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Abstract— A lower bound on the minimum required code Sphere-Packing Bound
length of binary codes is obtained. The bound is obtained basl ‘ ‘
on observing a close relation between the Ulam’s liar game ah
channel coding. In fact, Spencer’s optimal solution to the gme
is used to derive this new bound which improves the famous
Sphere-Packing Bound.

Index Terms— Sphere-Packing Bound, Maximum size of
binary codes, Ulam’s liar game.
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I. INTRODUCTION

In 1950 Hamming [1] introduced the Sphere-Packin(g
Bound (SPB), which gives an upper bound on the number (2
codewords (i.e., code size) of a block error correcting cod 3 10} 1

the Codeword Length (n)

[any
o
T
L

of length n and minimum distancel. In particular, for a &
. S
binary block code, we have 5 57 1
2n
) < (1) 0 I I I I
Sbin(n) = Z::O (’;)’ 10° 10" 10° 10° 10 10°

Code Size (m)
where Syin(n) is the size of the code, and
Fig. 1. Sphere-Packing Bound for binary codes of size.., 105 and
d—1 minimum distance 08, 5, 7,9 (from bottom to top) corresponding to error
t= (2) correction capabilities of, 2, 3, 4 bits.
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denotes the error correction capability of the block codie. O
course [(R) holds only for the ML decoder [2].For perfect . )
codes [2]the inequalityi 1) changes to equality. It hashbedN€e error probability of a Gaussian channel, where more

shown that the only known perfect binary block codes ardh@n? errors could be introduces into a codeword [6]. This
Hamming code [1] fort = 1,m — 2¢ — 1 for i > 3, and the approach is referred to as improved Sphere-Packing Bound

(23,12) Golay code [3] witht — 7. Different constructions (ISPB) in the literature. Consequently, in 1967 Shangebn

have also been introduced for nonlinear perfect binary sodd!: provided anot_her ISPB for (J!iscrete memoryless channels
in the case oft = 1,m = 2 — 1,i > 3 [4], [5]. Perfect [7], [8]. Valembois and Fossorier improved the latter ISPB

codes have attracted much interest because of their optinfa2004 [9]. They also extended the result to the binary-inpu
minimum distance. AWGN channel. Recently, in 2008 Wiechman and Sason [10]

Using the SPB, one can easily obtain a curve, which fdfProved the bounding techniques in [7], [8] and [9] and
every pair of integersn and d, assigns a lower bound on derived a new ISPB for all symmetric memoryless channels.
the required lengt of the codewords of a block code of In this article, we would be more faithful to the Ham-
size m and minimum distancé. Fig.[d shows such curves Ming’s original line and introduce a new improvement in the
form=1,...,105,andd = 3,5,7,9 (i.e.,t = 1,2, 3, 4). SPB for binary codes. In other words, instead of being inter-

Using the SPB, for a cannel which does not introducésted about the error probability, we focus on guaranteeing
more thant errors into a codeword, we can find a lowert—bit error correction capability.
bound on the code length for error-free communication. Since our work is based on Ulam’s liar game [11] and its
Unlike this approach, in 1959 Shannon studied a bound @olution, section Il briefly reviews this game and Spencer’s


http://arxiv.org/abs/1007.4371v1

optimal solution [12]. In section Ill, the close relation-be is a “Yes” we can view it as a “No” to U-QuestioA() and
tween Ulam’s game and binary channel coding is discussease the mentioned update rule.

Thereafter, in section 1V, using this relation and Spemssser’ With the initial statevy and this updating process, it
optimal solution, a new upper bound for the maximum sizés evident that a chipe; will be lost if and only if the
of binary codes is obtained. Comparing this new bound witquestioner receives more thananswers stating that; is
the famous SPB, it is observed that for some special casemt corresponding to the selected symbol. Thygannot be

the new bound is tighter. the selected symbol by Player 1. Obviously, Player 2 wins
the game if within n questions he observes a state where all

Il. ULAM’S GAME AND SPENCERSTATE chips except one are lost.
A. Ulam's liar game To simplify the analysis of the game, we define notations

1o present the above discussion. To this end, we denote the
set of symbols belonging td in the i bin by U;. We now
Siew A, which is the matter of question at stgpt+ 1, by
g\/ectorujﬂ = (Uo,...,U:). Then, according to the above

a_syrlr;:)OI ar;ong ?Sé{ of :ﬁ d|ffeire|;1t§ymbclglsl. Ir}trc:rdter to tmentioned update rules, we can represent the updated state
win, Player 2 must guess the selected symbol with at most; |« - o receiving a "No” as

Yes/No questions of the form “Is the selected symbol among
the setA?” whereA is a subset of. We will refer to such a vj+1 = No{vj, ujr1} ()
((‘/0 \ UO)7 (‘/1 \ Ul) ) UOa LR (‘/;f \ Ut) U Ut—1)7

Ulam’s liar game, which will be referred to as “U-Game

parametersm, t, n). The game starts with Player 1 selectin

guestion as “U-Questiorl)”. Throughout the game, Player A
1 can give at most wrong answers. If the Player 2 fails n
to correctly guess the selected symbol, Player 1 is declargdd in the case of “Yes” as

winner.

Hence, Player 2 has to design a series &f-Questionsto  vjy1 = Yes{v;, uj 1} 4)
deduce the selected symbol. It is important to determine the 2 (Ug, Uy U (Vo \Up),..., U U (Viey \ Us_1)).
minimum number of required questions through which one
can guarantee that Player 2 wins. If the minimum required Spencer has also introduced a weight for every state of the

number of U-Questions is less than or equahtcPlayer 2 game. The weight of a statg = (14, ..., }), is defined as
has a strategy to win the game. . i
Other variations of the game are also considered in the lit- A n—j
: . W(v;) = Vi . 5
erature, e.g., [13], and various solutions have been preden (v3) ; | |; ( l )1 ®)

to different versions of the game [12], [14], [15].
We would refer to this weight function as “Spencer

B. Spencer Sate Space and Spencer Weight weight”. Spencer showed that if in any stéghrough the

Spencer has analyzed the U-Game [11], where he propoSiNe. the state weight is greater théifi—9, then there is
a state model for the game. Whenever the questioner recei€ly @ strategy for Player 1 to win [12].
a new answer, this state is updated in a way that it contdins al
the information which has been received about every symbol
up to now. The Spencer’s model for gm,t,n)-game,
consists oft + 1 bins in a row and m chips;, ¢, ..., ¢m The main problem in binary error correction coding is very
corresponding to m symbols. As a result of this one-tosimilar to a U-Game. To transmibg, m information bits,
one correspondence, from now on, we use terms “chip” artle transmitter selects a symbol from a set of cardinality
“symbol” interchangeably. m, and then sends a series of n bits (0 or 1) through the
In the initial state of the game, all the chips are in thehannel in order to inform the receiver what symbol has
left most bin and the chips are moved to the righter binbeen selected The channel then flips some of the bits and the
according to the received answers. After receiving jfle receiver should use the received bits to deduce the selected
answer, the state is denoted by a veatpr= (Vp,...,V;), symbol.
where V; is the subset of the chips in th& bin. Notice The aim of at-bit error correcting code is to guarantee
that the most left bin is indexed zero and the bin indexorrect decoding if the channel has flipped at mb&its.
increases to the right. Then the initial state of the game Bhe main problem here is again to design a code with min-
vo = (5,9, ...,9), whereS is the set of all chips (symbols). imum possible length to guarantee thbit error correction
Now suppose we are at stateand the questioner asks thecapability. In a well designed decoder, the parametés
U-Questiond), where A is a subset of 1,...,m}. Notice related with the minimum distance of the codewords as in
that chips corresponding to the elements_Afcan be in (@).
different bins. If the answer to this question is a “No” we According to thei™ bit of the codewords, the codebook
update the state by moving all the chips corresponding tan be partitioned into two sets. The skbf all codewords
the elements ofl one bin to the right. A chip moving to the whose:™ bit is ‘1, and A¢ of all codewords whosé" bit is
right of the right-most bin is consideretb&t”. If the answer ‘0’. Thus, a block code of length can be viewed as a series

IIl. THE RELATION BETWEEN CHANNEL CODES AND
THE ULAM 'S GAME



of n U-QuestiorB The channel can give incorrect answersand since

to some of these questions. A,
There exists, however, a few differences between the two ( ’ > =1, Vt—i,neN, @)
problems. The first and the most important one is that in £=0

the coding case, the questions are preset, i.e., the cokleb@gen

is designed before transmission. In the case of the U-Game, '

however, Player 2 can use the answers received up to now to W(vn) = Z Vi > 1. (8)

design the future questions. The second difference is that i P

Ulam's_game, Player 1 can choose a lying _strategy to makeWhere in [8), the left side of the inequality is the number

deduction of the selected symbol harder, while channetserroOlc the chips remained in the state at the end of the equivalent

occur randomly. In other words, errors are not planned bé’ame supposing we have used Spencer’s method to solve

the _channel. ) ) it. This situation means that the information received by th
Since the goal of the coding problem is to guarantee g, ngmitted bits, is not enough to deduce which message have

error correction capability of bits, one should consider heen selected in the transmitter. In such cases, althowgh th

the worst case errors. Thus, without loss of generality, Wecejver may select one of the possible blocks, but thetie wil
can assume that the channel errors are planned to make fhe, guarantee on the correctness of this decoding.m

decoding harder. Therefore, channel coding can be viewed as
a U-Game where Player 1 (channel) is still playing based on IV. THE NEwW BOUND

its best strategy, while Player 2 (code designer) must desig |n this section, based on the relation between U-Game
all his questions at the beginning of the game. Thus, thghd the channel coding problem, we use Spencer's optimal
minimum number of questions, required in @&m,¢,n)—  selution in order to obtain a lower bound on the codeword
game is a lower bound on the minimum required lengtiength. In other words, we find a bound on the required
of a code of sizen with error correction capability. For  number of bits to describe a selected symbol from a set of
channels with real-time feedback, code designer can use thdefined symbols, when at madsbits could be received
best strategy available to Player 2 in U-Game making botRcorrectly. We then observe that this bound is slightiytéy
problems identical from this point of view. than the well known SPB.

Another minor difference between the two problems is Let us first go through a simple example, where the lower
that the channel does not care about the maximum allowg@dund obtained by SPB could be improved using Spencer’s
number of incorrect answers. That is, it may introduce moreolution.

thant errors. In such cases, the decoder fails. This failure, Example 1: For a set of three symbols to be transmitted
however, does not have any effect on the code design becays@,ugh a channel using binary error correcting codes and
our code is only concerned about guaranteeing successfi|aranteeing the correction of every error of hamming weigh
decoding when the number of errors is no more thafhus,  gne, the Sphere-Packing Bound gives us a lower bound of

in the sequel, we limit our discussions to the cases that B8, on the minimum required length of codewords as
more thant errors are occurred.

The following theorem relates failure of channel decoding "
to the Spencer weight of the last state of the equivalent U- 4 =min{ z|3 < 127 i (9)
Game. vel im0 ()

Theorem 1: In a communication system, equipped by a But now, lete = [bobbabs] b_e a cogleword. To be able to
t—bit error correcting code of length and sizem, if at correct every error of Hamming weight one, we need then

the end of the equivalerftn, ¢, n)—game the Spencer weight to have a Hamming distance of at least three between every

is greater than one, there is no guarantee of successﬂﬂir of codewords. It is, however, easy to check that there
decoding exists no pair of vectors with Hamming distance three or

more among all vectors of distance at least three fiom

Proof: To proof this theorem, we get advantage of thé-€-, [bob1b2bs], [bob1b2bs], [bob1b2bs], and [bobib2bs]. Thus,
optimality of Spencer’s solution, in the means of minimunihe lower bound provided by SPB cannot be achieved by any
required questions. From the definition of the Spencer weigBITor correcting code of size three and length four. On the
in (5) we have the Spencer weight of a Spencer state-  Other hand, if we think of the equivale(s, 1,n)-game, as

(Vo,..., Vi) at the end of the equivalelfitn, ¢, n)—game as shown in Fig[®, forn = 4 the game is not conclusive. In
other words, after the fourth question, we still have twagshi
t i left in the game. One can easily check that these U-Questions
W(va) =>_|IVil> ( >] > 1, (6) are the bests, and the received answers are the worst. Thus, a
_ ¢ gy = N
i=0 £=0 bound on minimum codeword lengthfor m = 3,¢ = 1 can

be obtained from this U-Game to be> 5. Interestingly, a
IHere, a block code of length is considered. The discussions, however,cOde withn = 5 can in fact be constructed for example with
are valid for the case of variable-length codes. codewordse; = [00000], ¢2 = [11100], ¢5 = [11011]. o



| @ @ @ | | | Theorem 2: A code of lengthn, sizem, and error correc-

tion capabilityt exists if for all1 < i < n,

A = {01,02} ‘ r1 =1 K; < on—i, (14)

| @ @ | | @ | Proof: To prove this theorem, we show thAt; is less

than or equal to the Spencer weight of the equivalent U-
Az ={c1,c3} ‘ o =1 Game after theé'” U-Question is answered. Thus Af, > 1,
the Spencer weight after thé" answer is also greater than 1.
@ @ @ Therefore, according to Theorém 1, the game is inconclusive
| | | | To show thatW(v;) < K;, we notice that initially the
. . Spencer weight of the equivalent U-Game is exactly equal
Az ={er} ‘ 23 =0 to the K by the definition. Then after each update the new
Spencer weight should have three conditions. First, it Ehou
| | | @ @ @ | be an integer, since as defined [d (5) the Spencer weight
is a summation in which every term is the product of the
Ag ={c1,c2} ‘ T4 =1 number of chips in a bin and a combination term, which are
both integers. The second condition as we will show is that
@ after each update, the maximum guaranteed reduction in the
| | | | Spencer weight is half of the weight. In other words, if we
As = {c1} ‘ p—1 consid_er t_he worst case by _the means of the least possible
reduction in the Spencer weight, then we have

| | | @ | W(v;) > L(g—l). (15)

Fig. 2. The selected symbel is deduced through five U-Questions while In order to show this condition holds, suppose we are

a wrong answer (at step three) has made the state of the gaoresinsive 1N @n arbitrary Spencer state; = (Vp,...,V;) in the
after the fourth answer. In this figuré;, i = 1,...,5 represents the subset equivalent(m,¢,n) U-Game, and we are going to ask the

under question in U-Questions...,5, andz;, : = 1,...,5 represents _ ; ;

the received answer (or bit) where ‘1’ means “Yes” and ‘0’ me&No” U Questlon(4) where A could be descnbed. by the vector
ui+1 = (Up,...,U;). Regardless of the question, the updated
Spencer state is either Yes, u; 1} or No{v;, u;4+1}. Then

Through the rest of this section, we introduce a mathemat'Sing (4), [3), and({5), the sum of the Spencer weight of the

ical framework to obtain a new lower bound on the codeworfV0 Possible results is

length, using its equivalent U-Game. Before going through vy (ves{v,, uss1}) + W(No{vs, uir1}) = W(vs).  (16)

more details and formulating the new improved bound, we

introduce some definitions. Hence we have,

For an error correcting code with lengthand sizem and .
error correcting capability, let e {min{W(Yes{vi, ui1}), W(Nofvi, uia )} (A7)

AnSﬁgcd{(nzs)’._.’<tfs_j1)}, (10) =@

Here maximization is taken over all possible questions.
The third condition is that regardless of what the answer
a t o/ 11 of a question is, .the Sper_1c;er weight of the new states must
Ko =m x Z v ) (11) satisfy the following condition:
{=0

and

t .
Then we calculateK; recursively from K;_; using the Vi<n, mx Z <n—z> — W(u) (mod A, ;) (18)
following rule: K; should be the least integer satisfying N —o 4

K> K; 4 (12) which is proved in [12].
T2 As a result,K; < W(v;) and [I4) can be used to obtain
and a lower bound orm. |
B L in—i The following theorem states that the new bound is at least
K =m x Z ( ) (mod Ay, ;). (13)  as good as the famous SPB.

=0

Now we introduce a new bound through the next theorem, Theorem 3: For any m and ¢, the lower bound om
obtained based on Theorem 2 is at least as tight as the
Hamming bound.
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cussed that any binary error correcting code has an equoivale
U-Game. Finally, using Spencer’s solution to U-Game, we
derived a new lower bound on the minimum length of the
codewords of an error correcting code of sizeand error
correction capability. The new bound was proved to be at
least as tight as SPB and was shown to be better than the
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Fig. 3. The Sphere-Packing Bound versus the new bound farypitodes
of size 1,...,10° and error correction capability of,2,3,4 bits. The
solid black lines are the famous SPB introduced by Hammirgchvare
the same as in Fifl] 1. The dashed red lines are the new bouhdesject

to TheorenP. [8]

Proof: Assume that for soma: andt, a boundr looser (9]
than the Hamming bound is obtained through Theofém 2.
Then, using the pigeon-hole principle, at least two of thél0]
m spheres with radiug, centered atn codewords, will
intersect. 11

Recall that any point in this space can be viewed as a
sequence of answers in the equivalent U-Game. Now, {2
Player 1 picks one of the centers of these two intersectings]
spheres and answers the questions according to one iritersec
ing point, Player 2 will be left with more that one choice
at the end of the game. This is because both centers [of;
the intersecting spheres are less thapart from the given
sequence of answers. Thus, Player 1 with at mostong
answers can win the game.

Since Theorerh]2 guarantees existence of a winning strat-
egy for Player 2 [12], the assumption that the new bound
can be looser than the Hamming bound is contradictaal.

Fig.[3 shows a comparison between the famous SPB and
the bound achieved by Theorém 2. It contains four pairs of
curves fort = 1,2, 3,4 from bottom to top, respectively. As
we can see, the two bounds are usually the same. However, in
some particular cases, which are shown by solid circles, the
new bound describes a tighter lower bound on the minimum
number of required bits. As predicted by Theofdm 3, the new
bound is never looser than SPB. Indeed, the fact that the new
bound is at least as tight as SPB can be used to reduce the
computational complexity of finding the new bound. To this
end, one can use SPB as a starting point to search for the
smallestn satisfying Theoreri]2.

V. CONCLUSION

In this paper we first discussed the relation between the
error correcting codes and the Ulam’s game. Then we dis-

famous Sphere-Packing Bound is some cases.
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