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Abstract— The maximum throughput of relaying information
flows while concealing their presence is studied. The conceal-
ment is achieved by embedding transmissions of information
flows into truly independent transmission schedules that re-
semble the normal transmission behaviors without any flow.
Such embedding may reduce the throughput for delay-sensitive
flows, and the paper provides a quantitative characterization
of the level of reduction. Under a strict or average delay
constraint, the maximum normalized throughput is measured
by the efficiency of the optimal relay algorithms that embed the
most flow into given transmission schedules. Exact analytical
solutions and closed-form approximations are derived for re-
newal schedules, verified by simulations on both synthetic traffic
and traces. The results reveal general relationships between
the clandestine throughput and system parameters including
delay constraints, traffic load, and traffic distributions. In
particular, the throughput is found to be negatively related to
the burstiness of the cover traffic. Moreover, simulations show
that the throughputs of renewal traffic with certain power-
law interarrival distributions can closely approximate those of
actual traces.

Keywords: Information flow/Relayed traffic flow, Clandestine
relay, Anonymous networking, Intrusion detection.

I. INTRODUCTION

We consider the problem of relaying information flows as

a clandestine operation. We call a relay node a clandestine

relay if it hides the presence of information flows across it

from monitoring agents1. Besides its natural applications in

intelligence operations, clandestine relay can be part of the

anonymous networking paradigm in which the presence of

information flows is hidden from traffic analyzers [1]. Under-

standing clandestine relay also has implications in network

security. In the so-called wormhole attack [2], for example,

the intruder may channel a flow of information packets

through a tunnel unknown to the source and the destination.

To what degree the intruder can relay information flows
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1In contrast, a covert relay means a relay node that hides its identity
although the presence of flow may be detectable.

without being detected by networked traffic monitors is at

the heart of the problem addressed in this paper.

We assume that traffic monitors are omnipresent; all

nodes are subject to monitoring, and their timing traces

are sent to a fusion center and analyzed with unbounded

computation power. We will, however, restrict ourselves

to timing information only. Other flow information, e.g.,

addresses, flow types, and packet content, will certainly make

the monitors more powerful, but the availability of such

information makes the analysis specific to certain network

setup. For example, such information may not be available

if an anonymous routing protocol is used [3].

It is apparent that, if timing is the only information

available, it would not be possible to track a specific packet.

We assume that packets in an information flow are subject

to delay constraints. Such constraints may be strict in the

form of a maximum tolerable delay, or flexible in the form

of an upper bound on the average delay. If packets in an

information flow must be forwarded within a deadline (strict

or average), then the transmission timings on the relay route

will exhibit certain statistical correlations, and it is such

correlations that make it possible to detect the presence of

information flows through traffic analysis.

Given that nodes performing clandestine relaying cannot

hide the act of transmission, they have to embed transmis-

sions of the information flow into their normal transmission

schedules, which provide “cover traffic” for the desired flow.

For example, a particular type of cover traffic may be gen-

erated from statistically independent transmission schedules.

If relay nodes use a fraction of such transmission epochs to

relay an information flow, then the traffic analyzer, no matter

how powerful it is, will be unable to infer the presence of

this flow.

A. Summary of Results, Contributions, and Limitations

The main contributions of this paper include a character-

ization of the maximum throughput of a clandestine relay

relative to that of a normal relay and a study of various

factors affecting the throughput. Our specific contributions

are:

Optimal flow-embedding algorithms: We develop simple

yet provably optimal algorithms to embed information flows

into given transmission schedules of cover traffic under a

strict or average delay constraint. In particular, the First

In, First Out (FIFO) algorithm is shown to be optimal

under the strict delay constraint and near optimal under the

average delay constraint. A clandestine relay can use these

algorithms to achieve the maximum throughput while hiding

the presence of flow.
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Throughput analysis: We characterize the maximum (nor-

malized) clandestine throughput by analyzing the efficiency

of the proposed algorithms. Assuming that the cover traf-

fic follows renewal processes, we compute the clandestine

throughput based on the limiting distribution of a special

Markov process constructed from the embedding algorithm.

In the strict delay case, we show that the throughput grows

linearly with the maximum delay under tight delay con-

straints, but then slows down and converges to the total

traffic rate polynomially as the delay constraint is relaxed.

Moreover, the burstier the cover traffic, the lower the clan-

destine throughput. The average delay case is shown to be

approximately equivalent to the strict delay case with a delay

bound twice as large, and the same observation holds.

Simulation studies: We complement the analysis with

simulations on both renewal traffic and network traces.

Besides confirming the analytical results, and in particular

that traffic with exponential inter-packet delays (IPD’s) has

higher throughputs than those with power-law IPD’s, the

simulations also show that the throughputs of renewal traffic

with power-law IPD’s closely approximate those of actual

traces.

This paper aims to obtain insights on the fundamental

limits of clandestine relay operations. Our results are lim-

ited by the models and assumptions made for analytical

tractability. For example, the renewal traffic model may not

be accurate for some networking operations. However, a

case study shows that with proper interarrival distributions,

renewal traffic can resemble network traces reasonably well

(Section V-B). Our network model is also simplified in

that we have presented the two-hop relay scenario. Space

limitation prevents us from treating the general case of

multiple flows over arbitrary hops, but approaches similar

to those in [4], [5] can be used.

B. Related Work

The problem of characterizing the maximum throughput

of clandestine relay has not been formally studied in the past,

but problems sharing common concepts have been investi-

gated. The problem of avoiding traffic analysis using special

relays was first considered in [6], where relays called Mixes

collect packets from multiple users and relay them after

encryption and mixing to remove the correlation between

incoming and outgoing traffic. While Mix effectively hides

the routes of individual packets, a study in [7] showed that

long streams of packets under delay constraints can still be

correlated. To prevent such flow correlation, the method of

cover traffic is used to pad the actual traffic with dummy

packets such that the overall transmission activities stay fixed

[1]. Although fixed scheduling hides the correlation, it is

inefficient and requires synchronization across the network,

and the fixed patterns themselves might as well reveal the

flow. In this paper, we overcome these issues by considering

stochastic transmission schedules that resemble the nodes’

normal transmission behavior when there is no flow.

Another line of related work is from the traffic analyzer’s

perspective. Motivated by the detection of stepping-stone

attacks [8], the problem is to detect relayed traffic flows

based on transmission patterns. Although various detectors

have been developed (see references in [4], [8]), [4] showed

that it is always possible to evade detection by embedding

flows in normal transmissions, and the efficiency of such

embedding gives a fundamental limit on flow detectability,

which is rigorously analyzed under Poisson traffic model in

[4] and extended to general renewal processes in [9].

This paper extends our earlier work in [9] in several

directions: earlier work only considered flows under strict

delay constraint, whereas here we also consider average

delay constraint and focus more on closed-form solutions

that provide tractable insights; earlier work ignores packet

sizes by modeling each schedule as a point process, whereas

here we consider variable packet sizes, which allows us to

model packet splits and merges.

The rest of the paper is organized as follows. Section II

defines the problem, and Section III presents the embedding

algorithms, which are analyzed in Section IV. Section V

presents simulation results. Then Section VI concludes the

paper.

II. PROBLEM STATEMENT

For clarity of presentation, we use uppercase letters to

denote random variables, lowercase letters for realizations,

boldface letters for vectors, and plain letters for scalars.

A. Flow Models

Denote the incoming and outgoing transmission schedules

of a relay node by ON-OFF processes Si (i = 1, 2)

Si
∆
= ([Ss

i (k), St
i (k)])∞k=1, (1)

where Ss
i (k) is the starting time and St

i(k) the termi-

nating time of the kth packet2, with a packet length3

Li(k)
∆
= St

i (k) − Ss
i (k). Schedules (S1, S2) specify the

generation of cover traffic, which is what the traffic analyzer

can observe. In particular, if the schedules represent truly

independent transmission activities, then the act of relay

will be invisible to the traffic analyzer, and thus the relay

operation is “clandestine”.

Under predetermined schedules, the act of relay can be

considered a process of embedding an information flow into

these schedules. Specifically, as illustrated in Fig. 1, we

model such embedding by a decomposition

Li(k) = L
(I)
i (k) + L

(C)
i (k), (2)

where L
(I)
i (k) denotes the effective packet length, defined

as the length of the part of the packet that belongs to an

information flow (defined below), and L
(C)
i (k) the length of

the remaining part, called chaff noise. Chaff noise models

transmissions that are not part of the flow, including dummy

packets, dropped packets, superfluous data padded in packets,

and multiplexed packets from other flows. Information bits

2Assume that packets in the same schedule do not overlap.
3Since the problem is defined in time domain, we measure a packet length

by the duration of transmitting that packet.
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and chaff bits can be mixed in any order within a packet,

and L
(I)
i (k), L

(C)
i (k) denote their total lengths, respectively

(either L
(I)
i (k) or L

(C)
i (k) can be zero).

S1

S2

Ss
1(k) St

1(k)
L1(k)

L
(I)
1 (k) delay

IPD

information chaff
blockblock

subblocks

Fig. 1. Decompose schedules Si (i = 1, 2) into information-carrying
subschedules and chaff noise, where the information-carrying subschedules
have to match with each other (denoted by arrows) under certain constraints.

We say that transmission schedules (S1, S2) contain an

embedded information flow if they can be decomposed as in

(2) such that the following definition holds.

Definition 2.1: A pair of transmission schedules (S1, S2)

with effective packet lengths (L
(I)
1 , L

(I)
2 ) is a (two-hop)

information flow if the following conditions hold a.s. (almost

surely):

1) Flow-conservation:
∞
∑

m=1
L

(I)
1 (m) =

∞
∑

n=1
L

(I)
2 (n);

2) Causality:
∑

m: St

1
(m)≤t

L
(I)
1 (m) ≥

∑

n: Ss

2
(n)≤t

L
(I)
2 (n) for

all t;
3) Bounded delay: under strict delay bound ∆,

∑

m: St

1
(m)≤t

L
(I)
1 (m) ≤

∑

n: St

2
(n)≤t+∆

L
(I)
2 (n), ∀t; (3)

under average delay bound ∆̄,

lim
t→∞

∑

St

2
(n)≤t

L
(I)
2 (n)St

2(n)−
∑

St

1
(m)≤t

L
(I)
1 (m)St

1(m)

∑

St

2
(n)≤t

L
(I)
2 (n)

≤ ∆̄. (4)

The flow-conservation constraint defines a relay operation

by requiring the effective traffic volume to be conserved dur-

ing relay. The causality constraint ensures that information in

a packet can be relayed only after the whole packet arrives,

allowing packet-level transformation such as decryption and

re-encryption. The delay constraint imposes requirement on

the timeliness of relayed information4, where a strict delay

bound enforces every information bit to leave the relay within

∆ time of arrival, and an average delay bound only requires

the time-averaged delay per information bit to be bounded5.

The above definition allows packets to be combined, split,

delayed, and permuted during relay. Intuitively, the con-

ditions guarantee that there exists a decomposition of the

4We distinguish “delay”, denoting the time between the complete arrival
of an incoming packet and the complete departure of a relay packet,
from “inter-packet delay” (IPD), standing for the OFF period between two
consecutive packets transmitted by the same node (see Fig. 1).

5The strict and the average delay constraints are extended from [5], where
the original models ignore packet sizes.

information blocks into subblocks such that the subblocks in

the two schedules are in 1-1 correspondence and of equal

length (see Fig. 1). We assume that ∆ and ∆̄ are known.

B. Clandestine Relay Throughput

The constraints in Definition 2.1 imply that not every

transmission in given schedules can be used to relay infor-

mation. We measure the efficiency of relaying information

flow under given schedules by the asymptotic fraction of

embedded information flow, stated as follows.

Definition 2.2: Given transmission schedules (S1, S2),
the maximum normalized throughput of a clandestine re-

lay (clandestine relay throughput) under these schedules is

defined as the maximum asymptotic fraction of embedded

information flows, i.e.,

C(S1, S2)
∆
= sup{r ∈ [0, 1] : ∃(L

(I)
i )2i=1 such that:

1) (Si)
2
i=1 with effective packet lengths

(L
(I)
i )2i=1 is an information flow ;

2) lim inf
N→∞

N
∑

k=1

L
(I)
1 (k) + L

(I)
2 (k)

N
∑

k=1

L1(k) + L2(k)

≥ r a.s.}.

(5)

Under this definition, the clandestine relay throughput is

the long-term fraction of information blocks (in length), max-

imized over all possible ways of embedding them into the

given schedules. Intuitively, the clandestine relay throughput

tells us for a relay node with incoming schedule S1 and

outgoing schedule S2, what fraction of the transmission time

can be used to relay information.

III. OPTIMAL EMBEDDING ALGORITHMS

It is difficult to compute the clandestine relay throughput

directly by Definition 2.2 because it involves an optimization

over numerous possible ways of embedding information

flows. In this section, we will present algorithms that can

compute the clandestine relay throughput efficiently. The

idea is to embed the most information bits into given

realizations of transmission schedules under flow constraints.

A. Optimal Embedding under the Strict Delay Constraint

For information flows with strict delay, the optimal em-

bedding algorithm turns out to be a simple FIFO matching.

The algorithm, called “Strict Greedy Match” (SGM), sequen-

tially scans given transmission schedules and matches each

incoming packet with the first relay packet that satisfies the

causality and the delay constraints, as shown in Algorithm 1.

Specifically, variables m, n denote the indices of the current

packets, l1, l2 their remaining (unmatched) packet lengths,

and C the total length of matched information blocks. The

algorithm skips the packets that do not satisfy the causality

or the strict delay constraint (lines 3–6) and computes the

total length of packets that can be matched (line 8). The

fraction of information flow is thus C divided by the total

packet length in s1 and s2.

1084

Authorized licensed use limited to: Cornell University. Downloaded on February 27,2010 at 00:50:00 EST from IEEE Xplore.  Restrictions apply. 



Algorithm 1 Strict Greedy Match (SGM)

Require: Schedules (s1, s2), maximum delay ∆.

Ensure: Return the maximum length of information blocks

in (s1, s2) under strict delay ∆.

1: initialize: m, n ← 1, li ← st
i(1) − ss

i (1) (i = 1, 2),

C ← 0
2: while m, n are valid indices in s1, s2 do

3: if ss
2(n) < st

1(m) then {noncausal}
4: l2 ← 0 {skip the packet in s2}
5: else if st

1(m) < st
2(n)−∆ then {delay > ∆}

6: l1 ← 0 {skip the packet in s1}
7: else {find a valid match}
8: C ← C + 2 min(l1, l2)
9: l1 ← l1 −min(l1, l2), l2 ← l2 −min(l1, l2)

10: if l1 = 0 then {update indices}
11: m← m + 1, l1 ← st

1(m)− ss
1(m)

12: if l2 = 0 then

13: n← n + 1, l2 ← st
2(n)− ss

2(n)
14: return C

This algorithm is an extension of the algorithm “Bounded

Greedy Match” proposed in [8], which ignores packet

lengths. Since SGM is sequential, it is suitable for online em-

bedding of information flows even if the incoming schedule

is not known at the relay beforehand6. Simple as it is, SGM

is actually optimal as stated in the following proposition.

Proposition 3.1: For any given schedules (s1, s2) and

strict delay constraint ∆, SGM maximizes the total length

of embedded information blocks.

Proof: The proof borrows the idea in [8], where the key

is to build a 1-1 correspondence between unmatched packets

in our algorithm and the unmatched packets in an optimal

algorithm M∗. Suppose a data unit dt1 in s1 is matched by

M∗ but not SGM. Then since SGM always tries to match

earlier packets first, the relay of dt1 according to M∗ must be

matched to some data unit before dt1 by SGM. The process

repeats until reaching a data unit dtm that is matched in SGM

but unmatched in M∗. Thus, the length of matched blocks

in SGM is no smaller than that in M∗.

B. Optimal Embedding of Flows under the Average Delay

Constraint

As we relax the delay constraint to a bounded average

delay, the role of the constraint changes dramatically from

a hard bound to a “budget” which can be spread over

many packets. To perform optimal embedding, we resort

to the duality between maximizing the amount of matched

data and minimizing the average delay, which leads to an

algorithm called “Average Greedy Match” (AGM), shown in

Algorithm 2. Algorithm AGM iteratively finds a maximum

matching such that the average delay is bounded by ∆̄. In

each iteration (lines 2–12), AGM finds the pair of packets

6The source can overcome dropped packets by using forward error
correction codes.

that has the minimum delay among all the causal pairs

of nonempty packets (line 3; a packet is called “empty”

when its unmatched length is zero) and computes the new

average delay assuming that this pair is matched (line 4).

If the new average delay is within ∆̄, then the matching is

finalized (lines 6–9) and the iteration continues; otherwise,

we only match a portion of these packets to meet the delay

budget ∆̄ and the iteration stops (lines 11–12). The following

proposition shows the optimality of AGM.

Algorithm 2 Average Greedy Match (AGM)

Require: Schedules (s1, s2), maximum average delay ∆̄.

Ensure: Return the maximum total length of information

blocks in (s1, s2) under average delay constraint ∆̄.

1: initialize: C ← 0, d̄← 0, l1, l2 ← initial packet lengths

2: while ∃ a causal pair of nonempty packets do

3: (m, n)← indices of the packet pair with the minimum

delay among all causal, nonempty pairs

4: compute the new average delay:

d̄0 ←
Cd̄ + 2(st

2(n)− st
1(m))min(l1(m), l2(n))

C + 2 min(l1(m), l2(n))

5: if d̄0 ≤ ∆̄ then {the delay constraint is satisfied}
6: C ← C + 2 min(l1(m), l2(n))
7: d̄← d̄0

8: l1(m)← l1(m)−min(l1(m), l2(n))
9: l2(n)← l2(n)−min(l1(m), l2(n))

10: else {the delay constraint is violated}
11: C ← C + C(∆̄ − d̄)/(st

2(n)− st
1(m)− ∆̄)

12: go to line 13

13: return C

Proposition 3.2: For any given (s1, s2) and average delay

constraint ∆̄, AGM maximizes the total length of embedded

information blocks.

Proof: The proof is by contradiction. Assume an-

other algorithm M∗ can embed more data under the same

constraint. Then if embedding the same amount of data,

M∗ must achieve a smaller average delay than AGM. This

contradicts the fact that AGM minimizes the average delay

for any given amount of matched data.

Unlike SGM, AGM cannot be used for online scheduling

of relay because it is not sequential7, unless the relay knows

the incoming schedule, e.g., by exchanging seeds for the

random schedule generators. It is, however, representative of

what can be achieved by sequential algorithms (see Fig. 3).

IV. COMPUTING THE CLANDESTINE RELAY

THROUGHPUT

This section is dedicated to analytical characterization of

the clandestine relay throughput. Throughout the section, we

consider fixed-length packets for simplicity, i.e., every packet

7Algorithm AGM may scan the schedules multiple times with a total
complexity of O(N2), where N is the number of packets, whereas SGM
has complexity O(N).
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has equal length l. Variable-length packets can be handled

by partitioning them into smaller “packets” of fixed length8.

For fixed-length packets, it suffices to specify the starting

times of a transmission schedule:

Si = (Ss
i (k))∞k=1, i = 1, 2, (6)

or Si = (Si(k))∞k=1 for short, where each interarrival time

Si(k+1)−Si(k) is the summation of packet length l and the

IPD. In this section, we consider a special family of sched-

ules with i.i.d. interarrival times, i.e., renewal processes.

While network traffic is not really renewal, we observe

in simulations that renewal traffic with certain interarrival

distribution has similar clandestine relay throughputs as

traces (see Section V-B) and thus assume renewal traffic for

rigorous analysis.

A. Clandestine Relay Throughput under the Strict Delay

Constraint

For flows with strict delay, the clandestine relay through-

put is computed by the optimal embedding algorithm SGM.

For fixed-length packets, we see from Algorithm 1 that in

the jth iteration (j ≥ 1), one of the following cases will

happen:

1) if s2(n) − s1(m) < l, then the matching is noncausal,

and n← n + 1;

2) if s2(n)− s1(m) > ∆, then the delay is too large, and

m← m + 1;

3) if s2(n) − s1(m) ∈ [l, ∆], then this is a valid pair of

information packets, and n← n + 1, m← m + 1.

Combining the above, we obtain an evolution of the pairwise

packet delay Yj
∆
= S2(n) − S1(m) (capital letters denote

random variables):

Yj =







Yj−1 + Vj if Yj−1 < l
Yj−1 − Uj if Yj−1 > ∆
Yj−1 + Vj − Uj o.w.,

(7)

where Uj
∆
= S1(m) − S1(m − 1), Vj

∆
= S2(n) − S2(n − 1)

denote the next interarrivals in S1 and S2, respectively.

The merit of introducing Yj is that it bridges the algorithm

and the analysis. On the one hand, each Yj within the interval

[l, ∆] corresponds to a pair of information packets, whereas

each Yj outside this interval corresponds to a chaff packet;

on the other hand, the behavior of Yj’s is easily analyzable

because of the following property.

Proposition 4.1: If Si (i = 1, 2) are renewal processes,

then Y
∆
= (Yj)

∞
j=1 (Y1

∆
= V1 = U1) is a Markov process with

transition (7).

Proof: Since the interarrivals Uj , Vj are independent for

difference j, Yj depends on (Yk)k≤j−1 only through Yj−1.

Therefore, Y is Markovian.

The Markovianess of Y leads to a unique property of

SGM that given the current Yj , whether or not the next

packet can relay information is independent of the history.

8The optimality of the proposed algorithms holds for arbitrary packet
lengths; further analysis is left for future work.

The result is that in the long run, the behavior of SGM looks

like repetitions of short durations, and thus the fraction of

matched packets will converge as time increases. This is the

idea of stochastic stability. Based on this idea, we derive an

analytical solution to the clandestine relay throughput.

Theorem 4.2: If S1 and S2 are i.i.d. renewal processes

with interarrival probability density function (pdf) f(x)
(f(x) ≡ 0 for x < l), then the fraction of packets matched

by SGM converges a.s., and the limit (i.e., the clandestine

relay throughput under the strict delay constraint) is

Cd(∆)
∆
= C(S1, S2; ∆) =

2− 2q

2− q
, (8)

where q
∆
= lim

j→∞
Pr{Yj 6∈ [l, ∆]} can be computed by

1 + H(l) − H(∆), where H(x) (x ∈ R) is the invariant

cumulative distribution function (cdf) of Y. Furthermore,

H(x) is the solution to

H(x) = L(x) +

l
∫

−∞

H(y)f(x− y)dy

+

∆
∫

l

H(y)g(x− y)dy +

∞
∫

∆

H(y)f(y − x)dy, (9)

where g(x) is the convolution of f(x) and f(−x), defined

as g(x)
∆
=

∞
∫

0

f(y)f(y − x)dy, and

L(x)
∆
= [F (x− l)−G(x − l)]H(l) +

[

G(x−∆)

+F (∆− x)− 1
]

H(∆) (10)

with F (x), G(x) being the cdf’s of f(x), g(x), respectively.

Proof: Assume Y has the property that the frequency

for Yj to fall outside the interval [l, ∆] converges a.s. to

a constant, defined as q. Then since each Yj outside [l, ∆]
represents a chaff packet whereas each Yj inside the interval

represents a pair of information packets, we see that SGM

converges a.s., and the clandestine relay throughput, which

is the limiting fraction of information packets, is given by

2(1 − q)/(2 − q). By definition, q = H(l) + 1 −H(∆) for

the invariant cdf H(x) of Y, and it can be shown that this

invariant cdf must satisfy (9). For details, see [10].

Theorem 4.2 provides both numerical and analytical meth-

ods of computing the clandestine relay throughput. Numeri-

cally, since SGM converges, we can run SGM on sufficiently

long realizations of the schedules; analytically, we can di-

rectly solve (9) to compute (8). Equation (9) is a Fredholm

integral equation of the second kind and can be solved by

Neumann Series through iterations [11].

In general, there is no closed-form expression for the

clandestine relay throughput9. Instead, we focus on regimes

where clean results can be obtained to provide insight into

the relationship between the clandestine relay throughput and

9More explicit upper and lower bounds for special families of distribu-
tions have been obtained and will be reported elsewhere.
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the traffic distribution. For the special case of exponential

interarrival distribution, i.e., f(x) = λe−λx and l = 0, the

schedules are Poisson processes of rate λ, and we have a

closed-form solution

CExp

d (∆) =
λ∆

1 + λ∆
. (11)

For large delays (λ(∆− l)≫ 1), it has been shown in [12]

that for interarrival times with finite variance10,

Cd(∆) ≈
λ(∆− l)

γ + λ(∆ − l)
, (12)

where λ is the traffic rate (λ
∆
= 1/E[U ] for interarrival U ),

and γ
∆
= Var[U ]/(E[U ])2 is the dispersion coefficient of the

interarrival distribution. For small delays, we provide the

following approximation.

Corollary 4.3: Under the conditions in Theorem 4.2, if

∆ < 2l, then

Cd(∆) ≈ λ(∆− l), (13)

where λ is the traffic rate.

Proof: If ∆ < 2l, then different incoming packets

will have different candidate relay packets, and thus, we

can approximate Cd(∆) by the probability that a particular

packet is matched11. As illustrated in Fig. 2, for a packet

S1(k) to be matched to the first relay packet S2(j) after it, it

has to completely fall into an interval of length ∆ right before

S2(j), i.e., its starting time needs to fall into an interval of

length ∆ − l. Since the processes are independent, S1(k)
is uniformly distributed between S2(j − 1) and S2(j), and

thus the probability of matching is (∆ − l)E[1/U ] for an

interarrival U . By Jensen’s inequality, it is lower bounded

by (∆− l)/E[U ] = λ(∆− l).

S1

S2

∆
U

l
S1(k)

S2(j − 1) S2(j)

Fig. 2. At a small delay (∆ < 2l), the clandestine relay throughput can be
approximated by the probability that a random incoming packet falls within
the ∆-length window before its candidate relay packet.

From (12) and (13), we see that the clandestine relay

throughput is only a function of the effective delay λ(∆− l)
(i.e., the flexible portion of the delay (∆− l) normalized by

the mean interarrival 1/λ), and is invariant to the scaling of

delay, packet length, and traffic rate as long as this effective

delay remains the same. The clandestine relay throughput

10The original result in [12] is for point processes, but it can be easily
generalized to ON-OFF processes with fixed packet lengths.

11This is an approximation because the matchings of incoming packets
are correlated.

converges to one as the effective delay increases, and the con-

vergence rate is linear at small delays but O(1/(λ(∆− l)))
at large delays. Moreover, Corollary 4.3 reveals a surprising

fact that although at larger delays, the interarrival distribution

matters (e.g., through the dispersion coefficient), at small

delays, the distribution becomes immaterial. The borderline

∆∗ = 2l of Corollary 4.3 actually acts as a threshold

separating the two regimes (see Fig. 3).

B. Clandestine Relay Throughput under the Average Delay

Constraint

Under the average delay constraint, the constraint is flex-

ible because large delays are allowed as long as there are

sufficiently many small delays to average them out. This

nature of the constraint leads to the following property of

the clandestine relay throughput.

Proposition 4.4: The clandestine relay throughput under

the average delay constraint Ca(∆̄)
∆
= C(S1, S2; ∆̄) is a

concave function with respect to ∆̄ for any Si (i = 1, 2).

Proof: For any p ∈ [0, 1] and ∆1, ∆2 > 0 s.t.

∆̄ = p∆1 +(1−p)∆2, one way to achieve an average delay

∆̄ is to use AGM with constraint ∆1 for p fraction of the

time and ∆2 for the rest12, which will yield a throughput of

pCa(∆1) + (1 − p)Ca(∆2). By definition, Ca(∆̄) must be

no smaller than this linear combination, and thus Ca(·) is

concave.

In AGM, whether a packet can be matched depends on the

delays of all the other matched packets. Such global correla-

tion renders the previous Markovian approach inapplicable.

Instead, we seek to bound Ca(∆̄). It is easy to see that using

SGM with a strict delay constraint ∆ such that the average

delay is ∆̄ provides a lower bound on Ca(∆̄).
Theorem 4.5: Given i.i.d. renewal processes S1, S2 with

interarrival pdf f(x), then the clandestine relay throughput

under the average delay constraint ∆̄ satisfies

Ca(∆̄) ≥ Cd(2∆̄− l). (14)

Proof: Note that by symmetry of the transition (7), the

limiting distribution Y must be symmetric around (l+∆)/2.

It implies that the average delay achieved by SGM using a

strict delay constraint ∆ is equal to (l + ∆)/2. Therefore,

using SGM with ∆ = 2∆̄ − l satisfies the average delay

constraint and yields a lower bound Cd(2∆̄− l).

Theorem 4.5 provides an explicit relationship between

the two types of clandestine relay throughput. Actually, a

stronger claim holds that any time-sharing of SGM under

various delay constraints such that the overall average delay

constraint is satisfied will provide a lower bound on Ca(∆̄).
We have, however, observed in simulations that Cd(·) is also

a concave function of ∆. Therefore, time-sharing will not

improve the throughput, and the lower bound in (14) is in

fact the maximum clandestine relay throughput that can be

achieved by SGM under an average delay ∆̄.

12The time-sharing can be implemented by dividing the time window into
two parts with the ratio p/(1 − p) and then increasing the window size.
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As shown in Section V-A, the lower bound provides

a good approximation of the clandestine relay throughput

computed by AGM, indicating that SGM is near optimal

under the average delay constraint. Combining this with the

previous results in (12) and (13) shows that relaxing a strict

delay constraint to an average delay constraint doubles the

effective delay, and: (i) at small delays (∆ = ∆̄ < 3l/2),

the clandestine relay throughput under the average delay

constraint is twice as large as that under the strict delay

constraint, and (ii) at large delays, the fraction of chaff noise

(i.e., 1− clandestine relay throughput) under the average

delay constraint is about half of that under the strict delay

constraint if the dispersion coefficient is finite; both results

have been verified numerically (see Fig. 3).

V. SIMULATIONS

A. Simulations on Renewal Processes

Fixing the mean interarrival time 1/λ and the packet

length l (λl ≤ 1), we simulate the embedding algorithms on

renewal processes of the shifted exponential and the Pareto

distributions; see Table I for their properties. These distribu-

tions represent transmission schedules with exponential and

power-law IPD’s, respectively. Since the exponential IPD is

typically assumed in analysis, whereas the power-law IPD

has been shown to fit network traces [13], we use them

to investigate the influence of the Poisson assumption with

respect to the clandestine relay throughput.

TABLE I

INTERARRIVAL DISTRIBUTIONS IN THE SIMULATIONS

Distribution PDF Dispersion coefficient

Shifted exponential
λ′e−λ′(x−l)

(λ′ = λ
1−λl

)
1

(1+λ′l)2

Pareto
βlβx−β−1

(β = 1
1−λl

)

1
β(β−2)

if λl > 1
2

∞ o.w.

We first simulate the clandestine relay throughput for

varying delay constraints, as shown in Fig. 3. The approx-

imation in Corollary 4.3 matches the simulation exactly

when it applies, whereas the approximation13 (12) has some

error which diminishes at large ∆ (not shown). There exist

thresholds ∆∗
d ≈ 2l and ∆∗

a ≈ 3l/2 for Cd and Ca,

respectively, below which the clandestine relay throughputs

grow linearly with the delay, and their values are largely

independent of the interarrival distribution (see (13), (14)).

Above the thresholds, the growth slows down, and the shifted

exponential distribution (bold curves) has higher throughputs

than the Pareto distribution (plain curves). Since traffic with

power-law IPD’s is more likely to have large gaps and bursts

compared with traffic with exponential IPD’s, the result

indicates a negative correlation between the clandestine relay

throughput and the traffic burstiness, which confirms the

asymptotic result in (12) because the Pareto distribution has

a larger dispersion coefficient. Moreover, the lower bound

13Note that (12) is not applicable to the Pareto distribution here because
its dispersion coefficient is infinite.

on Ca achieved by SGM (dashed curves) is uniformly tight,

suggesting that SGM is near optimal under the average delay

constraint. Comparing the two types of clandestine relay

throughputs shows that: (i) for ∆ < ∆∗
a, Ca(∆) ≈ 2Cd(∆),

and (ii) for ∆≫ ∆∗
d, 1 − Ca(∆) ≈ (1 − Cd(∆))/2 for the

shifted exponential distribution, which are consistent with the

analysis in Section IV-B14.

We then study the effect of the packet length l under fixed

delay constraints; see Fig. 4. The plot shows that there exists

a packet length l∗d ≈ ∆/2 such that the clandestine relay

throughputs are maximized at l∗d. The phenomenon can be

explained by two contradictory effects of increasing l: on

the one hand, it compresses the IPD (since the total mean

interarrival is fixed) and thus reduces burstiness of the traffic;

on the other hand, it tightens the causality constraint and

makes it harder to embed flows. At large l (l > l∗d ≈ ∆/2
for Cd and l > l∗a ≈ 2∆/3 for Ca), the approximation in

Corollary 4.3 applies, and both throughputs decay linearly

with l regardless of the distribution. In designing transmis-

sion schedules, these effects should be taken into account to

maximize (or minimize) the clandestine relay throughput as

the application requires.

Finally, we study the clandestine relay throughput for

variable-length packets as compared with fixed-length pack-

ets15; see Fig. 5. Under both exponential and power-law

IPD’s, we compare the clandestine relay throughputs for

fixed, uniformly distributed, and exponentially distributed

packet lengths. In contrast to the fixed-packet-length case

(Fig. 4), the clandestine relay throughput in the variable-

packet-length case may simply decreases with the average

packet length. This is mainly because for variable-length

packets, the traffic burstiness is not reduced as much (and

may even increase) as the length grows, and thus the effect

of a tighter causality constraint dominates. How much the

packet lengths vary negatively affects the clandestine relay

throughput: the constant, uniform, and exponential distribu-

tions have increasing dispersion coefficients16 and decreasing

clandestine relay throughputs correspondingly.

B. Simulations on Traces

We simulate the proposed algorithms on network traces to

study the clandestine relay throughput in practice. We use

the traces LBL-PKT-4, which contains an hour’s wide-area

traffic between the Lawrence Berkeley Laboratory and the

Internet17. The simulated clandestine relay throughput is then

compared with the clandestine relay throughput of renewal

processes, as shown in Fig. 6. We fit the traces with both the

shifted exponential and the Pareto interarrival distributions,

and find that the Pareto distribution with β = 0.6 gives

a good approximation to the clandestine relay throughput

14The result does not apply to the Pareto distribution here because it has
an infinite dispersion coefficient.

15Only Cd is plotted for clarity. Similar observation holds for Ca.
16Their dispersion coefficients are 0, 1/3, and 1, respectively.
17The traces were collected by Paxson and first used in

his paper [13], from which we extract 134 TCP traces
of 1000 packets each. The traces can be obtained from
http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html.
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Fig. 3. Clandestine relay throughput vs. delay
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1.1 and 10, 104 packets per process). Bold line:
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of the traces, which is consistent with the previous studies

in [13] that have claimed these traces to have Pareto-like

interarrival distributions18. Since β < 1 implies infinite

mean interarrival and zero traffic rate, the result suggests

that traces have much higher bustiness and lower clandestine

relay throughputs than renewal processes of the same rates.
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Fig. 6. Clandestine relay throughputs of traces and renewal processes
(the packet length of each trace is estimated by its minimum interarrival,
β = 0.6, λ′ = 0.1, 103 packets per process).

VI. CONCLUSION

We have studied in detail the maximum throughput of

a clandestine relay under stochastic transmission schedules

and strict or average delay constraints. Efficient algorithms

are developed to schedule the relay of flows under arbi-

trary transmission schedules with variable-length packets,

and their efficiency is characterized analytically for renewal

schedules with constant packet lengths. The result establishes

a fundamental limit of clandestine communications and

provides insights on how to constrain/improve it based on

application needs by tuning transmission schedules.

18There is a subtle difference in our results: [13] found β ≈ 0.9 to fit
the interarrival distribution of the traces, whereas we find that to fit the
clandestine relay throughput, β should be even smaller
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