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Abstract— We consider the following fundamental prob-

lem: given a matrix that is the sum of an unknown sparse

matrix and an unknown low-rank matrix, is it possible

to exactly recover the two components? Such a capability

enables a considerable number of applications, but the goal

is both ill-posed and NP-hard in general. In this paper

we develop (a) a new uncertainty principle for matrices,

and (b) a simple method for exact decomposition based

on convex optimization. Our uncertainty principle is a

quantification of the notion that a matrix cannot be sparse

while having diffuse row/column spaces. It characterizes

when the decomposition problem is ill-posed, and forms the

basis for our decomposition method and its analysis. We

provide deterministic conditions – on the sparse and low-

rank components – under which our method guarantees

exact recovery.

I. INTRODUCTION

Given a matrix formed by adding an unknown sparse

matrix and an unknown low-rank matrix, we study the

problem of decomposing the composite matrix into its

sparse and low-rank components. Such a problem arises

in a number of applications in statistical model selection,

machine learning, system identification, computational

complexity theory, and optics. In this paper we provide

conditions under which the decomposition problem is

well-posed, i.e., the sparse and low-rank components are

fundamentally identifiable, and present tractable convex

relaxations that recover the sparse and low-rank compo-

nents exactly.

Main results: Formally let C = A⋆ + B⋆ with A⋆

being a sparse matrix and B⋆ a low-rank matrix. Given

C our goal is to recover A⋆ and B⋆ without any prior

information about the sparsity pattern of A⋆, or the

rank/singular vectors of B⋆. In the absence of additional
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conditions, this decomposition problem is clearly ill-

posed. There are a number of situations in which a

unique decomposition may not exist; for example the

low-rank matrix B⋆ could itself be very sparse, making

it hard to uniquely identify from another sparse matrix.

In order to characterize when exact recovery is possible

we develop a new notion of rank-sparsity incoherence,

which relates the sparsity pattern of a matrix to its

row/column spaces via an uncertainty principle. Our

analysis is geometric in nature, with the tangent spaces

to the algebraic varieties of sparse and low-rank matrices

playing a prominent role.

Solving the decomposition problem is NP-hard in gen-

eral. A reasonable first approach might be to minimize

γ|support(A)| + rank(B) subject to the constraint that

A+B = C, where γ serves as a tradeoff between sparsity

and rank. This problem is combinatorially complex and

intractable to solve in general; we propose a tractable

convex optimization problem where the objective is a

convex relaxation of γ|support(A)|+rank(B). We relax

|support(A)| by replacing it with the ℓ1 norm ‖A‖1,

which is the sum of the absolute values of the entries of

A. We relax rank(B) by replacing it with the nuclear

norm ‖B‖∗, which is the sum of the singular values

of B. Notice that the nuclear norm can be viewed as

an “ℓ1 norm” applied to the singular values (recall that

the rank of a matrix is the number of non-zero singular

values). The ℓ1 and nuclear norms have been shown to

be effective surrogates for |support(·)| and rank(·), and

a number of results give conditions under which these

relaxations recover sparse [2], [7], [6], [5], [4] and low-

rank [1], [8], [14] objects. Thus we aim to decompose

C into its components A⋆ and B⋆ using the following

convex relaxation:

(Â, B̂) = arg min
A,B

γ‖A‖1 + ‖B‖∗

s.t. A + B = C.
(1)

One can transform (1) into a semidefinite program (SDP)

[18], for which there exist polynomial-time general-

purpose solvers. We show that under certain conditions

on sparse and low-rank matrices (A⋆, B⋆) the unique

optimum of the SDP (1) is (Â, B̂) = (A⋆, B⋆). In fact
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the conditions for exact recovery are simply a mild tight-

ening of the conditions for fundamental identifiability.

Essentially these conditions require that the sparse matrix

does not have support concentrated within a single

row/column, while the low-rank matrix does not have

row/column spaces closely aligned with the coordinate

axes. An interesting feature of our conditions is that no

assumptions are required on the magnitudes of the non-

zero values of the sparse matrix A⋆ or the singular values

of the low-rank matrix B⋆. We also describe a method

to determine the trade-off γ numerically given C. We do

not give detailed proofs of our results in this paper. Many

of these results appear with proofs in a longer report [3].

Applications: We briefly outline various applications

of our method; see [3] for more details. In a statistical

model selection setting, the sparse matrix can correspond

to a Gaussian graphical model [11] and the low-rank

matrix can summarize the effect of latent, unobserved

variables. Decomposing a given model into these simpler

components is useful for developing efficient estimation

and inference algorithms. In computational complexity,

the notion of matrix rigidity [17] captures the smallest

number of entries of a matrix that must be changed in

order to reduce the rank of the matrix below a speci-

fied level (the changes can be of arbitrary magnitude).

Bounds on the rigidity of a matrix have several implica-

tions in complexity theory [13]. Similarly, in a system

identification setting the low-rank matrix represents a

system with a small model order while the sparse matrix

represents a system with a sparse impulse response.

Decomposing a system into such simpler components

can be used to provide a simpler, more efficient de-

scription. In optics, many real-world imaging systems

are efficiently described as a sum of a diagonal matrix

(representing a so-called “incoherent” system) and a low-

rank matrix (representing a “coherent” component) [9].

Our results provide a tractable method to describe a

composite optical system in terms of simpler component

systems. More generally, our approach also extends the

applicability of rank minimization, such as in problems

in spectral data analysis.

II. IDENTIFIABILITY

As described in the introduction, the matrix decompo-

sition problem is ill-posed in the absence of additional

conditions. In this section we discuss and quantify the

further assumptions required on sparse and low-rank ma-

trices for this decomposition to be unique. Throughout

this paper, we restrict ourselves to n×n matrices to avoid

cluttered notation. All our analysis extends to rectangular

n1×n2 matrices if we simply replace n by max(n1, n2).

A. Preliminaries

We begin with a brief description and properties of

the algebraic varieties of sparse and low-rank matrices.

An algebraic variety is the solution set of a system of

polynomial equations [10]. Sparse matrices constrained

by the size of their support can be viewed as algebraic

varieties:

S(m) , {M ∈ R
n×n | |support(M)| ≤ m}. (2)

The dimension of this variety is m. In fact S(m) can

be thought of as a union of
(

n2

m

)

subspaces, with each

subspace being aligned with m of the n2 coordinate axes.

To see that S(m) is a variety, we note that a union

of varieties is also a variety and that each of the
(

n2

m

)

subspaces in S(m) can be described by a system of linear

equations. For any matrix M ∈ R
n×n, the tangent space

Ω(M) with respect to S(|support(M)|) at M is given

by

Ω(M) = {N | support(N) ⊆ support(M), N ∈ R
n×n}.

(3)

If |support(M)| = m the dimension of Ω(M) is m. We

view Ω(M) as a subspace in R
n×n.

Next the variety of rank-constrained matrices is de-

fined as:

R(k) , {M ∈ R
n×n | rank(M) ≤ k}. (4)

The dimension of this variety is k(2n − k). To see that

R(k) is a variety, note that the determinant of any (k +
1)×(k+1) submatrix of a matrix in R(k) must be zero.

As the determinant of any submatrix is a polynomial in

the elements of the matrix, R(k) can be described as

the solution set of a system of polynomial equations.

For any matrix M ∈ R
n×n, the tangent space T (M)

with respect to R(rank(M)) at M is the span of all

matrices with either the same row-space as M or the

same column-space as M . Specifically, let M = UΣV T

be the singular value decomposition (SVD) of M with

U, V ∈ R
n×k, where rank(M) = k. Then we have that

T (M) = {UXT + Y V T | X, Y ∈ R
n×k}. (5)

The dimension of T (M) is k(2n−k). As before we view

T (M) as a subspace in R
n×n. Since both T (M) and

Ω(M) are subspaces of R
n×n, we can compare vectors in

these subspaces. For more details and geometric intuition

on these algebraic varieties and their tangent spaces, we

refer the reader to our longer report [3].

B. Identifiability issues

We describe two situations in which identifiability

issues arise. These examples suggest the kinds of ad-

ditional conditions that are required in order to ensure
963



that there exists a unique decomposition into sparse and

low-rank matrices.

First let A⋆ be any sparse matrix and let B⋆ = eie
T
j ,

where ei represents the i’th standard basis vector. In this

case the rank-1 matrix B⋆ is also very sparse, and a

valid sparse-plus-low-rank decomposition might be Â =
A⋆ + eie

T
j and B̂ = 0. Thus, we need conditions that

ensure that the low-rank matrix is not too sparse. For any

matrix M , consider the following quantity with respect

to the tangent space T (M):

ξ(M) , max
N∈T (M), ‖N‖≤1

‖N‖∞. (6)

Here ‖ · ‖ is the spectral norm (i.e., the largest singular

value), and ‖·‖∞ denotes the largest entry in magnitude.

Thus ξ(M) being small implies that elements of the tan-

gent space T (M) cannot have their support concentrated

in a few locations; as a result M cannot be very sparse.

We formalize this idea by relating ξ(M) to a notion of

“incoherence” of the row/column spaces, where we view

row/column spaces as being incoherent with respect to

the standard basis if these spaces are not aligned closely

with any of the coordinate axes. Letting M = UΣV T

be the singular value decomposition of M , we measure

the incoherence of the row/column spaces of M as:

inc(M) , max

[

max
i

‖PUei‖2,max
i

‖PV ei‖2

]

. (7)

Here ‖ · ‖2 represent the vector ℓ2 norm, and PV , PU

denote projections onto the row/column spaces. Hence

inc(M) measures the projection of the most “closely

aligned” coordinate axis with the row/column spaces. For

any rank-k matrix M we have that

√

k
n

≤ inc(M) ≤

1, where the lower bound is achieved (for example)

if the row/column spaces span any k columns of an

n × n orthonormal Hadamard matrix, while the upper

bound is achieved if the row or column space contains

a standard basis vector. Typically a matrix M with

incoherent row/column spaces would have inc(M) ≪ 1.

The following result shows that the more incoherent the

row/column spaces of M , the smaller is ξ(M).
Proposition 1: For any M ∈ R

n×n, we have that

inc(M) ≤ ξ(M) ≤ 2 inc(M),

where ξ(M) and inc(M) are defined in (6) and (7).

Example: If M ∈ R
n×n is a full-rank matrix or a

matrix such as eie
T
j , then ξ(M) = 1. Thus a bound

on the incoherence of the row/column spaces of M is

important in order to bound ξ.

Next consider the scenario in which B⋆ is any low-

rank matrix and A⋆ = −veT
1 with v being the first

column of B⋆. Thus, C = A⋆ + B⋆ has zeros in the

first column, rank(C) = rank(B⋆), and C has the same

column space as B⋆. A reasonable sparse-plus-low-rank

decomposition in this case might be B̂ = B⋆ + A⋆ and

Â = 0. Here rank(B̂) = rank(B⋆). Requiring that a

sparse matrix A⋆ have “bounded degree” (i.e., few non-

zero entries per row/column) avoids such identifiability

issues. For any matrix M , we define the following

quantity with respect to the tangent space Ω(M):

µ(M) , max
N∈Ω(M), ‖N‖∞≤1

‖N‖. (8)

The quantity µ(M) being small for a matrix implies that

the spectrum of any element of the tangent space Ω(M)
is not too “concentrated”, i.e., the singular values of these

elements are not too large. We show in the following

proposition that a sparse matrix M with “bounded de-

gree” (a small number of non-zeros per row/column) has

small µ(M).
Proposition 2: Let M ∈ R

n×n be any matrix with

at most degmax(M) non-zero entries per row/column,

and with at least degmin(M) non-zero entries per

row/column. With µ(M) as defined in (8), we have that

degmin(M) ≤ µ(M) ≤ degmax(M).
Example: Note that if M ∈ R

n×n has full support,

i.e., Ω(M) = R
n×n, then µ(M) = n. Therefore,

a constraint on the number of zeros per row/column

provides a useful bound on µ. We emphasize here that

simply bounding the number of non-zero entries in M

does not suffice; the sparsity pattern also plays a role in

determining the value of µ.

III. RANK-SPARSITY UNCERTAINTY PRINCIPLE AND

EXACT RECOVERY

In this section we show that sparse matrices A⋆ with

small µ(A⋆) and low-rank matrices B⋆ with small ξ(B⋆)
are identifiable given C = A⋆ + B⋆, and can in fact be

exactly recovered using the SDP (1).

A. Tangent-space identifiability

Before analyzing whether (A⋆, B⋆) can be recovered

in general (for example, using the SDP (1)), we ask

a simpler question. Suppose that we had prior infor-

mation about the tangent spaces Ω(A⋆) and T (B⋆),
in addition to being given C = A⋆ + B⋆. Can we

then uniquely recover (A⋆, B⋆) from C? Assuming such

prior knowledge of the tangent spaces is unrealistic in

practice as it is equivalent to assuming prior knowledge

of the support of A⋆ and the row/column spaces of

B⋆; however, we obtain useful insight into the kinds

of conditions required on sparse and low-rank matrices

for exact decomposition. Given this knowledge of the
964



tangent spaces, a necessary and sufficient condition for

unique recovery is that the tangent spaces Ω(A⋆) and

T (B⋆) intersect transversally:

Ω(A⋆) ∩ T (B⋆) = {0}. (9)

That is, the subspaces Ω(A⋆) and T (B⋆) have a trivial

intersection. The sufficiency of this condition for unique

decomposition is easily seen. For the necessity part,

suppose for the sake of a contradiction that a non-zero

matrix M belongs to Ω(A⋆) ∩ T (B⋆); one can add and

subtract M from A⋆ and B⋆ respectively while still hav-

ing a valid decomposition, which violates the uniqueness

requirement. In fact the transverse intersection of the

tangent spaces Ω(A⋆) and T (B⋆) described in (9) is

also one of the conditions required for (A⋆, B⋆) to be

the unique optimum of the SDP (1) [3]. The following

proposition provides a simple condition in terms of

µ(A⋆) and ξ(B⋆) for the tangent spaces Ω(A⋆) and

T (B⋆) to intersect transversally.

Proposition 3: For any two matrices A⋆ and B⋆, we

have that

µ(A⋆)ξ(B⋆) < 1 ⇒ Ω(A⋆) ∩ T (B⋆) = {0},

where ξ(B⋆) and µ(A⋆) are defined in (6) and (8), and

the tangent spaces Ω(A⋆) and T (B⋆) are defined in (3)

and (5).

Thus, both µ(A⋆) and ξ(B⋆) being small implies that

the spaces Ω(A⋆) and T (B⋆) intersect transversally;

consequently, we can exactly recover (A⋆, B⋆) given

Ω(A⋆) and T (B⋆). In the following section we show

that a slight tightening of the condition in Proposition 3

for identifiability is also sufficient to guarantee exact

recovery of (A⋆, B⋆) using the SDP (1).

Another important consequence of Proposition 3 is

that we have an elementary proof of the following rank-

sparsity uncertainty principle.

Theorem 1: For any matrix M 6= 0, we have that

ξ(M)µ(M) ≥ 1,

where ξ(M) and µ(M) are as defined in (6) and (8)

respectively.

Proof : Given any M 6= 0 it is clear that M ∈
Ω(M) ∩ T (M), i.e., M is an element of both tan-

gent spaces. However µ(M)ξ(M) < 1 would imply

from Proposition 3 that Ω(M) ∩ T (M) = {0}, which

is a contradiction. Consequently, we must have that

µ(M)ξ(M) ≥ 1. �

Hence, for any matrix M 6= 0 both µ(M) and ξ(M)
cannot be small. Note that Proposition 3 is an assertion

involving µ and ξ for (in general) different matrices,

while Theorem 1 is a statement about µ and ξ for

the same matrix. Essentially the uncertainty principle

asserts that no matrix can be too sparse while having

“incoherent” row and column spaces. An extreme ex-

ample is the matrix eie
T
j , which has the property that

µ(eie
T
j )ξ(eie

T
j ) = 1.

B. Exact recovery using semidefinite program

Our main result is the following simple, deterministic

sufficient condition for exact recovery using the SDP (1).

Theorem 2: Given C = A⋆ + B⋆, if

µ(A⋆)ξ(B⋆) <
1

8

then the unique optimum (Â, B̂) of (1) is (A⋆, B⋆) for

the following range of γ:

γ ∈

(

ξ(B⋆)

1 − 6µ(A⋆)ξ(B⋆)
,
1 − 4µ(A⋆)ξ(B⋆)

µ(A⋆)

)

.

The proof essentially involves verifying the subgra-

dient optimality conditions of the SDP (1) [15], [3].

Comparing with Proposition 3, we see that the condition

for exact recovery is only slightly stronger than that

required for identifiability. Therefore sparse matrices A⋆

with small µ(A⋆) and low-rank matrices B⋆ with small

ξ(B⋆) can be recovered exactly from C = A⋆+B⋆ using

a tractable convex program.

Using Propositions 1 and 2 along with Theorem 2

we have the following result, which gives more concrete

classes of sparse and low-rank matrices that can be

exactly recovered.

Corollary 3: Suppose A⋆ and B⋆ are such that

degmax(A
⋆) inc(B⋆) < 1

16 , where these quantities are

defined in Propositions 1 and 2. Then given C = A⋆+B⋆

the unique optimum of the SDP (1) is (Â, B̂) = (A⋆, B⋆)
for a range of γ (which can be computed from Proposi-

tions 1 and 2, and Theorem 2).

Therefore sparse matrices with bounded degree (i.e.,

support not too concentrated in any row/column) and

low-rank matrices with row/column spaces not closely

aligned with the coordinate axes can be uniquely de-

composed. We emphasize here that our results provide

deterministic sufficient conditions for exact recovery. We

also note that these conditions only involve the sparsity

pattern of A⋆ and the row/column spaces of B⋆. There

is no dependence on the non-zero entries of A⋆ or the

singular values of B⋆. The reason for this is that the

subgradient optimality conditions for (1) only involve the

tangent spaces Ω(A⋆) and T (B⋆), and not the specific

non-zero entries of A⋆ or the singular values of B⋆ [3].

IV. SIMULATION RESULTS

We confirm the theoretical predictions in this paper

with some simple experimental results. In these experi-

ments we generate a random rank-k matrix B⋆ in R
n×n
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as follows: we generate random X, Y ∈ R
n×k with i.i.d.

Gaussian entries and set B⋆ = XY T . We generate a

random m-sparse matrix A⋆ by choosing the support

set of size m uniformly at random, and setting the

values within this support to be i.i.d. Gaussian. All our

simulations were performed using YALMIP [12] and the

SDPT3 software [16] for solving SDPs.

We begin by presenting a heuristic to choose the trade-

off parameter γ. Based on Theorem 2 we know that exact

recovery is possible for a range of γ. Therefore, one

can simply check the stability of the solution (Â, B̂) as

γ is varied without prior knowledge of the appropriate

value for γ. To formalize this scheme we consider the

following equivalent SDP for t ∈ [0, 1]:

(Ât, B̂t) = arg min
A,B

t‖A‖1 + (1 − t)‖B‖∗

s.t. A + B = C.
(10)

There is a one-to-one correspondence between (1) and

(10) given by t = γ
1+γ

. The benefit of (10) is that the

range of valid parameters is compact, i.e., t ∈ [0, 1], as

opposed to (1) where γ ∈ [0,∞). Let tolt be defined as:

tolt =
‖Ât − A⋆‖F

‖A⋆‖F
+

‖B̂t − B⋆‖F

‖B⋆‖F
, (11)

where (Ât, B̂t) is the solution of (10), and ‖ · ‖F is

the Frobenius norm. We compute the difference between

solutions for some t and t − ǫ as follows:

difft = (‖Ât−ǫ − Ât‖F ) + (‖B̂t−ǫ − B̂t‖F ), (12)

where ǫ > 0 is some small fixed stepsize, say ǫ = 0.01.

We generate a random A⋆ ∈ R
25×25 that is 25-sparse

and a random B⋆ ∈ R
25×25 with rank = 2 as described

above. Given C = A⋆ + B⋆, we solve (10) for various

values of t. Figure 1 on the left shows two curves – one is

tolt and the other is difft. Clearly we do not have access

to tolt in practice. However, we see that difft is near-

zero in exactly three regions. For sufficiently small t the

optimal solution to (10) is (Ât, B̂t) = (A⋆+B⋆, 0), while

for sufficiently large t the optimal solution is (Ât, B̂t) =
(0, A⋆ + B⋆). As seen in the figure, difft stabilizes for

small and large t. The third “middle” range of stability

is where we typically have (Ât, B̂t) = (A⋆, B⋆). Notice

that outside of these three regions difft is not close to

0 and in fact changes rapidly. Therefore if a reasonable

guess for t (or γ) is not available, one one could solve

(10) for a range of t and choose a solution corresponding

to the “middle” range in which difft is stable and near

zero.

Next we generate random 25 × 25 rank-k matrices

B⋆ and m-sparse matrices A⋆ as described above, for

various values of k and m. The goal is to recover

Fig. 1. (Left) Comparison between tolt and difft for a randomly

generated 25×25 example with support(A⋆) = 25 and rank(B⋆) =
2. (Right) We generate random m-sparse A⋆ and random rank-k

B⋆ of size 25 × 25, and attempt to recover (A⋆, B⋆) from C =
A⋆+B⋆ using (1). For each value of m, k we repeated this procedure

10 times. The figure shows the probability of success in recovering

(A⋆, B⋆) using (1) for various values of m and k. White represents

a probability of success of 1, while black represents a probability of

success of 0.

(A⋆, B⋆) from C = A⋆ + B⋆ using the SDP (1).

We declare success in recovering (A⋆, B⋆) if tolγ <

10−3 (where tolγ is defined analogous to tolt in (11)).

Figure 1 on the right shows the success rate in recovering

(A⋆, B⋆) for various values of m and k (averaged over

10 experiments for each m, k). Thus we see that one can

recover sufficiently sparse A⋆ and sufficiently low-rank

B⋆ from C = A⋆ + B⋆ using (1).

V. DISCUSSION

This paper studied the problem of exactly decompos-

ing a given matrix C = A⋆ + B⋆ into its sparse and

low-rank components A⋆ and B⋆. Based on a notion of

rank-sparsity incoherence, we characterized fundamental

identifiability as well as exact recovery using a tractable

convex program; the incoherence property relates the

sparsity pattern of a matrix and its row/column spaces via

a new uncertainty principle. Our results have applications

in fields as diverse as machine learning, complexity

theory, optics, and system identification. Our work opens

many interesting research avenues: (a) modifying our

method for specific applications and characterizing the

resulting improved performance, (b) understanding rank-

sparsity uncertainty principles more generally, and (c)

developing lower-complexity decomposition algorithms
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that take advantage of special structure in (1), which

general-purpose SDP solvers do not.
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