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Abstract— A random time state-dependent drift result leading
to various forms of stochastic stability for a Markov Chain
is presented. Application to a network stabilization probem is
studied. In particular, we observe that, for control over a dscrete

Definition 2.1: For a Markov chain with transition proba-
bility defined as before, a probability measuras invariant
on the Borel spacéX, B(X)) if

erasure channel with feedback, for recurrence or stochasti
stability, it suffices to have the capacity being greater tha the m(D) = [ P(z,D)n(dz), VD e B(X).

logarithm of the unstable eigenvalue. For the finiteness of a  Definition 2.2: ,&gMarkov chain isu-irreducible, if for any
second moment, however, more stringent criteria are needed set B ¢ X, such thatu(B) > 0, andVz € R, there exists
some integen > 0, possibly depending oB andzx, such that
P™(z,B) > 0, where P"(z, B) is the transition probability
o in n stages, that i€ (x4, € Bla: = z).

Many network applications and recently popular networked pefinition 2.3: A set A c X is 1 — petite on (X, B(X))

control applications require the access of control and®ens ¢o, some distribution? on N (set of natural numbers), and
information to be observed intermittenly. Toward gen@@ti ¢qme measurg

a solution for such problems, this paper studies random time
state dependent drift conditions leading to the existerfce o
an invariant distribution possibly with moment constraint

|I. INTRODUCTION

Earlier, Meyn and Tweedie [11] considered a number

conditions for both deterministic and random time state de-

pendent drift conditions. In this paper, we extend some

the conditions in [11] with regard to both finite momen

conditions, and the existence of an invariant distributidfe
apply these results to a stabilization problem over an
channel.

We first present results on stochastic stability.

Il. RESULTS ONSTOCHASTIC STABILITY

Let us first make a number of definitions. Lgt:, ¢ > 0}
be a Markov chain with state spa¢¥, 5(X)), and defined
on a probability spacé(, F,P), where B(X) denotes the
Borel o—field on the complete, separable, metric spEce?
is the sample spacé; a sigma field of subsets 61, andP a
probability measure. LeP(x, D) := P(x;4+1 € Dl|xy = x)
denote the transition probability from to D, that is the
probability of the evenf{z;1,1 € D} given thatz, = . The
evolution of the probability of events is completely detered
by the transition probability and the probability of thetial
state, P(dzg). The probability of the everdz;,, € D} for
any t can be computed recursively by starting tat= 0,
with P(z; € D) = [, P(z1 € Dl|zg = z)P(dxo), and
iterating with a similar formula fot = 1,2,.... See [9] for
the following:
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iP”(m,B)T(n) > u(B), Vze A, andB € B(X),
0

of

where3(X) denotes the (Borel) sigma-field gt

OfTheorem 2.1 ([10] Thm. 4.1): Suppose thaf{x;} is a ¢-

greducible Markov chain, and suppose that there is adset
(X) satisfying the following:

A is p-petite for someu.
€83a5Ys recurrent: P.(t4 < 0) =1 foranyz € X.
A is regular: sup E;[t4] < oco. Then{z;} is positive Harris

recurrent (géerﬁj thus admits a unique invariant probability
measure).

Definition 2.4: A Markov chain is weak Feller, if
fx P(z,dy)f(y) is continuous and bounded @t for every
continuous and boundefi on X.

The following is our first result. We have omitted the proof.

Throughout this section we consider a sequence of times
{m : i € Ny} which is assumed to be non-decreasing, with
T0 = 0.

Theorem 2.2: Suppose thafz, } is au-irreducible Markov
chain. Suppose moreover that there is a function X —
(0,00), a petite se”, and constants € (0,1), b € R, such
that the following hold:

E[V(‘r"—z+l) | -7:7'2] <(1- K/)V(‘rTz) + bl{zfz eC}

Elroy1 — 7 | Fr] < V(zs,), z>0.

1)
Then, the Markov chain is positive Harris recurrent.

The following provides a criterion for finite moments, which
we refer to as random-time state-dependent stochastic drif
Theorem 2.3: Suppose thafz, } is au-irreducible Markov

chain. Suppose moreover that there are functibhsX —
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(0,00), 6: X — [1,00), f: X — [1,00), a petite seC’, and a
constanth € R, such that the following hold: .

E[V(x72+l) | Fr.] < V(7)) —6(zr.) + bl{mfz €C}

Tz+1—1

Bl Y. fan) | F] <d(an), =

k=1
)

Then {a:} is positive Harris recurrent, and moreover
limy oo E[f(x:)] = E:[f(z)] < oo, with = being the
invariant distribution.

By taking f(z) = 1 for all z € X, we obtain the following
corollary to Theorem 2.3. T b D

Corollary 2.1: Suppose that is @-irreducible Markov v
chain. Suppose moreover that there is a function- (0, ),

a petite seC’, and a constani € R, such that the following Fig. 1: Control over a noisy channel with causal feedback.
hold:

E[V(ITz+1) | j:‘l'z] < V(ITZ) -1+ bl{wTZEC} . .
characterized by a sequence of bif3;} and their represen-

3 E - = . ; : i .
%;‘BZO [re1 = 7= | 7. J<oo tation {¢‘}, such thatvi, Q(x) = ¢' if and only if z € B;.
(3) Of particular interest is the class of uniform quantizensthe
Then{z;} is positive Harris recurrent. following, we modify the description of a traditional unifa

Theorem 2.4: In the above theorems, if the irreducibilityquantizer by assigning the same value when the state is in
condition is replaced with the condition that the Markov {Bhathe overflow regiof of the quantizer. As such, a uniform
is weak Feller, then (i) Under Theorem 2.2, there exists auantizer:QX : R — R with step sizeA and an (odd)K
invariant distribution (ii) Under Theorem 2.3, for all im@nt number of levels satisfies the following fér=1,2..., K:
distributionss, sup,. lim;_,., E[f;] < co exists. —(K+1) )

Some further related results on convergence and further (== +hA, if
relaxations will be reported elsewhere. Qx(x) = ze[(FF+ (k—1)A (S +k)A)

Before ending this section, we note that the existence of 0, if |z >E&A or 2=%A
an invariant distribution is useful particularly becaugethe
sample-path individial ergodic theorem:

Theorem 2.5 (Birkhoff’s Individual Ergodic Theorem):
Consider a positive Harris recurrent Markov process}
taking values inX, with invariant distribution(.). Let
f : X — R be a bounded function, measurable B(X). Siv1 = F(St, q;).
Then, the following holds almost surely:

A general class of quantizers are those which are adaptive.
Let S be a set of states for a quantizer stateLet F' : S x
M’ — S be a state update-function. An adaptive quantizer has
the following state update equations:

Here,q; is the channel output at time and S, is the state of
o1 the quantizer. We note that, such a quantizer is impleméntab
lim — Z flae) = /f(x) (dix)- since the updates can be performed both at the encoder and
=0 the decoder.
Ill. APPLICATION TO CONTROL OVER AN ERASURE One particular class of adaptive quantizers is introduged b
CHANNEL Goodman and Gersho [3]. One such type has the following
We consider a remote stabilization problem where a coferm with Q% being a uniform quantizer witi” bins and bin-
troller having access to measurements from a channel, asd &ze A and () determining the updates in the bin-size of the
on a plant, which is open-loop unstable (Figure 1). uniform quantizer as a function of the source and the current
A channel coder maps the source symbols, state valub#) size:
to corresponding channel inputs. This is done via quargizer A =
The quantizer outputs are transmitted via a noisy memayles @ = Q' (z1), Arer = MiQlat, Ar) )
channel, hence the receiver has access to noisy versiohe ofHere A; characterizes the uniform quantizer, as it is the bin
quantizer/coder outputs for each time, which we denote Bize of the quantizer at time
{¢'} € M generated according to a probability distribution We consider an LTI discrete-time scalar system described
for every fixedq € {1,2...,m} = M, which we denote by by
{rP(dla)}-
Before proceeding further with the description of the sys-

t_em* we discuss the quan_t|zat|0n pol_lcy |n\_/est|gatedquAn- 2As such, whenz| > (K/2)A, the receiver knows that the source is in
tizer, @, for a scalar continuous variable is a m&p— R, the overflow region of the quantizer.

T—oo T —

Ti41 = ATt + but + dt, (5)



whereq is the system coefficient withz| > 1, that is, the  References [12] and [19] showed that zero-error capacity
system is open-loop unstable. We take# 0. Here x; is is related for convergence in almost sure senses. Matveev
the state at time, w; is the control input,zy is a second and Savkin showed that, almost sure stabilization is not
order random variable, anfl;} is a sequence of zero-meamossible for a class of channels. In their definition, alnsose
independent, identically distributed (i.i.d.) Gaussi@mdom stabilization is equivalent to the followingm sup ||x;|| < oo,
variables with a finite second moment. almost surely. Reference [22] proposed any-time capaaity a

This system is connected over a channel with a fini@n appropriate measure of channels used in control systems.
capacity to an estimator (controller). The controller hesess References [21], [20] and [8] studied control over noisyreha
to the information it has received through the channel. nels and obtained fundamental lower bounds for information

The controller in our model estimates the state and thénansmission. Recently, [13] studied the problem concerni
applies its control. As such, the problem reduces to a stdime-varying channels and provided a necessity and suffigie
estimation problem since such a scalar system is conttellalresult for boundedness of second moments.

Hence, the stability of the estimation error is equivalenthie Earlier, we had obtained conditions for the existence of an
stability of the state itself. invariant distribution in [23] for noisy channels and in [17

We assume the data rate (bits transmitted per channel use)discrete-channels, under a fixed-rate constrainti&ane
to be some raték. We will try to find a relationship betweenhad adopted the approach of using stochastic drift argisnent
the packet loss probability and the data rate which leadsito[23].
stability. In this paper, our contribution here is on stochastic stzbil

) ) ) o tion over erasure channels. We show that the second moment
A. Literature Review with Regard to Stabilization has a limit, and the individual ergodic theorem applies.

There has been considerable amount of research in th@ne important result in this paper is the observation that
literature on quantizer design for such a stabilizatiorbfgm, there exists a well-defined limit for the sequence of second
for a detailed review see [23]. Due to space constraints, weoments{ E|[||z;||3], t € Z.} and this limit is finite. This
are unable to provide a detailed account here and only reviesgult allows us to formulate an optimal quantization peotl
some of the directly related literature to this note. Zoagninwhen the noise process has unbounded support and the state
type adaptive quantizers, which will be described furthrer ispace for the quantizer bin edges are unbounded. This paves
the paper, have been recently introduced by Brockett atite way for extending the results of [1] to unstable systems
Liberzon [2], for remote stabilization of open-loop undigb for optimal quantizer design.
noise-free systems with arbitrary initial conditions. Nand In view of the literature, the contributions of this note are
Evans [8] provided a stability result under the assumpthat t stated as follows.
the quantizer is variable-rate and showed that for a nolsipse  , Results on the existence of an invariant distribution is

(with unbounded support for the noise probability measure) presented. To our knowledge, the first result showing that
that on average it suffices to use more thag,(|a|) bits to 2

: ot _ o limsup,_, . E[z?] = lim;_ E[z?] < oo is obtained,
achieve a form of stability. [8] used asymptotic quantizati when the system is driven by a Gaussian disturbance.

Fheory to obtain.a j[ime-varying scheme_, where the quantizer This result paves the way for solving average cost infi-
is used at certain intervals at a very high rate, and at other pjte horizon optimal control problems under quantization
times, the quantizer is not used. In contradistinction & constraints.

result of Nair and Evans, we provide a technique which allows, The obtained result uses a fixed-rate quantization scheme.
us to both provide a result for the case when the quantizer is This is implementable in a practical setting.

fixed-rate as well as to obtain an invariance condition for a

probability measure on the quantizer parameters. Thersads aB. Results for Control over Erasure Channels

a large body of literature on quantizer design in the cOmmu-\ye have the following Theorem.

nications and information theory community. One important \ys first note thatP(p; = 1) = p, andp, = 1 is the event
reference is the work by Goodman and Gersho [3], where g}, e signal is transmitted with no error.

adaptive quantizer was introduced and the adaptive qusiistiz Theorem 3.1: If,

stationarity properties were investigated when the sotede

to the quantizer is a second order and i.i.d. sequence. tn fac R o8 (llall +1)
zooming type quantizers is a special class of Goodman and p
Gersho's adaptive quantization scheme. Kieffer and Dunhafyre exists an adaptive quantization policy such thatether
[5] have obtained conditions for the stochastic stabilityao ayists a compact sef with

number of coding schemes when the source considered is also

stable, where various forms of stability of the quantized an sup Emin(t > 0: a3 € S)|zg = 2] < 00,

the estimation error have been studied. In our case, however oS

the schemes in [3] and [5] are not directly applicable, dbusS is a recurrent set.

the process we consider is open-loop unstable, as well ayvith, K = 2%, let us defineR’ = log,(2F% — 1). We will
Markovian. consider the following update rules. For> 0 and withA €

)



R selected arbitrarily, consider:

a
Ut = —Eiﬂm
B o= pQy(me),
— Tt
Apyr = AtQ(|W|7Pt)

If we used, e,n > 0 with n < e such that,

study the expected number of time stages between visits of
{(z¢, ht)} to C. x C}. Consider the drift of théz,, h:) process

in Figure 2: Whenz,, h, are inC, x Cj, the expected drift
increases bothh| and |z|. When thez; process gets outside
C! andh, outsideC}, (under-zoomed), there is a drift féx
towards C},, however,|z;| will keep increasing on average.
Finally, when the process hit§}, (perfect-zoom), then the
process drifts toward€”,. We first show that the sequence

Q(x,p) = lal +d it |z|>1, or
— /\
Q(z,p) =1 if 0<|z|<L,p=1,A<L \\ 4
with —o—t— % < 4. Note that, the above imply that, > /‘\ W N
R, :
I R|fl| 2:. § \ .
2R —py T ‘
Our result on the existence and uniqueness of an invariant | |/ | [ | | | \\>
distribution is the following. 3
Theorem 3.2: Under the setup of Theorem 3.1, for a \J !
zooming quantizer, if the quantizer bin sizes are such that \/“/ 4/«//
their (base-2) logarithms are integer multiples of some scalar 7
s andlog,(Q(.)) take values in integer multiples af then
the jointly Markov processz;, A;) forms a positive (Harris)

recurrent Markov chain, and, as such, has a unique invari
distribution, given an initial condition. If the integeraken
are relatively prime (that is they share no common divisos
except forl), then the invariant distribution is independent ofV
the initial condition (the value of the integer multiplyirsg.
Theorem 3.3: If, under Theorems 3.1 and 3.2, we havd/u,t = 0} visits Cy infinitely often with probability 1 and

1t I L
?ﬂg. 2: Drift in the Error Process. The x-axis jig| and the

erage; when perfectly-zoomed, the error decreases.

that, the expected length of the excursion is uniformly bounded
a2(1—p+ p ) <1 over all possible values dft, h) € C!. x Cy,. Let V(h;) = h?
(28 —1)2 serve as a Lyapunov function. Define a sequence of stopping
it follows that times for the perfect-zoom case with

: 2

lim Elzy] < oo, 10=0, Ty = inf(k>7 |l <1}, z€Zy
and this limit is independent of the initial states of th‘We have that, iflh;
quantizer and the system. (a2 Bl '

Remark: We note that the above results are directly appli———%t=~(h,)2. Since when|h,| > 1, we have thafz,| >

| > 1 (under-zoomed)[h?, |k, z¢] <

- . . (a+0)2
cable to multi-dimensional systems when the system matgx’'—17/ it follows that
can be diagonalizable. o )
2 a® + EIEJ%] 2

C. Proofs Elhiy|he,ze] < ( @10 Y(he)“.

1) Proof of Theorem 3.1: Recurrence: Toward the proof,
we will first obtain a supporting result. If [he] <1, then

Lemma 3.1: Let B(R x R;) denote the Boreb—field on 9 (Ay)? 21 oR'
R x R.. It follows that Elh? ] < P(p, = 1)(1 4 +E[dt](2 _77)2

t+1] = Dt (A 2R 12 la]

P((xt, At) S (C X D)|(.’L‘t_1, At—l), ey ($07A0)> _|_P( B O) a2(A4t)2 + E[d%]
P AR (o] 1 0)?

=P A CxD EERVAVE 2 !
<(xt, t) € (C x D)|(z4-1, Ay 1)>, a?l- + Eld?] 2% —y

=T T

=K1 (7)
V(C x D) € B(R x Ry), i.e. (x, Ay, pe) is @ Markov chain.
Let us defineh; := #. Consider the following sets:
C, ={x:|z| < E}, C,=1{h:|hl <1}, with F =
2R’ =11/, Further, let another set b€/, = {z : |z| < F},
with a sufficiently largeF’ value to be derived below. We will

where L’ = L% (this is a lower bound om\;).
Hence, it follows that

E[hiyy — hilhe, 2] < —phi + Kil(p, <1y, (8)

axis is |h|: When under-zoomed, the error increases on



where 1y is the indicator function for event/ with p = Now, it follows that,

E[d?]
1 e (:J;)i_) Since forA, B > 0, A> + B> < (A + B)? Ellog(A Tz+1)|Arzahrz]
E[d?]

it follows that the hypothesi§/ Tar—1 < 6 in the theorem <(1-P(A ))(p)<2log( |al )+ log(A2 )>
statement ensurgs > 0. Now, let us definek| := K; + 1, - T QR _ T2
My :=V(ho), and fort > 1,

+3  Eflog(AZ | )|rayr — 72 = K|P(ro1 — T2 = k)
t—1 k=2
~ S (—p+ Kilgean) (12)
= We now bound the probability tha® (7.1 — 7. > k). We
Define a stopping timer = min(N, min{i > 0 : V(h;) > first have a lemma.
N},min{i > 0: V(h;) < 1}). As |h| > 1 whenh, ¢ Cj, Lemma 3.2: Let A,B,C,D be events in a probability
E[M;i1|(zs,hs),s < t] < M, ¥Vt > 0, it follows that, space(Q,F, P). It follows that,
{M,} is a Super-Martingale sequence.
The stopping time " is bounded and the Super- P((AU B)N (CUD)>
Martingale sequence is also bounded fox 7. Hence,
we hagve byqthe Martingale optional sz;mpling theorem: SPI(V:]_U B)|C)P(C)+bP_((AhU ?)IID).P(I_IB)
ElMi) < E[MO] Hence. we obtamE[ZTNo_l]p < We now apply this Lemma to obtain the following:

Vi(ho) + KL E[XT g " necy). Thus, pE[rN — 1+ 1] < P(roy1 — 72 > k)
V(ho) + K1, and by the Monotone Convergence Theorem, k—1
= P(Ne:=0u > 1)
p Jim E[r"] = pE[r] < V(ho) + K{ = 1+ K], s=1

k—1
—r(Nw.~0)
Elror — 7] < (1+ K})/p, ©) !

/ a
U] 2 2ol + 0 " )

uniformly for all h,, € Cy. By the strong Markov property

k—2
(xr.,h-,) is also a Markov chain a$r. < n} € F,, the <p _ h 1 —0)1—
filtration generated by the quantizer state and the quantize - Q(ps = OV (s> Dlpe—r =0 )1 = p)
output at timen. The probability that—,; # 7. + 1, is upper , E[¢2]
bounded by the probability: ( s Py >
(01 a| (252~ 1/2)A0)?
pP<{aA‘rz/2+d‘rz > (2R'71)A72 R|/a| } = P(Terl - >k— 1)( )
2% = E[¢?]
/ Jal MANIES: 2 (14)
U(—ad. /2 4 d,. < — (2" 1>A72m}> ()1 o] (252~ 1/2)A0)2
i , As such, we can bound the probability thatr, 1 — 7. =
_ R'—1/9R _ \ +
=2pP (de > (lal/2)A- (27 72/27 =) 1)>(1O) k). Here( is a random variable with variance
Let us define: 0% = Ldz]
e

P.(A,) = P(dfz > (Ar(Jal/2)((2F 2R — ) — 1)2>. Let for k € Z.

» . . . Ok == P(1oq41 — 72 > k).
It follows that, conditioned on increment in the error, littie

next stopping time, the process will increase exponegtéaid Then, we have that

hence
E[¢?]
1 B Or <Op1(1—p)+ RAQAFT’
Tr,y =07 (2, + a " diyr,). . )
s (e ; +.) where A > 142 with 5 > 0. As such, we can obtain,
recursively

We now show that, there exist > 0, |G| < oo such that

- %] (k_l k—i—1 —l)
0r <0 (1-pFt 4 L S - A
Ellog(AZ,, )| Ar, hr ] <log(A7) =¥+ Gl(a,. 1<r) (12) < Ol-2) 4 KAD (t-2)



o1 k—1
—a-p (o Z Y )
=1

(g L EG)(-ph)!
<(-p)f <®1+ w7 1—((1—p>A>‘1)’

with ©; = 1. We now show that
O > (1—p)F L

This follows since

P(ﬂfill (ps = 0) U ([hs] > 1)) > P(m’“ (ps = 0)).
As such,
P(rop1— 1. =k)
—1 E[¢?] (1-pA)~!
- <@1 AT —p>A>-1)

—(1-p)*
As Ay — oo, it follows that (since®, = 1)
P(Tz+1) — Tz = k) - (1 _p)k_l(p)

As such, the probability distribution is asymptoticallydo
inated by a geometrically distributed process, for larfyg
values.

Let us now useV (A;) = log(A?). We will then invoke
Theorem 2.2. Now, it follows that,

Ellog(A7, )|Ar, hr ]
lal

< (- P(8.))0) (2 -
+ZE log(A2 )P(Toq1 — 72 = k)]
o

— (1- P8 ) D) (2 loa( ) + log(83)
(1= pBlog((al + 57) + {83/
— (1= P00 (2lon(g) + los(ad/27))

+E[(7241 — 72) log((la] +8)°) + log(AF/2*%)]
(15)

) +log(82) )

Since

o0

> (1—p)*!

k=1
for large A, values

[log( T+1)|A7—z7h7—z]
< 2 (210g(lal + ) - 21og(2" ~ ) + Iog(42))

As such, for some arbitrarily small > 0, we require:

(k)p =1/p,

, 1
log(2% —n) > Elogz(lal +6),

for stochastic stability. o

2) Proof of Theorem 3.2: Uniqueness and Irreducibility:
In our setting,(z:, A;) form the Markov chain, as was proved
in Lemma 3.1. Lefl,, 4z be defined as

207

{n €Zy,n>logy(L')/s:INs, Ng,n = —NsA+NpB+2}.
Under the conditions of the papdt, 4 g forms a communi-
cation class, where, = log,(Ag)/s is the initial condition
of the parameter for the quantizer: Since we havg, =
Q(|#|,pt)At, it follows that

loga(Aesn) /s = 1oa Q| 5= /5 + loga( A5,

is also an integer. Furthermore, since the source process
x; IS Lebesgue-irreducible (as the system noise admits a
probability density function with positive mass on every
open set), and there is a uniform lower bouhf on bin-
sizes, the error process takes values in any of the adn@ssibl
guantizer bins with non-zero probability. Let the valudsta

by logQ(Q(|ﬁ|))/s be {—A, B}. Consider two integers

t
k1l > %. For all I,k € I, 4.5, that is there exist
Na,Np € Z4 such thatl — k = —NsA + NpB. Consider
first the case wherd > % + NaA. We show that
the probability of N4 occurrences of perfect zoom, afds
occurrences of under-zoom phases is bounded away from zero.
This set of occurrences includes the event that in the At
time stages perfect-zoom occurs and later, successikaly,
times under-zoom phase occurs. The probability of this even
is lower bounded by

Na Np
(P(dt cl-2s -1/, -2t + L'])p) (1 —p) > 0.

A similar analysis can be performed whén< % +
N4 A, by considering the opposite order of events, where in the
first Ng times, under-zoom occurs, and in the succesaive
time stages, perfect-zoom occurs. As such, for any two érteg
k,l and for somep > 0, P(logy (A1) = Is|logy(Ay) =

ks) > 0. In our setting, the recurrent set consists of bdth
ande;. Hence, in this setting, the product space is the product
of a discrete-space and a real space. Egrthe Borel sets
are the open intervals, which are visited infinitely oftenda
for A, the individualatoms are visited infinitely often with
probability 1.

Now, we can connect the results of the previous section
with Theorems 3.1 and 2.2. The recurrent &t x C}, is
v—petite, for some probability measureas any Borel set in
the state space is visited starting fratf x Cj,, and the chain
is irreducible. These two imply that the chain is positivatita
recurrent.

If the integers are relatively prime, the invariant set floe t
guantizer parametdr will be the entire set, and invariant of
the initial condition.

&



D. Smulation

As a simulation study, we consider a linear system with the
following dynamics:

Tip1 = QT + U + dy,

with a = 2.5, E[d;] = 0,E[d?] = 1, and {d,;} are i.i.d.
Gaussian variables.

The erasure channel has packet loss probahility = 0.1.

For stochastic stability, we use the zooming quantizer with
ratelog,([|a|'/?] + 1) = 4. We have takerd.’ = 1.

For finite second moment stability, we use the zooming
quantizer with ratelog, ([ %] + 1) = 5. We have
takenL’ = 1. ‘

The plots below (Figures 3 and 4) corroborate the stochastic
stability result, by explicitly showing the under-zoomenda
perfectly-zoomed phases, with the peaks in the plots shpwin
the under-zoom phases.
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Finite second moment requires more information.

finite moment conditions more stringent criteria are neetted
is not easy to extend this result to arbitrary channels,esinc
one loses Markoviannes. Nonetheless, recurrence seenes to b
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Fig. 3: Sample path for stochastically stabile system. [6]

(7]

We presented a stochastic stability result which character
izes the stability of a sampled Markov chain, where the sampil (€]
times are state-dependent and random. We think that thif res
will have many applications in networked control systems.

We applied this result to the problem of control over an
erasure channel and obtained new results for the case wien
the system is driven by noise with unbounded support for its
probability measure. (11]

One related question is the following: Is Shannon Capaciwz]
sufficient for stochastic stability for an arbitrary DMC it
feedback?. Earlier, it was observed by Sahai and Mitter thB#]
Shannon capacity was not adequate. We had observed in [23]
that, for there to be an invariant distribution, the capacit[14]
should be at least greater than the logarithm of the unstable
eigenvalue. This paper showed that for erasure channels, [95]
stochastic stability, Shannon capacity is sufficient; heevefor

IV. CONCLUDING REMARKS

El

a property that one can verify.

&
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