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K-User Fading Interference Channels: The Ergodic Very Strong Case

Lalitha Sankar, Jan Vondrak, and H. Vincent Poor

Abstract— Sufficient conditions required to achieve the
interference-free capacity region of ergodic fading K-user
interference channels (IFCs) are obtained. In particular, this
capacity region is shown to be achieved when every receiver de-
codes allK transmitted messages such that the channel statistics
and the waterfilling power policies for all K (interference-free)
links satisfy a set ofK(K − 1) ergodic very strong conditions.
The result is also of independent interest in combinatorics.

I. I NTRODUCTION

TheK-user interference channel (IFC) is a network with
K transmitter-receiver pairs (also referred to as users or
links) in which each transmitter transmits to its intended
receiver while creating interference at one or more of the
unintended receivers. In general, the problem of determining
the capacity region of aK-user IFC remains open. Capacity
regions are known for the two-userstrong IFC [1], [2] and
thevery strongIFC [3], and in both cases the capacity region
is achieved when both receivers decode both the intended
and interfering signals, i.e., the IFC reduces to a compound
MAC (C-MAC) [4]. The very strongIFC is a sub-class of
the class of strong IFCs for which the sum-capacity and
the capacity region are determined by the interference-free
bottleneck links from the two transmitters to their intended
receivers. On the other hand, only the sum-capacity is known
for a class ofweakone-sided non-fading two-user IFCs [5]
and is achieved by ignoring interference (i.e., treating itas
noise). More recently, for the two-sided model, the sum-
capacity of a class of noisy or very weak Gaussian IFCs
is determined independently in [6], [7], and [8] and these
results have been extended forK > 2 in [8] and [9].

Ergodic fading and parallel Gaussian IFCs model the
fading properties of wireless networks. In this paper, we
focus onK-user ergodic fading Gaussian IFCs and seek to
determine a set of conditions for which the sum-capacity
of K interference-free links can be achieved. Recently, in
[10] which develops sum-capacity and separability results
for two-user ergodic fading Gaussian IFCs, anergodic very
strong(EVS) sub-class has been identified as a collection of
ergodic fading Gaussian IFCs with a weighted mixture of
weak and strong sub-channels (fading states) for which the
sum of the interference-free capacities of the two user links
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can be achieved. Two-user parallel Gaussian IFCs have also
been studied in [11], [12] and [13]. For fading IFCs with
three or more users, [14] presents aninterference alignment
scheme to show that the sum-capacity of aK-user IFC
scales linearly withK in the high signal-to-noise ratio (SNR)
regime when all links in the network have similar channel
statistics.

The sum-capacity and capacity region of two-user EVS
IFCs are achieved when each user transmits to its intended
receiver as if there were two independent interference-free
links. The sum-capacity optimal power policies are thus
the classic point-to-point waterfilling solutions developed
in [15]. While the sum-rate achieved thus is always an
outer bound on the sum-capacity of IFCs, in [10] it is
shown that this outer bound can be achieved when both
receivers decode both messages, i.e., the IFC converts to a C-
MAC, provided the sum of the interference-free capacities of
each link is strictly smaller than the multiaccess sum-rates
achieved at each receiver. These sufficient conditions does
not impose strong or weak conditions on any sub-channel and
only involve fading averaged conditions on the waterfilling
policies.

For two-user IFCs, the above-mentioned sufficient con-
ditions are obtained simply by enumerating all possible
intersections of the two MAC pentagons and identifying the
intersection satisfying the EVS definition. They can also be
obtained using the fact that the multiaccess rate region at
each receiver is a polymatroid [16], and therefore, a single
known lemma on the sum-rate of two intersecting polyma-
troids [17, chap. 46] readily yields a closed-form expression
for each possible intersection of the two MAC regions.
However, for intersections of three or more polymatroids
no such lemma exists that can simplify the sum-capacity
analysis of C-MACs withK transmitters andK receivers.
This in turn makes it difficult to identify a set of sufficient
conditions for EVS IFCs when every receiver is allowed to
decode the message from every transmitter.

In this paper, we determine a set of sufficient conditions
for which the sum-capacity is the sum of the capacities
of K interference-free links when all receivers are allowed
to decode the messages from all transmitters. This in turn
corresponds to determining the conditions for which the in-
tersection ofK rate polymatroids results in aK-dimensional
box(hyper-cube) that is uniquely defined by the interference-
free point-to-point rates of theK links. We show that
the number of sufficient conditions for EVS IFCs grows
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Fig. 1. A K-user ergodic fading interference channel.

quadratically inK. As a special case, for two-user IFCs, we
show that these conditions are both necessary and sufficient.

Recently, in [18], the authors present sufficient conditions
for which aK-user symmetric non-fading IFC achieves the
sum-capacity ofK interference-free links. The conditions
are developed using lattice codes which enables complete
decoding of the interference but not the message from every
interfering transmitter. Using the fact that the non-fading
IFC is a special case of an EVS IFC, we compare our
results to those in [18] and show that decoding messages
from all users is best used in the low power regime or
when the symmetric cross-links are relatively closer to unity
while lattice codes are advantageous otherwise. Finally, we
note that the results developed here are also of independent
interest in combinatorics.

The paper is organized as follows. We present channel
model and preliminaries in Section II. The main result and
the proof are developed in Section III. We discuss the results
and present numerical examples in Section IV. We conclude
in Section V.

II. CHANNEL MODEL

A K-user (orK-link) ergodic fading Gaussian IFC con-
sists ofK transmitter-receiver pairs, each link pair indexed
by k, k ∈ K = {1, 2, . . . ,K}, as shown in Fig. 1. Transmitter
k uses the channeln times to transmit its messageWk,
which is distributed uniformly in the set{1, 2, . . . , 2Bk} and
is independent of the messages from the other transmitters,
to its intended receiverk, at a rateRk = Bk/n bits
per channel use. In each use of the channel, transmitterk
transmits the signalXk while receiverk receivesYk, k ∈ K.
For X = [X1 X2 . . . XK ]

T , the channel output vector
Y = [Y1 Y2 . . . YK ]

T in a single channel use is given by

Y = HX+ Z (1)

whereZ = [Z1 Z2 . . . ZK ]
T is a noise vector with en-

tries that are zero-mean, unit variance, circularly symmetric
complex Gaussian noise variables andH is a random matrix
of fading gains with entriesHm,k, for all m, k ∈ K, such
that Hm,k denotes the fading gain between receiverm and

transmitterk. We useh to denote a realization ofH. We
assume the fading process{H} is stationary and ergodic
but not necessarily Gaussian. Note that the channel gains
Hm,k, for all m andk, are not assumed to be independent;
however,H is assumed to be known instantaneously at all
the transmitters and receivers.

Overn uses of the channel, the transmit sequences{Xk,i}
are constrained in power according to

n
∑

i=1

|Xk,i|
2 ≤ nP k , for k ∈ K. (2)

Since the transmitters know the fading states of the links on
which they transmit, they can allocate their transmitted signal
power according to the channel state information. A power
policy P (h) with entriesPk(h) for k ∈ K is a mapping
from the fading state space consisting of the set of all fading
states (instantiations)h to the set of non-negative real values
in RK

+ . We writeP (H) to describe explicitly the policy for
the entire set of random fading states. For an ergodic fading
channel, (2) then simplifies to

E [Pk(H)] ≤ P k for k ∈ K, (3)

where the expectation in (3) is taken over the distribution of
H.

For the special case in which all receivers decode the
messages from all transmitters, we obtain a compound MAC.
We write CIFC

(

P
)

and CC-MAC
(

P
)

to denote the capacity
regions of an ergodic fading IFC and C-MAC, respectively,
whereP is a vector whose entries are the average power
constraintsP k, for k ∈ K. Our definitions of average
error probabilities, capacity regions, and achievable rate pairs
(R1, R2, . . . , RK) for both the IFC and C-MAC mirror the
standard information-theoretic definitions [19, Chap. 14].

Throughout the sequel, we use the terms fading states and
sub-channels interchangeably.C(x) denoteslog(1+x) where
the logarithm is to the base 2 andRS denotes

∑

k∈S
Rk for

anyS ⊆ K. We assume that the reader is familiar with sub-
modular functions and polymatroids (see, for example, [17]).

III. A CHIEVING THE INTERFERENCE-FREECAPACITY

REGION

The following theorem summarizes the main result of this
paper.

Theorem 1:A K-user ergodic fading IFC achieves the
interference-free capacity region ofK independent links if
the waterfilling solutionsP (wf)

k (Hkk) for the (interference-
free) ergodic fading point-to-point links between transmitters
k and receiversk, k = 1, 2, . . . ,K, satisfy

E

[

C
(

|Hk,k|
2
P

(wf)
k (Hkk)

)]

< C(j)
sum (K)

− C(j)
sum (K\ {k}) , for all j, k ∈ K, j 6= k, (4)



where for anyA ⊆ K

C(j)
sum (A) = E

[

C

(

∑

m∈A

|Hj,m|2 P (wf)
m (Hkk)

)]

. (5)

The capacity region of the resulting ergodic very strong IFC
is

CEV S
IFC = {(R1, R2, . . . , RK) :

Rk ≤ E

[

C
(

|Hk,k|
2 Pwf

k (Hk,k)
)]

, k ∈ K
}

(6)

and the sum-capacity is

K
∑

k=1

E

[

C
(

|Hk,k|
2
Pwf
k (Hk,k)

)]

. (7)

Remark 2:The conditions in (4) involve averaging over
all channel states and do not require every sub-channel to
be strong. As with the two-user ergodic fading IFCs, the
capacity achieving scheme forK-user EVS IFCs requires
coding jointly across all sub-channels. ForK = 2, (4)
simplifies to the EVS conditions in [10, Theorem 2]. The
conditions for aK-user non-fading very strong IFC are
simply a special case of (4) obtained for a constantH.

Remark 3:The conditions in (4) are equivalent to the
requirements that the rate achieved by each transmitter in the
presence of interference from all other users at each of the
unintended receivers is at least as large as the interference-
free rate achieved at its intended receiver.

Corollary 4: For a class of symmetric non-fading IFCs
with Hk,k = 1, Hj,k = a for all j, k ∈ K, j 6= k, and
P k = P , (4) reduces to the condition

P <
a2 − 1

1 + (K − 2) a2
(8)

or equivalently

a2 >
1 + P

1− (K − 2)P
. (9)

Thus, for anya > 0 andK > 2, P < 1; furthermore, for
largeK, P scales inversely withK. Conversely, for large
K, a2 scales linearly withK.

Remark 5:A very strong condition forK-user symmetric
IFCs is presented in [18, eqn. (5)] which requires thata2

grow exponentially withK when each receiver decodes
all the unintended messages before decoding its intended
message. It is unclear whether the condition in [18, eqn.
(5)] ensures that the intersection of the MAC polymatroids,
one at each receiver, is a box. In contrast, the condition in
(9) only grows linearly inK and ensures a box intersection.

Remark 6: [18] also presents a sufficient condition us-
ing lattice codes for interference-free communications in
symmetricK-user IFCs asa2 >

(

P + 1
)2

/P which is
independent of the number of users.

Proof: Outer Bound: An outer bound on the sum-
capacity of an IFC results from eliminating interference atall
the receivers thereby reducing it toK interference-free point-
to-point links. From [15, Appendix], the capacity achieving
policy for each link requires each transmitter to waterfill over

its fading link to its receiver, and thus, we have that any
achievable rate tuple(R1, R2, . . . , RK) must satisfy

K
∑

k=1

Rk ≤
K
∑

k=1

E

[

C
(

|Hk,k|
2
Pwf
k (Hk,k)

)]

. (10)

Inner Bound: Consider the achievable scheme in which
every receiver decodes all the interfering signals, i.e., the
IFC is converted to a C-MAC. Assuming every transmitter
encodes its message across all sub-channels and every re-
ceiver jointly decodes all messages across all sub-channels,
the Gaussian MAC rate region achieved at receiverk when
the power policy at transmitterm is P

(wf)
m , for all k,m ∈ K

is given by [10, Theorem 1]

Rk

(

P (wf)
)

= {(R1, R2, . . . , RK) : RS ≤ f∗
k (S) ,

for all S ⊆ K} (11)

where

f∗
k (S) = E

[

C
(

∑

m∈S
|Hk,m|2 Pwf

m (Hm,m)
)]

. (12)

It can be easily verified that the functionsf∗
k (S), for all

k, are sub-modular functions and the MAC rate regions
Rk

(

P (wf)
)

are polymatroids (see for e.g., [20]). For any

S,A ⊆ K such thatS ∩A = ∅, we writef∗
k (S|A) as

f∗
k (S|A) ≡ E

[

C

(

∑

m∈S
|Hk,m|2 Pwf

m (Hm,m)

1 +
∑

m∈A
|Hk,m|2 Pwf

m (Hm,m)

)]

,

(13)
i.e.,f∗

k (S|A) is the rate achieved by the users inS at receiver
k in the presence of interference from the users in a disjoint
setA.

We now show that when (4) is satisfied the intersection
of Rk

(

P (wf)
)

for all k is aK-dimensional hyper-cube. To
this end, for ease of analysis, we first write (4) in terms of
f∗
k (K) as

f∗
k ({k}) < f∗

j (K)− f∗
j (K\ {k}) , for all j, k ∈ K, j 6= k.

(14)
Thus, given (14), we now prove that

∑

k∈S

f∗
k ({k}) ≤ f∗

j (S) , for all j andS ⊆ K. (15)

Without loss of generality, letj = 1 andS = K. Thus, we
have
∑

k∈K

f∗
k ({k}) = f∗

1 ({1}) + f∗
2 ({2}) + . . .+ f∗

K ({K})

(16a)

≤ f∗
1 ({1}) + f∗

1 ({1, 2})− f∗
1 ({1}) (16b)

+ f∗
1 ({1, 2, 3})− f∗

1 ({1, 2}) + . . .

+ f∗
1 (K)− f∗

1 (K\ {k}) (16c)

= f∗
1 (K) (16d)

where (16b) follows from (14) and the fact that for any
S ⊂ K such that k 6∈ S, using chain rule for mutual



information, we have

f∗
j (K)− f∗

j (K\ {k})

= f∗
j (S∪{k}) + f∗

j (K\ (S ∪ {k}) |S ∪ {k})

− f∗
j (S)− f∗

j (K\ (S ∪ {k}) |S) (17)

≤ f∗
j (S∪{k})− f∗

j (S) (18)

where (18) follows from the fact that due to additional
interference from userk, the second term to the right of
the equality in (17) is smaller than the fourth term where all
terms in (17) can be expanded using (13).

Following steps similar to (16), one can show that
∑

k∈S
f∗
k ({k}) ≤ f∗

1 (S) for all S ⊂ K. Furthermore, the
same steps can also be used to show that (15) holds for all
j ∈ K. Let R∗

k = f∗
k ({k}) for all k. Thus, from (15) and

(11), we have that

(R∗
1, R

∗
2, . . . , R

∗
K) ∈ Rj

(

P (wf)
)

, for all j ∈ K, (19)

=⇒ (R∗
1, R

∗
2, . . . , R

∗
K) ∈ ∩K

j=1Rj

(

P (wf)
)

. (20)

Since the intersection ofK orthogonal rate planesR∗
k yields

a box (a hyper-cube), the C-MAC sum-capacity when (4)
holds is given by (7). Combining this achievable sum-rate
with the outer bounds in (10), we have that (7) is also the
sum-capacity of an EVS IFC for which the channel statistics
and optimal power policy satisfy (4). Finally, since the sum-
capacity also achieves the interference-free capacity of each
user, the capacity region of EVS IFCs is given by (6).

IV. D ISCUSSION

Theorem 1 summarizes a set of sufficient conditions for
which the interference-free capacity ofK transmit-receive
pairs can be achieved when every receiver decodes the
messages from all transmitters, an achievable scheme we
henceforth refer to as the C-MAC scheme. In this section, we
present numerical examples of fading and non-fading IFCs
and the feasible power and channel gains regime for which
the EVS IFC conditions in (4) are satisified.

We first consider a three-user ergodic fading IFC with
non-fading unit-gain direct links and cross-links that are
independent and identically distributed Rayleigh faded links,
i.e., Hj,k ∼ CN

(

0, σ2
)

for all j 6= k, j, k ∈ {1, 2, 3} , and
P k = P for all k. The resulting channel is a mix of weak and
strong sub-channels for which each user transmits atP in
every sub-channel if the EVS conditions in (4) are satisfied.
The feasibleP vs. σ2 region and the maximumP

(

σ2
)

for
which (4) holds in plotted in Fig. 2(a). In Fig. 2(b), the
EVS sum-capacity when each user transmits at the maximum
P
(

σ2
)

is plotted as a function of the fading varianceσ2. For
thisP

(

σ2
)

, also plotted in Fig. 2(b) is the sum-rate achieved
by ergodic interference alignment in which knowledge of
the channel states is used by the transmitters to enable the
cancellation of interference at all receivers simultaneously
[21]. As shown in both subplots, as the variance of the cross-
links increases, thereby increasing the probability of strong

fading states, the largestP , and hence the sum-capacity, for
which the EVS sum-capacity is achievable also increases.

Next we consider a non-fading three-user symmetric IFC
with unit gains on the intended links, a real positive channel
gain a on the cross-links, andP k = P , for k = 1, 2, 3. In
Fig. 3(a), as a function ofa2, we plot the maximum feasible
P in (8) for which a very strong IFC results using a C-
MAC achievable scheme. As observed in Corollary 4, we
requireP < 1. Also included are plots of the upperPu and
lower P l bounds on the feasible power with lattice codes
for which a very strong IFC results. Thus, asa2 increases,
decoding the interference using lattice codes allows a larger
class of three-user symmetric IFCs to be be considered very
strong relative to decoding the message from every user. On
the other hand, only the C-MAC scheme achieves the VS
condition fora2 < 4, i.e., the C-MAC achievable scheme is
more appropriate in the low-power regime in achieving the
sum-capacity ofK interference free point-to-point links.

A set of sufficient EVS conditions given by (4) in Theorem
1 prompt the question of whether these conditions are also
necessary, i.e., whether the intersection ofK polymatroids
would cease to be a box if one or more conditions were
violated. We now present a three-user example that shows
that when all six conditions in (4) forK = 3 are not satisfied,
the intersection of theK MAC polymatroids is a box, i.e, the
K-user interference-free sum capacity can still be achieved.

Consider a three-user non-fading IFC withHk,k = 1 and
P k = 1 for all k. Thus, if the intersection of the MAC rate
regions at the receivers results in a box, each user transmits
atP k in every use of the channel. The cross-link gainsHj,k

for all j, k, j 6= k, are such that

f∗
1 (S) = max

i∈S
(i) + 0.5 |S| (21)

where|S| denotes the cardinality of the setS andf∗
1 (S) is

obtained by evaluating the rate bounds atP
(wf)
k (Hk,k) =

P k = 1 for all k. Thus, from (21),f1 ({1}) = 1.5,
f1 ({2}) = 2.5, f1 ({3}) = 3.5, f1 ({1, 2}) = 3,
f1 ({1, 3}) = f1 ({2, 3}) = 4, andf1 ({1, 2, 3}) = 4.5.

The bounds at the other two receivers are given by
f∗
2 (S) = f∗

1 (π (S)) and f∗
3 (S) = f∗

1

(

π2 (S)
)

where π
is a cyclic permutation of the indexes such that each index
is decreased by1 in a cyclic manner such that(1, 2, 3) map
to (3, 1, 2) andπ2 (S) is obtained by applyingπ (S) twice.
Thus,f2 ({2}) = f3 ({3}) = f1 ({1}) = 1.

For the three rate regions defined thus, one can verify that
none of the six conditions in (14) is satisfied. Furthermore,
from (21), we have that the bounds for every rate region
satisfyf∗

k (S) ≥ |S|. Consider the rate tuple(R1, R2, R3) =
(1, 1, 1). This tuple satisfies

∑

k∈S
Rk = |S| ≤ f∗

k (S)
for all S ⊆ K and j = 1, 2, 3, i.e., (1, 1, 1) satisfies the
rate constraints for each of the three MAC rate regions and
therefore lies in their intersection, i.e., the intersection of the
three rate regions is a box.
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This is so because, for the considered example, while
(4) is not satisfied for allj and k, j 6= k, the conditions
fk ({k}) ≤ fj (S) − fj (S\ {k}) for all S ⊂ K, j 6= k,
are satisfied and suffice to achieve the interference-free
sum-capacity. Thus, one can conclude that for the C-MAC
achievable scheme, an EVS IFC will not result if and only if
fk ({k}) does not satisfy all(K − 1)

(

2K − 1
)

conditions,
i.e., whenfk ({k}) > fj (S)− fj (S\ {k}) for all j, k ∈ K,
j 6= k andS ⊆ K. The proof follows in a straightforward
manner from showing that(f∗

1 (1) , f∗
2 (2) , . . . , f∗

K (K)) /∈

Rk(P
(wf)
k (Hkk)), for all k, using steps analogous to (16)

in Theorem 1. Note that only forK = 2 are the sufficient
conditions in (4) also necessary.

V. CONCLUDING REMARKS

We have obtained sufficient conditions for achieving the
interference-free sum-capacity and capacity region of aK-
link ergodic fading IFC when all receivers are allowed to
decode the messages from all transmitters. In particular,
we have shown that an an EVS IFC results if the channel
statistics and the interference-free capacity optimal water-
filling policies for all links satisfyK (K − 1) conditions.
For K = 2, we have shown that these conditions are both
necessary and sufficient. Our result that a quadratic number
of conditions suffice for the intersection ofK polymatroids
to form a box is also of independent interest in combinatorics
where few results are known on intersection of three or
more polymatroids. Finally, our results suggest that decoding
interference using schemes such as lattice codes may impose
less stringent conditions on the average power and channel
statistics.
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