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K-User Fading Interference Channels: The Ergodic Very $tiGase

Lalitha Sankar, Jan Vondrak, and H. Vincent Poor

Abstract— Sufficient conditions required to achieve the can be achieved. Two-user parallel Gaussian IFCs have also
interference-free capacity region of ergodic fading K-user  peen studied in [11], [12] and [13]. For fading IFCs with
interference channels (IFCs) are obtained. In particular, this three or more users, [14] presentsiaterference alignment

capacity region is shown to be achieved when every receiveed .
codes allK transmitted messages such that the channel statistics scheme to show that the sum-capacity offauser IFC

and the waterfilling power policies for all K (interference-free) ~ scales linearly withk in the high signal-to-noise ratio (SNR)
links satisfy a set of K(K — 1) ergodic very strong conditions.  regime when all links in the network have similar channel
The result is also of independent interest in combinatorics statistics.

|. INTRODUCTION The sum-capacity and capacity region of two-user EVS

The K-user interference channel (IFC) is a network witNnFCs are achieved when each user transmits to its intended
K transmitter-receiver pairs (also referred to as users ogceiver as if there were two independent interference-fre
links) in which each transmitter transmits to its intendedinks. The sum-capacity optimal power policies are thus
receiver while creating interference at one or more of ththe classic point-to-point waterfilling solutions devegop
unintended receivers. In general, the problem of detengini in [15]. While the sum-rate achieved thus is always an
the capacity region of & -user IFC remains open. Capacityouter bound on the sum-capacity of IFCs, in [10] it is
regions are known for the two-usstrong IFC [1], [2] and shown that this outer bound can be achieved when both
thevery stronglFC [3], and in both cases the capacity regiorreceivers decode both messages, i.e., the IFC convertsto a C
is achieved when both receivers decode both the intend®AC, provided the sum of the interference-free capacitfes o
and interfering signals, i.e., the IFC reduces to a compourghch link is strictly smaller than the multiaccess sumsrate
MAC (C-MAC) [4]. The very stronglFC is a sub-class of achieved at each receiver. These sufficient conditions does
the class of strong IFCs for which the sum-capacity anfotimpose strong or weak conditions on any sub-channel and
the capacity region are determined by the interference-frenly involve fading averaged conditions on the waterfilling
bottleneck links from the two transmitters to their intedde policies.
receivers. On the other hand, only the sum-capacity is known
for a class ofweakone-sided non-fading two-user IFCs [5] For two-user IFCs, the above-mentioned sufficient con-
and is achieved by ignoring interference (i.e., treatingsit ditions are obtained simply by enumerating all possible
noise). More recently, for the two-sided model, the sumintersections of the two MAC pentagons and identifying the
capacity of a class of noisy or very weak Gaussian IFCatersection satisfying the EVS definition. They can also be
is determined independently in [6], [7], and [8] and thesebtained using the fact that the multiaccess rate region at
results have been extended f&r> 2 in [8] and [9]. each receiver is a polymatroid [16], and therefore, a single

known lemma on the sum-rate of two intersecting polyma-

Ergodic fading and parallel Gaussian IFCs model th&oids [17, chap. 46] readily yields a closed-form expressi
fading properties of wireless networks. In this paper, wéor each possible intersection of the two MAC regions.
focus onK-user ergodic fading Gaussian IFCs and seek telowever, for intersections of three or more polymatroids
determine a set of conditions for which the sum-capacitpo such lemma exists that can simplify the sum-capacity
of K interference-free links can be achieved. Recently, ianalysis of C-MACs withK transmitters and< receivers.
[10] which develops sum-capacity and separability resultEhis in turn makes it difficult to identify a set of sufficient
for two-user ergodic fading Gaussian IFCs, emgodic very conditions for EVS IFCs when every receiver is allowed to
strong (EVS) sub-class has been identified as a collection afecode the message from every transmitter.
ergodic fading Gaussian IFCs with a weighted mixture of
weak and strong sub-channels (fading states) for which theln this paper, we determine a set of sufficient conditions
sum of the interference-free capacities of the two userslinkor which the sum-capacity is the sum of the capacities

of K interference-free links when all receivers are allowed
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Transmitter hll Receiver transmitterk. We useh to denote a realization dff. We

X, hz h Y, assume the fading proceg#} is stationary and ergodic
1A h, but not necessarily Gaussian. Note that the channel gains
T Her K R _ _ H,, , for all m andk, are not assumed to be independent;
ransmitter.. eceiver . however,H is assumed to be known instantaneously at all
X, ' Y. the transmitters and receivers.
. hK,Z K °
L[] L[]
. h, . Overn uses of the channel, the transmit sequedcés; }
Transmitterk he « ReceivelK are constrained in power according to
Xy Y, " ,
> [ Xeil> <Py, for ke K. )
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Fig. 1. A K-user ergodic fading interference channel.
Since the transmitters know the fading states of the links on
which they transmit, they can allocate their transmitteghal

quadratically inK". As a special case, for two-user IFCs, wePOWer according to the channel state information. A power
show that these conditions are both necessary and sufficieR@licy £(h) with entries P;(h) for k € K is a mapping
from the fading state space consisting of the set of all fadin

Recently, in [18], the authors present sufficient condiionStates (instantiationd) to the set of non-negative real values

for which a K-user symmetric non-fading IFC achieves thdn R+ . We write P(H) to describe explicitly the policy for

sum-capacity ofK interference-free links. The conditions the entire set of random fading states. For an ergodic fading

are developed using lattice codes which enables compléigannel,[(2) then simplifies to

decoding of the interference but not the message from every =

, : ) , : <

interfering transmitter. Using the fact that the non-fadin E[P(H)] < Py fork € K, 3)

IFC is a special case of an EVS IFC, we compare oujhere the expectation iftl(3) is taken over the distributibn o

results to those in [18] and show that decoding messaggg

from all users is best used in the low power regime or

when the symmetric cross-links are relatively closer tayuni For the special case in which all receivers decode the

while lattice codes are advantageous otherwise. Finakly, W,oqsages from all transmitters, we obtain a compound MAC.
note that the results developed here are also of mdependwé write Circ (p) and Coac (p) to denote the capacity
interest in combinatorics. regions of an ergodic fading IFC and C-MAC, respectively,
i i where P is a vector whose entries are the average power
The paper is o_rgar_uze_d as fo_llows. We pre_sent chann J)nstraintsﬁk, for k € K. Our definitions of average
model and preliminaries in Secti¢d Il. The main result an rror probabilities, capacity regions, and achievable pairs

the proof are developed in Section I1l. We discuss the resu(lgg1 Ry Rx) ;‘or both the IEC (:ind C-MAC mirror the

ﬁ]ng:(:teics)reglnumerical examples in Secfioh V. We conclu andard information-theoretic definitions [19, Chap..14]

[I. CHANNEL MODEL Throughout the sequel, we use the terms fading states and

A K-user (orK-link) ergodic fading Gaussian IFC con- Sub-channels interchangealy(x) denotedog(1+x) where
sists of K transmitter-receiver pairs, each link pair indexedhe logarithm is to the base 2 arty denotes) s ). for
byk, k € K ={1,2,..., K}, as shown in FigJ1. Transmitter @y S < K. We assume that the _reader is familiar with sub-
k uses the channeb times to transmit its messagé’, modular functions and polymatroids (see, for example,)[17]
which is distributed uniformly in the sefl,2,...,25+} and
is independent of the messages from the other transmittersl,”' A CHIEVING THE INTERFERENCEFREE CAPACITY
to its intended receiver;, at a rate R, = Bj/n bits REGION
per channel use. In each use of the channel, transnditter The following theorem summarizes the main result of this
transmits the signak’;, while receiverk receivesyy, k € K. paper.

For X = [X; Xy s Xk]", the channel output vector Theorem 1:A K-user ergodic fading IFC achieves the
Y =[Y1Y; ... Yg]" in asingle channel use is given by interference-free capacity( re)gion of independent links if
- . wf .
Y —HX +7Z L the Waterf|l!|ng s_olutlor?sD,C (Hkk_) for the (mterferenc_e-
free) ergodic fading point-to-point links between trantens
whereZ = [Z, Z5 ... ZK]T is a noise vector with en- k and receivers, kK =1,2,..., K, satisfy

tries that are zero-mean, unit variance, circularly synimet

complex Gaussian noise variables &dds a random matrix E [C (lHk,k|2 Pé“”f) (Hkk))} < ngu)m
of fading gains with entriedd,, 5, for all m,k € K, such ) _ )

that H,, , denotes the fading gain between receiverand — Cglon (K\{E}) for all 5,k € .5 #k, (4)

(X)



where for anyA C K its fading link to its receiver, and thus, we have that any

achievable rate tupléR;, Ro, ..., Rx) must satisfy
c (Z |Hj o PSP <Hkk>>] 5)

meA

Clin (A) =E

K K

> Ry <) E [C (|Hk,k|2 P (Hk,k))} - (10)

The capacity region of the resulting ergodic very strong IFC k=1 k=1

IS Inner Bound Consider the achievable scheme in which

chc ={(R1,Rs,...,RK): every receiver decodes all the interfering signals, ilee, t
IFC is converted to a C-MAC. Assuming every transmitter

2 pwf
Ry <E {C (|Hk=k| By (H’“=k))} ke ’C} (®)  encodes its message across all sub-channels and every re-

and the sum-capacity is ceiver jointly decodes all messages across all sub-chsnnel
the Gaussian MAC rate region ach(iev)ed at recelvevhen
. . . wf
2 pwf the power policy at transmitten is P,, */, for all k,m € K
Z]E [ ('Hk k[ B (H, k))} (7) is given by [10, Theorem 1]

Remark 2: The conditions in[{4) involve averaging over
all channel states and do not require every sub-channel toR; (B(wf)) ={(R1,Ra2,...,Rx): Rs < f1 (S),
be strong. As with the two-user ergodic fading IFCs, the
capacity achieving scheme fdi-user EVS IFCs requires forall s c £} (11)
coding jointly across all sub-channels. Féf = 2, (@) \where
simplifies to the EVS conditions in [10, Theorem 2]. The
conditions for ak-user non-fading very strong IFC are f; (S)=E [C (Zmeg |Hom|” P27 (Hm,m))i| . (12)
simply a special case dfl(4) obtained for a consint

Remark 3:The conditions in [(4) are equivalent to thelt can be easily verified that the functionfg (S), for all
requirements that the rate achieved by each transmittéein tk. are sub-modular functions and the MAC rate regions
presence of interference from all other users at each of tfe: ( P wf)) are polymatroids (see for e.g., [20]). For any
unintended receivers is at least as large as the interferens, A C K such thatS N A = (), we write f; (S|.A) as
free rate achieved at its intended receiver. )

Corollary 4: For a class of symmetric non-fading IFCs c >omes [ Heml|” PET (Hpm)

1+ ZmE.A |Hk,m|2 P#if (Hm,m) ,

with Hkk =1, Hjy, = aforall j,k € K, j # k, and I (S1A4) =

P, = P, (@) reduces to the condition a3)
_ a2 -1 i.e., f (S]A) is the rate achieved by the usersJmt receiver
< T K-2a (8) K in the presence of interference from the users in a disjoint
set A.
or equivalently We now show that wher{{(4) is satisfied the intersection
9 1+P of Ry (P™)) for all k is a K-dimensional hyper-cube. To
a > W ©) this end, for ease of analysis, we first writé (4) in terms of
Ji(K) as

Thus, for anya > 0 and K > 2, P < 1; furthermore, for

IargeK P scales inversely withi(. Conversely, for large f; ({k}) < fH () = f7 (K\{k}), forall j,k€KC,j # k.

K, a? scales linearly withk. (14)
Remark 5:A very strong condition for< -user symmetric Thus, given[(1I4), we now prove that

IFCs is presented in [18, eqn. (5)] which requires that _

grow exponentially with X' when each receiver decodes > fi {k}) < f7(S), foralljandSCK. (15

all the unintended messages before decoding its intended

message. It is unclear whether the condition in [18, eqiVithout loss of generality, lef =1 andS = K. Thus, we

(5)] ensures that the intersection of the MAC polymatroidsyave

one at each receiver, is a box. In contrast, the condition in . N N .

(9 only grows linearly ink and ensures a box intersection. Z Fe (k) = fr (1) + f2 (2D + ..+ fie ({K})
Remark 6:[18] also presents a sufficient condition us- kek (162)

ing lattice codes for interference-free communications in

symmetric K-user IFCs asa®> > (P + 1)2/F which is < i)+ {L2h - AL ({1} (16D)
independent of the number of users. + 1 ({1,2,3h) = fr ({1,2}) +

Proof: Outer Bound An outer bound on the sum- + f1 (K) = f1 (K\{k}) (16c)
capacity of an IFC results from eliminating interferencelat = f1 (K) (16d)

the receivers thereby reducing it 6 interference-free point-
to-point links. From [15, Appendix], the capacity achiayin where [16b) follows from[(14) and the fact that for any
policy for each link requires each transmitter to waterfko S C K such thatk ¢ &, using chain rule for mutual



information, we have fading states, the large#t, and hence the sum-capacity, for
. . which the EVS sum-capacity is achievable also increases.
f7 (K) = f7 (R\{k})

=f; (SU{k}) + f; (K\(SU{k})|SU{k}) Next we consider a non-fading three-user symmetric IFC

— 1 (S) = (KN (S Uk} |S) (17) W|t_h unit gains on thg intended Iln_ks_,a real p_osmve channe
; . gain a on the cross-links, an®;, = P, for k = 1,2,3. In

< fi (SU{k}) = 7 (S) (18) Fig.[3(a), as a function aof?, we plot the maximum feasible

where [IB) follows from the fact that due to additional”’ in () for which a very strong IFC results using a C-
interference from usek, the second term to the right of MAC achievable scheme. As observed in Corollaty 4, we

the equality in[(II7) is smaller than the fourth term where afiequire P < 1. Also included are plots of the quau and
terms in [I7) can be expanded usifig] (13). lower P; bounds on the feasible power with lattice codes
Following steps similar to[{16), one can show thafOr Which a very strong IFC results. Thus, a$ increases,
S resfi ({k}) < f7(S) for all S € K. Furthermore, the decoding the interference using lattice codes allows atarg
sarr?e steps can also be used to show fRat (15) holds for ¢lpss of three-user symmetric IFCs to be be considered very

j € K. Let R: = fr ({k}) for all k. Thus, from [I5) and strong relative to decoding the message from every user. On
@), we havek thatk the other hand, only the C-MAC scheme achieves the VS

condition fora? < 4, i.e., the C-MAC achievable scheme is
(R},R3,...,Ri) €ER; (B(wf)) , forallj ek, (19) more appropriate in the low-power regime in achieving the
sum-capacity of’ interference free point-to-point links.
— (R;, R5,..., Ri) € N[ R, (B(wf)) : (20) A set of sufficient EVS conditions given biyl(4) in Theorem
. . . ) [@ prompt the question of whether these conditions are also
Since the intersection ot orthogonal rate planeBj; yields  necessary, i.e., whether the intersectionffpolymatroids
a box (a hyper-cube), the C-MAC sum-capacity wheh (4),01d cease to be a box if one or more conditions were
holds is given by[{7). Combining this achievable sum-ratGis|ated. We now present a three-user example that shows
with the outer bounds i (10), we have that (7) is also thg, 4t \when all six conditions if{4) fak = 3 are not satisfied,
sum—capacny of an EV_S IFC_for whlch.the cha}nnel statistic,e intersection of th& MAC polymatroids is a box, i.e, the
and optimal power policy satisf{|(4). Finally, since the sum j-_;ser interference-free sum capacity can still be achieved
capacity also achieves the interference-free capacityaci e
user, the capacity region of EVS IFCs is given by (6)m Consider a three-user non-fading IFC with, ,, = 1 and
P, =1 for all k. Thus, if the intersection of the MAC rate
regions at the receivers results in a box, each user tra;smit
Theorenm ]l summarizes a set of sufficient conditions faat P;, in every use of the channélhe cross-link gaingi; i,
which the interference-free capacity &f transmit-receive for all j, k, j # k, are such that
airs can be achieved when every receiver decodes the « .
Enessages from all transmitters, anyachievable scheme we 18 = Hes (5) +0.5S] (21)

henceforth refer to as the C-MAC scheme. In this section, "‘(ﬁhere|8| denotes the cardinality of the sétand f; (S) is

present num_erical examples of fading z_ind nor_1-fading IF_C tained by evaluating the rate boundsléf”f) (Hyi) =
and the feasible power and channel gains regime for whi — 1 for all k. Thus, from [ZL), 1 ({1}) -7 5

the EVS IFC conditions in{4) are satisified. A2 = 25, A3 :d 35, f1({1,2) = 3

We first consider a three-user ergodic fading IFC Withf1 ({131 = A1({2.3)) =4, and /1 (11.2.3}) = 4.5
non-fading unit-gain direct links and cross-links that are The bounds at the other two receivers are given by
independent and identically distributed Rayleigh fadeédj 7 (S) = f(x(S)) and f3 (S) = f¢ (ﬂ2 (3)) where 7
i.e., Hj ~ CN (0,0%) for all j # k,j,k € {1,2,3}, and s a cyclic permutation of the indexes such that each index
P, = Pforall k. The resulting channel is a mix of We_ak andis decreased by ina Cyc|ic manner such tham 2, 3) map
strong sub-channels for which each user transmit® @ o (3,1,2) and7? (S) is obtained by applyingr (S) twice.
every sub—cl@nnel if the EVS conditions (4)_are satisfiedrhus, f, {2 =f{3H) =A{1}) =1
The feasibleP vs. 2 region and the maximun® (o2) for
which (4) holds in plotted in Figld2(a). In Fidl 2(b), the For the three rate regions defined thus, one can verify that
EVS sum-capacity when each user transmits at the maximumone of the six conditions if(14) is satisfied. Furthermore,
P (0?) is plotted as a function of the fading variancg For  from (21), we have that the bounds for every rate region
this P (o%), also plotted in FigJ2(b) is the sum-rate achievedatisfy f; (S) > |S|. Consider the rate tuple?;, Rz, R3) =
by ergodic interference alignment in which knowledge of1,1,1). This tuple satisfies}, sRx = [S| < f; (S)
the channel states is used by the transmitters to enable foe all S C K andj = 1,2,3, i.e., (1,1,1) satisfies the
cancellation of interference at all receivers simultarsdpu rate constraints for each of the three MAC rate regions and
[21]. As shown in both subplots, as the variance of the crostherefore lies in their intersection, i.e., the intersactdf the
links increases, thereby increasing the probability abregr three rate regions is a box.

IV. DISCUSSION
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8 ‘ ‘ - V. CONCLUDING REMARKS
Sym. IFC as C-MAC ,‘,-'
A Latice Codes: P, T We have obtained sufficient conditions for achieving the
[ R Lattice Codes: P X . . . .
= u Pt interference-free sum-capacity and capacity region éf-a
g or ,,/" i link ergodic fading IFC when all receivers are allowed to
2.l /_/‘ | decode the messages from all transmitters. In particular,
2 o we have shown that an an EVS IFC results if the channel
“GE: al _’,/' | statistics and the interference-free capacity optimalewat
g 7 filling policies for all links satisfy K (K — 1) conditions.
5 3 ./" i For K = 2, we have shown that these conditions are both
8 o necessary and sufficient. Our result that a quadratic number
3 2 e . of conditions suffice for the intersection & polymatroids
§ l.f' to form a box is also of independent interest in combinagoric
1;/’__L 1 where few results are known on intersection of three or
I more polymatroids. Finally, our results suggest that dewpd
i 3 7 s 5 = s 9 10 interference using schemes such as lattice codes may impose
Cross-link gains a? less stringent conditions on the average power and channel
statistics.

Fig. 3. Bounds on feasible power vs. cross-link gains for 8&M and
lattice codes-based achievable schemes.
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