; and in fact the task of solving the stochastic problem
reduces to that of the adversarial problem; and thus after this
point it suffices to focus on the adversarial problem.

Proposition 4: Suppose that M is an m×n contact matrix
that solves the adversarial problem for k-sparse vectors with
some error parameter e. Moreover, suppose that the weight
of each column of M is between (1 − δ)qm and qm, for
a parameter q ∈ (0, 1) and a constant δ ∈ (0, 1), and that
e = (1−p)(1+δ)qm, for a constant p ∈ (0, 1). Then M can
be used for the stochastic problem with contamination prob-
ability p, and achieves error probability at most n2−Ω(qm),
where probability is taken over the randomness of sampling
(and the constant behind Ω(·) depends on p and δ).

Proof: Take any column M i of M , and let wi be
its weight. After the bit flips, we expect the weight of the
column to reduce to pwi. Moreover, by Chernoff bounds,
the probability that (for “small” δ) the amount of bit flips
exceeds (1− p)wi(1 + δ) is at most

exp(−δ2(1− p)wi/4) ≤
exp(−δ2(1− δ)(1− p)qm/4) = 2−Ω(qm).

Thus, by a union bound, the probability that the amount of
bit flips at some column is not tolerable by M is at most
n2−Ω(qm).

Remark: Note that, as we mentioned earlier, the adversarial
problem is stronger than classical group testing, and thus, any
lower bound on the number of measurements required for
classical group testing applies to our problem as well. It is
known that any measurement matrix that avoids confusion
in standard group testing requires at least Ω(k2 logk n)
measurements [20], [21], [22]. Thus we must necessarily
have m = Ω(k2 logk n) as well, and this upper bounds
the error probability given by Proposition 4 by at most
n1−Ω(qk2/ log k) = o(1).

A. Decoding

Suppose that the contact matrix M c is (k, e)-disjunct.
Therefore, by Proposition 3 it can combinatorially distin-
guish between k-sparse vectors in the adversarial setting with
error parameter e. In this work we consider a very simple
decoder that works as follows.

Distance decoder: For any column ci of the contact matrix
M c, the decoder verifies the following:

|supp(ci) \ supp(y)| ≤ e, (2)

where y is the vector consisting of the measurement out-
comes. The coordinate xi is decided to be nonzero if and
only if the inequality holds.

Lemma 5: The distance decoder correctly identifies the
correct support of any k-sparse vector (with the above
disjunctness assumption on M ).

Proof: Let x be a k-sparse vector and S := supp(x),
|S| ≤ k, and M c

S denote the corresponding set of columns
in the sampling matrix. Obviously all the columns in M c

S

satisfy (2) (as no column is perturbed in more than e
positions) and thus the reconstruction includes the support
of x (this is true regardless of the disjunctness property
of M ). Now let the vector ŷ be the bitwise OR of the
columns in M c

S so that supp(y) ⊆ supp(ŷ), and assume
that there is a column c of M c outside S that satisfies (2).
Thus we will have |supp(c)\ supp(ŷ)| ≤ e, and this violates
the assumption that M c is (k, e)-disjunct. Therefore, the
distance decoder outputs the exact support of x.

IV. PROBABILISTIC DESIGN

In light of Propositions 3 and 4, we know that in order to
solve the stochastic problem with contamination probability
p and sparsity k, it is sufficient to construct a (k, e)-disjunct
matrix for an appropriate choice of e. In this section, we
consider a probabilistic construction for M c, where each
entry of M c is set to 1 independently with probability
q := α/k, for a parameter α to be determined later, and
0 with probability 1− q. We will use standard arguments to
show that, if the number of measurements m is sufficiently
large, then the resulting matrix M c is suitable with all but
a vanishing probability.
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Let δ > 0 be an arbitrary (and small) constant. Using
Chernoff bounds, we see that if m � log n (which will be
the case), with probability 1 − o(1) no column of M c will
have weight greater than q(1+ δ)m or less than q(1−δ2)m.
Thus in order to be able to apply Proposition 4, it suffices to
set e := (1−p)(1+3δ)qm as this value is larger than the error
parameter (1− p)(1 + δ)2qm required by the proposition.

Lemma 6: For the above choices of the parameters q
and e, the probabilistic construction obtains a (k, e)-disjunct
matrix with probability 1−o(1) using m = O(k2(log n)/p2)
measurements.

Proof: Consider any set S of k columns of M c, and
any column outside these, say the ith column where i /∈ S.
First we upper bound the probability of a failure for this
choice of S and i, i.e., the probability that the number of the
positions at the ith column corresponding to which all the
columns in S have zeros is at most e. Clearly if this event
happens the (k, e)-disjunct property is violated. On the other
hand, if for no choice of S and i a failure happens the matrix
is indeed (k, e)-disjunct.

Now we compute the failure probability pf for a fixed S
and i. A row is good if at that row the ith column has a 1
but all the columns in S have zeros. For a particular row, the
probability that the row is good is q(1 − q)k. Then failure
corresponds to the event that the number of good rows is
at most e. The distribution on the number of good rows is
binomial with mean µ = q(1− q)km. By a Chernoff bound,
the failure probability is at most

pf ≤ exp(−(µ− e)2/(2µ))
= exp(−mq((1− q)k −

(1− p)(1 + 3δ))2/(2(1− q)k))
≤ exp(−mq(1/3α − (1− p)(1 + 3δ))2/21−α)

where the last inequality is due to the fact that (1 − q)k =
(1 − α/k)k is always between 1/3α and 1/2α. Let γ :=
(1/3α − (1− p)(1 + 3δ))2/21−α. Note that by choosing the
parameters α and δ as sufficiently small constants, γ can be
made arbitrarily close to p2/2.

Now if we apply a union bound over all possible choices
of S and i, the probability of coming up with a bad
choice of M c would be at most n

(
n
k

)
exp(−mqγ). This

probability vanishes so long as m > k2 log(n/k)/(αγ) =
O(k2(log n)/p2).

Along with Propositions 3 and 4, the result above imme-
diately gives the following:

Theorem 7: The probabilistic design for construction of
an m×n contact matrix M c achieves m = O(k2(log n)/p2)
measurements and error probability at most n−Ω(k/ log k) =
o(1) for the stochastic problem using distance decoder as the
reconstruction method.

The probabilistic construction results in a rather sparse
matrix, namely, one with density O(1/k) that decays with
the sparsity parameter k. Below we show that sparsity is
necessary condition for the construction to work:

Lemma 8: Let M be an m × n boolean random matrix,
where m = O(k2 log n) for an integer k > 0, which is

constructed by setting each entry independently to 1 with
probability q. Then either q = O(log k/k) or otherwise
the probability that M is (k, e)-disjunct (for any e ≥ 0)
approaches to zero as n grows.

Proof: Suppose that M is an m × n matrix that is
(k, e)-disjunct. Observe that, for any integer t ∈ (0, k), if we
remove any t columns of M and all the rows on the support
of those columns, the matrix must remain (k− t, e)-disjunct.
This is because any counterexample for the modified matrix
being (k−t, e)-disjunct can be extended to a counterexample
for M being (k, e)-disjunct by adding the removed columns
to its support.

Now consider any t columns of M , and denote by m0 the
number of rows of M at which the entries corresponding to
the chosen columns are all zeros. The expected value of m0

is (1− q)tm. Moreover, for every δ > 0 we have

Pr[m0 > (1 + δ)(1− q)tm] ≤ exp(−δ2(1− q)tm/4) (3)

by a Chernoff bound.
Let t0 be the largest integer for which (1+δ)(1−q)t0m ≥

log n. If t0 < k−1, we let t := 1+ t0 above, and this makes
the right hand side of (3) upper bounded by o(1). So with
probability 1− o(1), the chosen t columns of M will keep
m0 at most (1 + δ)(1− q)tm, and removing those columns
and m0 rows on their union leaves the matrix (k− t0−1, e)-
disjunct, which obviously requires at least log n rows (as
even a (1, 0)-disjunct matrix needs so many rows). Therefore,
we must have

(1 + δ)(1− q)tm ≥ log n

or otherwise (with overwhelming probability) M will not be
(k, e)-disjunct. But the latter inequality is not satisfied by the
assumption on t0. So if t0 < k− 1, little chance remains for
M to be (k, e)-disjunct. Now consider the case t0 ≥ k − 1.
By a similar argument as above, we must have

(1 + δ)(1− q)km ≥ log n

or otherwise the matrix will not be (k, e)-disjunct with
overwhelming probability. The above inequality implies that
we must have

q ≤ log(m(1 + δ)/ log n)
k

,

which, for m = O(k2 log n) gives q = O(log k/k).

V. EXPLICIT DESIGN

In the previous section we showed how a random construc-
tion of the contact matrix achieves the desired properties for
the adversarial (and thus, stochastic) model that we consider
in this work. However, in principle an unfortunate choice
of the contact matrix might fail to be of use (for example,
it is possible though very unlikely that the contact matrix
turns out to be all zeros) and thus it is of interest to have an
explicit and deterministic construction of the contact matrix
that is guaranteed to work.

In this section, we demonstrate how a classical construc-
tion of superimposed codes due to Kautz and Singleton [23]
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can be extended to our setting by a careful choice of the
parameters. This is given by the following theorem.

Theorem 9: There is an explicit construction for an m×
n contact matrix M c that is guaranteed to be suitable for
the stochastic problem with contamination probability p and
sparsity parameter k, and achieves m = O(k2(log2 n)/p2).

Proof: Let m be an even power of a prime, and
n′ :=

√
m. Consider a Reed-Solomon code of length n′

and dimension k′ over an alphabet of size n′. The contact
matrix M c is designed to have n′k

′
columns, one for each

codeword. Consider a mapping ϕ : Fn′ → Fn′

2 that maps
each element of Fn′ to a unique canonical basis vector of
length n′; e.g., 0 7→ (1, 0, 0, . . . , 0)>, 1 7→ (0, 1, 0, . . . , 0)>,
etc. The column corresponding to a codeword c is set to the
binary vector of length m that is obtained by replacing each
entry ci of c by ϕ(ci), blowing up the length of c from n′

to n′2.
Note that the number of columns of M c is n := n′k

′
=

mk′/2, and each column has weight exactly n′ = m/n′.
Moreover, the support of any two distinct columns intersect
at less than k′ entries, because of the fact that the underlying
Reed-Solomon code is an MDS code and has minimum
distance n′ − k′ + 1. Thus in order to ensure that M c is
(k, e)-disjunct, it suffices to have n′ − kk′ > e (so that no
set of k columns of M c can cover too many entries of any
column outside the set), or equivalently,

√
m− 2k(log n/ log m) > e. (4)

By Proposition 4, we need to set e := (1 − p)(1 + δ)m/n′

for an arbitrary constant δ > 0. Thus in order to satisfy (4),
it suffices to have

√
m(1 − (1 − p)(1 + δ)) > 2k log n,

which gives m > 4k2 log2 n/(1 − (1 − p)(1 + δ))2. As
δ can be chosen arbitrarily small, the denominator can be
made arbitrarily close to p2 and thus we conclude that this
construction achieves m = O(k2 log2 n/p2) measurements,
which is essentially larger than the amount achieved by the
probabilistic construction by a factor O(log n).

Observe that, unlike the probabilistic construction of the
previous section, the explicit construction above guarantees a
correct reconstruction in the adversarial setting (where up to
a 1−p fraction of the entries on the support of each column of
the contact matrix might be flipped to zero). Moreover, in the
original stochastic setting with contamination probability p,
a single matrix given by the explicit construction guarantees
correct reconstruction with overwhelming probability, where
the probability is only over the randomness of the testing
procedure. This is in contrast with the probabilistic con-
struction where the failure probability is small, but originates
from two sources; namely, unfortunate outcome of the testing

procedure as well as unfortunate choice of the contact matrix
M c.
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