
Implementing Utility-Optimal CSMA
Jinsung Lee, Junhee Lee, Yung Yi, Song Chong∗, Alexandre Proutière†, Mung Chiang‡

∗Dept. of Electrical Engineering, KAIST, South Korea
Email: {ljs,junhee}@netsys.kaist.ac.kr, {yiyung,song}@ee.kaist.ac.kr

†Microsoft Research, Cambridge, UK
Email: alexandre.proutiere@microsoft.com

‡Dept. of Electrical Engineering, Princeton University, USA
Email: chiangm@princeton.edu

Abstract—Hundreds of papers over the last two decades have
studied the theory of distributed scheduling in wireless networks,
including a number of them on stability or utility maximizing
random access. Several publications in 2008 studied an adaptive
CSMA that in theory can approach utility optimality without
any message passing under a number of assumptions. This paper
reports the results from the first deployment of such random
access algorithms through an implementation over conventional
802.11 hardware, an on-going effort that started in summer
2009. It shows both a confirmation that Utility Optimal CSMA
may work well in practice even with an implementation over
legacy equipment, and a wide array of gaps between theory and
practice in the field of wireless scheduling. This paper therefore
also brainstorms the discovery of and bridging over these gaps,
and the implementation-inspired questions on modeling and
analysis of scheduling algorithms.

Keywords: Scheduling, Random Access, CSMA, Optimization,
Distributed Algorithm, Wireless Networks, Systems, 802.11.

I. INTRODUCTION

Design of distributed scheduling algorithms in wireless
networks has been extensively studied under various metrics
of efficiency and fairness and for different types of traffic
and interference models. In their seminal work [1], Tassiulas
and Ephremides developed a centralized scheduling algorithm,
Max-Weight scheduling, achieving maximum stability, i.e.,
stabilizing any arrival for which there exists a stabilizing
scheduler. Since then, there has been a large array of lower-
complexity, more distributed scheduling algorithms, using the
ideas of randomization (pick-and-compare scheduling), weight
approximation (maximal/greedy scheduling), or random access
with queue-length exchanges, e.g., in [2]–[11], to achieve
large stability region under unsaturated arrivals of traffic at
each node. For saturated arrivals, optimizing a utility function,
which captures efficiency and fairness at the equilibrium, has
been studied for slotted-Aloha random access, e.g., in [12]–
[17]. Together with the principle of Layering as Optimization
Decomposition, advances in scheduling have also been trans-
lated into improvements in joint congestion control, routing,
and scheduling over multihop wireless networks, e.g., [18]–
[22]. There are many more studies on this topic, as discussed
in more detail in surveys such as [23].

A main bottleneck that remains is the need for message
passing in the above algorithms. Tradeoffs of the time com-
plexity of message passing with throughput and delay have

been studied recently, e.g., in [6], [7], [24] and [25]. Message
passing reduces the “effective” performance, is vulnerable to
security attacks, and makes the algorithms not fully distributed.
This has lead to the following challenge on simplicity-driven
design: Can random access without message passing approach
some type of performance optimality? In theory, the answer
was suggested to be positive in 2008, first in [26] for wireless
networks, with a similar development in a different context in
[27]. Convergence proof and tradeoff were presented in [28].

In [28], we developed a proof of the convergence of
these algorithms without assuming that network dynamics
freeze while the CSMA parameters are being updated, for the
continuous-time Poisson clock model. New proof techniques
were developed to overcome the difficulty of the coupling
between the control of CSMA parameters and the queueing
network dynamics. We then turned to more realistic slotted-
time contention and backoff model, and quantified the effect
of collisions. We revealed and characterized the tradeoff be-
tween long-term efficiency and short-term fairness: short-term
fairness decreases significantly as efficiency loss is reduced.
Similar to other distributed scheduling algorithms, there is a
3-dimensional tradeoff [24]: the price of optimality and zero
message passing here is delay experienced by some nodes.

Given that a key goal in the above development of adaptive
CSMA is to make high performance scheduling also simple:
remove the need for message passing altogether, a natural
question now becomes: if it is simple and near-optimal, it
ought to be readily deployable to make a difference in some
real network. This paper reports the results from the first
deployment of such random access algorithms through an
implementation over conventional 802.11 hardware, an on-
going effort that started very recently in summer 2009. It
shows both a confirmation that Utility Optimal CSMA may
work well in the practice even with an implementation over
legacy equipment, and a wide array of gaps between theory
and practice in the field of wireless scheduling. This paper
therefore also brainstorms the discovery of and bridging over
these gaps, and the implementation-inspired questions on
modeling and analysis of scheduling algorithms. This is an
“interim report” of the first set of outcomes and observations in
the ongoing experiments, and further results will be presented
in thefuture.

The rest of this paper is organized as follows: In Section II,

2

we briefly describe the theoretical foundation of UO CSMA.
Section III presents the implementation methodology and the
analysis of the measurements collected from the experiments,
followed by identifying the gaps between theory and practice
in Section IV. Implementation-inspired theory and next steps
of experimentation are outlined in Sections V and VI. We
conclude the paper in Section VII.

II. THEORY: UTILITY OPTIMAL CSMA
In this section, we summarize UO CSMA (Utility-Optimal

CSMA) that approximately achieves optimality in terms of
total utility at equilibrium. We refer readers to [28] for details
of the proofs for the results in Section II-E and II-F.

A. Network and interference model
We consider a wireless network composed by a set L of L

links. Interference is modeled by a symmetric, boolean matrix
A ∈ {0, 1}L×L, where Akl = 1 if link k interferes with link
l, and Akl = 0 otherwise. Denote by N ⊂ {0, 1}L the set
of the N feasible link activation profiles, or schedules. A
schedule m ∈ N is a subset of non-interfering active links
(i.e., for any m ∈ N , k, l ∈ m, Akl = 0). We assume
that the transmitters can transmit at a fixed unit rate when
active. These assumptions on what constitutes “transmission”
and “interference”, together with several others later in the
section, lead to mathematical tractability but also give rise to
the theory-practice gaps that will be discussed in Section III
and IV.

B. Scheduling and utility maximization
The network is assumed to handle single-hop data con-

nections. However, the results presented here can be readily
extended to multi-hop connections (e.g., using the classical
back-pressure ideas [1]). The transmitter of each link is
saturated, i.e., it always has packets to send. A scheduling
algorithm decides at each time which links are activated.
Denote by γs = (γs

l , l ∈ L) the long-term throughputs
achieved by scheduling algorithm s. The throughput vector
of any scheduling algorithm has to belong to the rate region
Γ defined by

Γ = {γ ∈RL
+ : ∃π ∈ RN

+ ,

∀l ∈ L, γl ≤
∑

m∈N :ml=1

πm,
∑

m∈N
πm = 1}.

In the above, for any schedule m ∈ N , πm can be interpreted
as the proportion of time schedule m is activated. As is a
standard in problems with saturated arrivals, the objective is to
design a scheduling algorithm maximizing the total network-
wide utility. Specifically, let U : R+ → R be an increasing,
strictly concave, differentiable objective function. We wish
to design an algorithm to solve the following optimization
problem:

max Σl∈LU(γl), (1)
s.t. γ ∈ Γ.

We denote by γ! = (γ!
l , l ∈ L) the optimizer of (1). Most

distributed schemes proposed in the literature to solve (1) make

use of a dual decomposition of the problem into a rate control
and a scheduling problem: A virtual queue is associated
with each link; a rate control algorithm defines the rate at
which packets are sent to the virtual queues, and a scheduling
algorithm decides, depending on the level of the virtual queues,
which schedule to use with the aim of stabilizing all virtual
queues. The main challenge reduces to developing a distributed
and efficient scheduling algorithm. Many solutions proposed
so far are semi-distributed and require information about the
queues to be passed around among the nodes or links. This
signaling overhead increases communication complexity and
reduces effective throughput. More importantly, for manage-
ment and security reasons, practical deployment of scheduling
algorithms is unlikely going to allow such message passing.

C. Efficiency of CSMA
CSMA-based random access is the most popularly used dis-

tributed scheduling algorithms in wireless networks and does
not require any message passing. They are based on random
back-off algorithms such as the Decentralized Coordinated
Function (DCF) in IEEE802.11.

The network dynamics under CSMA have been extensively
studied in the literature. The following popular model is due
to Kelly [29], and has been recently revisited by e.g. [30]
and [31]. In this model, the transmitter of link l waits an
exponentially distributed random period of time with mean
1/λl before transmitting, and when it initiates a transmission,
it keeps the channel for an exponentially distributed period
of time with mean µl. This CSMA algorithm is denoted by
CSMA(λl, µl) in the rest of the paper. Define λ = (λl, l ∈ L)
and µ = (µl, l ∈ L). When each link l runs CSMA(λl, µl),
the network dynamics can be captured through a reversible
process [32]: If mλ,µ(t) denotes the active schedule at time
t, then (mλ,µ(t), t ≥ 0) is a continuous-time reversible
Markov chain whose stationary distribution πλ,µ is given by
∀m ∈ N , πλ,µ

m =
Q

l:ml=1 λlµlP
n∈N

Q
l:nl=1 λlµl

, where by convention
∏

l∈∅(·) = 1. Due to the reversibility of the process, the above
stationary distribution does not depend on the distributions
of the back-off durations or of the channel holding times,
provided that they are of mean 1/λ l and µl, respectively, for
link l. This insensitivity property allows us to cover a more
realistic scenario with uniformly distributed back-off delays
and deterministic channel holding times.

Under the above continuous-time model, collisions are
mathematically impossible, leading to tractability in this first
step of the study. In practice, however, time is slotted and the
back-off periods are multiple of slots, which inevitably causes
collisions and will be discussed in Section II-F.

Under the CSMA(λl, µl)’s algorithms, the link throughputs
are given by

∀l ∈ L, γλ,µ
l =

∑

m∈N :ml=1

πλ,µ
m .

The following result proved in [26] (Propositions 1 and 2),
states that any throughput vector γ ∈ Γ can be approached
using CSMA(λ, µ) algorithms.

3

Lemma 1 ([26]): For any γ in the interior of Γ, there exist
λ, µ ∈ RL

+ such that ∀l ∈ L, γl ≤ γλ,µ
l .

The above lemma expresses the optimality of CSMA
scheduling schemes, and it suggests that for approaching the
solution of (1), one may use adaptive CSMA algorithms.

D. Continuous time model: Algorithm and performance
We now describe a generic adaptive CSMA-based algorithm

to approximately solve (1). The algorithm is an extension of
those proposed in [26], and does not require any message
passing. Time is divided into frames of fixed durations, and
the transmitters of each link update their CSMA parameters
(i.e., λl, µl for link l) at the beginning of each frame. Each
link maintains a virtual queue, denoted by q l[t] in frame t,
for link l. The algorithm operates as follows:

UO CSMA

1) During frame t, the transmitter of link l runs
CSMA(λl[t], µl[t]), and records the amount Sl[t] of ser-
vice received during this frame;

2) At the end of frame t, it updates its virtual queue and its
CSMA parameters according to

ql[t+1] =
[
ql[t]+

b[t]
W ′(ql[t])

(
U ′−1(

W (ql[t])
V

)−Sl[t]
)]qmax

qmin
,

and sets λl[t + 1] and µl[t + 1] such that their product is
equal to exp{W (ql[t + 1])}.

In the above algorithm, b : N → R is a step size function;
W : R+ → R+ is a strictly increasing and continuously differ-
entiable function, termed the weight function; V , qmin, qmax(>
qmin) are positive parameters, and [·]dc ≡ min(d, max(c, ·)).
We will later see that proper choice of b ensures convergence.
V controls the accuracy of the algorithm, and the function W
controls the transient behavior. The impact of b[t], V, and W
will be demonstrated in the implementation in the next section.

Since the performance of CSMA algorithms depends on the
products λlµl only, we have the choices in UO CSMA to either
update the λl’s (the transmission intensities) and fix the µl’s
(the transmission durations), or to update the µ l’s and fix the
λl’s, or to update both the λl’s and µl’s.

E. Convergence without timescale separation
UO CSMA may be interpreted as a stochastic approximation

algorithm with controlled Markov noise as defined in [33]. The
main difficulty in analyzing the convergence of UO CSMA
lies in the fact that the updates in the virtual queues, and
hence in the CSMA parameters, depend on the random service
processes (Sl[t], t ≥ 0). The service processes (Sl[t], l ∈ L)
received by the various links in turn depend on the state of the
network at the end of frame t− 1, and on the updated CSMA
parameters (λ[t], µ[t]). We cannot assume that the network
state “freezes” in between CSMA parameter updates. Without
such a timescale separation assumption, proving convergence
became more challenging [28].

For any vector q ∈ NL, we denote by πq the distribution
on N resulting from the dynamics of the CSMA(λ, µ) algo-
rithms, where for all l ∈ L, λlµl = exp(W (ql)). In other
words,

∀m ∈ N , πq
m =

exp(
∑

l∈m W (ql))∑
m′∈N exp(

∑
l∈m′ W (ql))

. (2)

We also denote by γ[t] = (γl[t], l ∈ L) the vector representing
the cumulative average throughputs of the various links up to
frame t, i.e.,

∀l ∈ L, γl[t] =
1
t

t−1∑

n=0

Sl[n].

The next theorem states the convergence of UO CSMA
under diminishing step-sizes, towards a point that is arbitrarily
close to the utility-optimizer.

Theorem 1: Assume
∑∞

t=0 b[t] = ∞ and
∑∞

t=0 b[t]2 < ∞.
For any initial condition q[0], UO CSMA converges in the
following sense:

lim
t→∞

q[t] = q! and lim
t→∞

γ[t] = γ!, almost surely,

where γ! and q! are such that (γ!, πq!) is the solution of the
following convex optimization problem (over γ and π):

max V
∑

l∈L
U(γl) − Σm∈Nπm log πm

s.t. γl ≤
∑

m∈N :ml=1

πm,
∑

m∈N
πm = 1. (3)

Furthermore UO CSMA approximately solves (1) as
∣∣
∑

l∈L

(
U(γ!,l) − U(γ!

l)
)∣∣ ≤ log |N |/V . (4)

F. Slotted time model: Performance and tradeoff
In any real systems, time is slotted and collisions may occur.

In this section, we briefly summarize the impact of collisions
(see [28] more details). We consider the following model for
slotted CSMA: The transmitter of link l starts a transmission
at the end of a slot with probability pl if the slot has been
sensed to be idle. When a link is active, it can experience
either a successful transmission or a collision. When a link is
currently successfully transmitting, it releases the channel with
probability 1/µl at the end of a slot. Collisions are classified
into two kinds:

(a) Short collisions. Using a channel probing mechanism
using a small signaling message, e.g., RTS/CTS, we
restrict the length of collisions to a short time interval.

(b) Long collisions. Long collisions occur when RTS/CTS-
like procedures are not implemented, so that collision
time last for a maximum of holding times of links
involved with collision.

If we want the resulting link throughputs of UO CSMA to be
close to the solution of (1), the products of the transmission
probabilities and the channel holding times need to be very
large. In the adaptation of UO CSMA to the slotted-time
scenario, this implies that the channel holding times are very
large, since the transmission probabilities must remain very

4

small (to ensure very low collision rates). This further implies
that the delay between two successive successful transmissions
on a link is very large as well. In other words, to ensure
efficiency, we need to sacrifice short-term fairness.

Another source of short-term unfairness with UO CSMA
is the fact that if a link is interfering with by a lot of links
(compared to other links), before transmitting it needs to wait
until all its neighbors become inactive. This waiting time can
be very long, especially if these neighbors do not consistently
sense each other. When the link finally gets access to the
channel, it then needs to hold the channel for a duration that is
much larger than the transmission durations of its neighbors,
in order to achieve throughput fairness. This may considerably
exacerbate short-term unfairness.

We summarize the quantification of the above two observa-
tions in [28]. We define the short-term fairness index of link l
as 1/Tl where Tl is the average delay between two successive
successful transmissions on this link. To illustrate, consider
a simple star network: it is composed of L + 1 links, where
link 1 interferes with by all other links, but link k, k > 1,
interferes with only link 1. Throughout some computations
(see [28] for details), it turns out that for a given efficiency
loss ε > 0, (i) channel holding times for link 1 and link
k, k > 1 scale as 1/ε2L and 1/ε2, respectively, and (ii) the
short-term fairness for all links scales as ε2L. This quantifies
the tradeoff between efficiency and short-term fairness when
implementing UO CSMA in slotted-time systems, implying
that a substantial cost of short-term unfairness needs to be
paid for large efficiency.

III. PRACTICE: IMPLEMENTATION OF UO CSMA
This section describes the implementation of UO CSMA on

the 802.11-based conventional hardware platform and presents
the first set of preliminary results. This implementation pro-
vides a proof-of-concept of the theory-driven algorithm, UO
CSMA, and addresses the key challenges to transfer from
theory to practice in distributed scheduling. In Section IV,
we elaborate on the gaps between theory and practice and the
workaround solutions to bridge some of them.

A. WiMesh Network and Common Code Architecture
We implemented UO CSMA on a campus-scale mesh

network at KAIST, Korea, the WiMesh testbed [34]. The
WiMesh has 56 mesh routers in an office building and in
6 undergraduate dormitory buildings over 1 km 2 area, as
shown in Figure 1. Each node is typically equipped with
two 802.11a/b/g based wireless interface cards as well as
one Ethernet interface. The WiMesh has been designed for
a research testbed that is open to researchers who want to test
and realize their conceptual ideas on top of real hardwares.

One of the unique features in WiMesh is Common Code
Architecture (CCA), a programming environment designed to
reduce cost and effort of testing a protocol by providing
a way of using one code for both simulation and physical
experiment. A typical way to validate new algorithms or
protocols is to first make simulation programs at e.g., [35],

Fig. 1. WiMesh: Campus-wide wireless mesh network testbed at KAIST.

Fig. 2. Common Code Architecture: GloMoSim simulation codes are
reusable in WiMesh without modification.

[36] and then implement them in real hardware. However,
implementing in a physical network is significantly different
from simulations and much more challenging, as it requires
in-depth understanding of network protocol stacks, skills of
system programming, and even modification of proprietary
hardware through work-around hacking. Deploying protocols
designed from a substantially new angle, such as UO CSMA,
is particularly hard compared to simple modifications of exist-
ing protocols, e.g., 802.11 DCF with a new backoff scheme.
CCA reduces the transition time from theory to simulation and
then to implementation.

In CCA, we first make a simulation code using the protocol
stack of GloMoSim simulator [36]. Once simulation tests
verify the developed protocol, we load and run the same
simulation codes on top of CCA. Most of functions of CCA
are run at user-level space which is possible by making in-
terfaces connecting between user-level processes and wireless
hardwares. Figure 2 depicts the structure of CCA. We refer
readers to [37] for more details.

B. Setups of Simulation and of Implementation
To evaluate performance, we compare UO CSMA with the

optimal benchmark and the standard 802.11 DCF in both
simulation and implementation. In simulation, we implement
UO CSMA by changing the CSMA in GloMoSim, where we
mainly modified the part that sets backoff counters. We used
two-ray path-loss model, SNR bounded packet reception. We
disabled ACK operation, so when collision occurs, it lasts for
the corresponding holding time. The network is slotted with

5

1.6ms timeslot and 5Mbps link capacity, and the packet size
is set to be 1000 bytes.

Through CCA, we then use the same GloMoSim code
to experiment UO CSMA in real hardware after a series
of hacking that induces the underlying 802.11 drivers to
effectively execute the UO CSMA algorithm. The setup and
hardware specification is shown in Table I.

TABLE I
ENVIRONMENTAL SETUP FOR EXPERIMENT

WLAN device Atheros 5212 chipset
PHY 802.11a, 5.745GHz band, 6Mbps rate
Flow Single-hop session
Traffic Saturated

Utility function U(x) = log(x)
Performance metrics Total utility (or, throughput), short-term fairness

Holding time 20, 100, 500 (packets)
V parameter 20, 100, 500
Weight function W (x) = x and log log(x)

We summarize an example of the hacking needed to overlay
UO CSMA algorithm over 802.11 hardware. In 802.11, con-
tention resolution scheme operates based on the contention
window, CW , where a back-off counter randomly chosen in
the range [0, CW − 1]. We modify the mechanism of setting
CW appropriately so that 802.11 drivers can be turned into a
basis for implementing UO CSMA.

(a) Per-link CW . In 802.11, CW is maintained at each node,
not each link, i.e., one contention window per one interface
card. In UO CSMA, backoff counters should be installed
per link. We implemented per-link CW, denoted by CW l,
at GloMoSim, and associate per-link CWl to the per-node
CW, whenever link l is activated.

(b) From access probability to contention window. Our theory
is developed based on access probability p l. Thus, we need
a way of converting pl to CWl: CWl = 2/pl, where ‘2’ is
needed since the actual contention window size is selected
randomly from [0, CWl − 1].

(c) CWmin and CWmax values. In 802.11, there exist two
back-off related values. The real CW is first set to be
CWmin and then doubles whenever there is a collision.
The doubled CW value is used when a collided packet is
retransmitted. We disable this feature by setting CWmin =
CWmax, so that retransmitted packets are not treated in a
special way.

Note that in our physical experiments, both UO CSMA and
802.11 DCF are implemented through CCA, implying there
is no gap due to Common Code between them. To facilitate
packet-by-packet parameter control with less overhead, instead
of using (indirect) interfaces such as user-level commands,
e.g., iwpriv, provided by the device driver, we directly instill
the target parameter into the so-called TX descriptor used by
the firmware to make decision.

C. Results of 3-link Experiment
Now we present the preliminary results in a simple 3 link

topology, as shown in Figure 3, where flows 1 and 2 (2 and

(a) A network topology with three links and six nodes in
experiment on WiMesh testbed.

1 2 3

(b) Interference graph: We map a
link to a node, where two nodes
are if they are interfering with
each other.

Fig. 3. Network topology in our experiment.

3, respectively) are interfering with each other, but flows 1
and 3 do not interfere. In physical reality, interference among
links cannot be modeled by a simple graph, since channels
are time-varying and interference is very often asymmetric.
We tried various placements of wireless nodes in WiMesh
network, so that we obtain the desired interference relationship
in Figure 3. While numerical results from any one topology
cannot be extrapolated by too much, this small experiment
already allows us to get a deep view on many aspects of
theory prediction, including performance, transient behavior,
and parameter setting. Ongoing work will extend these to large
topologies.

Total utility and throughput deviation
We first performed multiple per-link throughput measure-

ment without any interference to figure out effective link
capacity without MAC overhead. In our hardware setup,
the average per-link capacity amounts to about 5Mbps. We
henceforth use this value as a link capacity.

In theory, it is easy to compute the optimal throughput by
solving (1) with log utility function for the proportionally fair
solution, where γ∗

2 = 1/3 × 5 ≈ 1.67Mbps, and γ∗
1 = γ∗

3 =
2/3 × 5 ≈ 3.33Mbps. In simulation, we implemented UO
CSMA with adaptive backoff scheme on top of fixed parameter
CSMA. The simulation almost matches the model over the
slotted model in Section II, except that access probability is
replaced by contention windows. Implementation over 802.11
hardware then introduces many more differences.

Figure 4 summarizes the results, averaged over many in-
stances of experiments, where we show the total utilities
over links as well as deviation of achieved throughputs from
the optimal values. The deviation percentage is computed by
normalizing the total throughput difference from optimal one
for each case.

Figure 4 shows that UO CSMA in simulation has a very
close match with the continuous-time-model-based theory,
where the small discrepancy is mainly due to the difference

6

Opt Simulation Implementation
 (V= 500)

802.11 DCF
43

43.2

43.4

43.6

43.8

44

44.2

44.4
To

ta
l U

til
ity

(a) Total utility for theory, simulation and implementation of UO CSMA,
and 802.11 DCF.

Opt Simulation Implementation
 (V= 500)

802.11 DCF
0

2

4

6

8

10

12

14

Th
ro

ug
hp

ut
 D

ev
ia

tio
n

(%
)

(b) Throughput deviations from theory.

Fig. 4. Total utility and throughput deviation.

between the ideal continuous time model without collision
and the slotted time model with collision. More importantly,
we also observe that UO CSMA implementation over 802.11
works well, with 6.6% throughput deviation from theory,
whereas about 14.9% throughput deviation is observed in
802.11 DCF. UO CSMA in implementation recovers about
80% of the difference between DCF and simulated UO CSMA.
This presents the first hardware-based confirmation that UO
CSMA may work well despite the many mismatches between
its assumptions and the physical reality of the network and
devices.

Holding time: Efficiency and short-term fairness
Section II-F shows that increasing holding times lead to

an increase in total throughput, at the expense of short-
term fairness. Recall that we define short-term fairness as the
inverse of longest starvation time, where starvation time is the
interval between two successful transmission. Poor short-term
fairness may also lead to degradation in TCP performance.
We measured such tradeoff between throughput and short-term
fairness and show it in Figure 5.

From Figure 5, we observe that, as holding time increases,
the short-term fairness decreases, just as theory predicted,
whereas throughput remains about the same, contrary to the
expectation based on theory. To figure out why, we performed
the following measurements: By modifying the Madwifi de-
vice driver [38], we disabled retransmission. We assume that
there is negligible packet loss due to channel attenuation, since
each sender-receiver pair has a small transmission distanced.
For different holding times, we observe a similar number of
collisions around 0.05%, There was little dependency of the
number of collisions on holding time. We conjecture that (i)
there are effective contention avoidance mechanisms, at least

Htime = 20 Htime = 100 Htime = 500

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (K

bp
s)

Flow 1
Flow 2
Flow 3

(a) Throughput for different holding times (in packets).

Htime = 20 Htime = 100 Htime = 500
0

2

4

6

8

10

12

14

16

18

Sh
or

t-t
er

m
 F

ai
rn

es
s

(b) Short-term fairness for different holding times (in packets).

Fig. 5. Throughput and short-term fairness.

for small networks, such as the arbitration by backoff in 802.11
DCF, in spite of small CW values (for small holding times),
and (ii) asynchronous operation of 802.11 induced by delay
such as the turnover time between transmission and reception
and transition time for carrier sensing. More measurements are
necessary to verify our conjectures.

Step size: Convergence and transient behavior
We also observe the impact on convergence and the queue

behavior by different step sizes. As shown in Figures 6, the
trajectories with the step size b = 0.01 are oscillating within
some neighborhood of the converged point: 0.4 for flow 2
and 0.2 for flow 3. The trajectories with decreasing step size
(reduced by 0.9 every 10 seconds starting from 0.01) converges
within a few hundred seconds. This convergence is in terms
of queue length, while the convergence in terms of throughput
is already achieved in both cases. This confirms the standard
result from optimization theory in this case: diminishing step-
size helps ensure convergence. It is more interesting, however,
to note that the average throughput achieved with (a small)
constant stepsize is almost identical to that achieved with
diminishing stepsize. Therefore, if queue fluctuation is not an
issue (e.g., for upper layer protocols like TCP), constant step
size works just fine on throughput and the associated utility.

Parameter V : Utility optimality and average delay
According to theory, parameter V in UO CSMA controls

how accurately it solves the utility optimization problem:
bigger V gets closer to utility optimality. It also controls
the sensitivity of response to network congestion that is
reflected in the virtual queue lengths q[t]. Bigger V results in
higher throughput, yet larger virtual queue lengths (thus longer
delay). Figures 7 and 8 show throughput changes and virtual
queue behaviors for V = 20, 100, and 500, respectively. For
the small V = 20, we observe that the virtual queue length

7

! "! #!! #"! $!!
%&'()*+(,-

!.$
!./
!.0
!.1
#

#.$
#./
#.0

23
(3
()
4(5
67
8

(a) Queue trace of flow 2 with fixed step size.

! "! #!! #"! $!!
%&'()*+(,-

!.$

!./

!.0

!.1

#

23
(3
()
4(5
67
8

(b) Queue trace of flow 2 with diminishing step size.

Fig. 6. Flow 2 converges to 0.4 in both cases.

Implementation
 (V = 20)

Implementation
 (V = 100)

Implementation
 (V = 500)

Opt
0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (K

bp
s)

Flow 1
Flow 2
Flow 3

Fig. 7. Throughput for V=20, 100, 500 and optimality.

constantly stays at the pre-specified minimum value (i.e., 0.1).
Conversely, for the large V = 500, the virtual queue length
reaches the pre-specified maximum (i.e., 2.3), and stays there
from 22 secs on. Note that the virtual queue is nothing but
a real queue length multiplied by step size when log utility
is used, i.e., q[t] = Q[t] × b[t], where Q[t] means the actual
queue length. Typical lengths of our actual queue range from
100 to 300 packets.

As a remark, our system is saturated and consists of single-
hop sessions, where the virtual queue is used as a control
variable to derive the system towards different directions.
However, in the implementation of UO CSMA, we install per-
link intermediate buffers to whom packets are injected (from
an infinite backlogged reservoir) at a congestion controlled
rate. The average length of such intermediate buffers indirectly
measures the average queueing delay that a packet experiences.

Weight function W : Queue length and convergence time
We next investigate the transient behaviors of queue length

and throughput for different weight functions. We tested two
popular functions: W (x) = x and W (x) = log log(x+ e). As
depicted in Figures 9 and 10, we can observe that W (x) =
x has smaller virtual queue length and longer convergence
time than W (x) = log log(x + e) with the same equilibrium
throughput being achieved for both functions, just as theory
predicted. The virtual queue lengths for W (x) = x oscillate
between 0.2 and 0.4 for W (x) = x, whereas between 0.5 and
1.5 for W (x) = log log(x + e). This is due to the fact that
the long-term throughput is determined by ρ (thus ρ should

! "! #! $! %! &!!
'()*+,-*./

!0!1
!0!12
!0&

!0&!2
!0&&

34
*4
*+
5*6
78
9

(a) Queue trace of flow 2 for V=20.

! "! #! $! %! &!!
'()*+,-*./

!!0"
!0#
!0$!0%
&

&0"&0#
&0$

12
*2
*+
3*4
56
7

(b) Queue trace of flow 2 for V=100.

! "! #! $! %! &!!
'()*+,-*./

!
!01
&

&01
"

"01

23
*3
*+
4*5
67
8

(c) Queue trace of flow 2 for V=500.

Fig. 8. Backlogs for different V parameters.

0 50 100 150 200
Time (sec)

0

0.5

1

1.5

2

2.5

3

V
irt

ua
l Q

ue
ue

 L
en

gt
h

W(x) = x
W(x) = log log (x+e)

Fig. 9. Virtual queue traces for W (x) = x and W (x) = log log(x + e).

0 50 100 150 200
Time (sec)

0

1e+06

2e+06

3e+06

4e+06

A
gg

re
ga

te
 T

hr
ou

gh
pu

t (
bp

s)

W(x) = x
W(x) = log log (x+e)

Convergence time

Fig. 10. Aggregate throughput traces and convergence times for W (x) = x
and W (x) = log log(x + e).

be the same for both functions), but since ρ = exp(W (q)),
we have smaller virtual queue lengths for W (x) = x. On the
other hand, we also observe faster convergence time for “less
aggressive” weight function, i.e., W (x) = log log(x+e). This
may be due to the fact that less aggressive weight functions
result in larger virtual queue length fluctuations, which, in turn,
enables the protocol respond to congestion more sensitively.
The proper choice of W function is much less understood in
theory than V and b[t] parameters, and these implementation
results call for further study.

8

IV. THEORY-PRACTICE GAPS

A. Overview of Gaps
This section brainstorms the origins of many gaps between

theory and practice based on our measurements. Such an un-
derstanding is important to improve theory-driven implemen-
tation of UO CSMA. In addition, it motivates us to develop
better theories capturing and bridging this gap. The key gaps
include the incomplete modeling of sensing, holding time,
and interference in practice, as well as asymmetry of sensing
and decoding ranges, asynchronism of device operations, and
overhead within the protocol stacks. These will be discussed
in three groups in the rest of this section.

Other gaps are caused by implementation methodologies.
First, we adopt CCA to facilitate simulation and experiment,
which, however, may lead to unexpected overhead as well
as impact on the behaviors of networking, e.g., inappropriate
event scheduling in CCA can starve transmission opportunity
in the wireless interface. Second is imperfect controllability
and visibility in an deployment over 802.11. We implement a
new scheduling protocol on top of the conventional MAC hard-
ware that are just partially controlled by us, with some features
hidden from us (e.g., functions implemented at firmware). For
example, when a contention window CW is set by us, the
system randomly chooses a backoff counter in the interval
[0, CW −1]. We do not know the real backoff counter, which
is sometimes needed to investigate the algorithm’s behavior.

B. Gap between Theory and Simulation
We simulated UO CSMA under perfect synchronization

over a slotted-time system by modifying the conventional
CSMA with new CW-based backoff counter control mecha-
nism. We also used a graph-based interference model. Carrier
sensing is deterministic, and its range is set to be equal to
transmission range. Consequently, as seen in Figure 11, there
is a small gap between theory and simulation, which is mainly
due to collisions in slotted-time model.

TABLE II
THEORY-SIMULATION GAP

Gap Theory Simulation
Backoff Data-slot based Mini-slot based
Collision No Yes, and last for holding time

Sim (Htime = 20) Sim (Htime = 100) Sim (Htime = 500) Opt

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (K

bp
s) Flow 1

Flow 2
Flow 3

Fig. 11. Throughput in theory (Opt) and simulation (Sim) for holding time
= 20, 100, and 500 packets.

TABLE III
SIMULATION-IMPLEMENTATION GAP

Gap Simulation Implementation

Hidden-terminal No, due to link-based in-
terference model

Yes, due to carrier sensing
by senders

CS and TX ranges Same Different and governed by
PHY layer

Time-varying
channel No, fixed channel Yes, no guarantee of hold-

ing time

Asymmetry No, symmetric Yes, both at transmission
and carrier sensing

C. Gap between Simulation and Implementation

(1) Hidden-terminal: Link-oriented vs. node-oriented. Even if
two nodes do not sense signal, their intended transmis-
sions can collide. This is due to the gap between theory
that interferences are characterized by links and practice
that carrier-sensing is performed by nodes. The hidden-
terminal problem can be a cause of throughput decrease
in practice, when RTS/CTS mechanism can be a candi-
date solution. RTS/CTS-like signaling may also help with
driving the system with slotted time from the continuous-
time one in theory into one with short collisions (see
Section II-F).

(2) Difference in sensing and decoding ranges. In 802.11b,
systems are designed to be conservative, so that sensing
range is larger than decoding range. Thus, transmissions
may defer even if they can be successful in decoding. This
difference in decoding and sensing ranges sometimes de-
pends on the proprietary hardware features. For example,
sensing mechanism of 802.11a in our deployment differs
from 802.11b, in that nodes first try to decode a preamble
of packets from neighbors (thus sensing range is equal
to decoding range). When the preamble is not decodable
due to some unpredictable behavior such as instantaneous
hardware-malfunction, a sensing range that is smaller
than the decoding range is applied for carrier-sensing.
Furthermore, “collision” is defined in physical systems
by received SIR rather than hop count, and sometimes
exhibits “capture effect” for some decoders.

(3) Time-varying channel. Time-varying channels make it dif-
ficult to fully guarantee the desired holding times, which
is crucial for both long-term efficiency and short-term
fairness. The holding time set by a node i cannot always
be guaranteed by an interfering neighbor that decrements
its backoff counter whenever signal is not sensed (due
to factors such as time-varying channel), and leads to
preemption of the transmission of node i. Time-varying
channels also generate packet loss induced by channel
degradation, which is not considered by the current theory.

(4) Asymmetry. Wireless links are often asymmetric because
signals propagate differently between two nodes. Further-
more, link asymmetry is also time-varying. In contrast, in
UO CSMA theory so far, both link channel conditions and
interferences are symmetric and fixed.

9

D. Gap between Clean-slate and 802.11
There have been many discussions on the vision of clean-

slate design for the overall future of the Internet. As an
alternative option for a “local surgery” such as UO CSMA,
implementation over legacy hardware like conventional 802.11
also presents a least-resistance path from theoretical advance
to practical impact. However, there are also challenges and
gaps due to the reuse of legacy hardware. The three most
prominent ones are summarized below.

(1) Holding time
Perfect execution of holding time relies on perfect carrier-

sensing capability. This is clearly impossible over 802.11. We
adopted several work-arounds to ensure that holding time is
executed correctly as much as possible.

• We use AIFS (Arbitration Inter-Frame Space) from
802.11. The AIFS specifies an interval between packet
transmissions. We set AIFS to be a large value only
when a node first access the media right after its backoff
counter reaches 0, but to be a small value for back-to-
back transmissions in the middle of holding time. This
heterogeneous setting of AIFS precludes a node from
intercepting transmissions from other nodes being in the
middle of holding time.

• In time-varying channels, even while a node i is transmit-
ting data, node i’s interfering links sometimes decrement
their backoff counters in case when interfering links may
not sense node i’s signal due to channel fluctuations.
To prevent it, we use the NAV (Network Allocation
Vector) option recording the amount of time during which
neighbors should be silent irrespective of carrier-sensing.
This solution is particularly useful when the packet with
a NAV value is overheard and decoded by interfering
neighbors.

(2) CW parameter value’s granularity
The second gap is the coarse CW granularity that prevents

us from controlling access intensity perfectly. The 802.11
allows only 2x − 1 CW values for some integers x, which
is again implemented in firmware in the chip used in our
experiment. This makes it impossible to ensure CW= 0, which
is needed in fully executing UO CSMA according to its theory.

(3) 802.11-specific packets
The third gap is due to packets receiving special treatment

in 802.11, where examples include beacon packets (with high
priority) that are used to identify neighbors. These beacon
packets may interrupt normal data transmission, adversely af-
fecting the holding times. To tackle this problem, we modified
the device driver to minimize the impact of the packets for
beacon signal by increasing beacon interval from 100 msec to
5 sec, but further increase of beacon interval would lead to
slow connectivity update.

V. DEVELOPING IMPLEMENTATION-INSPIRED THEORY

In a field like wireless scheduling that has become highly
mathematical, implementation not only helps validate predic-

TABLE IV
CLEAN SLATE-OVER 802.11 GAP

Gap Clean slate Over 802.11
Holding Perfect Imperfect

Contention control By access prob.
By discrete back-
off, but only 2n−1
CW value available

Transmission type User defined Unicast with ACK

Synchronization Synchronization
from PHY Asynchronous

Overhead Hardware
dependent

802.11 chipset de-
pendent

tions from theory and falsify assumptions behind theory, it
also clarifies the paths for future study on more realistic and
less tractable models.

From the initial results reported here, it is clear that the
following topics deserve a closer look from the theory com-
munity:

• The impact of what existing theory assumed away, e.g.,
overhead, asymmetry of sensing and decoding, granular-
ity of control parameters.

• The impact of what existing theory modeled simplisti-
cally, e.g., imperfect holding and sensing that are noised
versions of the accurate operation.

• Sharper understanding of what theory has analyzed only
loosely so far, e.g., convergence speed, transient behavior
like queue buildup, and choices of b[t], V, and W in
striking the tradeoffs they each control.

VI. NEXT STEPS IN IMPLEMENTATION

Only the first set of experimental results has been reported.
Much remains to be done, including the following:

• Large-scale topology with multi-hop sessions. The next
step is to test UO CSMA in part of WiMesh deployment
consisting of more than 20 nodes with multi-hop sessions,
where interactions with routing and transport protocols
will introduce new challenges.

• Software and hardware upgrade. We plan to upgrade our
testbed with 802.11n cards, as well as newer Linux ker-
nels, with which more freedom to access the underlying
hardware is provided.

VII. CONCLUDING REMARKS

Theories depend on a mathematical crystallization of the
engineering system under study. This process needs to ignore
some parts of the physical characteristics of the system by
making assumptions, simplify other parts by creating tractable
models, and focus on metrics that can be crisply quantified and
tightly analyzed using the mathematical machineries available.
There is perhaps no other starting point towards a rigorous
study. This paper aims at going one step further for the
topic of distributed scheduling in wireless networks, through
an implementation over conventional 802.11 hardware and a
deployment in the WiMesh network at KAIST. This is simply
an “interim report”, where we report the first, small-scale
experiment that confirms the ability of UO CSMA to get
close to utility optimality despite many gaps between theory

10

and practice. The discovery, quantification, and bridging of
these gaps are more important than the numerical results. We
identify the key gaps, group them in three types, and explain
where they originated and how they might be bridged, either
by work-around engineering solutions or by addressing the
new modeling challenges through enriched theories of wireless
scheduling in the future.

ACKNOWLEDGEMENT

We thank helpful discussions on UO CSMA with L. Jiang,
J. K. Lee, J. Liu, H. V. Poor, R. Srikant, D. Shah, and
J. Walrand. Part of this work has been supported in part
by IT R&D program of MKE/IITA [2009-F-045-01], Korea
Research Council of Fundamental Science and Technology,
and the Princeton EDGE Lab that is in part sponsored by
the US NSF Computing Research Infrastructure program, the
ONR Defense University Research Instrumentation Program,
and Qualcomm.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling for maximum throughput in multihop
radio networks,” IEEE Transactions on Automatic Control, vol. 37,
no. 12, pp. 1936–1949, 1992.

[2] L. Tassiulas, “Linear complexity algorithms for maximum throughput
in radionetworks and input queued switches,” in Proceedings of IEEE
Infocom, San Francisco, CA, 1998.

[3] P. Chaporkar, K. Kar, and S. Sarkar, “Throughput guarantees through
maximal scheduling in wireless networks,” in Proceedings of the 43rd
Annual Allerton Conference on Communication, Control and Comput-
ing, Monticello, IL, 2005.

[4] E. Modiano, D. Shah, and G. Zussman, “Maximizing throughput in
wireless networks via gossiping,” in Proceedings of ACM Sigmetrics,
Saint Malo, France, 2006.

[5] A. Eryilmaz, A. Ozdaglar, and E. Modiano, “Polynomial complexity
algorithms for full utilization of multi-hop wireless networks,” in Pro-
ceedings of Infocom, Anchorage, AK, 2007.

[6] S. Sanghavi, L. Bui, and R. Srikant, “Distributed link scheduling with
constant overhead,” in Proceedings of ACM Sigmetrics, San Diego, CA,
2007.

[7] S. Ray and S. Sarkar, “Arbitrary throughput versus complexity trade-
offs in wireless networks using graph partitioning,” in Proceedings of
Information Theory and Applications Second Workshop, La Jolla, CA,
2007.

[8] C. Joo and N. B. Shroff, “Performance of random access scheduling
schemes in multi-hop wireless networks,” in Proceedings of Infocom,
Anchorage, AK, 2007.

[9] Y. Yi and M. Chiang, “Wireless scheduling with O(1) complexity
for m-hop interference model,” in Proceedings of IEEE International
Conference on Communications, Beijing, China, 2008.

[10] A. Gupta, X. Lin, and R. Srikant, “Low-complexity distributed schedul-
ing algorithms for wireless networks,” in Proceedings of IEEE Infocom,
Anchorage, AK, 2007.

[11] X. Lin and S. Rasool, “Constant-time distributed scheduling policies
for ad hoc wireless networks,” in Proceedings of IEEE Conference on
Decision and Control, San Diego, CA, 2006.

[12] K. Kar, S. Sarkar, and L. Tassiulas, “Achieving proportional fairness
using local information in aloha networks,” IEEE Transactions on
Automatic Control, vol. 49, no. 10, pp. 1858–1862, 2004.

[13] J. W. Lee, M. Chiang, and R. A. Calderbank, “Utility-optimal medium
access control: reverse and forward engineering,” in Proceedings of IEEE
Infocom, Barcelona, Spain, 2006.

[14] X. Wang and K. Kar, “Cross-layer rate optimization for proportional fair-
ness in multihop wireless networks with random access,” in Proceedings
of ACM Mobihoc, Urbana-Champaign, IL, 2005.

[15] A. H. Mohsenian-Rad, J. Huang, M. Chiang, and V. W. S. Wong,
“Utility-optimal random access: Optimal performance without frequent
explicit message passing,” IEEE Transactions on Wireless Communica-
tions, vol. 8, no. 2, pp. 898–911, 2009.

[16] ——, “Utility-optimal random access: Reduced complexity, fast con-
vergence, and robust performance,” IEEE Transactions on Wireless
Communications, vol. 8, no. 2, pp. 898–911, 2009.

[17] J. Liu, A. Stolyar, M. Chiang, and H. V. Poor, “Queue backpressure
random access in multihop wireless networks: Optimality and stability,”
IEEE Transactions on Information Theory, vol. 55, no. 9, 2008.

[18] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-
layer rate control in wireless networks,” in Proceedings of IEEE Infocom,
Miami, FL, 2005.

[19] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochastic
control for heterogeneous networks,” in Proceedings of IEEE Infocom,
Miami, FL, 2005.

[20] L. Chen, S. H. Low, M. Chiang, and J. C. Doyle, “Joint optimal
congestion control, routing, and scheduling in wireless ad hoc networks,”
in Proceeding of IEEE Infocom, Barcelona, Spain, 2006.

[21] A. Eryilmaz and R. Srikant, “Joint congestion control, routing, and
MAC for stability and fairness in wireless networks,” IEEE Journal on
Selected Areas of Communication (JSAC), Special Issue on Nonlinear
Optimization of Communication Systems, vol. 24, no. 8, pp. 1514–1524,
2006.

[22] A. L. Stolyar, “Maximizing queueing network utility subject to statbility:
greedy primal-dual algorithm,” Queueing Systems Theory and Applica-
tions, vol. 50, no. 4, pp. 401–457, 2005.

[23] Y. Yi and M. Chiang, “Stochastic network utility maximization and
wireless scheduling,” 2009, to be published as a book chapter of Next-
Generation Internet Architectures and Protocols, Cambridge University
Press. Also, available at http://lanada.kaist.ac.kr/pubs/scheduling.pdf.

[24] Y. Yi, A. Proutiere, and M. Chiang, “Complexity in wireless scheduling:
Impact and tradeoffs,” in Proceedings of ACM Mobihoc, Hong Kong,
China, 2008.

[25] Y. Yi, J. Zhang, and M. Chiang, “Delay and effective throughput
of wireless scheduling in heavy traffic regimes: Vacation model for
complexity,” in Proceedings of ACM Mobihoc, New Orleans, LA, 2009.

[26] L. Jiang and J. Walrand, “A CSMA distributed algorithm for throughput
and utility maximization in wireless networks,” in Proceedings of the
46th Annual Conference on Communication, Control and Computing,
Monticello, IL, 2008.

[27] S. Rajagopalan and D. Shah, “Distributed algorithm and reversible
network,” in Proceedings of the Cconference on Information Science
and Systems, Princeton, NJ, 2008.

[28] J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, “Adaptive CSMA:
Approaching optimality without message passing,” Wiley Journal of
Wireless Communications and Mobile Computing, Special Issue on
Recent Advances in Wireless Communications and Networking,, Dec.
2009. Preliminary version in Microsoft Research Technical Report,
TR2008-128, 2008.

[29] F. Kelly, “Stochastic models of computer communication systems,”
Journal of the Royal Statistical Society, vol. 47, no. 3, pp. 379–395,
1985.

[30] M. Durvy and P. Thiran, “Packing approach to compare slotted and
non-slotted medium access control,” in Proceedings of IEEE Infocom,
Barcelona, Spain, 2006.

[31] C. Bordenave, D. McDonald, and A. Proutiere, “Performance of random
medium access control: An asymptotic approach,” in Proceedings of
ACM Sigmetrics, Annapolis, MD, 2008.

[32] F. Kelly, Reversibility and Stochastic Networks. Wiley, Chichester,
1979.

[33] V. Borkar, “Stochastic approximation with controlled markov noise,”
Systems and control letters, vol. 55, pp. 139–145, 2006.

[34] S. Shrestha, J. Lee, A. Lee, K. Lee, J. Lee, and S. Chong, “An open
wireless mesh testbed architecture with data collection and software
distribution platform,” in In Proceedings of TridentCom, Orlando, FL,
2007.

[35] “Ns-2,” http://www.isi.edu/nsnam/ns/.
[36] “Glomosim,” http://pcl.cs.ucla.edu/projects/glomosim/.
[37] J. Lee, J. Lee, S. Shrestha, and S. Chong, “Common code architecture

for future internet researches of wireless mesh networks,” in Proceedings
of CFI, Seoul, Korea, 2008.

[38] “Madwifi project,” http://madwifi-project.org/.

