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Maximum Throughput of Clandestine Relay

Ting He, Lang Tong, and Ananthram Swami

Abstract— The maximum throughput of relaying information
flows while concealing their presence is studied. The conceal-
ment is achieved by embedding transmissions of information
flows into truly independent transmission schedules that re-
semble the normal transmission behaviors without any flow.
Such embedding may reduce the throughput for delay-sensitive
flows, and the paper provides a quantitative characterization
of the level of reduction. Under a strict or average delay
constraint, the maximum normalized throughput is measured
by the efficiency of the optimal relay algorithms that embed the
most flow into given transmission schedules. Exact analytical
solutions and closed-form approximations are derived for re-
newal schedules, verified by simulations on both synthetic traffic
and traces. The results reveal general relationships between
the clandestine throughput and system parameters including
delay constraints, traffic load, and traffic distributions. In
particular, the throughput is found to be negatively related to
the burstiness of the cover traffic. Moreover, simulations show
that the throughputs of renewal traffic with certain power-
law interarrival distributions can closely approximate those of
actual traces.

Keywords: Information flow/Relayed traffic flow, Clandestine
relay, Anonymous networking, Intrusion detection.

I. INTRODUCTION

We consider the problem of relaying information flows as
a clandestine operation. We call a relay node a clandestine
relay if it hides the presence of information flows across it
from monitoring agents'. Besides its natural applications in
intelligence operations, clandestine relay can be part of the
anonymous networking paradigm in which the presence of
information flows is hidden from traffic analyzers [1]. Under-
standing clandestine relay also has implications in network
security. In the so-called wormhole attack [2], for example,
the intruder may channel a flow of information packets
through a tunnel unknown to the source and the destination.
To what degree the intruder can relay information flows
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without being detected by networked traffic monitors is at
the heart of the problem addressed in this paper.

We assume that traffic monitors are omnipresent; all
nodes are subject to monitoring, and their timing traces
are sent to a fusion center and analyzed with unbounded
computation power. We will, however, restrict ourselves
to timing information only. Other flow information, e.g.,
addresses, flow types, and packet content, will certainly make
the monitors more powerful, but the availability of such
information makes the analysis specific to certain network
setup. For example, such information may not be available
if an anonymous routing protocol is used [3].

It is apparent that, if timing is the only information
available, it would not be possible to track a specific packet.
We assume that packets in an information flow are subject
to delay constraints. Such constraints may be strict in the
form of a maximum tolerable delay, or flexible in the form
of an upper bound on the average delay. If packets in an
information flow must be forwarded within a deadline (strict
or average), then the transmission timings on the relay route
will exhibit certain statistical correlations, and it is such
correlations that make it possible to detect the presence of
information flows through traffic analysis.

Given that nodes performing clandestine relaying cannot
hide the act of transmission, they have to embed transmis-
sions of the information flow into their normal transmission
schedules, which provide “cover traffic” for the desired flow.
For example, a particular type of cover traffic may be gen-
erated from statistically independent transmission schedules.
If relay nodes use a fraction of such transmission epochs to
relay an information flow, then the traffic analyzer, no matter
how powerful it is, will be unable to infer the presence of
this flow.

A. Summary of Results, Contributions, and Limitations

The main contributions of this paper include a character-
ization of the maximum throughput of a clandestine relay
relative to that of a normal relay and a study of various
factors affecting the throughput. Our specific contributions
are:

Optimal flow-embedding algorithms: We develop simple
yet provably optimal algorithms to embed information flows
into given transmission schedules of cover traffic under a
strict or average delay constraint. In particular, the First
In, First Out (FIFO) algorithm is shown to be optimal
under the strict delay constraint and near optimal under the
average delay constraint. A clandestine relay can use these
algorithms to achieve the maximum throughput while hiding
the presence of flow.
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Throughput analysis: We characterize the maximum (nor-
malized) clandestine throughput by analyzing the efficiency
of the proposed algorithms. Assuming that the cover traf-
fic follows renewal processes, we compute the clandestine
throughput based on the limiting distribution of a special
Markov process constructed from the embedding algorithm.
In the strict delay case, we show that the throughput grows
linearly with the maximum delay under tight delay con-
straints, but then slows down and converges to the total
traffic rate polynomially as the delay constraint is relaxed.
Moreover, the burstier the cover traffic, the lower the clan-
destine throughput. The average delay case is shown to be
approximately equivalent to the strict delay case with a delay
bound twice as large, and the same observation holds.

Simulation studies: We complement the analysis with
simulations on both renewal traffic and network traces.
Besides confirming the analytical results, and in particular
that traffic with exponential inter-packet delays (IPD’s) has
higher throughputs than those with power-law IPD’s, the
simulations also show that the throughputs of renewal traffic
with power-law IPD’s closely approximate those of actual
traces.

This paper aims to obtain insights on the fundamental
limits of clandestine relay operations. Our results are lim-
ited by the models and assumptions made for analytical
tractability. For example, the renewal traffic model may not
be accurate for some networking operations. However, a
case study shows that with proper interarrival distributions,
renewal traffic can resemble network traces reasonably well
(Section V-B). Our network model is also simplified in
that we have presented the two-hop relay scenario. Space
limitation prevents us from treating the general case of
multiple flows over arbitrary hops, but approaches similar
to those in [4], [5] can be used.

B. Related Work

The problem of characterizing the maximum throughput
of clandestine relay has not been formally studied in the past,
but problems sharing common concepts have been investi-
gated. The problem of avoiding traffic analysis using special
relays was first considered in [6], where relays called Mixes
collect packets from multiple users and relay them after
encryption and mixing to remove the correlation between
incoming and outgoing traffic. While Mix effectively hides
the routes of individual packets, a study in [7] showed that
long streams of packets under delay constraints can still be
correlated. To prevent such flow correlation, the method of
cover traffic is used to pad the actual traffic with dummy
packets such that the overall transmission activities stay fixed
[1]. Although fixed scheduling hides the correlation, it is
inefficient and requires synchronization across the network,
and the fixed patterns themselves might as well reveal the
flow. In this paper, we overcome these issues by considering
stochastic transmission schedules that resemble the nodes’
normal transmission behavior when there is no flow.

Another line of related work is from the traffic analyzer’s
perspective. Motivated by the detection of stepping-stone

attacks [8], the problem is to detect relayed traffic flows
based on transmission patterns. Although various detectors
have been developed (see references in [4], [8]), [4] showed
that it is always possible to evade detection by embedding
flows in normal transmissions, and the efficiency of such
embedding gives a fundamental limit on flow detectability,
which is rigorously analyzed under Poisson traffic model in
[4] and extended to general renewal processes in [9].

This paper extends our earlier work in [9] in several
directions: earlier work only considered flows under strict
delay constraint, whereas here we also consider average
delay constraint and focus more on closed-form solutions
that provide tractable insights; earlier work ignores packet
sizes by modeling each schedule as a point process, whereas
here we consider variable packet sizes, which allows us to
model packet splits and merges.

The rest of the paper is organized as follows. Section II
defines the problem, and Section III presents the embedding
algorithms, which are analyzed in Section IV. Section V
presents simulation results. Then Section VI concludes the

paper.
II. PROBLEM STATEMENT

For clarity of presentation, we use uppercase letters to
denote random variables, lowercase letters for realizations,
boldface letters for vectors, and plain letters for scalars.

A. Flow Models

Denote the incoming and outgoing transmission schedules
of a relay node by ON-OFF processes S; (i = 1, 2)

Si 2 ([S (k). SHRNZ (1)

where SP(k) is the starting time and S!(k) the termi-
nating time of the kth packet’, with a packet length’
L;(k) éSf(k:) — S#(k). Schedules (S, S2) specify the
generation of cover traffic, which is what the traffic analyzer
can observe. In particular, if the schedules represent truly
independent transmission activities, then the act of relay
will be invisible to the traffic analyzer, and thus the relay
operation is ‘“clandestine”.

Under predetermined schedules, the act of relay can be
considered a process of embedding an information flow into
these schedules. Specifically, as illustrated in Fig. 1, we
model such embedding by a decomposition

Li(k) = L (k) + LS (k), )

where LEI)(k:) denotes the effective packet length, defined

as the length of the part of the packet that belongs to an
information flow (defined below), and Ll(-c)(k:) the length of
the remaining part, called chaff noise. Chaff noise models
transmissions that are not part of the flow, including dummy
packets, dropped packets, superfluous data padded in packets,
and multiplexed packets from other flows. Information bits

2 Assume that packets in the same schedule do not overlap.
3Since the problem is defined in time domain, we measure a packet length
by the duration of transmitting that packet.
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and chaff bits can be mixed in any order within a packet,
and LZ(-I)(k:), LZ(-C)(IC) denote their total lengths, respectively
(either L(I)(k) or L(C)(k) can be zero).

i

i

information chaff
block block

subblocks

Fig. 1. Decompose schedules S; (¢ = 1, 2) into information-carrying
subschedules and chaff noise, where the information-carrying subschedules
have to match with each other (denoted by arrows) under certain constraints.

We say that transmission schedules (S, Ss) contain an
embedded information flow if they can be decomposed as in
(2) such that the following definition holds.

Definition 2.1: A pair of transmission schedules (S, S2)
with effective packet lengths (Lgl), Lél)) is a (two-hop)
information flow if the following conditions hold a.s. (almost
surely):

1) Flow-conservation: 2_:1 Lgl)(m) => Lél) (n);
> )=

m: St(m)<t

2) Causality:

all t;
3) Bounded delay: under strict delay bound A,

o Pm< > ), w0
m: St(m)<t n: SL(n)<t+A

under average delay bound A,

> LY (n)Sh(n) —

St(n)<t

> L (m)St(m)

St(m)<t

> L n)

Sh(n)<t

lim

t—oo

<A @

The flow-conservation constraint defines a relay operation
by requiring the effective traffic volume to be conserved dur-
ing relay. The causality constraint ensures that information in
a packet can be relayed only after the whole packet arrives,
allowing packet-level transformation such as decryption and
re-encryption. The delay constraint imposes requirement on
the timeliness of relayed information*, where a strict delay
bound enforces every information bit to leave the relay within
A time of arrival, and an average delay bound only requires
the time-averaged delay per information bit to be bounded>.
The above definition allows packets to be combined, split,
delayed, and permuted during relay. Intuitively, the con-
ditions guarantee that there exists a decomposition of the

4We distinguish “delay”, denoting the time between the complete arrival
of an incoming packet and the complete departure of a relay packet,
from “inter-packet delay” (IPD), standing for the OFF period between two
consecutive packets transmitted by the same node (see Fig. 1).

SThe strict and the average delay constraints are extended from [5], where
the original models ignore packet sizes.

information blocks into subblocks such that the subblocks in
the two schedules are in 1-1 correspondence and of equal
length (see Fig. 1). We assume that A and A are known.

B. Clandestine Relay Throughput

The constraints in Definition 2.1 imply that not every
transmission in given schedules can be used to relay infor-
mation. We measure the efficiency of relaying information
flow under given schedules by the asymptotic fraction of
embedded information flow, stated as follows.

Definition 2.2: Given transmission schedules (Si, Ss),
the maximum normalized throughput of a clandestine re-
lay (clandestine relay throughput) under these schedules is
defined as the maximum asymptotic fraction of embedded
information flows, i.e.,

C(S1, S2) 2 sup{r € [0, 1] : ILP)Z, such that:

1) (S;)7_; with effective packet lengths
(LEI))f:1 is an information flow ;
N
> L3 (h) + 157 (k)
) lipin =y
> La(k) + La(k)
k=1

>ras.t.

(&)
Under this definition, the clandestine relay throughput is
the long-term fraction of information blocks (in length), max-
imized over all possible ways of embedding them into the
given schedules. Intuitively, the clandestine relay throughput
tells us for a relay node with incoming schedule S; and
outgoing schedule Sq, what fraction of the transmission time
can be used to relay information.

III. OPTIMAL EMBEDDING ALGORITHMS

It is difficult to compute the clandestine relay throughput
directly by Definition 2.2 because it involves an optimization
over numerous possible ways of embedding information
flows. In this section, we will present algorithms that can
compute the clandestine relay throughput efficiently. The
idea is to embed the most information bits into given
realizations of transmission schedules under flow constraints.

A. Optimal Embedding under the Strict Delay Constraint

For information flows with strict delay, the optimal em-
bedding algorithm turns out to be a simple FIFO matching.
The algorithm, called “Strict Greedy Match” (SGM), sequen-
tially scans given transmission schedules and matches each
incoming packet with the first relay packet that satisfies the
causality and the delay constraints, as shown in Algorithm 1.
Specifically, variables m, n denote the indices of the current
packets, Iy, I their remaining (unmatched) packet lengths,
and C the total length of matched information blocks. The
algorithm skips the packets that do not satisfy the causality
or the strict delay constraint (lines 3—-6) and computes the
total length of packets that can be matched (line 8). The
fraction of information flow is thus C' divided by the total
packet length in s; and s».
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Algorithm 1 Strict Greedy Match (SGM)

Require: Schedules (s, s2), maximum delay A.
Ensure: Return the maximum length of information blocks
in (s1, s2) under strict delay A.

1: initialize: m, n « 1, [; «— st(1) — si(1) (G = 1, 2),
C—0

2: while m, n are valid indices in sq, so do

3 if s5(n) < s!(m) then {noncausal}

4 Iy < 0 {skip the packet in s2}

5. elseif s{(m) < sh(n) — A then {delay > A}

6: Iy < 0 {skip the packet in s;}

7. else {find a valid match}

8 C<—C+2min(ll, lg)

9: R min(ll, lg), lo — Iy — min(ll, lg)

10:  if [; = 0 then {update indices}

11: m«—m+1, 11 — si(m) — si(m)
12:  if [ = 0 then
13: n—n+1,ly — sh(n) —s5(n)

14: return C

This algorithm is an extension of the algorithm ‘“Bounded
Greedy Match” proposed in [8], which ignores packet
lengths. Since SGM is sequential, it is suitable for online em-
bedding of information flows even if the incoming schedule
is not known at the relay beforehand®. Simple as it is, SGM
is actually optimal as stated in the following proposition.

Proposition 3.1: For any given schedules (s1, s3) and
strict delay constraint A, SGM maximizes the total length
of embedded information blocks.

Proof: The proof borrows the idea in [8], where the key
is to build a 1-1 correspondence between unmatched packets
in our algorithm and the unmatched packets in an optimal
algorithm M™. Suppose a data unit dt; in s is matched by
M* but not SGM. Then since SGM always tries to match
earlier packets first, the relay of dt; according to M * must be
matched to some data unit before dt; by SGM. The process
repeats until reaching a data unit d¢,,, that is matched in SGM
but unmatched in M*. Thus, the length of matched blocks
in SGM is no smaller than that in M*. |

B. Optimal Embedding of Flows under the Average Delay
Constraint

As we relax the delay constraint to a bounded average
delay, the role of the constraint changes dramatically from
a hard bound to a “budget” which can be spread over
many packets. To perform optimal embedding, we resort
to the duality between maximizing the amount of matched
data and minimizing the average delay, which leads to an
algorithm called “Average Greedy Match” (AGM), shown in
Algorithm 2. Algorithm AGM iteratively finds a maximum
matching such that the average delay is bounded by A. In
each iteration (lines 2—-12), AGM finds the pair of packets

%The source can overcome dropped packets by using forward error
correction codes.

that has the minimum delay among all the causal pairs
of nonempty packets (line 3; a packet is called “empty”
when its unmatched length is zero) and computes the new
average delay assuming that this pair is matched (line 4).
If the new average delay is within A, then the matching is
finalized (lines 6-9) and the iteration continues; otherwise,
we only match a portion of these packets to meet the delay
budget A and the iteration stops (lines 11-12). The following
proposition shows the optimality of AGM.

Algorithm 2 Average Greedy Match (AGM)

Require: Schedules (s;, s3), maximum average delay A.
Ensure: Return the maximum total length of information
blocks in (s1, s2) under average delay constraint A.

1: initialize: C' «— 0, d < 0, 1y, Iy < initial packet lengths

2: while 3 a causal pair of nonempty packets do

3:  (m,n) < indices of the packet pair with the minimum
delay among all causal, nonempty pairs

4:  compute the new average delay:

7 Cd+2(sh(n) — si(m)) min(ly(m), lx(n))
0 C + 2min(l, (m), ly(n))

if dy < A then {the delay constraint is satisfied}
C — C+ 2min(l1(m), l2(n))
J — CZO
I1(m) < l1(m) — min(ly(m), l2(n))
la(n) < lz(n) — min(ly(m), l2(n))
0: else {the delay constraint is violated}
1 C «— C+C(A—d)/(sh(n) —st(m) — A)
12: go to line 13
13: return C'

R A

—

Proposition 3.2: For any given (si, s2) and average delay
constraint A, AGM maximizes the total length of embedded
information blocks.

Proof: The proof is by contradiction. Assume an-
other algorithm M* can embed more data under the same
constraint. Then if embedding the same amount of data,
M* must achieve a smaller average delay than AGM. This
contradicts the fact that AGM minimizes the average delay
for any given amount of matched data. |

Unlike SGM, AGM cannot be used for online scheduling
of relay because it is not sequential’, unless the relay knows
the incoming schedule, e.g., by exchanging seeds for the
random schedule generators. It is, however, representative of
what can be achieved by sequential algorithms (see Fig. 3).

IV. COMPUTING THE CLANDESTINE RELAY
THROUGHPUT

This section is dedicated to analytical characterization of
the clandestine relay throughput. Throughout the section, we
consider fixed-length packets for simplicity, i.e., every packet

7Algorithm AGM may scan the schedules multiple times with a total
complexity of O(N?2), where N is the number of packets, whereas SGM
has complexity O(N).
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has equal length [. Variable-length packets can be handled
by partitioning them into smaller “packets” of fixed length?.
For fixed-length packets, it suffices to specify the starting
times of a transmission schedule:

S, = (S3(k)i,

or S; = (Si(k))32, for short, where each interarrival time
Si(k+1)—S;(k) is the summation of packet length [ and the
IPD. In this section, we consider a special family of sched-
ules with i.i.d. interarrival times, i.e., renewal processes.
While network traffic is not really renewal, we observe
in simulations that renewal traffic with certain interarrival
distribution has similar clandestine relay throughputs as
traces (see Section V-B) and thus assume renewal traffic for
rigorous analysis.

i=1,2, (6)

A. Clandestine Relay Throughput under the Strict Delay
Constraint

For flows with strict delay, the clandestine relay through-
put is computed by the optimal embedding algorithm SGM.
For fixed-length packets, we see from Algorithm 1 that in
the jth iteration (5 > 1), one of the following cases will
happen:

1) if s2(n) — s1(m) < [, then the matching is noncausal,

and n «—n+1;

2) if s2(n) — s1(m) > A, then the delay is too large, and

m<+—m-+1;

3) if s2(n) — s1(m) € [I, A], then this is a valid pair of
information packets, and n < n + 1, m «— m + 1.
Combining the above, we obtain an evolution of the pairwise
packet delay Y; 2 Sa(n) — Si(m) (capital letters denote

random variables):

Y4V, ifY;_y <1
Vi=9q Yi-1—-Uj ifYj1>A ™
Yj—l + V] - Uj 0.W.,

where Uj é Sl(m) — Sl(m — 1), ‘/J é SQ(TL) — SQ(TL — 1)
denote the next interarrivals in S; and Sq, respectively.

The merit of introducing Y is that it bridges the algorithm
and the analysis. On the one hand, each Y; within the interval
[I, A] corresponds to a pair of information packets, whereas
each Y; outside this interval corresponds to a chaff packet;
on the other hand, the behavior of Y}’s is easily analyzable
because of the following property.

Proposition 4.1: 1If S; (i = 1, 2) are renewal processes,
then Y 2 (YJ);’O:1 08 2 V1 = U,) is a Markov process with
transition (7).

Proof: Since the interarrivals U;, V; are independent for
difference j, Y; depends on (Y})r<;—1 only through Y;_;.
Therefore, Y is Markovian. |

The Markovianess of Y leads to a unique property of
SGM that given the current Y;, whether or not the next
packet can relay information is independent of the history.

8The optimality of the proposed algorithms holds for arbitrary packet
lengths; further analysis is left for future work.

The result is that in the long run, the behavior of SGM looks
like repetitions of short durations, and thus the fraction of
matched packets will converge as time increases. This is the
idea of stochastic stability. Based on this idea, we derive an
analytical solution to the clandestine relay throughput.

Theorem 4.2: 1If S; and S, are i.i.d. renewal processes
with interarrival probability density function (pdf) f(x)
(f(x) =0 for x < 1), then the fraction of packets matched
by SGM converges a.s., and the limit (i.e., the clandestine
relay throughput under the strict delay constraint) is

2-2
=5,

Ca(A) 2 C(Sy, So; A) : (8)

where qé lim Pr{Y; & [I, A]} can be computed by
J—o

1+ H(l) — H(A), where H(x) (x € R) is the invariant
cumulative distribution function (cdf) of Y. Furthermore,
H(x) is the solution to

l

Amm:Lum1/H@v@—m@

A - %)
+/H(y)g(w—y)dy+A/H(y)f(y—w)dy, ©)

where g(x) is the convolution of f(z) and f(—x), defined
A o0
as g(z) = [ f(y)f(y — x)dy, and
0

L(z) 2 [F(x —1) = Gl = )] H() + [G(z — A)

+F(A—z)—1]H(A) (10

with F'(z), G(x) being the cdf’s of f(x), g(x), respectively.

Proof: Assume Y has the property that the frequency
for Y; to fall outside the interval [I, A] converges a.s. to
a constant, defined as g. Then since each Y; outside [/, A]
represents a chaff packet whereas each Y; inside the interval
represents a pair of information packets, we see that SGM
converges a.s., and the clandestine relay throughput, which
is the limiting fraction of information packets, is given by
2(1 —¢q)/(2 — q). By definition, ¢ = H(l) + 1 — H(A) for
the invariant cdf H(z) of Y, and it can be shown that this
invariant cdf must satisfy (9). For details, see [10]. |

Theorem 4.2 provides both numerical and analytical meth-
ods of computing the clandestine relay throughput. Numeri-
cally, since SGM converges, we can run SGM on sufficiently
long realizations of the schedules; analytically, we can di-
rectly solve (9) to compute (8). Equation (9) is a Fredholm
integral equation of the second kind and can be solved by
Neumann Series through iterations [11].

In general, there is no closed-form expression for the
clandestine relay throughput’. Instead, we focus on regimes
where clean results can be obtained to provide insight into
the relationship between the clandestine relay throughput and

9More explicit upper and lower bounds for special families of distribu-
tions have been obtained and will be reported elsewhere.

1086

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:50:00 EST from IEEE Xplore. Restrictions apply.



the traffic distribution. For the special case of exponential
interarrival distribution, i.e., f(z) = Ae ™ and [ = 0, the
schedules are Poisson processes of rate A, and we have a
closed-form solution

AA
14 AT

For large delays (A(A — ) > 1), it has been shown in [12]

that for interarrival times with finite variance!©,

A
Ca(A) ~ TENA D)

()

(1)

12)

where ) is the traffic rate (A2 1 JE[U] for interarrival U),

and = Var[U]/(E[U])? is the dispersion coefficient of the
interarrival distribution. For small delays, we provide the
following approximation.

Corollary 4.3: Under the conditions in Theorem 4.2, if
A < 2, then

Ca(A) = MA - 1), (13)

where ) is the traffic rate.

Proof: If A < 2[, then different incoming packets
will have different candidate relay packets, and thus, we
can approximate Cz(A) by the probability that a particular
packet is matched''. As illustrated in Fig. 2, for a packet
S (k) to be matched to the first relay packet So(j) after it, it
has to completely fall into an interval of length A right before
S2(j), i.e., its starting time needs to fall into an interval of
length A — [. Since the processes are independent, S; (k)
is uniformly distributed between S(j — 1) and S2(j), and
thus the probability of matching is (A — [)E[1/U] for an
interarrival U. By Jensen’s inequality, it is lower bounded
by (A —=1)/E[U] = MA =1).

1 L SQ

b
S2(—1) S2(7)

Fig. 2. At a small delay (A < 2l), the clandestine relay throughput can be
approximated by the probability that a random incoming packet falls within
the A-length window before its candidate relay packet.

From (12) and (13), we see that the clandestine relay
throughput is only a function of the effective delay \(A —1)
(i.e., the flexible portion of the delay (A — [) normalized by
the mean interarrival 1/)), and is invariant to the scaling of
delay, packet length, and traffic rate as long as this effective
delay remains the same. The clandestine relay throughput

10The original result in [12] is for point processes, but it can be easily
generalized to ON-OFF processes with fixed packet lengths.

"'This is an approximation because the matchings of incoming packets
are correlated.

converges to one as the effective delay increases, and the con-
vergence rate is linear at small delays but O(1/(A(A —1)))
at large delays. Moreover, Corollary 4.3 reveals a surprising
fact that although at larger delays, the interarrival distribution
matters (e.g., through the dispersion coefficient), at small
delays, the distribution becomes immaterial. The borderline
A* = 2] of Corollary 4.3 actually acts as a threshold
separating the two regimes (see Fig. 3).

B. Clandestine Relay Throughput under the Average Delay
Constraint

Under the average delay constraint, the constraint is flex-
ible because large delays are allowed as long as there are
sufficiently many small delays to average them out. This
nature of the constraint leads to the following property of
the clandestine relay throughput.

Proposition 4.4: The clandestine relay throughput under

the average delay constraint C,(A) = C(S1, So; A) is a
concave function with respect to A for any S; (i =1, 2).

Proof: For any p € [0, 1] and Ay, Az > 0 s.t.
A = pA;+ (1 —p)As, one way to achieve an average delay
A is to use AGM with constraint A; for p fraction of the
time and A, for the rest'?, which will yield a throughput of
pCa(A1) + (1 — p)Cu(Az). By definition, C,(A) must be
no smaller than this linear combination, and thus C,(-) is
concave. ]

In AGM, whether a packet can be matched depends on the
delays of all the other matched packets. Such global correla-
tion renders the previous Markovian approach inapplicable.
Instead, we seek to bound C,,(A). It is easy to see that using
SGM with a strict delay constraint A such that the average
delay is A provides a lower bound on C,(A).

Theorem 4.5: Given i.i.d. renewal processes Si, So with
interarrival pdf f(z), then the clandestine relay throughput

under the average delay constraint A satisfies
Co(A) > C4(2A —1). 14)

Proof: Note that by symmetry of the transition (7), the
limiting distribution Y must be symmetric around (I+A)/2.
It implies that the average delay achieved by SGM using a
strict delay constraint A is equal to (I + A)/2. Therefore,
using SGM with A = 2A — [ satisfies the average delay
constraint and yields a lower bound Cjy(2A — ). [ |

Theorem 4.5 provides an explicit relationship between
the two types of clandestine relay throughput. Actually, a
stronger claim holds that any time-sharing of SGM under
various delay constraints such that the overall average delay
constraint is satisfied will provide a lower bound on Cy(A).
We have, however, observed in simulations that Cy(+) is also
a concave function of A. Therefore, time-sharing will not
improve the throughput, and the lower bound in (14) is in
fact the maximum clandestine relay throughput that can be
achieved by SGM under an average delay A.

12The time-sharing can be implemented by dividing the time window into
two parts with the ratio p/(1 — p) and then increasing the window size.
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As shown in Section V-A, the lower bound provides
a good approximation of the clandestine relay throughput
computed by AGM, indicating that SGM is near optimal
under the average delay constraint. Combining this with the
previous results in (12) and (13) shows that relaxing a strict
delay constraint to an average delay constraint doubles the
effective delay, and: (i) at small delays (A = A < 3[ /2),
the clandestine relay throughput under the average delay
constraint is twice as large as that under the strict delay
constraint, and (ii) at large delays, the fraction of chaff noise
(i.e., 1— clandestine relay throughput) under the average
delay constraint is about half of that under the strict delay
constraint if the dispersion coefficient is finite; both results
have been verified numerically (see Fig. 3).

V. SIMULATIONS
A. Simulations on Renewal Processes

Fixing the mean interarrival time 1/\ and the packet
length [ (Al < 1), we simulate the embedding algorithms on
renewal processes of the shifted exponential and the Pareto
distributions; see Table I for their properties. These distribu-
tions represent transmission schedules with exponential and
power-law IPD’s, respectively. Since the exponential IPD is
typically assumed in analysis, whereas the power-law IPD
has been shown to fit network traces [13], we use them
to investigate the influence of the Poisson assumption with
respect to the clandestine relay throughput.

TABLE I
INTERARRIVAL DISTRIBUTIONS IN THE SIMULATIONS

Distribution PDF Dispersion coefficient
Ve—XN(@=1) B
Shifted exponential TTRT
P o = —15311) e
Pareto BlPx ; 39 it Al > 3
B == ) 0.W.

We first simulate the clandestine relay throughput for
varying delay constraints, as shown in Fig. 3. The approx-
imation in Corollary 4.3 matches the simulation exactly
when it applies, whereas the approximation'® (12) has some
error which diminishes at large A (not shown). There exist
thresholds A% ~ 2] and A’ ~ 3[/2 for Cy and C,,
respectively, below which the clandestine relay throughputs
grow linearly with the delay, and their values are largely
independent of the interarrival distribution (see (13), (14)).
Above the thresholds, the growth slows down, and the shifted
exponential distribution (bold curves) has higher throughputs
than the Pareto distribution (plain curves). Since traffic with
power-law IPD’s is more likely to have large gaps and bursts
compared with traffic with exponential IPD’s, the result
indicates a negative correlation between the clandestine relay
throughput and the traffic burstiness, which confirms the
asymptotic result in (12) because the Pareto distribution has
a larger dispersion coefficient. Moreover, the lower bound

13Note that (12) is not applicable to the Pareto distribution here because
its dispersion coefficient is infinite.

on C,, achieved by SGM (dashed curves) is uniformly tight,
suggesting that SGM is near optimal under the average delay
constraint. Comparing the two types of clandestine relay
throughputs shows that: (i) for A < A%, Cy(A) = 2C4(A),
and (ii) for A > A%, 1 — Cy(A) = (1 — C4(A))/2 for the
shifted exponential distribution, which are consistent with the
analysis in Section IV-B'4,

We then study the effect of the packet length [ under fixed
delay constraints; see Fig. 4. The plot shows that there exists
a packet length I, ~ A/2 such that the clandestine relay
throughputs are maximized at ;. The phenomenon can be
explained by two contradictory effects of increasing [: on
the one hand, it compresses the IPD (since the total mean
interarrival is fixed) and thus reduces burstiness of the traffic;
on the other hand, it tightens the causality constraint and
makes it harder to embed flows. At large [ (I > I} = A/2
for Cq and | > I ~ 2A/3 for C,), the approximation in
Corollary 4.3 applies, and both throughputs decay linearly
with [ regardless of the distribution. In designing transmis-
sion schedules, these effects should be taken into account to
maximize (or minimize) the clandestine relay throughput as
the application requires.

Finally, we study the clandestine relay throughput for
variable-length packets as compared with fixed-length pack-
ets!”; see Fig. 5. Under both exponential and power-law
IPD’s, we compare the clandestine relay throughputs for
fixed, uniformly distributed, and exponentially distributed
packet lengths. In contrast to the fixed-packet-length case
(Fig. 4), the clandestine relay throughput in the variable-
packet-length case may simply decreases with the average
packet length. This is mainly because for variable-length
packets, the traffic burstiness is not reduced as much (and
may even increase) as the length grows, and thus the effect
of a tighter causality constraint dominates. How much the
packet lengths vary negatively affects the clandestine relay
throughput: the constant, uniform, and exponential distribu-
tions have increasing dispersion coefficients'® and decreasing
clandestine relay throughputs correspondingly.

B. Simulations on Traces

We simulate the proposed algorithms on network traces to
study the clandestine relay throughput in practice. We use
the traces LBL-PKT-4, which contains an hour’s wide-area
traffic between the Lawrence Berkeley Laboratory and the
Internet!’. The simulated clandestine relay throughput is then
compared with the clandestine relay throughput of renewal
processes, as shown in Fig. 6. We fit the traces with both the
shifted exponential and the Pareto interarrival distributions,
and find that the Pareto distribution with 3 = 0.6 gives
a good approximation to the clandestine relay throughput

14The result does not apply to the Pareto distribution here because it has
an infinite dispersion coefficient.

50nly Cy is plotted for clarity. Similar observation holds for Cy.

16Their dispersion coefficients are 0, 1/3, and 1, respectively.

"The traces were collected by Paxson and first used in
his paper [13], from which we extract 134 TCP traces
of 1000 packets each. The traces can be obtained from

http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html.
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of the traces, which is consistent with the previous studies
in [13] that have claimed these traces to have Pareto-like
interarrival distributions'®. Since B < 1 implies infinite
mean interarrival and zero traffic rate, the result suggests
that traces have much higher bustiness and lower clandestine
relay throughputs than renewal processes of the same rates.
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Fig. 6. Clandestine relay throughputs of traces and renewal processes
(the packet length of each trace is estimated by its minimum interarrival,
B =0.6, X = 0.1, 10% packets per process).

VI. CONCLUSION

We have studied in detail the maximum throughput of
a clandestine relay under stochastic transmission schedules
and strict or average delay constraints. Efficient algorithms
are developed to schedule the relay of flows under arbi-
trary transmission schedules with variable-length packets,
and their efficiency is characterized analytically for renewal
schedules with constant packet lengths. The result establishes
a fundamental limit of clandestine communications and
provides insights on how to constrain/improve it based on
application needs by tuning transmission schedules.

8There is a subtle difference in our results: [13] found 8 = 0.9 to fit
the interarrival distribution of the traces, whereas we find that to fit the
clandestine relay throughput, 8 should be even smaller

04
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Clandestine relay throughput vs. packet Fig. 5.
0.3, 104 packets per length (A =1, A = A =1, (B varies between A = 1, mean interarrival = 1/, 104 packets
1.1 and 10, 10% packets per process). Bold line: per process, 103 Monte Carlo runs). Bold line:
shifted exponential; plain line: Pareto.
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