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Abstract— A random time state-dependent drift result leading
to various forms of stochastic stability for a Markov Chain
is presented. Application to a network stabilization problem is
studied. In particular, we observe that, for control over a discrete
erasure channel with feedback, for recurrence or stochastic
stability, it suffices to have the capacity being greater than the
logarithm of the unstable eigenvalue. For the finiteness of a
second moment, however, more stringent criteria are needed.

I. I NTRODUCTION

Many network applications and recently popular networked
control applications require the access of control and sensor
information to be observed intermittenly. Toward generating
a solution for such problems, this paper studies random time
state dependent drift conditions leading to the existence of
an invariant distribution possibly with moment constraints.
Earlier, Meyn and Tweedie [11] considered a number of
conditions for both deterministic and random time state de-
pendent drift conditions. In this paper, we extend some of
the conditions in [11] with regard to both finite moment
conditions, and the existence of an invariant distribution. We
apply these results to a stabilization problem over an erasure
channel.

We first present results on stochastic stability.

II. RESULTS ONSTOCHASTIC STABILITY

Let us first make a number of definitions. Let{xt, t ≥ 0}
be a Markov chain with state space(X,B(X)), and defined
on a probability space(Ω,F ,P), whereB(X) denotes the
Borel σ−field on the complete, separable, metric spaceX, Ω
is the sample space,F a sigma field of subsets ofΩ, andP a
probability measure. LetP (x,D) := P (xt+1 ∈ D|xt = x)
denote the transition probability fromx to D, that is the
probability of the event{xt+1 ∈ D} given thatxt = x. The
evolution of the probability of events is completely determined
by the transition probability and the probability of the initial
state,P (dx0). The probability of the event{xt+1 ∈ D} for
any t can be computed recursively by starting att = 0,
with P (x1 ∈ D) =

∫

X
P (x1 ∈ D|x0 = x)P (dx0), and

iterating with a similar formula fort = 1, 2, . . .. See [9] for
the following:
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Definition 2.1: For a Markov chain with transition proba-
bility defined as before, a probability measureπ is invariant
on the Borel space(X,B(X)) if

π(D) =

∫

X

P (x,D)π(dx), ∀D ∈ B(X) .

Definition 2.2: A Markov chain isµ-irreducible, if for any
setB ⊂ X, such thatµ(B) > 0, and ∀x ∈ R, there exists
some integern > 0, possibly depending onB andx, such that
Pn(x,B) > 0, wherePn(x,B) is the transition probability
in n stages, that isP (xt+n ∈ B|xt = x).

Definition 2.3: A set A ⊂ X is µ − petite on (X,B(X))
if for some distributionT on N (set of natural numbers), and
some measureµ,

∞
∑

n=0

Pn(x,B)T (n) ≥ µ(B), ∀x ∈ A, andB ∈ B(X),

whereB(X) denotes the (Borel) sigma-field onX.
Theorem 2.1 ([10] Thm. 4.1): Suppose that{xt} is a ϕ-

irreducible Markov chain, and suppose that there is a setA ∈
B(X) satisfying the following:

A is µ-petite for someµ.
A is recurrent: Px(τA <∞) = 1 for any x ∈ X.
A is regular: sup

x∈A
Ex[τA] < ∞. Then {xt} is positive Harris

recurrent (and thus admits a unique invariant probability
measure).

Definition 2.4: A Markov chain is weak Feller, if
∫

X
P (x, dy)f(y) is continuous and bounded onX for every

continuous and boundedf on X.
The following is our first result. We have omitted the proof.
Throughout this section we consider a sequence of times

{τi : i ∈ N+} which is assumed to be non-decreasing, with
τ0 = 0.

Theorem 2.2: Suppose that{xt} is aµ-irreducible Markov
chain. Suppose moreover that there is a functionV : X →
(0,∞), a petite setC, and constantsκ ∈ (0, 1), b ∈ R, such
that the following hold:

E[V (xτz+1) | Fτz
] ≤ (1 − κ)V (xτz

) + b1{xτz∈C}

E[τz+1 − τz | Fτz
] ≤ V (xτz

) , z ≥ 0.
(1)

Then, the Markov chain is positive Harris recurrent.
The following provides a criterion for finite moments, which

we refer to as random-time state-dependent stochastic drift.
Theorem 2.3: Suppose that{xt} is aµ-irreducible Markov

chain. Suppose moreover that there are functionsV : X →



(0,∞), δ : X → [1,∞), f : X → [1,∞), a petite setC, and a
constantb ∈ ℜ, such that the following hold:

E[V (xτz+1) | Fτz
] ≤ V (xτz

) − δ(xτz
) + b1{xτz∈C}

E
[

τz+1−1
∑

k=τz

f(xk) | Fτz

]

≤ δ(xτz
) , z ≥ 0.

(2)
Then {xt} is positive Harris recurrent, and moreover
limt→∞ E[f(xt)] = Eπ[f(x)] < ∞, with π being the
invariant distribution.

By taking f(x) = 1 for all x ∈ X, we obtain the following
corollary to Theorem 2.3.

Corollary 2.1: Suppose that is aϕ-irreducible Markov
chain. Suppose moreover that there is a functionV :→ (0,∞),
a petite setC, and a constantb ∈ ℜ, such that the following
hold:

E[V (xτz+1) | Fτz
] ≤ V (xτz

) − 1 + b1{xτz∈C}

sup
x∈X, z≥0

E[τz+1 − τz | xτz
= x] <∞.

(3)
Then{xt} is positive Harris recurrent.

Theorem 2.4: In the above theorems, if the irreducibility
condition is replaced with the condition that the Markov Chain
is weak Feller, then (i) Under Theorem 2.2, there exists an
invariant distribution (ii) Under Theorem 2.3, for all invariant
distributionsπ, supπ limt→∞E[fi] <∞ exists.

Some further related results on convergence and further
relaxations will be reported elsewhere.

Before ending this section, we note that the existence of
an invariant distribution is useful particularly because of the
sample-path individial ergodic theorem:

Theorem 2.5 (Birkhoff’s Individual Ergodic Theorem):
Consider a positive Harris recurrent Markov process{xt}
taking values in X, with invariant distribution π(.). Let
f : X → R be a bounded function, measurable onB(X).
Then, the following holds almost surely:

lim
T→∞

1

T

T−1
∑

t=0

f(xt) =

∫

f(x)π(dx).

III. A PPLICATION TO CONTROL OVER AN ERASURE

CHANNEL

We consider a remote stabilization problem where a con-
troller having access to measurements from a channel, and acts
on a plant, which is open-loop unstable (Figure 1).

A channel coder maps the source symbols, state values,
to corresponding channel inputs. This is done via quantizers.
The quantizer outputs are transmitted via a noisy memoryless
channel, hence the receiver has access to noisy versions of the
quantizer/coder outputs for each time, which we denote by
{q′} ∈ M generated according to a probability distribution
for every fixedq ∈ {1, 2 . . . ,m} = M, which we denote by
{P (q′|q)}.

Before proceeding further with the description of the sys-
tem, we discuss the quantization policy investigated. Aquan-
tizer, Q, for a scalar continuous variable is a mapR → R,

q
′

q

u
x

Coder
Controller

Channel

Plant

Fig. 1: Control over a noisy channel with causal feedback.

characterized by a sequence of bins{Bi} and their represen-
tation {qi}, such that∀i, Q(x) = qi if and only if x ∈ Bi.
Of particular interest is the class of uniform quantizers. In the
following, we modify the description of a traditional uniform
quantizer by assigning the same value when the state is in
the overflow region2 of the quantizer. As such, a uniform
quantizer:QK

∆ : R → R with step size∆ and an (odd)K
number of levels satisfies the following fork = 1, 2 . . . ,K:

Q∆
K(x) =











(−(K+1)
2 + k)∆, if

x ∈ [(−K
2 + (k − 1))∆, (−K

2 + k)∆)

0, if |x| > K
2 ∆ or x = K

2 ∆

A general class of quantizers are those which are adaptive.
Let S be a set of states for a quantizer stateS. Let F : S ×
M′ → S be a state update-function. An adaptive quantizer has
the following state update equations:

St+1 = F (St, q
′
t).

Here,q′t is the channel output at timet, andSt is thestate of
the quantizer. We note that, such a quantizer is implementable
since the updates can be performed both at the encoder and
the decoder.

One particular class of adaptive quantizers is introduced by
Goodman and Gersho [3]. One such type has the following
form withQ∆

K being a uniform quantizer withK bins and bin-
size ∆ and Q̄ determining the updates in the bin-size of the
uniform quantizer as a function of the source and the current
bin size:

qt = Q∆t

K (xt), ∆t+1 = ∆tQ̄(q′t,∆t) (4)

Here ∆t characterizes the uniform quantizer, as it is the bin
size of the quantizer at timet.

We consider an LTI discrete-time scalar system described
by

xt+1 = axt + but + dt, (5)

2As such, when|x| > (K/2)∆, the receiver knows that the source is in
the overflow region of the quantizer.



wherea is the system coefficient with|a| ≥ 1, that is, the
system is open-loop unstable. We takeb 6= 0. Here xt is
the state at timet, ut is the control input,x0 is a second
order random variable, and{dt} is a sequence of zero-mean
independent, identically distributed (i.i.d.) Gaussian random
variables with a finite second moment.

This system is connected over a channel with a finite
capacity to an estimator (controller). The controller has access
to the information it has received through the channel.

The controller in our model estimates the state and then
applies its control. As such, the problem reduces to a state
estimation problem since such a scalar system is controllable.
Hence, the stability of the estimation error is equivalent to the
stability of the state itself.

We assume the data rate (bits transmitted per channel use)
to be some rateR. We will try to find a relationship between
the packet loss probability and the data rate which leads to
stability.

A. Literature Review with Regard to Stabilization

There has been considerable amount of research in the
literature on quantizer design for such a stabilization problem,
for a detailed review see [23]. Due to space constraints, we
are unable to provide a detailed account here and only review
some of the directly related literature to this note. Zooming
type adaptive quantizers, which will be described further in
the paper, have been recently introduced by Brockett and
Liberzon [2], for remote stabilization of open-loop unstable,
noise-free systems with arbitrary initial conditions. Nair and
Evans [8] provided a stability result under the assumption that
the quantizer is variable-rate and showed that for a noisy setup
(with unbounded support for the noise probability measure)
that on average it suffices to use more thanlog2(|a|) bits to
achieve a form of stability. [8] used asymptotic quantization
theory to obtain a time-varying scheme, where the quantizer
is used at certain intervals at a very high rate, and at other
times, the quantizer is not used. In contradistinction withthe
result of Nair and Evans, we provide a technique which allows
us to both provide a result for the case when the quantizer is
fixed-rate as well as to obtain an invariance condition for a
probability measure on the quantizer parameters. There is also
a large body of literature on quantizer design in the commu-
nications and information theory community. One important
reference is the work by Goodman and Gersho [3], where an
adaptive quantizer was introduced and the adaptive quantizer’s
stationarity properties were investigated when the sourcefed
to the quantizer is a second order and i.i.d. sequence. In fact,
zooming type quantizers is a special class of Goodman and
Gersho’s adaptive quantization scheme. Kieffer and Dunham
[5] have obtained conditions for the stochastic stability of a
number of coding schemes when the source considered is also
stable, where various forms of stability of the quantizer and
the estimation error have been studied. In our case, however,
the schemes in [3] and [5] are not directly applicable, as
the process we consider is open-loop unstable, as well as
Markovian.

References [12] and [19] showed that zero-error capacity
is related for convergence in almost sure senses. Matveev
and Savkin showed that, almost sure stabilization is not
possible for a class of channels. In their definition, almostsure
stabilization is equivalent to the following:lim sup ||xt|| <∞,
almost surely. Reference [22] proposed any-time capacity as
an appropriate measure of channels used in control systems.
References [21], [20] and [8] studied control over noisy chan-
nels and obtained fundamental lower bounds for information
transmission. Recently, [13] studied the problem concerning
time-varying channels and provided a necessity and sufficiency
result for boundedness of second moments.

Earlier, we had obtained conditions for the existence of an
invariant distribution in [23] for noisy channels and in [17]
for discrete-channels, under a fixed-rate constraint. Earlier, we
had adopted the approach of using stochastic drift arguments
in [23].

In this paper, our contribution here is on stochastic stabiliza-
tion over erasure channels. We show that the second moment
has a limit, and the individual ergodic theorem applies.

One important result in this paper is the observation that
there exists a well-defined limit for the sequence of second
moments{E[||xt||22], t ∈ Z+} and this limit is finite. This
result allows us to formulate an optimal quantization problem
when the noise process has unbounded support and the state
space for the quantizer bin edges are unbounded. This paves
the way for extending the results of [1] to unstable systems
for optimal quantizer design.

In view of the literature, the contributions of this note are
stated as follows.

• Results on the existence of an invariant distribution is
presented. To our knowledge, the first result showing that
lim supt→∞E[x2

t ] = limt→∞ E[x2
t ] < ∞ is obtained,

when the system is driven by a Gaussian disturbance.
This result paves the way for solving average cost infi-
nite horizon optimal control problems under quantization
constraints.

• The obtained result uses a fixed-rate quantization scheme.
This is implementable in a practical setting.

B. Results for Control over Erasure Channels

We have the following Theorem.
We first note thatP (pt = 1) = p, andpt = 1 is the event

that the signal is transmitted with no error.
Theorem 3.1: If,

R >
log2(⌈|a|⌉ + 1)

p
,

there exists an adaptive quantization policy such that there
exists a compact setS with

sup
x∈S

E[min(t > 0 : xt ∈ S)|x0 = x] <∞,

thusS is a recurrent set.
With, K = 2R, let us defineR′ = log2(2

R − 1). We will
consider the following update rules. Fort ≥ 0 and with∆0 ∈



R selected arbitrarily, consider:

ut = −a
b
x̂t,

x̂t = ptQ
∆t

K (xt),

∆t+1 = ∆tQ̄(| xt

∆t2R′−1
|, pt) (6)

If we useδ, ǫ, η > 0 with η < ǫ such that,

Q̄(x, p) = |a| + δ if |x| > 1, or p = 0

Q̄(x, p) =
|a|

2R′ − η
if 0 ≤ |x| ≤ 1, p = 1,∆ > L

Q̄(x, p) = 1 if 0 ≤ |x| ≤ 1, p = 1,∆ ≤ L

with
√

E[d2
t ]

L |a|

2R′
−η

2R′−1
< δ. Note that, the above imply that∆t ≥

L |a|

2R′−η
=: L′.

Our result on the existence and uniqueness of an invariant
distribution is the following.

Theorem 3.2: Under the setup of Theorem 3.1, for a
zooming quantizer, if the quantizer bin sizes are such that
their (base−2) logarithms are integer multiples of some scalar
s and log2(Q̄(.)) take values in integer multiples ofs, then
the jointly Markov process(xt,∆t) forms a positive (Harris)
recurrent Markov chain, and, as such, has a unique invariant
distribution, given an initial condition. If the integers taken
are relatively prime (that is they share no common divisors
except for1), then the invariant distribution is independent of
the initial condition (the value of the integer multiplyings).

Theorem 3.3: If, under Theorems 3.1 and 3.2, we have
that,

a2(1 − p+
p

(2R − 1)2
) < 1

it follows that
lim

t→∞
E[x2

t ] <∞,

and this limit is independent of the initial states of the
quantizer and the system.

Remark: We note that the above results are directly appli-
cable to multi-dimensional systems when the system matrix
can be diagonalizable. ⋄

C. Proofs

1) Proof of Theorem 3.1: Recurrence: Toward the proof,
we will first obtain a supporting result.

Lemma 3.1: Let B(R × R+) denote the Borelσ−field on
R × R+. It follows that

P

(

(xt,∆t) ∈ (C ×D)|(xt−1,∆t−1), ..., (x0,∆0)

)

= P

(

(xt,∆t) ∈ (C ×D)|(xt−1,∆t−1)

)

,

∀(C ×D) ∈ B(R × R+), i.e. (xt,∆t, pt) is a Markov chain.
Let us defineht := xt

∆t2R′−1 . Consider the following sets:
Cx = {x : |x| ≤ E}, Ch = {h : |h| ≤ 1}, with E =
2R′−1L′. Further, let another set beC′

x = {x : |x| ≤ F},
with a sufficiently largeF value to be derived below. We will

study the expected number of time stages between visits of
{(xt, ht)} toC′

x×Ch. Consider the drift of the(xt, ht) process
in Figure 2: Whenxt, ht are inCx × Ch, the expected drift
increases both|h| and |x|. When thext process gets outside
C′

x andht outsideCh (under-zoomed), there is a drift forht

towardsCh, however,|xt| will keep increasing on average.
Finally, when the process hitsCh (perfect-zoom), then the
process drifts towardsC′

x. We first show that the sequence

Fig. 2: Drift in the Error Process. The x-axis is|x| and the
y-axis is |h|: When under-zoomed, the error increases on
average; when perfectly-zoomed, the error decreases.

{ht, t ≥ 0} visits Ch infinitely often with probability 1 and
the expected length of the excursion is uniformly bounded
over all possible values of(x, h) ∈ C′

x ×Ch. Let V (ht) = h2
t

serve as a Lyapunov function. Define a sequence of stopping
times for the perfect-zoom case with

τ0 = 0, τz+1 = inf{k > τz : |hk| ≤ 1}, z ∈ Z+

We have that, if|ht| > 1 (under-zoomed)E[h2
t+1|ht, xt] ≤

(a2+ E[d2]

|xt|
2 )

(a+δ)2 (ht)
2. Since when|ht| > 1, we have that|xt| >

2R′−1L′, it follows that

E[h2
t+1|ht, xt] ≤ (

a2 + E[d2]
E2

(a+ δ)2
)(ht)

2.

If |ht| ≤ 1, then

E[h2
t+1] ≤ P (pt = 1)

a2 (∆t)
2

4 + E[d2
t ]

(∆t2R′−1)2
(
2R′ − η

|a| )2

+P (pt = 0)
a2 (∆t)

2

4 + E[d2
t ]

(∆t2R′−1)2(|a| + δ)2

≤ a2 L′2

4 + E[d2
t ]

(L′2R′−1)2
(
2R′ − η

|a| )2 =: K1 (7)

whereL′ = L |a|

2R′−η
(this is a lower bound on∆t).

Hence, it follows that

E[h2
t+1 − h2

t |ht, xt] ≤ −ρh2
t +K11(|ht|≤1), (8)



where 1(U) is the indicator function for eventU with ρ =

1 − (a2+ E[d2]

E2 )

(a+δ)2 . Since forA,B > 0, A2 + B2 ≤ (A + B)2

it follows that the hypothesis
√

E[d2
t ]

L′2R′−1 < δ in the theorem
statement ensuresρ > 0. Now, let us defineK ′

1 := K1 + 1,
M0 := V (h0), and for t ≥ 1,

Mt := V (ht) −
t−1
∑

i=0

(−ρ+K ′
11(hi∈Ch))

Define a stopping time:τN = min(N,min{i > 0 : V (hi) ≥
N},min{i > 0 : V (hi) ≤ 1}). As |ht| > 1 whenht /∈ Ch,
E[Mt+1|(xs, hs), s ≤ t] ≤ Mt, ∀t ≥ 0, it follows that,
{Mt} is a Super-Martingale sequence.

The stopping time τN is bounded and the Super-
Martingale sequence is also bounded fort ≤ τN . Hence,
we have, by the Martingale optional sampling theorem:
E[M(τN)] ≤ E[M0]. Hence, we obtainE[

∑τN−1
i=0 ]ρ ≤

V (h0) + K ′
1E[

∑τN−1
i=0 1(hi∈C)]. Thus, ρE[τN − 1 + 1] ≤

V (h0) +K ′
1, and by the Monotone Convergence Theorem,

ρ lim
N→∞

E[τN ] = ρE[τ ] ≤ V (h0) +K ′
1 = 1 +K ′

1,

E[τz+1 − τz ] ≤ (1 +K ′
1)/ρ, (9)

uniformly for all hτz
∈ Ch. By the strong Markov property

(xτz
, hτz

) is also a Markov chain as{τz < n} ∈ Fn, the
filtration generated by the quantizer state and the quantizer
output at timen. The probability thatτz+1 6= τz + 1, is upper
bounded by the probability:

pP

(

{a∆τz
/2 + dτz

≥ (2R′−1)∆τz

|a|
2R′ − η

}
⋃

{−a∆τz
/2 + dτz

≤ −(2R′−1)∆τz

|a|
2R′ − η

}
)

= 2pP

(

dτz
> (|a|/2)∆τz

((2R′−1/2R′ − η) − 1)

)

(10)

Let us define:

Pe(∆τz
) := P

(

d2
τz
> (∆τz

(|a|/2)((2R′−1/2R′ − η) − 1)2
)

.

It follows that, conditioned on increment in the error, until the
next stopping time, the process will increase exponentially and
hence

xτz+1 = aτz+1−τz(xτz
+

τz+1−τz−1
∑

t=0

a−t−1dt+τz
).

We now show that, there existψ > 0, |G| <∞ such that

E[log(∆2
τz+1

)|∆τz
, hτz

] ≤ log(∆2
τz

) − ψ +G1(|∆τz |≤F ) (11)

Now, it follows that,

E[log(∆2
τz+1

)|∆τz
, hτz

]

≤ (1 − Pe(∆τz
))(p)

(

2 log(
|a|

2R′ − η
) + log(∆2

τz
)

)

+

∞
∑

k=2

E[log(∆2
τz+1

)|τz+1 − τz = k]P (τz+1 − τz = k)

(12)

We now bound the probability thatP (τz+1 − τz ≥ k). We
first have a lemma.

Lemma 3.2: Let A,B,C,D be events in a probability
space(Ω,F , P ). It follows that,

P

(

(A ∪B) ∩ (C ∪D)

)

≤ P ((A ∪B)|C)P (C) + P ((A ∪B)|D)P (D)(13)
We now apply this Lemma to obtain the following:

P (τz+1 − τz ≥ k)

= P

( k−1
⋂

s=1

(ps = 0) ∪ (|hs| > 1)

)

= P

( k−1
⋂

s=1

(ps = 0)

∪(|xs| ≥ |2R′−1(|a| + δ)s−1 |a|
2R′ − η

∆0|
)

≤ P

( k−2
⋂

s=1

(ps = 0) ∪ (|hs| > 1)|pk−1 = 0

)

(1 − p)

+

(

E[ζ2]

(( |a|+δ
|a| )k−1|a|( 2R′−1

2R′−η
− 1/2)∆0)2

)

= P (τz+1 − τz ≥ k − 1)(1 − p)

+

(

E[ζ2]

(( |a|+δ
|a| )k−1|a|( 2R′−1

2R′−η
− 1/2)∆0)2

)

(14)

As such, we can bound the probability thatP (τz+1 − τz =
k). Hereζ is a random variable with variance

σ′2 =
E[d2]

1 − |a|−2
.

Let for k ∈ Z+

Θk := P (τz+1 − τz ≥ k).

Then, we have that

Θk ≤ Θk−1(1 − p) +
E[ζ2]

κ∆0Λk−1
,

where Λ > |a|+δ
|a| , with κ > 0. As such, we can obtain,

recursively

Θk ≤ Θ1(1 − p)k−1 +
E[ζ2]

κ∆2
0

( k−1
∑

l=1

(1 − p)k−l−1Λ−l

)



= (1 − p)k−1

(

Θ1 +
E[ζ2]

κ∆2
0

k−1
∑

l=1

((1 − p)Λ)−l

)

≤ (1 − p)k−1

(

Θ1 +
E[ζ2]

κ∆2
0

(1 − p)Λ)−1

1 − ((1 − p)Λ)−1

)

,

with Θ1 = 1. We now show that

Θk ≥ (1 − p)k−1.

This follows since

P

(

∩k−1
s=1 (ps = 0) ∪ (|hs| > 1)

)

≥ P

(

∩k−1
s=1 (ps = 0)

)

.

As such,

P (τz+1 − τz = k)

≤ (1 − p)k−1

(

Θ1 +
E[ζ2]

κ∆2
0

(1 − p)Λ)−1

1 − ((1 − p)Λ)−1

)

−(1 − p)k

As ∆0 → ∞, it follows that (sinceΘ1 = 1)

P (τz+1) − τz = k) → (1 − p)k−1(p)

As such, the probability distribution is asymptotically dom-
inated by a geometrically distributed process, for large∆0

values.
Let us now useV (∆t) = log(∆2

t ). We will then invoke
Theorem 2.2. Now, it follows that,

E[log(∆2
τz+1

)|∆τz
, hτz

]

≤ (1 − Pe(∆τz
))(p)

(

2 log(
|a|

2R′ − η
) + log(∆2

τz
)

)

+

∞
∑

k=2

E[log(∆2
τz+1

)]P (τz+1 − τz = k)]

= (1 − Pe(∆τz
))(p)

(

2 log(
|a|

2R′ − η
) + log(∆2

0)

)

+(1 − p)E[log((|a| + δ)2τz) + log(∆2
0/2

2R′

)]

= (1 − Pe(∆τz
))(p)

(

2 log(
|a|

2R′ − η
) + log(∆2

0/2
2R′

)

)

+E[(τz+1 − τz) log((|a| + δ)2) + log(∆2
0/2

2R′

)]

(15)

Since
∞
∑

k=1

(1 − p)k−1(k)p = 1/p,

for large∆τz
values

E[log(∆2
τz+1

)|∆τz
, hτz

]

≤ 1

p

(

2 log2(|a| + δ) − 2 log(2R′ − η) + log(∆2
τz

)

)

As such, for some arbitrarily smallη > 0, we require:

log(2R′ − η) >
1

p
log2(|a| + δ),

for stochastic stability. ⋄

2) Proof of Theorem 3.2: Uniqueness and Irreducibility:
In our setting,(xt,∆t) form the Markov chain, as was proved
in Lemma 3.1. LetIz0,A,B be defined as

{n ∈ Z+, n ≥ log2(L
′)/s : ∃NA, NB, n = −NAA+NBB+z0}.

Under the conditions of the paper,Iz0,A,B forms a communi-
cation class, wherez0 = log2(∆0)/s is the initial condition
of the parameter for the quantizer: Since we have∆t+1 =
Q̄(| xt

∆t2R′−1 |, pt)∆t, it follows that

log2(∆t+1)/s = log2(Q̄(| xt

∆t2R′−1
|))/s+ log2(∆t)/s,

is also an integer. Furthermore, since the source process
xt is Lebesgue-irreducible (as the system noise admits a
probability density function with positive mass on every
open set), and there is a uniform lower boundL′ on bin-
sizes, the error process takes values in any of the admissible
quantizer bins with non-zero probability. Let the values taken
by log2(Q̄(| xt

∆R′−1
t

|))/s be {−A,B}. Consider two integers

k, l ≥ log2(L′)
s . For all l, k ∈ Iz0,A,B, that is there exist

NA, NB ∈ Z+ such thatl − k = −NAA + NBB. Consider
first the case wherek > log2(L′)

s + NAA. We show that
the probability ofNA occurrences of perfect zoom, andNB

occurrences of under-zoom phases is bounded away from zero.
This set of occurrences includes the event that in the firstNA

time stages perfect-zoom occurs and later, successively,NB

times under-zoom phase occurs. The probability of this event
is lower bounded by

(

P (dt ∈ [−2sl − L′,−2sl + L′])p

)NA
(

1 − p

)NB

> 0.

A similar analysis can be performed whenk < log2(L′)
s +

NAA, by considering the opposite order of events, where in the
first NB times, under-zoom occurs, and in the successiveNA

time stages, perfect-zoom occurs. As such, for any two integers
k, l and for somep > 0, P (log2(∆t+p) = ls| log2(∆t) =
ks) > 0. In our setting, the recurrent set consists of both∆t

andet. Hence, in this setting, the product space is the product
of a discrete-space and a real space. Forxt, the Borel sets
are the open intervals, which are visited infinitely often, and
for ∆t, the individualatoms are visited infinitely often with
probability 1.

Now, we can connect the results of the previous section
with Theorems 3.1 and 2.2. The recurrent setC′

x × Ch is
ν−petite, for some probability measureν as any Borel set in
the state space is visited starting fromC′

x ×Ch, and the chain
is irreducible. These two imply that the chain is positive Harris
recurrent.

If the integers are relatively prime, the invariant set for the
quantizer parameterI will be the entire set, and invariant of
the initial condition.

⋄



D. Simulation

As a simulation study, we consider a linear system with the
following dynamics:

xt+1 = axt + ut + dt,

with a = 2.5, E[dt] = 0, E[d2
t ] = 1, and {dt} are i.i.d.

Gaussian variables.
The erasure channel has packet loss probability1−p = 0.1.
For stochastic stability, we use the zooming quantizer with

rate log2(⌈|a|1/p⌉ + 1) = 4. We have takenL′ = 1.
For finite second moment stability, we use the zooming

quantizer with ratelog2(⌈
√

p
1

a2 −(1−p)
⌉ + 1) = 5. We have

takenL′ = 1.
The plots below (Figures 3 and 4) corroborate the stochastic

stability result, by explicitly showing the under-zoomed and
perfectly-zoomed phases, with the peaks in the plots showing
the under-zoom phases.
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Fig. 3: Sample path for stochastically stabile system.

IV. CONCLUDING REMARKS

We presented a stochastic stability result which character-
izes the stability of a sampled Markov chain, where the sample
times are state-dependent and random. We think that this result
will have many applications in networked control systems.

We applied this result to the problem of control over an
erasure channel and obtained new results for the case when
the system is driven by noise with unbounded support for its
probability measure.

One related question is the following: Is Shannon Capacity
sufficient for stochastic stability for an arbitrary DMC with
feedback?. Earlier, it was observed by Sahai and Mitter that
Shannon capacity was not adequate. We had observed in [23]
that, for there to be an invariant distribution, the capacity
should be at least greater than the logarithm of the unstable
eigenvalue. This paper showed that for erasure channels, for
stochastic stability, Shannon capacity is sufficient; however, for
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Fig. 4: Finite second moment requires more information.

finite moment conditions more stringent criteria are needed. It
is not easy to extend this result to arbitrary channels, since
one loses Markoviannes. Nonetheless, recurrence seems to be
a property that one can verify.

⋄
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[18] O. C. Imer, S. Yüksel, and T. Başar, “Optimal Control of LTI Systems
over Communication Networks”,Automatica, vol. 42, pp. 1429–1440,
Sept. 2006.

[19] N. C. Martins, M. A. Dahleh and N. Elia, “Feedback stabilization of
uncertain systems in the presence of a direct link”,IEEE Transactions
on Automatic Control, volume 51, pp. 438 447, March 2006.

[20] S. Tatikonda and S. Mitter, “Control under communication constraints,”
IEEE Trans. Aut. Control, vol. 49, pp. 1056-1068, July 2004.

[21] W. S. Wong and R. W. Brockett, “Systems with finite communication
bandwidth constraints - part II: Stabilization with limited information
feedback,IEEE Trans. Aut. Control, vol. 42, pp.1294–1299, Sept. 1997.

[22] A. Sahai and S. Mitter, “The necessity and sufficiency ofanytime
capacity for stabilization of a linear system over a noisy communication
link Part I: scalar systems,”IEEE Trans. Inform. Theory, vol. 52, pp.
3369–3395, Aug. 2006.
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