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Abstract— A lower bound on the minimum required code
length of binary codes is obtained. The bound is obtained based
on observing a close relation between the Ulam’s liar game and
channel coding. In fact, Spencer’s optimal solution to the game
is used to derive this new bound which improves the famous
Sphere-Packing Bound.

Index Terms— Sphere-Packing Bound, Maximum size of
binary codes, Ulam’s liar game.

I. I NTRODUCTION

In 1950 Hamming [1] introduced the Sphere-Packing
Bound (SPB), which gives an upper bound on the number of
codewords (i.e., code size) of a block error correcting code
of length n and minimum distanced. In particular, for a
binary block code, we have

Sbin(n) ≤
2n

∑t

i=0

(

n
i

) , (1)

whereSbin(n) is the size of the code, and

t =

⌊

d− 1

2

⌋

(2)

denotes the error correction capability of the block code. Of
course (2) holds only for the ML decoder [2].For perfect
codes [2],the inequality (1) changes to equality. It has been
shown that the only known perfect binary block codes are:
Hamming code [1] fort = 1,m = 2i − 1 for i ≥ 3, and the
(23,12) Golay code [3] witht = 7. Different constructions
have also been introduced for nonlinear perfect binary codes
in the case oft = 1,m = 2i − 1, i ≥ 3 [4], [5]. Perfect
codes have attracted much interest because of their optimal
minimum distance.

Using the SPB, one can easily obtain a curve, which for
every pair of integersm and d, assigns a lower bound on
the required lengthn of the codewords of a block code of
sizem and minimum distanced. Fig. 1 shows such curves
for m = 1, . . . , 105,andd = 3, 5, 7, 9 (i.e., t = 1, 2, 3, 4).

Using the SPB, for a cannel which does not introduce
more thant errors into a codeword, we can find a lower
bound on the code length for error-free communication.
Unlike this approach, in 1959 Shannon studied a bound on
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Fig. 1. Sphere-Packing Bound for binary codes of size1, . . . , 105 and
minimum distance of3, 5, 7, 9 (from bottom to top) corresponding to error
correction capabilities of1, 2, 3, 4 bits.

the error probability of a Gaussian channel, where more
than t errors could be introduces into a codeword [6]. This
approach is referred to as improved Sphere-Packing Bound
(ISPB) in the literature. Consequently, in 1967 Shannonet
al. provided another ISPB for discrete memoryless channels
[7], [8]. Valembois and Fossorier improved the latter ISPB
in 2004 [9]. They also extended the result to the binary-input
AWGN channel. Recently, in 2008 Wiechman and Sason [10]
improved the bounding techniques in [7], [8] and [9] and
derived a new ISPB for all symmetric memoryless channels.

In this article, we would be more faithful to the Ham-
ming’s original line and introduce a new improvement in the
SPB for binary codes. In other words, instead of being inter-
ested about the error probability, we focus on guaranteeing
t–bit error correction capability.

Since our work is based on Ulam’s liar game [11] and its
solution, section II briefly reviews this game and Spencer’s
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optimal solution [12]. In section III, the close relation be-
tween Ulam’s game and binary channel coding is discussed.
Thereafter, in section IV, using this relation and Spenser’s
optimal solution, a new upper bound for the maximum size
of binary codes is obtained. Comparing this new bound with
the famous SPB, it is observed that for some special cases,
the new bound is tighter.

II. U LAM ’ S GAME AND SPENCERSTATE

A. Ulam’s liar game

Ulam’s liar game, which will be referred to as “U-Game”
in the rest of this work, is a two players game with three
parameters(m, t, n). The game starts with Player 1 selecting
a symbol among a setS of m different symbols. In order to
win, Player 2 must guess the selected symbol with at mostn

Yes/No questions of the form “Is the selected symbol among
the setA?” whereA is a subset ofS. We will refer to such a
question as “U-Question(A)”. Throughout the game, Player
1 can give at mostt wrong answers. If the Player 2 fails
to correctly guess the selected symbol, Player 1 is declared
winner.

Hence, Player 2 has to design a series ofn U-Questions to
deduce the selected symbol. It is important to determine the
minimum number of required questions through which one
can guarantee that Player 2 wins. If the minimum required
number of U-Questions is less than or equal ton, Player 2
has a strategy to win the game.

Other variations of the game are also considered in the lit-
erature, e.g., [13], and various solutions have been presented
to different versions of the game [12], [14], [15].

B. Spencer State Space and Spencer Weight

Spencer has analyzed the U-Game [11], where he proposes
a state model for the game. Whenever the questioner receives
a new answer, this state is updated in a way that it contains all
the information which has been received about every symbol
up to now. The Spencer’s model for an(m, t, n)–game,
consists oft + 1 bins in a row and m chips,c1, c2, . . . , cm
corresponding to m symbols. As a result of this one-to-
one correspondence, from now on, we use terms “chip” and
“symbol” interchangeably.

In the initial state of the game, all the chips are in the
left most bin and the chips are moved to the righter bins
according to the received answers. After receiving thej th

answer, the state is denoted by a vectorvj = (V0, . . . , Vt),
whereVi is the subset of the chips in theith bin. Notice
that the most left bin is indexed zero and the bin index
increases to the right. Then the initial state of the game is
v0 = (S,∅, . . . ,∅), whereS is the set of all chips (symbols).

Now suppose we are at statevj and the questioner asks the
U-Question(A), whereA is a subset of{1, . . . ,m}. Notice
that chips corresponding to the elements ofA can be in
different bins. If the answer to this question is a “No” we
update the state by moving all the chips corresponding to
the elements ofA one bin to the right. A chip moving to the
right of the right-most bin is considered “lost”. If the answer

is a “Yes” we can view it as a “No” to U-Question(Ac) and
use the mentioned update rule.

With the initial statev0 and this updating process, it
is evident that a chipci will be lost if and only if the
questioner receives more thant answers stating thatci is
not corresponding to the selected symbol. Thus,ci cannot be
the selected symbol by Player 1. Obviously, Player 2 wins
the game if within n questions he observes a state where all
chips except one are lost.

To simplify the analysis of the game, we define notations
to present the above discussion. To this end, we denote the
set of symbols belonging toA in the ith bin by Ui. We now
view A, which is the matter of question at stepj + 1, by
vector uj+1 = (U0, . . . , Ut). Then, according to the above
mentioned update rules, we can represent the updated state
in the case of receiving a “No” as

vj+1 = No{vj , uj+1} (3)

, ((V0 \ U0), (V1 \ U1) ∪ U0, . . . , (Vt \ Ut) ∪ Ut−1),

and in the case of “Yes” as

vj+1 = Yes{vj , uj+1} (4)

, ((U0, U1 ∪ (V0 \ U0), . . . , Ut ∪ (Vt−1 \ Ut−1)).

Spencer has also introduced a weight for every state of the
game. The weight of a statevj = (V0, . . . , Vt), is defined as

W (vj) ,

t
∑

i=0

[

|Vi|

t−i
∑

ℓ=0

(

n− j

ℓ

)

]

. (5)

We would refer to this weight function as “Spencer
weight”. Spencer showed that if in any stepi through the
game, the state weight is greater than2(n−i), then there is
surely a strategy for Player 1 to win [12].

III. T HE RELATION BETWEEN CHANNEL CODES AND

THE ULAM ’ S GAME

The main problem in binary error correction coding is very
similar to a U-Game. To transmitlog2 m information bits,
the transmitter selects a symbol from a set of cardinality
m, and then sends a series of n bits (0 or 1) through the
channel in order to inform the receiver what symbol has
been selected The channel then flips some of the bits and the
receiver should use the received bits to deduce the selected
symbol.

The aim of at-bit error correcting code is to guarantee
correct decoding if the channel has flipped at mostt bits.
The main problem here is again to design a code with min-
imum possible length to guarantee thet-bit error correction
capability. In a well designed decoder, the parametert is
related with the minimum distance of the codewords as in
(2).

According to theith bit of the codewords, the codebook
can be partitioned into two sets. The setA of all codewords
whoseith bit is ‘1’, andAc of all codewords whoseith bit is
‘0’. Thus, a block code of lengthn can be viewed as a series



of n U-Questions1. The channel can give incorrect answers
to some of thesen questions.

There exists, however, a few differences between the two
problems. The first and the most important one is that in
the coding case, the questions are preset, i.e., the codebook
is designed before transmission. In the case of the U-Game,
however, Player 2 can use the answers received up to now to
design the future questions. The second difference is that in
Ulam’s game, Player 1 can choose a lying strategy to make
deduction of the selected symbol harder, while channel errors
occur randomly. In other words, errors are not planned by
the channel.

Since the goal of the coding problem is to guarantee an
error correction capability oft bits, one should consider
the worst case errors. Thus, without loss of generality, we
can assume that the channel errors are planned to make the
decoding harder. Therefore, channel coding can be viewed as
a U-Game where Player 1 (channel) is still playing based on
its best strategy, while Player 2 (code designer) must design
all his questions at the beginning of the game. Thus, the
minimum number of questions, required in an(m, t, n)–
game is a lower bound on the minimum required length
of a code of sizem with error correction capabilityt. For
channels with real-time feedback, code designer can use the
best strategy available to Player 2 in U-Game making both
problems identical from this point of view.

Another minor difference between the two problems is
that the channel does not care about the maximum allowed
number of incorrect answers. That is, it may introduce more
than t errors. In such cases, the decoder fails. This failure,
however, does not have any effect on the code design because
our code is only concerned about guaranteeing successful
decoding when the number of errors is no more thant. Thus,
in the sequel, we limit our discussions to the cases that no
more thant errors are occurred.

The following theorem relates failure of channel decoding
to the Spencer weight of the last state of the equivalent U-
Game.

Theorem 1: In a communication system, equipped by a
t–bit error correcting code of lengthn and sizem, if at
the end of the equivalent(m, t, n)–game the Spencer weight
is greater than one, there is no guarantee of successful
decoding.

Proof: To proof this theorem, we get advantage of the
optimality of Spencer’s solution, in the means of minimum
required questions. From the definition of the Spencer weight
in (5) we have the Spencer weight of a Spencer statevn =
(V0, . . . , Vt) at the end of the equivalent(m, t, n)–game as

W (vn) =
t

∑

i=0

[

|Vi|
t−i
∑

ℓ=0

(

n− n

ℓ

)

]

> 1, (6)

1Here, a block code of lengthn is considered. The discussions, however,
are valid for the case of variable-length codes.

and since
t−i
∑

ℓ=0

(

n− n

ℓ

)

= 1, ∀ t− i, n ∈ N, (7)

then

W (vn) =

t
∑

i=0

|Vi| > 1. (8)

Where in (8), the left side of the inequality is the number
of the chips remained in the state at the end of the equivalent
game supposing we have used Spencer’s method to solve
it. This situation means that the information received by the
transmitted bits, is not enough to deduce which message have
been selected in the transmitter. In such cases, although the
receiver may select one of the possible blocks, but there will
be no guarantee on the correctness of this decoding.

IV. T HE NEW BOUND

In this section, based on the relation between U-Game
and the channel coding problem, we use Spencer’s optimal
solution in order to obtain a lower bound on the codeword
length. In other words, we find a bound on the required
number of bits to describe a selected symbol from a set ofm

predefined symbols, when at mostt bits could be received
incorrectly. We then observe that this bound is slightly tighter
than the well known SPB.

Let us first go through a simple example, where the lower
bound obtained by SPB could be improved using Spencer’s
solution.

Example 1: For a set of three symbols to be transmitted
through a channel using binary error correcting codes and
guaranteeing the correction of every error of hamming weight
one, the Sphere-Packing Bound gives us a lower bound of
four on the minimum required length of codewords as

4 = min
x∈N

{

x

∣

∣

∣

∣

3 ≤
2x

∑1
i=0

(

x
i

)

}

. (9)

But now, letc = [b0b1b2b3] be a codeword. To be able to
correct every error of Hamming weight one, we need then
to have a Hamming distance of at least three between every
pair of codewords. It is, however, easy to check that there
exists no pair of vectors with Hamming distance three or
more among all vectors of distance at least three fromc,
i.e., [b̄0b̄1b̄2b3], [b̄0b̄1b2b̄3], [b̄0b1b̄2b̄3], and [b̄0b̄1b̄2b̄3]. Thus,
the lower bound provided by SPB cannot be achieved by any
error correcting code of size three and length four. On the
other hand, if we think of the equivalent(3, 1, n)–game, as
shown in Fig. 2, forn = 4 the game is not conclusive. In
other words, after the fourth question, we still have two chips
left in the game. One can easily check that these U-Questions
are the bests, and the received answers are the worst. Thus, a
bound on minimum codeword lengthn for m = 3, t = 1 can
be obtained from this U-Game to ben ≥ 5. Interestingly, a
code withn = 5 can in fact be constructed for example with
codewordsc1 = [00000], c2 = [11100], c3 = [11011]. ⋄
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A1 = {c1, c2} x1 = 1

A2 = {c1, c3} x2 = 1

A3 = {c1} x3 = 0

A4 = {c1, c2} x4 = 1

A5 = {c1} x5 = 1

Fig. 2. The selected symbolc1 is deduced through five U–Questions while
a wrong answer (at step three) has made the state of the game inconclusive
after the fourth answer. In this figureAi, i = 1, . . . , 5 represents the subset
under question in U–Questions1, . . . , 5, andxi, i = 1, . . . , 5 represents
the received answer (or bit) where ‘1’ means “Yes” and ‘0’ means “No”

Through the rest of this section, we introduce a mathemat-
ical framework to obtain a new lower bound on the codeword
length, using its equivalent U-Game. Before going through
more details and formulating the new improved bound, we
introduce some definitions.

For an error correcting code with lengthn and sizem and
error correcting capabilityt, let

An−s , gcd

{(

n− s

t

)

, . . . ,

(

n− s

t− s+ 1

)}

, (10)

and

K0 , m×

t
∑

ℓ=0

(

n

ℓ

)

. (11)

Then we calculateKi recursively fromKi−1 using the
following rule: Ki should be the least integer satisfying

Ki ≥
Ki−1

2
, (12)

and

Ki ≡ m×
t

∑

ℓ=0

(

n− i

ℓ

)

(modAn−i). (13)

Now we introduce a new bound through the next theorem.

Theorem 2: A code of lengthn, sizem, and error correc-
tion capabilityt exists if for all 1 ≤ i ≤ n,

Ki ≤ 2n−i. (14)

Proof: To prove this theorem, we show thatKi is less
than or equal to the Spencer weight of the equivalent U-
Game after theith U-Question is answered. Thus, ifKn > 1,
the Spencer weight after thenth answer is also greater than 1.
Therefore, according to Theorem 1, the game is inconclusive.

To show thatW (vi) ≤ Ki, we notice that initially the
Spencer weight of the equivalent U-Game is exactly equal
to theK0 by the definition. Then after each update the new
Spencer weight should have three conditions. First, it should
be an integer, since as defined in (5) the Spencer weight
is a summation in which every term is the product of the
number of chips in a bin and a combination term, which are
both integers. The second condition as we will show is that
after each update, the maximum guaranteed reduction in the
Spencer weight is half of the weight. In other words, if we
consider the worst case by the means of the least possible
reduction in the Spencer weight, then we have

W (vi) ≥
W (vi−1)

2
. (15)

In order to show this condition holds, suppose we are
in an arbitrary Spencer state,vi = (V0, . . . , Vt) in the
equivalent(m, t, n) U-Game, and we are going to ask the
U-Question(A) whereA could be described by the vector
ui+1 = (U0, . . . , Ut). Regardless of the question, the updated
Spencer state is either Yes{vi, ui+1} or No{vi, ui+1}. Then
Using (4), (3), and (5), the sum of the Spencer weight of the
two possible results is

W (Yes{vi, ui+1}) +W (No{vi, ui+1}) = W (vi). (16)

Hence we have,

max
ui+1

{min{W (Yes{vi, ui+1}),W (No{vi, ui+1})}} (17)

=
W (vi)

2
.

Here maximization is taken over all possible questions.
The third condition is that regardless of what the answer

of a question is, the Spencer weight of the new states must
satisfy the following condition:

∀i ≤ n, m×

t
∑

ℓ=0

(

n− i

ℓ

)

≡ W (vi) (modAn−i) (18)

which is proved in [12].
As a result,Ki ≤ W (vi) and (14) can be used to obtain

a lower bound onn.

The following theorem states that the new bound is at least
as good as the famous SPB.

Theorem 3: For any m and t, the lower bound onn
obtained based on Theorem 2 is at least as tight as the
Hamming bound.
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Fig. 3. The Sphere-Packing Bound versus the new bound for binary codes
of size 1, . . . , 105 and error correction capability of1, 2, 3, 4 bits. The
solid black lines are the famous SPB introduced by Hamming, which are
the same as in Fig. 1. The dashed red lines are the new bound with respect
to Theorem 2.

Proof: Assume that for somem andt, a boundn looser
than the Hamming bound is obtained through Theorem 2.
Then, using the pigeon-hole principle, at least two of the
m spheres with radiust, centered atm codewords, will
intersect.

Recall that any point in this space can be viewed as a
sequence of answers in the equivalent U-Game. Now, if
Player 1 picks one of the centers of these two intersecting
spheres and answers the questions according to one intersect-
ing point, Player 2 will be left with more that one choice
at the end of the game. This is because both centers of
the intersecting spheres are less thatt apart from the given
sequence of answers. Thus, Player 1 with at mostt wrong
answers can win the game.

Since Theorem 2 guarantees existence of a winning strat-
egy for Player 2 [12], the assumption that the new bound
can be looser than the Hamming bound is contradicted.

Fig. 3 shows a comparison between the famous SPB and
the bound achieved by Theorem 2. It contains four pairs of
curves fort = 1, 2, 3, 4 from bottom to top, respectively. As
we can see, the two bounds are usually the same. However, in
some particular cases, which are shown by solid circles, the
new bound describes a tighter lower bound on the minimum
number of required bits. As predicted by Theorem 3, the new
bound is never looser than SPB. Indeed, the fact that the new
bound is at least as tight as SPB can be used to reduce the
computational complexity of finding the new bound. To this
end, one can use SPB as a starting point to search for the
smallestn satisfying Theorem 2.

V. CONCLUSION

In this paper we first discussed the relation between the
error correcting codes and the Ulam’s game. Then we dis-

cussed that any binary error correcting code has an equivalent
U-Game. Finally, using Spencer’s solution to U-Game, we
derived a new lower bound on the minimum length of the
codewords of an error correcting code of sizem and error
correction capabilityt. The new bound was proved to be at
least as tight as SPB and was shown to be better than the
famous Sphere-Packing Bound is some cases.

REFERENCES

[1] R. W. Hamming, “Error detecting and error correcting codes,” Bell
Syst. Tech. J., vol. 29, pp. 147–160, April 1950.

[2] S. Lin and D. J. Costello Jr.,Error Control Coding, 2nd ed. Pearson
Prentice Hall, 2004.

[3] M. J. E. Golay, “Notes on digital coding,”Proc. of IRE, vol. 37, p.
657, June 1949.

[4] J. L. Vasil’ev, “On nongroup close-packed codes,”Probl. Kibernet.,
vol. 8, pp. 375–378, 1962, (in Russian).

[5] T. Etzion and A. Vardy, “Perfect binary codes: Constructions, prop-
erties, and enumeration,”IEEE Trans. Inf. Theory, vol. 40, no. 3, pp.
754–763, May 1994.

[6] C. E. Shannon, “Probability of error for optimal codes ina gaussian
channel,”Bell Syst. Tech. J., vol. 38, pp. 611–656, May 1959.

[7] C. E. Shannon, R. G. Gallager, and E. R. Berlekamp, “Lowerbounds
to error probability for coding on discrete memoryless channels. I,”
Information and Control, vol. 10, no. 1, pp. 65–103, 1967.

[8] ——, “Lower bounds to error probability for coding on discrete
memoryless channels. II,”Information and Control, vol. 10, no. 5,
pp. 522–552, 1967.

[9] A. Valembois and M. P. C. Fossorier, “Sphere-packing bounds revisited
for moderate block lengths,”IEEE Trans. Inf. Theory, vol. 50, no. 12,
pp. 2998–3014, December 2004.

[10] G. Wiechman and I. Sason, “An improved sphere-packing bound for
finite-length codes over symmetric memoryless channels,”IEEE Trans.
Inf. Theory, vol. 54, no. 5, pp. 1962–1990, May 2008.

[11] S. M. Ulam and W. G. Mathews,Adventures of a Mathematician,
3rd ed. Univ. California Press, 1991.

[12] J. Spencer, “Ulam’s searching game with a fixed number oflies,”
Theoretical Computer Science, vol. 95, pp. 307–322, April 1992.

[13] E. R. Berlekamp, “Block coding with noiseless feedback,” PhD Thesis,
MIT, 1964.

[14] A. Pelc, “Solution of ulam’s problem on seraching with alie,” Journal
of Comb. Theory, Series A, vol. 44, pp. 129–140, January 1987.

[15] C. Deppe, “Solution of ulam’s searching game with threelies or
an optimal adaptive strategy for binary three-error-correcting codes,”
Discrete Math., vol. 224, pp. 79–98, September 2000.


	I Introduction
	II Ulam's Game and Spencer State
	II-A Ulam's liar game
	II-B Spencer State Space and Spencer Weight

	III The Relation Between Channel Codes and the Ulam's Game
	IV The New Bound
	V Conclusion
	References

