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Abstract—In distributed wireless networks, nodes often do
not know the topology (network size, connectivity and the
channel gains) of the network. Thus, they have to compute their
transmission and reception parameters in a distributed fashion.
In this paper, we consider that each of the transmitter know the
channel gains of all the links that are at-most two-hop distant
from it and the receiver knows the channel gains of all the links
that are three-hop distant from it in a deterministic interf erence
channel. With this limited information, we find a condition on the
network connectivity for which there exist a distributed strategy
that can be chosen by the users with partial information about
the network state, which achieves the same sum capacity as that
achievable by the centralized server that knows all the channel
gains. Specifically, distributed decisions are sum-rate optimal only
if each connected component is in a one-to-many configuration
or a fully-connected configuration. In all other cases of network
connectivity, the loss can be arbitrarily large.

I. I NTRODUCTION

One of the fundamental challenges in mobile wireless

networks is lack of complete network state information with

any single node. In fact, the common case is when each node

has a partial view of the network, which is different from

other nodes in the network. As a result, the nodes have to

make distributed decisions based on their own local view of

the network. One of the key question then arises is how often

do distributed decisions lead to globally optimal decisions.

The study of distributed decisions and their impact on

global information-theoretic sum-rate performance was ini-

tiated in [1] for two special case of deterministic channels,

and then extended to Gaussian version of those topologies

in [2]. The authors proposed a protocol abstraction which

allows one to narrow down to relevant cases of local view

per node. The authors proposed a message passing protocol,

in which both transmitters and receivers participate to forward

messages regarding network state information to other nodes in

the network. The local message-passing allows the information

to trickle through the network and the longer the protocol

proceeds, the more they can learn about the network state.

More precisely, the protocol proceeds in rounds, where each

round consists of a message by each transmitter followed by

a message in response by each receiver. Half rounds are also

allowed, where only transmitters send a message. One of the

main results in [2] is that with 1.5 rounds of messaging, the

gap between network capacity based on distributed decisions

and that based on centralized decisions can be arbitrarily large

for a three-user double-Z channel (two Z-channels stacked on

each other). Thus, for some channel gains, decisions based on

the nodes’ local view can lead to highly suboptimal network

operation.

In this paper, we consider the general problem of single-hop

K-user deterministic interference channels [3–7] with arbitrary

network connectivity. Our key result is a complete charac-

terization of all topologies which can be universally optimal

with 1.5 rounds of messaging. A scheme is considered to be

universally optimal if for all channel gains, the distributed

decisions lead to sum-rate which is same as sum-capacity with

full information. With 1.5 rounds of messaging, a transmitter

knows all channel gains which are two hops away from it and

a receiver knows all gains which are three hops away from

it. So if the network diameter is larger than three, then no

node in the network has full information about the network.

Thus, while the capacity of general interference channel isstill
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unknown (even with full network state information), we can

characterize which topologies can be universally optimal with

partial information.

It turns out that only those networks whose connected

components are either fully-connected or have one-to-many

connectivity can be universally optimal. The result is intu-

itively satisfying, since in both cases the nodes which need

to control their transmissions to balance their own rate and

interference to other receivers havefull information about the

network after 1.5 rounds. For the proof of non-existence of a

universally optimal strategy, we provide the global topology

information as the genie which each of the node can use to

make decisions. For achievability, we give a strategy for any

local topology knowledge which would be optimal when there

exist a universally optimal strategy for the global topology.

The rest of the paper is organized as follows. In Section II,

we formulate the problem and give some definitions that will

be used throughout the paper. In Section III, we present our

main results and Section IV concludes the paper.

II. PROBLEM FORMULATION

Consider a deterministic interference channel withK trans-

mitters andK receivers, where the inputs atkth transmitter in

time i can be written asXk[i] =
[

Xk1
[i] Xk2

[i] . . . Xkq
[i]
]T

,

k = 1, 2, · · · ,K, such thatXk1
[i] and Xkq

[i] are the most

and the least significant bits, respectively. The received signal

of user j, j = 1, 2, · · · ,K, at time i is denoted by the

vector Yj [i] =
[

Yj1 [i] Yj2 [i] . . . Yjq [i]
]T

. Associated with

each transmitterk and receiverj is a non-negative integer

nkj that defines the number of bit levels ofXk observed

at receiverj. The maximum level supported by any link is

q = maxj,k(njk). The network can be represented by a square

matrix H whose(j, k)th entry is njk. Note H need not be

symmetric.

Specifically, the received signalYj [i] is given by

Yj [i] =

K
∑

k=1

S
q−nkjXk[i] (1)

where⊕ denotes the XOR operation, andSq−njk is a q ×

q shift matrix with entriesSm,n that are non-zero only for

(m,n) = (q − njk + n, n), n = 1, 2, . . . , njk.

We next define the notion oftopology. We assume that that

there is a direct link between every transmitter and its intended

receiver. On the other hand, if a cross-link between transmitter

i and receiverj does not exist, thenHij ≡ 0. Thus, a topology

T is a set of weighted graphs defined as

T (I) = {H : Hij ≡ 0 if (i, j) ∈ I elseHij ∈ {0, 1, . . . , q}} .

Note that the channel gain can be zero but not guaranteed to

be if the index pair(i, j) 6∈ I1.

We assume that none of the channel coefficients in the

matrix H , or even the size of matrixH is known before the

start of the message passing protocol. As a result, none of the

nodes are aware of the maximum possible transmission rates

and the associated coding schemes to achieve the capacity. The

decision taken by the nodes only depend on the information

that the nodes possess. We use the message passing protocol as

mentioned in [2] for 1.5 rounds which gives each transmitter

the knowledge of all the channel gains of the links that are at-

most two-hops away from it and each receiver the knowledge

of all the channel gains of the links that are at-most three-hops

away. We also assume that the message passing algorithm

passes the identities of the end nodes of a link with the

information of the link channel gain. With this knowledge of

local topology (including node identities) and local channel

gains, we answer the question what topology admit existence

of strategies that the various transmitters can decide based

on the local information that would be sum-rate optimal for

all the choices of the channel parameters that are not known

to the transmitter. More formally, we answer if there exist an

universally optimal strategy with limited information thenodes

possess which is defined as follows.

Definition 1 ([2]). A universally optimal strategy for a net-

work withd or d.5 rounds of message passing is defined as the

strategy that each of the transmitter uses based on its local

information in a distributed fashion, such that there exista

sequence of codes having ratesRi at the transmitteri such

that the error probabilities at the receiversλ1(n), · · ·λK(n)

go to zero asn goes to infinity, satisfying

∑

i

Ri = Csum

for all the choices of channel gains, whereCsum is the sum-

capacity of the whole network with the full information.

1This is modeled since in a fading channel, the existence of link is based
on its average channel variance while the link gain is instantaneous channel
value. Thus, the link may on an average be good but its instantaneous value
may be below the resolution. The channel information can pass through all
the edges inI.



III. E XISTENCE OFUNIVERSALLY OPTIMAL STRATEGIES

WITH 1.5 ROUNDS OFMESSAGEPASSING PROTOCOL

In this section, we find the condition on topologies for which

there exist a universally optimal strategy with1.5 rounds of

message passing. To give the condition, we first define the

two sets of configuration of topologies called one-to-many

configuration or a fully-connected configuration.

Definition 2. A topology ofK users is in one-to-many config-

uration if there are2K − 1 links in the topology that include

one of the transmitters connected to all the receivers whileall

other transmitters only connected to their own receivers.

Definition 3. A topology ofK users is in fully-connected

configuration if there areK2 links in the topology with each

transmitter connected to all the receivers.

The next theorem describes our main result. Suppose that

each node only knows the local topology information, local

channel gains and the local node identities. We find the

topologies for which a universally optimal strategy exist.The

outer bound provides a genie aided topology information to

all the nodes while the achievable strategy assumes only the

local information.

Theorem 1. Suppose that each node knows only the network

topology (or the global network connectivity) informationpro-

vided by1.5 rounds of message passing protocol. Then, there

exist a universally optimal strategy for aK-user interference

channel with1.5 rounds of message passing if and only if all

the connected components of the topology are in one-to-many

configuration or fully-connected configuration.

Proof: We will first prove that the topologies in which

there is a connected component that is not in one-to-many

configuration or in fully-connected information, universally

optimal strategy does not exist. We first note that forK < 3,

all the topologies have connected components that satisfy the

property in the statement of the theorem and thus the result

holds trivially.

The theorem has been shown forK = 3 in Appendix A. We

will now considerK > 3. Consider that there exist a connected

component withK > 3 users which is not in the one-to-many

configuration or in the fully-connected configuration. Then,

two cases arise:

1) There exist a transmitter (sayT1) which has degreed

satisfying1 < d < K.

2) All the transmitter nodes have degrees1 or K, such

that the number of nodesn having degreeK satisfy

1 < n < K.

For the first case, take the nodes1, · · · , d as the nodes whose

receivers are connected toT1. Now, there exist a transmitter-

receiver pair amongd+1, · · · ,K whose transmitter or receiver

is connected to any of the nodes1, · · · , d. Choose any such

pair and call it paird+1. The receiver ofd+1 is not connected

to transmitter 1. Now if the receiver of first is connected to

the transmitter ofd+1, then choose the nodes1, 2, d+1 and

assume that the direct link of all other users is zero and this

information is given as a genie to all the nodes. This createsa

genie-aided system in which the nodes1, 2 andd+1 have the

uncertainties about all the links connecting them and know 2-

hops of information among these links only. In this genie-aided

system, there does not exist any universally optimal strategy

thus proving the claim (since it makes a connected three-

user component which is not in the one-to-many configuration

or in the fully-connected configuration). If paird + 1 is not

connected to pair1, let us say it is connected to pair2 ≤ j ≤ d.

Then, choosing nodes1, j, d + 1 and repeating the same

argument as above proves the statement.

For the second case, choose the three nodes as any two

nodes in which the transmitter has degreeK and one in which

the transmitter has degree 1. Repeating the above genie-aided

proof for these three nodes proves the theorem.

This completes the proof that there does not exist a uni-

versally optimal strategy for a topology that does contain

a connected component which is not in the one-to-many

configuration or in the fully-connected configuration.

For the achievability, consider the following strategy. Con-

sider the following cases of the local topology information

seen by a user.

1) One-to-many topology withL nodes and the current

node has degree1: The transmitter sends at a rate of

nii.

2) One-to-many topology withL nodes and the current

node has degreeL: The transmitter sends at the signal

levels that do not potentially create interference to all

the users that it interferes.

3) Fully connected topology withL nodes: The node uses

the node identities to get its ordering inL nodes and

uses a pre-decided strategy that will be optimal for fully

connectedL node topology.

4) Any other local information: The node sends at a rate



0, or in other words remain silent.

First, it is easy to see that this strategy is optimal if

all the connected components of the topology are in one-

to-many configuration or fully-connected configuration. For

fully-connected components, all the nodes know their con-

nected component and thus can do optimal for its component.

For the one-to-many components, each of the users whose

transmitters have degree 1 send at rate equal to the rate thatthe

direct channel can support and the remaining user knows all

the channel gain and adjust its rate correspondingly. Assume

that it is one-to-many component ofL users with the first

transmitter having degreeL. The above strategy achieves a

sum rate of

Rsum =

L
∑

i=2

nii +

n11
∑

i=1

1|Uk|=0, (2)

where |Uk| is the number of users potentially experiencing

interference from thekth signal level of first transmitter

which is the same as the sum capacity with global channel

information in [7].

Further, it is also easy to see that if using this strategy,

we remove the links connected to all the users that are not

transmitting, the equivalent topology has all the connected

components in one-to-many configuration or fully-connected

configuration and in both the cases the data can be decoded.

Thus, this strategy is achievable for all possible topologies

and is optimal when all the connected components of the

topology are in one-to-many configuration or fully-connected

configuration thus proving the Theorem.

IV. CONCLUSIONS

We consider a general deterministic interference channel in

which the nodes know the channel gains through a message

passing protocol. With 1.5 rounds of this protocol, each trans-

mitter learns the channel gains of all the links that are at-most

two-hop distant from it and the receivers learn the channel

gains of all the links distant at-most three-hops from it. With

this limited information, this paper classifies all interference

channel topologies based on their ability to support distributed

strategies which are universally optimal. We also note thatthe

genie-aided information regarding global network connectivity

do not aid in making a topology able to support a universally

optimal strategy.

The problem of defining the exact graph-theoretic properties

of a topology for which a distributed universally optimal

strategy exists withd.5 rounds of message passing in a general

K-user interference channel ford > 1 is a problem of great

importance, and is still open.

APPENDIX A

UNIVERSALLY OPTIMAL STRATEGIES WITH 1.5 ROUNDS IN

THREE USERTOPOLOGIES

In a three-user interference channel, there are at-most six

cross links, existence or non-existence of which gives riseto

26 = 64 cases. Some of the cases are topologically equivalent

and hence that will reduce the total number of possibilities

considered in this paper to 16 that are shown in Figure 1.

Written below each figure is the number of topologies that

are equivalent to that topology.

We now consider all these topologies one by one. We note

that topologies (a), (b), (c), (d) and (p) satisfy the condition of

universal optimality in the statement of the theorem and thus

universal optimal strategy exist for only these topologies. We

will now prove for the remaining topologies that there does

not exist a universally optimal strategy.

(e): Consider the strategy of the second user. It does not know

any other direct link. Ifn11 = n33 = 0 and the second user

did not transmit at raten22, its strategy will not be universally

optimal. Thus, the second user sends at raten22 which is the

only hope that a universally optimal strategy can be obtained.

Now, consider that the channel gains in actual turn out to be

all unity. Then, the optimal strategy for the first and the third

user will be to turn off since the second user is transmitting

at unit rate. Thus, the sum rate of 1 is achieved. However, the

sum-capacity is2 when the first and the third transmitter send

at unit rate while the second user remains silent. Thus, there

does not exist an universally optimal strategy.

(f): Consider the strategy of the third user. It does not know

any other direct link. Hence ifn22 = 0 and the third user did

not transmit at raten33, its strategy will not be universally

optimal. Hence, the third user sends at raten33 which is the

only hope that a universally optimal strategy can be obtained.

Now, consider that the channel gains in actual turn out to be

all unity. Then, the optimal strategy for the second user will

be to turn off sinceR2 + R3 ≤ 1. Further, the first user do

not known33. So, it has to assume that the second user sends

at n22. If it does not, then there exist a case whenn33 = 0

at which the second user will send atn22 and the strategy of

the first user will not be optimal. Thus in the above case of

all links unity, the first transmitter will need to remain silent
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Fig. 1. The possible topologies in a three-user interference channel.

since it thinks that the second user sends at a unit rate and

R1 +R2 ≤ 1. However, the sum rate of1 is achieved but the

sum-capacity is2 and thus there does not exist any universally

optimal strategy.

(g): Consider the strategy of the third user. It does not know

any other direct link. Hence ifn22 = 0 and the third user did

not transmit at raten33, its strategy will not be universally

optimal. Hence, the third user sends at raten33 which is the

only hope that a universally optimal strategy can be obtained.

The first user does not known33. Now considern11 = n22 =

3 and n12 = n21 = 2. In this case, the optimal sum rate

R1 + R2 is outer-bounded by4 and can only be achieved

by the first and the second user transmitting at the rate of

2 each. Thus, from the point of view of the first user, if it

sends at any rate different from2, then the strategy is not

universally optimal whenn33 = 0. Hence, it transmits at rate

2. However, if the other channels turn out asn23 = n33 = 3.

Then, the second user will have to keep silent asR3 = 3 and

R2 + R3 ≤ 3. Thus, the sum rate of5 is achieved. However,

the fact that the second transmitter is silent is not known to

the first transmitter and that is why it cannot increase its rate

to 3 which it could do with global knowledge and thus there

does not exist any universally optimal strategy.

(h): Consider the strategy of the third user. It does not

know any other direct link. Hence ifn22 = n11 = 0 and

the third user did not transmit at raten33, its strategy will

not be universally optimal. Hence, the third user sends at

rate n33 which is the only hope that a universally optimal

strategy can be obtained. Let the configuration of channels is

n11 = n22 = n33 = n13 = 6, n23 = 2 and n12 = 1. The

third user sends atR3 = 6. For the second user, it does not

know n11. Also, R2 + R3 ≤ 10 and thus if it sends at rate

less than 4, the sum rate will not be optimal whenn11 = 0.

Thus,R2 = 4. Further sinceR1+R3 ≤ 6, the first transmitter

remains silent. Hence, the sum rate of 10 is achieved. However,

R1 = 6, R2 = 5 andR3 = 0 can be achieved which gives a

higher sum rate which contradicts the universal optimality.

(i): Consider the topology having all the direct links of weight

3 while the cross (or interfering) links of weight 2. Since itis

symmetric, we consider only the first user. Since it does not

know n33, it may happen thatn33 = 0. However ifn33 = 0,

the first transmitter knows that the second transmitter doesnot

known11 and thus only possible universal optimal strategy for

the second user to send atn22. SinceR1 + R2 ≤ 4, it sends

at a rate of1. Similarly, the second and the third user send at

unit rate. The sum rate of3 is achieved. However, with global



information, rate pair of(3, 0, 1) can be achieving thus proving

that there does not exist any universally optimal strategy for

this topology.

(j) : Considern11 = n12 = n22 = n33 = 3 andn23 = n32 = 2.

For the third receiver, if it sends at any rate different from2, it

will not be optimal in casen11 = 0. From the point of view of

the first user, ifn33 = 0, the only possible universal strategy

at the second receiver is to send atn22 and thus the first

transmitter should remain silent. Since, the second receiver

does not known11, the optimal strategy for it is to useR2 = 2;

otherwise the sum rate is not optimal whenn11 = 0. Thus, the

sum rate of4 is achieved. However, with global information

the rate pair of(3, 0, 3) can be achieved thus proving the claim.

(k): Suppose that there exist a universally optimal strategy.

When all the link gains= 3, R1 +R2 ≤ 3 andR2 +R3 ≤ 3.

Thus, the optimal rate pair from sum rate is(3, 0, 3). Any

other rate pair in the region will give lower achievable rate.

Hence, the first and the third user have to send at full rate if

they see a two-user channel with all channel gains3 in the

universally optimal strategy. Now, consider the channel gains

n11 = n22 = n33 = n23 = n32 = 3 and n12 = n21 = 2.

Thus, the third transmitter sends at rate3 as shown before.

The first transmitter sends at rate2; otherwise the rate will

not be optimal whenn33 = 0. SinceR2+R3 ≤ 3, the second

transmitter remains silent. Thus, the sum rate of 5 is achieved

which is less than the sum rate of the pair(3, 0, 3) that can

be achieved will full information.

(l): Considern11 = n22 = n33 = n13 = 6, n23 = n32 = 4

and n12 = 1. Since, the second and the third user do not

know n11; only rate pair of(4, 4) is optimal whenn11 = 0.

Thus, the second and the third user transmits at a rate of 4

each. The first transmitter knows the whole topology and since

R1 + R3 ≤ 6, the first transmitter sends at a maximum rate

of 2. Thus, maximum sum rate with this strategy will be 10.

However, the rate pair of(5, 6, 0) can be achieved with full

topology and thus there do not exist a universally optimal

strategy.

(m): Considern11 = n22 = n33 = n12 = 6, n23 = n32 =

4 and n31 = 1. The first user sees this as a S-channel and

therefore the only optimal choice for the first user is to send

at a rate of0 since the second user will be transmitting at

full rate whenn33 = 0. The second transmitter sees this as a

two-user fully connected network and hence forn11 = 0, the

only rate point that maximizes the sum rate isR2 = 4. Since

the third user knows the whole topology andR2 + R3 ≤ 8,

it can send at a maximum rate of 4. Thus, the maximum sum

rate achieved is 8. However, the rate pair of(5, 0, 6) can be

achieved with full information thus proving the claim.

(n): Considern11 = n22 = n33 = 4, n21 = n31 = 2 and

n23 = n32 = 1. The first user do not known22 andn33 and

thus it sends at raten11 = 4; otherwise it won’t be universally

optimal whenn22 = n33 = 0. The second and the third user

know the topology. SinceR1 + R2 ≤ 6 andR1 + R3 ≤ 6,

the maximum sum rate of8 can be achieved. However, the

rate pair of(3, 3, 3) can be achieved will full information thus

proving the claim.

(o): Considern11 = n22 = n33 = n12 = n21 = 6,

n23 = n32 = 4 andn13 = 1. Since the third transmitter does

not know n11 and onlyR3 = 4 is optimal whenn11 = 0,

the third transmitter usesR3 = 4. The first and the second

transmitter knows the whole topology butR1+R2 ≤ 6. Thus,

the maximum sum rate of10 can be achieved. However with

full information, the rate pair of(5, 0, 6) can be achieved thus

proving the claim.
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