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Abstract— We consider two closely related dynamic self-
organization problems in networked control systems. Both
are forms of dynamic clustering of nodes. The structure of
networked control systems is often abstracted using graph
theory. In this abstraction, the nodes of the graph represent
the agents and the edges between them represent the relation(s)
or the possibility of communication between the corresponding
agents. The topology of the communication network supporting
a networked control system has critical consequences for its
performance. The first problem we address is the development
of a distributed self-organization algorithm, resulting into a
dynamic two level hierarchy of leader and regular agents, which
substantially improves the convergence speed of distributed
algorithms utilized by the networked control system. For the
second problem, we consider the collaborative control of a
group of autonomous mobile agents (e.g. vehicles, robots)
supported by a mobile wireless network, consisting of many
ground and a few aerial nodes. The agents collaborate to
achieve a common goal or objective, like to move in a particular
area and cover it, while avoiding obstacles and collisions.
Building upon our earlier work on deterministic, randomized
and hybrid distributed coordination algorithms we consider
the communication needs of the agents, and in particular the
connectivity of their communication network as they move. We
develop distributed algorithms that automatically select some
agents and move them appropriately so as to maintain certain
degree of desired connectivity among the moving agents. We
characterize the trade-off between the gain from maintaining
a certain degree of connectivity vs. the combined cost of
communications and the associated dynamic re-positioning of
agents. We also describe classes of efficient communication
topologies and in particular their similarity to dynamic small
world topologies and extensions.

I. INTRODUCTION

In recent years the study of networked control systems
has attracted substantial interest in the control community.
Technological advancements have provided means and in-
centives to deploy groups of Unmanned (or Autonomous)
Platforms, operating on the ground, in the air, on the water or
underwater, in both military and commercial environments,
in a wide variety of applications: providing coverage and
connectivity to ground agents, automated highway systems,
mobile sensor networks, disaster relief efforts, collabora-
tive robotics, etc. [14]. Possible control applications to
collaborative systems in many disciplines such as biology,
secure computing, and sociology has been acknowledged.
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An essential aspect of many of these systems is the lack
of a central control authority: distributed control rules and
algorithms are often utilized due to a host of reasons in-
cluding energy considerations and reliability. Autonomy is a
key characteristic of such systems, which are also known as
swarms. Examples of different applications of local control
rules and distributed algorithms in recent literature include
flocking schemes and consensus in collaborative control of
groups of robots [20], [21], [22], [23], synchronization of os-
cillators [24], trust establishment in networks of autonomous
entities [25], [26], gossip algorithms and cooperation in
sensor coverage [27], [28].

In all such distributed schemes the agents are provided
with simple sets of decision making algorithms or dynamics;
each agent takes an action using its local information. The
actions that each agent performs are also local, i.e. agents
can only affect and are only affected by their neighboring
nodes. The goal of the overall system is the achievement of a
desired global behavior emerging from the local interactions.
The effectiveness of these schemes depends on the following
three important factors which cannot necessarily be achieved
simultaneously: 1) Speed of convergence. 2) Robustness
to agent/connection failures. 3) Energy/communication effi-
ciency. It is usually desirable to achieve a favorable tradeoff
level due to the particular application. An important point to
notice is that the speed of convergence and robustness depend
on both the structure of the network and the dynamics of the
agents.

The subject of dynamic systems on graphs has also gained
attention in other communities. Following the popular small
world model of Watts and Strogatz [29] and the preferential
attachment model of Barabasi and Albert [30], substantial
research efforts have been dedicated towards constructing a
scientific framework to study networks and the processes
running on them. The networks under study initiate from
different branches of science such as physics, computer
science, biology, immunology, sociology, and chemistry and
include the World Wide Web, social networks, and biological
systems. Examples of such research include for instance, the
studies on navigability on small world graphs, percolation
on networks, and coupled dynamical oscillators. The newly
emerging network science aims at methodical study of net-
works and processes running on them.

In this paper, we focus first on structural aspects of the
network, which result in better performance of distributed
algorithms. Since the decentralized nature of the algorithms
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require each agent to be connected to only a few other agents,
achieving high connectivity at the same time may seem
counter-intuitive and even paradoxical. However, certain
classes of graphs maintain this property. For example, Watts-
Strogatz small world topologies offer a favorable tradeoff
between performance (convergence speed) versus cost of
collaboration (connectivity cost) [31]. Expander graphs are
a class of regular sparse graphs with very good local con-
nectivity. A certain construction class of expander graphs,
Ramanujan graphs asymptotically reach the upper bound of
the spectral gap.

An important property of these two classes of graph
topologies is that their nodes are homogeneously distributed.
Expander graphs are regular and Watts-Strogatz model of
small word networks can be considered as small perturbation
of certain regular matrices. What all these topologies have
in common is the lack of structural bottlenecks. In many
applications though the structure of the network is such
that the nodes are not homogeneously distributed. There
are often more “central” nodes in that they are able to
communicate and influence more other nodes due to a
host of problem-specific issues. For example in the case of
sensor networks, the geographical distribution of the sensors
and their energy supply determine which are more central.
In social and economic systems the nodes’ centrality is a
function of pre-existing context dependent conditions that
are reinforced in the process of network formation due to
the existing network’s structure and phenomena such as
preferential attachment.

Hence, in many networks including those with structural
bottlenecks, it is beneficial to extract community structures
and provide higher level means for intercommunity com-
munication in order to realize more efficient performance.
The problem of finding communities in networks has been
considered in the context of complex networks [32], and
its possible relation to small world phenomenon has been
pointed out [33]. Extracting efficient community structures
in graphs is useful for example, in backbone construction in
wireless ad hoc networks [34]. We propose a hierarchical
self-organization method and show that, by utilizing it, the
network is capable of running distributed algorithms with
high convergence speed. Our method can also be used to
improve the network performance for a given structure. We
generalize the concept of social leaders to classify the agents
of more importance in a network. The scheme is based on
a two stage distributed algorithm, which first finds the most
effective choice of local leaders, and then provides nodes
with information about their location with respect to other
nodes and leaders and the choice of groups to form. This
leads to self-organization of the systems in the hierarchy
and improves performance and response. This dynamic self-
organization in a two level hierarchy is indeed a dynamic
clustering scheme.

In problems regarding the control and coordination of
vehicle networks, decentralized methods are preferred as
centralized control requires immense communication and
computational resources [19]. The collaborative control

of autonomous mobile agents can thus be viewed as a
hierarchical design problem: A high level decision making
and path planning module which is responsible for the com-
munication needs of the agents and in particular maintaining
the connectivity, while creating a sequence of way-points for
their motion. The low level motion control computes the real
control commands and actuator executions for real agents
to follow the way-points generated under the dynamic and
kinematic constraints.

The second and related to the first problem that we address
in this paper, is the design of a high level component
responsible for maintaining the communication needs of the
group, and in particular the (path-) connectivity of their
communication network as they move. The module has
outputs to, and inputs from the higher level path planning
component. This communication connectivity is crucial for
instance in the typical scenario considered in [16] [17] [18],
where the authors considered the scenario of a group of
autonomous mobile agents (e.g. vehicles, robots) who collab-
orate to achieve a common goal: moving in a particular area
and covering it, while avoiding obstacles and collisions. We
maintain the connectivity of the group by clustering them
and providing sufficient connectivity between the clusters.
Building on our previous work [11], we address the prob-
lem of maintaining connectivity among ground clusters of
moving agents. Among the agents in each cluster, one is
designated as the cluster-head for the cluster. These cluster
heads can be designated in a distributed manner [2], and can
be equipped with multi-mode communication capabilities. In
normal situations, connectivity is maintained by the cluster-
heads, who send messages directed to the other cluster-heads.
Therefore, the connectivity of clusters is a crucial factor in
the performance of the group of agents as a whole. When
direct communication between the clusters is not possible, a
suggested solution is to use Aerial Platforms (APs) as relays
in networks. However, the use of APs is costly and should
be kept to a minimum level. Furthermore, the APs should be
positioned so that the resulting network is well-connected.
In other applications specific agents can move to specific
locations and/or change their physical characteristics (e.g.
increase their transmission power) in order to provide and
maintain communication connectivity between the moving
agents.

The organization of the paper is as follows. Section 1I
provides the development of a distributed self-organization
algorithm of a networked system into a two level hierarchy
which allows fast convergence of various distributed algo-
rithms. Section III considers a mobile wireless network
supporting an autonomous swarm of agents and discusses
a dynamic clustering algorithm used to provide the intended
connectivity between the ground units using as few APs as
possible. Section IV investigates the question of character-
izing efficient and ‘good’ topologies, which provide better
connectivity.
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II. A HIERARCHICAL SELF ORGANIZING METHOD

In this section we show that a very efficient communica-
tion pattern with substantial improvement in performance is
possible by a two level hierarchical scheme. The idea here
is that selecting a few well connected and controlled agents
which are well protected should enhance the speed of con-
vergence of distributed schemes like consensus algorithms.

Given n agents, suppose we can divide them into K groups
each having on average M members, so n = K.M. It is
assumed that K < M <« n. The exact sizes of K and
M are problem specific and influence the performance of
the algorithm. For each group suppose that we can select a
“leader”. The leaders should be able to have two properties:
they should be well connected to the members of their group,
and they should also be able to communicate with other
leaders when necessary. If the distributed algorithm is carried
out at each group separately and the leaders communicate on
a higher level, the agents can enjoy faster convergence rates;
the reduction of the size of each group from n to M =
O(V/N) results in faster intergroup convergence whereas the
ease of communication between the leaders upon demand
results in overall fast convergence.

We develop a distributed algorithm, which can categorize
the agents as “leader” or ‘“regular”. Further, the method
assigns each regular agent with an influence vector which
indicates which leader has more influence on it. This pro-
vides the nodes with some global picture of the network.

Discriminating between nodes to be a leader or regular
node should be done due to nodes’ centrality in the network.
There is a large literature on centrality measures in networks,
mostly developed in sociometry [37], [38]. Three major
indices of centrality are total effect centrality, closeness
centrality, and betweenness centrality which correspondingly
measure the overall influence, accessibility and having con-
trol upon bottlenecks in a network. The computation of
centrality indices in a network needs global information.
We propose a local scheme in which nodes use their local
information to come up with an approximation of their own
centrality in the network and utilize this information to
collaboratively decide on local leaders.

A. Distributed exploration of the graph structure

The structure of a graph plays a crucial role in properties
of a distributed algorithm that is running on it. Given a
graph, individual nodes have only local knowledge about
its structure, which includes information about their neigh-
boring nodes. If any node wants to either improve its own
performance or a global performance measure it needs to
know more about the global picture of the network. This
information can be used by the node to refine its choice of
neighbors in order to improve its performance.

The most complete measure of global graph structure is
the adjacency matrix. Since each node has limited memory,
energy, and computational capacity, they cannot store and
process the adjacency matrix. Our goal is to devise a scheme
to provide each node with a small vector that includes
compact global information on how the node is located with

respect to the other nodes. It is desired that the scheme can
be disseminated via an implementable distributed manner.
We propose a two stage algorithm for this purpose, which
is carried out in a distributed manner. In the first stage nodes
will collaborate to find their social degree [35]. This is a
local measure of how ‘well connected’ each node is. Once
the nodes find out their social degree, they will broadcast
it locally, and they determine dynamically the K “social
leaders” of the graph- the better connected nodes among all.
The list of K social leaders is broadcast to all nodes. In
the second stage, each node uses a simple iterative scheme
to maintain its influence vector, a vector of size K which
determines the influence of each social leader on it.

B. Social degrees and leader nodes

To find the leaders or the agents with the highest influence
we use a generalization of a framework proposed by Blondel
et al [35]. They define the social degree of a node as the
number of the cycles of length 3 passing through that node.
They also define a social leader as a node with the highest
degree in its neighborhood. This can be generalized as:

Definition 1: Social degree of order k of a node (denoted
by SD™)(v;)) is defined to be the number of closed paths
of length k starting from the node. For the case of k = 2,
this reduces to the number of the neighbors of the particular
node.

Definition 2: A leader node of order k is the node with
the highest social degree of order k among its neighbors.

Definition 3: For given 0 < o« < 1l and f =1—q, a
node’s social score is defined as SC(v;) = a.SDP(V;) +
B.SDG) (v;).
Notice that each node can determine its social degree of
orders 2 and 3 by a simple query from its neighbors. Since
determining higher order degree requires more effort, we use
the orders 2 and 3 for our present application.

In the first stage of the algorithm, each node computes its
social degrees of order 2 and 3. It also queries the social
degrees of its neighbors. Upon comparing its social degrees
with its neighbors, if a node is found to be a leader of order
2 or 3, it broadcasts its degrees. From these data from the
leader nodes, the algorithm selects K nodes l;,¢ = 1,...,k
with the highest social scores, SC(I;), gives an arbitrary
order to them and transmits their assigned order to them.
Once a selected leader is assigned its order 1 < ¢ < K it
will maintain the constant vector e; € R’. This is the unit
vector with 1 in its ith entry.

Remark 2.1: The social scores as defined here, provide
an approximation of the total effect centrality for each node.
Formally, total effect centrality indices are defined by com-
bining the contributions of walks of different lengths from a
node using decreasing weights as the walk length increases.
For example, Estrada et al. [39] define the centrality indices
as functions of the adjacency matrix. If \; is denoted as
the largest eigenvalue of A, consider a real function whose
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Taylor series expansion is
o0
flx) = Z apxh,
k=0

for x| < A*, where A* > A.

A measure of total effect centrality of a particular node
1 can therefore be defined as a linear combination of the
number of closed walks of length k starting from that node
(wk) where the corresponding weights are drawn from the
Taylor series expansion of the given function f. Estrada et
al. define the functional centrality of node ¢ as:

Cr(i) = > arwll) = (f(A))ir. (1)
k=0

It can be seen that our social scores can be considered as
approximations of such Taylor series. If nodes allow for
more communication and use the k** order neighborhood
information (k > 2), the resulting scores will be a more
precise approximation of the global index. However, allowing
for more exploration will be costly in terms of time and
memory.

C. Determination of the influence vector

Our objective in this part is to associate with each of the
regular nodes a vector that determines how well it is related
to each of the leaders and how it is influenced by them. The
amount of influence that a leader has on a local node is not
only determined by their distance but also by the number of
paths between them. We provide a definition for the influence
vector based on the properties of random walks on graphs.

Definition 4: Consider a graph with K leaders and n — K
regular nodes. The influence of leader nodes I, (k =1, ..., K)
on any regular node ¢ is the probability that a random walk
that starts from ¢ hits [; before it hits any other leader node.

Given the leaders and the arbitrary order assigned to them,
we first describe the algorithm to determine the influence
vectors for each regular node. Then we will show why
it converges and why it outputs valid vectors as influence
vectors. We denote the influence vector of node ¢ by z; €
RX. By z¥(t) we mean the kth entry of the influence vector
of node ¢ evaluated at time ¢.

The algorithm operates as follows. The influence vector of
leader [; is first assigned to be the unit vector x; = e;. These
K vectors do not vary. For all regular nodes i, z; is initialized
randomly, distributed uniformly on [0, 1]%. At each iteration
time ¢ + 1, each regular node ¢, updates its influence vector
entry-wise (kK = 1,2, ..., K) using the following rule:

EAG R (] e

JEN;(t)

zf(tJrl) = m

Theorem 2.1 shows the effectiveness of the above scheme.

Theorem 2.1: If the underlying graph is connected, the it-
eration (2) converges to a set of unique vectors. Furthermore,
lim;_oox¥(t) is equal to the probability that a random walk
starting at node ¢ hits the leader node [, before any other
leader node.
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Fig. 1: A group of 26 nodes with sparse connectivity.

Proof: The proof is a direct consequence of considering
the leader nodes as boundary nodes in a discrete Dirichlet
problem on the graph. |

It is worthwhile to mention that the above method has
its best performance when the initial graph is nonhomo-
geneous and contains many structural bottlenecks. This is
the case for many applications in collaborative control and
sensor networks where the mission goal requires a higher
concentration of nodes in certain areas. In such applications,
it is beneficial for nodes in each area of concentration to
self organize-around the local leader and entrust the task of
inter-community communications to the local leaders.

Figure 1 is an example of a nonhomogeneous network with
structural bottlenecks. The graph consists of 26 nodes. Social
scores are calculated by evenly weighing social degrees of
orders 2 and 3. After running the algorithm the nodes self
organize into 4 groups with nodes 1, 7,13, 20 as local leaders
as shown in Figure 2. By Perron-Frobenius theory, the spec-
tral gap of the natural random walk matrix corresponding to
a graph can be considered as an indicator of the performance
of distributed algorithms such as consensus algorithms on it
[1]. The corresponding spectral gap for the graph of Figure 1
is 0.0535 which indicates a poor performance. However for
the subgraphs in the Figure 1 the minimum spectral gap is
0.3692, much higher than that of the whole graph. Therefore
in the example of consensus, running the algorithm locally,
the agents can achieve local consensus much faster than the
overall scheme. When the local consensus is achieved, the
local leaders can negotiate among themselves with much less
overhead.

Figures 3 and 4 illustrate an extreme in which there is
a large difference in the resulting cluster sizes. Figure 3 is
the symmetric pattern HB/can_634 from the University of
Florida’s sparse matrix collection [40]. It has 634 nodes
and 3297 edges. Using K = 20, and running the algorithms
results in 20 clusters as in Figure 4. The number of nodes in
the clusters are not evenly distributed and the biggest cluster
has as many as 179 nodes. The reason is that the nodes are
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Pajek

Fig. 2: Subgraphs identified by running the algorithm on the
graph of Figure 1.

Fig. 3: A group of 634 nodes with sparse connectivity. [40]

homogeneous with cores of highly well connected nodes,
which results in isolated local leaders in some parts of the
network. Figures 1, 2, 3, and 4 are developed using Pajek
software. [41]

III. CLUSTERING

We consider a mobile wireless network consisting of
many ground nodes and a few aerial nodes, supporting the
operations of an autonomous swarm of agents. Assume that
all the NV ground nodes have the same altitude (of 0) and
form M clusters (K;,j = 1,..., M). Aerial Platforms (APs)
placed appropriately and acting as relays can be used to
provide connectivity between the M disconnected ground
clusters. Since APs are scarce and expensive resources, the
goal is to find the minimum number of APs and their
locations so that the resultant network (both between the
nodes and the APs and between the APs) is connected.

The ground nodes and the APs have identical omni-
directional radios with the signal between nodes decaying
as 1/R™ where R is the distance between nodes and « is

Fig. 4: Subgraphs identified by running the algorithm on the
graph of Figure 3.

the path loss exponent, which depends on the environment
between the nodes. The radio specifications and the path loss
exponent « together determine a maximum communication
distance between the nodes. « is equal to 2 (i.e., free space
communication) for communication between the ground
agents and APs as well as for communication between the
APs. This results in a maximum communication distance
of Ry between the ground agents and APs and among the
APs. Since ground nodes communicate with « strictly greater
than 2 (o« = 4 for a suburban environment), the maximum
communication distance Ry between leaders is strictly less
than Ry (usually by an order of magnitude). Assume that
all the APs fly at an altitude of h such that the maximum
communication distance between agents and APs projected
onto the ground, R; (given by Ry = \/R2 — h?), is greater
than Ry. Thus the problem of finding the minimum number
of APs (L) and their positions can be reduced to R?, with ay,
denoting the position of the APs projected onto the ground.

A. Problem Formulation

We formulate the connectivity problem as a constrained
clustering problem ([12], [13]) with a summation form distor-
tion function (D(K, A)) involving the distances between the
ground clusters (K) and the APs (A) and a summation form
cost function (C(A)) involving only the distances between
the APs (A). The resultant clustering problem is then solved
using Deterministic Annealing (DA) to obtain near-optimal
solutions. In order for the ground nodes and the APs to form
a connected network, we need: 1) At least one node from
each cluster within a radius of R; from an AP; and 2) Each
AP is within R of some other AP (i.e., the APs form a
connected graph).

Assuming that the APs are numbered from 1 to L, we can
make sure that they form a connected network by ensuring
that any AP numbered j is connected to at least one lower
numbered AP 7, where ¢ < j. This is used in the DA solution
where when we add a new AP, we make sure that it is
connected to at least one of the previously added APs. Hence
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the connectivity problem can be stated as:

Minimize L;  subject to
Eal, NS
max min = |lg—a; || < By
je{1,....M} geK;
ie€{l,...,L}
and,
max min || a —an || < Re

le2,...,.L m<l

where || g — a || is the I2-norm between points g and a
on the ground. Finding the exact solution to the problem
above involves an exhaustive search on the different ways
in which nodes can be selected from each cluster and the
ways clusters can be grouped together for coverage by
a single AP all the while making sure that the APs are
connected to each other. This problem is NP-hard as it is
a generalization of the Euclidean disk-cover problem. Hence

using the approximation,
max(sy,...,8,) 2 (s¥+...+ sg)é for large «

we can convert the AP-ground node and AP-AP constraints

into a summation form,
Minimize L; subject to

M
day,...,ar; Zdl(Kj,aul(j)) < RY
j=1

L
and, Z d2 (al, auz(l)) < Rg
1=2
for large « and 3, where,
d(Kpa) = minfg-a |’

da(aj,am) = min | ap — ap ||ﬁ
m<l

and w1 (j) is a function that assigns an AP to every cluster;
us(l) is a function that assigns the closest lower numbered
AP to an AP.

Constrained clustering problems of the above form are
non-convex optimization problems except in special cases.
Hence the Deterministic Annealing (DA) method is used
to solve the constrained clustering problem for globally
near-optimal solutions. Within the framework of constrained
clustering ([12], [13]), the distortion function between the
ground nodes and the APs is given by D(K,A) =
Z?il d1 (K, ay, (;)) and the cost function among the APs is
given by C1(A4) = Zf:z dz(ay, ay, (1) Therefore the overall
distortion function to minimize is given by:

M L
D(K,A) =) p(K;) Y plar|K;)di(Kj, au, ;)
j=1 k=1

L

+ )\Zd2(alaa’u2(l)) (3)

=2

Applying the constraint on AP connectivity should in-
crease the number of APs required for the mission. This

step=32 T =0.0000000679
T T T T

0.8

0.6

0.4

0.2

Fig. 5: Complex Scenario: AP Placement with AP-ground
node connectivity and AP-AP connectivity.

step=28 T =0.0000000834
T T T T

0.8

0.6

04f /5"7"‘\\

/

( 3
02t - -
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Fig. 6: Complex Scenario: AP Placement with AP-ground
node connectivity but without AP-AP connectivity.

is illustrated in the following example. Consider the set
up of the simulation given by figures 5 and 6. There are
eight clusters each consisting of eight ground vehicles. The
maximum ground to ground connectivity distance Ry is 0.1
units, the maximum ground to AP projection distance Ry
is 0.2 units and the maximum AP to AP distance is 0.4
units. Given the parameters, all the ground vehicles within
the circles around a particular AP can communicate with the
AP and if the circles corresponding to APs intersect, they
can communicate. Figure 5 shows that in the presence of
the AP connectivity constraint a total number of 4 APs are
required for full connectivity, whereas figure 6 shows that if
the condition on AP connectivity is relaxed, a total number
of 3 APs suffice for locally connecting clusters which are
close enough.

IV. TOPOLOGY

By adding APs we have the advantage that the nodes
which were previously far apart, can now communicate
through APs. Prior to AP addition the neighborhood relation
was based on physical proximity: any two agents which
where within a distance Ry of each other were able to
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communicate and therefore would be considered neighbors.
The addition of APs extends the concept of neighborhood in
that two far apart agents can communicate directly through
their corresponding APs. In this generalized definition of
neighborhood, two agents are considered as neighbors if
either they are within a distance Ry of each other, or their
corresponding APs can directly communicate. We assume
that each AP is capable of short time high energy transmis-
sion upon necessity and that via a suitable medium access
control and AP energy scheduling, agents which are located
geographically far from each other can communicate.

This extended notion of neighborhood makes long range
edges realizable. However, establishing such long range
connections requires higher cost than regular short range
connections. Therefore there is a trade off between the cost of
maintaining long range connectivity and group performance.
This is related to the efficiency of the communication topol-
ogy. Small world graphs [29] are examples of such ‘efficient’
topologies. We address small world graphs next.

A. Small world graphs

The small world graphs based on the model of Watts and
Strogatz [29] take a regular lattice and replace some original
edges by random ones connecting nodes at ‘long distance’
with some probability 0 < ¢ < 1; i.e. by introducing ‘short
cuts’. This family of graphs shows a favorable trade off
between performance and cost of collaboration in a wide
variety of applications, as several simulation experiments
have reported.

In [7] Higham analyzed the small world phenomenon in
the Watts-Strogatz model by considering the hitting time
of a slightly randomly perturbed Markov chain on a ring.
Building on [7], we studied consensus problems on grid-
based small world graphs in [1] [2]. We showed a significant
speed up in the convergence speed of consensus algorithms
in Watts-Strogatz models compared to that of the grid base
by perturbing the consensus weight matrix. The perturba-
tion corresponds to considering rare transitions among non-
neighboring states in the Markov chain associated with the
grid. In [8], we used this probabilistic viewpoint towards
understanding and quantifying small world effects on con-
sensus convergence rates. We showed that by choosing short-
cuts with low probability one can improve the convergence
rate of regular grids significantly in a probabilistic sense.
For other interesting works on small world graphs in the
control community and consensus applications see e.g. [15],
[36], [10], [5].

Here, we consider a general setting in which the base
graph can be any graph. However, usually it is considered to
be sparse due to obvious practical reasons having to do with
notions of efficiency. We are interested in the question: is a
given graph “small-worldizable”? We give a characterization
of the small world effect for any general base. The following
procedure gives an implicit definition of what we mean by
being “small-worldizable. Denote the second largest eigen-
value modulus (SLEM) of the natural random walk matrix

F corresponding to the graph by u(F). Other criteria for a
graph to be small-worldizable are investigated in [4].
Definition 5: Small-worldizable graphs Given a con-
nected graph G,, on n vertices:
o Consider a natural random walk on this graph. Denote
the corresponding Markov Chain graph as

Fo=I+D) A+

where A is the adjacency matrix of the graph G,, and D
is the diagonal matrix with each node’s degree on the
corresponding diagonal.

o Perturb the zero elements of Fjy by a small € and adjust
its nonzero elements so that the resulting matrix F
remains stochastic.

e G,(V,E) is considered to be small-worldizable if
ﬁglio% > 1, where A(F) denotes the spectral gap
1—u(F).

Recall that if F' is a primitive stochastic matrix, according
to the Perron-Frobenius theorem [3], A; = 1 is a simple
eigenvalue with a right eigenvector 1 and a left eigenvector
7 such that 177 = 1, F°° = 177 and if Xo, A3, ..., A, are
the other eigenvalues of F' ordered in a way such that \; =
1> p=|A2| > |As] > ... > |\], and mq is the algebraic
multiplicity of A, then

Ft — Foo 4 O(t77L2_1‘)\2|t) _ 17TT 4 O(tm2_1‘)\2|t)

Then A = 1 — u(F) the spectral gap, so linear iterations on
graphs with higher spectral gaps converge faster.

Consider a sparse connected graph G, and its correspond-
ing random walk matrix Fj. We perturb F' to get F,

(Fo)ij =0

(F)s =1 ) ’
(1 —ne)(Fo)ij +€ (Fo)iy #0

where € < 1/n. Therefore we can write:
F.= (1 —ne)Fy+ 117,

Then we obtain the result:

Theorem 4.1: The graph (G) is small-worldizable if and
only if £ > L.

Theorem 4.1 is important because by utilizing it we can
decide whether a given graph is small-worldizable, what is
the spectral gap gain we can get by perturbation and when
(i.e for what values of parameters) the onset of the small

world phenomenon occurs.

B. Expander graphs

Suppose that all APs added are within a range Ro (as
defined in section III) of each other. This means that all APs
are within communication range of each other. Therefore,
with proper medium access control any two nodes can send
messages to any other node through one AP-AP link. In cases
where lots of messages need to be transmitted between the
nodes, it is no longer practical to make direct connections
for each node to node transmission request.

A solution is to generate connections between the APs
in such a way that the AP-level graph is an expander
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graph [9]. Expander graphs have certain properties that make
them suitable for our application: their large eigenvalue gap
ensures fast routing and convergence of decentralized algo-
rithms; the path diversity they provide results in robustness
to link failures. We can have two methods for distributed
construction of AP-level expander graphs:

o Following the approach of [9] we can form a random
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[3]

[4]

[5]

[6]
[7]

[8]

[10]

[11]

[12]

[13]

[14]

[15]

expander graph as a 2d—regular multi-graph in which
the set of edges consists of d separate Hamiltonian
cycles on the APs. Such a graph can be constructed
distributedly and its diameter will be O(log,n) with
high probability.

Following the approach of [6] we can form a random
expander graph as the union of two spanning trees
chosen independently from the uniform distribution over
all spanning trees. This can be implemented simply
by taking a random walk and include edges that visit
previously unvisited nodes. Such a graph has a constant
edge expansion with high probability.
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