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Abstract—This paper addresses the issue of counting the
occurrence of special events in the framework of partially-
observed discrete-event dynamical systems (DEDS). Developed
diagnosers referred to as sequential window diagnosers (SWDs)
utilize the stochastic diagnoser probability transition matrices
developed in [9] along with a resetting mechanism that allows
on-line monitoring of special event occurrences. To illustrate
their performance, the SWDs are applied to detect and count
the occurrence of special events in a particular DEDS. Results
show that SWDs are able to accurately track the number of
times special events occur.

I. INTRODUCTION

The failure/fault analysis of discrete-event dynamical sys-
tems has received attentions from academia and industries
since the seminal work [7] was published. The framework
presented in [7] deals with the detection of special events
where the finite-state automaton describes the dynamic of
the system and the associated partial-observation is assumed
to be reliable. Later, this work was extended in [11] for
diagnosing behaviors of interest in discrete event systems.
The behaviors of interest in this work were modeled as
languages generated by the discrete event model.
Among the subsequent extensions and improvements of

[7], recent developments on the detection problem of special
events accounting for sensor unreliability and stochastic
aspects in discrete-event systems include [6], [8], [9], [1].
In [6], the authors show that, in general, the observer of
a finite-state stochastic automaton cannot be represented by
another finite-state stochastic automaton. Assuming reliable
sensors, the authors in [8] introduced the notions of stochas-
tic diagnosability that incorporate the stochastic automaton
describing the behavior of the system. These notions of di-
agnosability relax that of deterministic automaton introduced
in [7]. Also presented in [8] is the procedure of building the
stochastic diagnoser1 that bears a similar structure of the
logical diagnoser of [7]. The transitions of the stochastic
diagnoser include probability transition matrices that can
be used to update the probability distribution on the state
estimate. Later, this work is extended to unreliable sensors
in [9]. In [1], the authors present a method of calculating
the observation likelihood of the stochastic automaton. The
authors then used the developed procedure to decide the
most-likely stochastic automaton explaining the observed
output sequence among the candidate stochastic automata.
One can find attempts addressing special events with

repeatable nature in [3], [5], [10], [4], [13]. Intermittent

1The stochastic diagnoser is not a stochastic automaton. Therefore, the
results presented in [6], [8] do not contradict each other.

or non-persistent faults are repetitive in nature and can
autonomously reset. The issue of detecting whether or not
a resetting has occurred was addressed in [3]. In [5], the
authors addressed fault counting problems and introduced
several notions of diagnosability that capture the various
counting capabilities of special events.
Though results on probabilistic detection/diagnosis for

stochastic automata and event counting for deterministic
automata are available, results on the “probabilistic counting”
of special events for stochastic automata are limited at best.
In [10], [13], a counting strategy accommodating stochastic
automata and unreliable observations was presented. How-
ever, the counting strategy of [10], [13] is deterministic in
that the presented counting algorithm searches the minimum
count of the associated state estimate rather than using the
probabilistic distribution of state estimate of the stochastic
automaton; essentially, it deals with possibility rather than
probability. In [12], the authors fully utilized the probabilistic
aspect of stochastic automata in developing algorithms for
special event counting. In this paper, we develop sequential
window diagnosers (SWDs) utilizing the notions of state
probability vector and stochastic diagnoser probability tran-
sition matrices from [9] together with a resetting mechanism
that allows for counting the occurrence of special events. The
transition matrices can be calculated and stored offline before
the monitoring begins. Special event counting involves only
simple vector-matrix multiplications, which is computation-
ally simpler than the recursive calculations in [12]. The main
contributions of this paper are summarized below.

• A procedure for counting the occurrence of special
events for DEDS under unreliable observations is de-
veloped based on the stochastic diagnoser probability
transition matrices introduced in [9] and a resetting
mechanism.

• We apply the developed methodology to a material
flow system where special routing events are counted
dynamically.

The rest of the paper is organized as follows. In Section II,
necessary notation and definitions are introduced. Section III
briefly reviews sensor output automata and stochastic diag-
noser probability transition matrices, on which SWDs are
based. The SWDs are also defined in this section. In Section
IV, we give an illustrative material flow system application
where SWD estimates the number of occurrences of special
routing events under unreliable observations. Finally, Sec-
tion V concludes the paper. We assume in the remainder
of this paper that the reader is familiar with terminologies



typical of DEDS.

II. PRELIMINARIES
The monitoring architecture considered in this paper is

shown in Fig. 1. The monitored plant is modeled as a

Fig. 1. Monitoring architecture

DEDS, which generates events. The events are observed
by unreliable sensors, which give rise to the observation
model. Finally, the disgnoser uses the observations from the
unreliable sensors to infer the occurrence of special events. In
Sections II-A and II-B, the DEDS and observation models are
described in detail, respectively. The diagnoser is described
in Section III.

A. DEDS Model
The monitored DEDS in Fig 1 is a stochastic automaton

SA, which is defined as a quadruple:

SA = (X, Σ, a, π0) (1)

where X := {x1, x2, . . . , xnx
} is the finite state space,

Σ := {σ1, σ2, . . . , σnσ
} is the set of events, and π0 :=

{π0(xi) : xi ∈ X} is the initial probability distribution of the
system. The state transition probability function a is defined
as below:

a : X × Σ × X → [0, 1], (2)

where, a(xi, σ, xj) denotes the conditional probability that,
given the system is in state xi ∈ X , σ ∈ Σ occurs and
transitions the system to state xj ∈ X . Moreover, to insure
that the system is live, we assume ∀x ∈ X ,

nσ∑
i=1

nx∑
j=1

a(x, σi, xj) = 1, (3)

i.e., the occurrence of a new transition is certain from every
state. Transition probability function can be extended to
strings according to the equation,

a(xi, σs, xj) =
∑

x′∈X

a(xi, σ, x′)a(x′, s, xj). (4)

The probability of a given string occurring when the SA is
in state xi is defined as

Pr(xi, s) �
∑

x′∈X

a(xi, s, x
′). (5)

The language generated from state xi is

L(SA, xi) = {s ∈ Σ∗ : Pr(xi, s) > 0}, (6)

where for any finite set S, S∗ denotes the Kleene closure of
S.

B. Observation Model

Next, the observation model in Fig. 1 is considered. In
practice, sensors are seldom perfect, and hence, observa-
tions from sensors are unreliable. The unreliable obser-
vations are modeled in the following manner. Let Δ :=
{y1, y2, . . . , yny

} be the set of distinctive observation sym-
bols. We denote the set of observation symbols at the sensor
outputs as

Δ∗ := Δ ∪ {ε}, (7)

where the symbol ε represents the situation that an event has
been executed but no observation is reported. The unreliable
output function b : Σ × Δ∗ → [0, 1] satisfies the following:
∀σ ∈ Σ,

b(σ, ε) +

ny∑
i=1

b(σ, yi) = 1. (8)

The functional value b(σ, y) is the conditional probability of
having output y ∈ Σ × Δ∗ when the system executes event
σ ∈ Σ.
Consider the following sequence of state transitions by the

DEDS in Fig. 1:

(x1
s, σ

1, x1
d) . . . (xn

s , σn, xn
d ) . . . ∈ (X × Σ × X)∗, (9)

where xi
s, x

i
d ∈ X and σi ∈ Σ for i > 0 and (xi

s, σ
i, xi

d)
denotes that the DEDS makes a state transition from xi

s to
xi

d by executing the event σi. Obviously, the following has
to be satisfied:

• π0(x
1
s) > 0;

• a(xi
s, σ

i, xi
d) > 0, ∀i > 0;

• xi
s = xi+1

d , ∀i > 0

The sequence of generated events for the DEDS in Fig. 1
corresponding to the state transitions in (9) is denoted by
the string:

s = σ1σ2 . . . σn . . . ∈ Σ∗. (10)

Given the sequence of events, s, there are many possible
sequences of output symbols for the sensors modeled by (7)
and (8). A particular sequence of output symbols can be
denoted by

o = o1o2 . . . on . . . ∈ (Δ∗)
∗, (11)



where b(σi, oi) > 0 for i > 0. Finally, the sequence of
observations available to the diagnoser in Fig. 1 is denoted
by

y = y1y2 . . . ym . . . ∈ Δ∗, (12)

where

PΔ(o) = y, (13)

and PΔ : (Δ∗)
∗ → Δ∗ is a plain projection function that

removes ε symbol from o.

C. Special Event
In the remainder of the paper, we are interested in de-

veloping a diagnoser (see Fig. 1) for estimating the number
of occurrences of some special event f ∈ Σ (e.g., a fault
or a failure) given the available observations in (12).2 If the
special event f is an element of a string s, we write f ∈ s.

D. Example
An example is given below illustrating the notations pre-

sented above. Consider the stochastic automaton SA and the
associated unreliable output function b described in Fig. 2.

Fig. 2. Stochastic automaton and unreliable output function

Consider a sample state transition of the system and cor-
responding sequences of generated events and observations.

State transitions : (1, e, 1)(1, f, 2)(2, f, 2)(2, e, 1) . . .

s : e f f e . . .

o : e e ε f . . .

y : e e f . . .

Note that the third state transition (2, f, 2) of the system
does not generate an observation symbol in Δ. Thus, system
transitions incurred by f occurred twice, while eef is ob-
served (i.e., f is observed only once). The sequential window
diagnoser will use the observations, eef . . ., to logically infer
the number of occurrences of f .

III. SEQUENTIAL WINDOW DIAGNOSERS
In this paper, the diagnoser in Fig. 1 is the sequential

window diagnoser (SWD) described in this section. SWDs
are based on the stochastic diagnoser probability transition
matrices developed in [9] and a resetting mechanism that
permits counting special event occurrences. A brief discus-
sion of the development of the probability transition matrices
is given here for completeness.

2For simplicity, we only consider a single event f ∈ Σ to be counted.
Extension to multiple events or multiple types of multiple events in the
sense of [7] is straightforward.

A. Sensor Output Automaton

We start with the sensor output automaton (SOA), which
is necessary to define the stochastic diagnoser probability
transition matrices.
The SOA for a DEDS under unreliable observations

modeled in Section II is a stochastic automaton denoted by:

SOA = (XSOA, ΣSOA, aSOA, πSOA
0 ), (14)

where the constituent elements are explained as follows. The
state space,XSOA, and initial probability distribution, πSOA

0 ,
are identical to those of SA, i.e., XSOA = X and πSOA

0 =
π0. The event set, ΣSOA = Δ∪Δf ∪{ε, εf}, consists of two
versions of the output symbolsΔ∪{ε}: one corresponding to
“normal” events and the other corresponding to the “special”
event f .
The probability transition functions aSOA are constructed

according to the following equations:

aSOA(x1, y,x2) =
∑

σ∈Σ/{f}

(a(x1, σ, x2) × b(σ, y)) (15)

if y ∈ Δ ∪ {ε}, and

aSOA(x1, yf , x2) = a(x1, f, x2) × b(f, y) (16)

if yf ∈ Δf ∪ {εf}.
A deterministic observation model for the SOA is defined

as:

bSOA(y, y) = 1 if y ∈ Δ ∪ {ε}, (17)
bSOA(yf , y) = 1 if yf ∈ Δf ∪ {εf}. (18)

Thus, “normal” events in Δ ∪ {ε} are observed directly,
while “special” events in Δf ∪{εf} appear identical to their
corresponding normal events.
To construct stochastic diagnoser probability transition

matrices, define the set of all strings generated from state xi

whose only observable event is the final event δ ∈ Δ ∪ Δf

as

Lδ(SOA, xi) �

{s ∈ L(SOA, xi) : s = uδ, u ∈ ({ε} ∪ {εf})
∗} (19)

The SOA, along with its observation model, combines
the information provided by the model of the DEDS, its
associated unreliable observations, and special event f .

B. Stochastic Diagnoser Probability Transition Matrices

The stochastic diagnoser probability transition matrices
developed in [9] are described below with modified notions
for simplicity. We note here that the stochastic diagnoser in
[9] is not a stochastic automaton. The reason is that the state
transition probabilities of the stochastic diagnoser cannot be
characterized by usual Markov chain probability transition
matrices (where each row sums up to one) but by the matrices
described below.



Consider the DEDS in (1) under unreliable observations
with an SOA in (14). For m ≥ 0, define the vector,

φ(m) =[
pN
1 (m), pN

2 (m), . . . , pN
nx

(m), pF
1 (m), . . . , pF

nx
(m)

]
,

(20)

where pN
i (m) (or pF

i (m)) denotes the conditional probability
that the DEDS is in state xi ∈ X and that f has not been (or
has been) executed given m observations and given initial
probability φ(0) = [π0, 0, 0, . . . , 0]. Recall that π0 is the
initial state distribution probability given in (1).
The stochastic diagnosis probability transition matrices

form a set of 2nx × 2nx matrices denoted by ΦSD. These
matrices update φ(m) as observations become sequentially
available and are described below. Each δ ∈ Δ is associated
with a matrix in ΦSD defined by

ΦSD(δ) =

[
ΦNN (δ) ΦNF (δ)
0nx×nx

ΦFF (δ)

]
, (21)

where 0nx×nx
is the nx × nx zero matrix and ΦNN (δ),

ΦNF (δ), and ΦFF (δ) are defined by

ΦNN
ij (δ) =

∑
s∈Lδ(SOA,xi):f /∈s

aSOA(xi, s, xj),

ΦNF
ij (δ) =

∑
s∈Lδ(SOA,xi):f∈s

aSOA(xi, s, xj), (22)

ΦFF
ij (δ) =

∑
s∈Lδ(SOA,xi)

aSOA(xi, s, xj).

Using the expressions given by (22) directly to calculate
the entries of ΦSD is not practical for two major reasons.
First, there may be cycles of unobservable events in the SA.
Second, for each x ∈ XSOA and σ ∈ ΣSOA, there may be
non-unique x′, x′′ ∈ XSOA such that aSOA(x, σ, x′) > 0
and aSOA(x, σ, x′′) > 0. The above reasons will make (22)
difficult to evaluate directly. A matrix equation to calculate
the entries of ΦSD based on the absorption probabilities of
Markov chains is derived in [9] and described below. Define
the matrix Q as the following. For each δ ∈ Δ ∪ {ε}, let

Qij(δ) = aSOA(xi, δ, xj), (23)

and, similarly, for each δf ∈ Δf ∪ {εf}, let

Qij(δf ) = aSOA(xi, δf , xj). (24)

For each δ, we combine Qij(δ) and Qij(δf ) to give

Q̂(δ) =

[
Q(δ) Q(δf )

0nx×nx
Q(δ) + Q(δf )

]
. (25)

Matrix ΦSD(δ) is then the solution to the matrix equation

ΦSD(δ) = Q̂(δ) + Q̂(ε)ΦSD(δ). (26)

The matrices ΦSD(δ) are precalculated and stored offline for
use by the sequential window diagnoser.

From the development in [8] and [9], given the (m + 1)st
observation δ ∈ Δ, φ(m + 1) can be calculated from φ(m)
as follows:

φ(m + 1) =
φ(m)ΦSD(δ)

‖φ(m)ΦSD(δ)‖
, (27)

where ‖ • ‖ denotes the 1-norm.

C. Sequential Window Diagnoser Algorithm
Let c(m) denote the estimated count for the number

of times special event f has been executed after the mth
observation becomes available. The algorithm for SWDs is
described next.
S1: Select a false alarm tolerance α. Set count c(0) = 0.
S2: Initialize the state probability vector in (20) such that

φ(0) = [π0, 0, 0 . . . , 0] . (28)

S3: Suppose the next observation is the (m + 1)st, m ≥
0, observation. As this observation becomes available,
update

φ(m + 1) =

[pN
1 (m + 1), pN

2 (m + 1), . . . , pN
nx

(m + 1),

pF
1 (m + 1), pF

2 (m + 1), . . . , pF
nx

(m + 1)]

according to (27), i.e.,

φ(m + 1) =
φ(m)ΦSD(δ)

‖φ(m)ΦSD(δ)‖
.

If the summation
nx∑
i=1

pF
i (m + 1) > 1 − α, (29)

do the following: set

c(m + 1) = c(m) + 1, (30)

and reset φ(m + 1) such that

pN
i (m + 1) = pN

i (m + 1) + pF
i (m + 1), (31)

and

pF
i (m + 1) = 0, (32)

for 1 ≤ i ≤ nx. If (29) does not hold, set

c(m + 1) = c(m). (33)

S4: Go back to S3.
We note that the reset equations (31) and (32) mean that,

after an estimated occurrence of f is counted, the probability
that f has occurred is reset to zero, while the probability
that the DEDS is in state xi ∈ X is preserved. Hence, the
diagnoser is still able to estimate the system state after the
reset.
An SWD, therefore, starts with an initial belief of state

probabilities given by the vector in (28). As observations
become available, it updates this state probability vector
according to (27) until the conditional probability (given
the observations) that f has occurred (calculated by the



summation in the left hand side of (29)) is greater than 1−α.
Then, the SWD increases the estimated count by one via
(30), and resets state probability vector by (31) and (32).
After the reset, the probability that f has occurred is zero
(i.e., the summation on the left hand side of (29) is zero),
while the probability that the DEDS is in a particular state
xi ∈ X remains the same before and after the resetting.
The above process of updating the estimated count, then, is
repeated with the state probability vector after reset.
The parameter, α, is the upper bound of the probability

that the estimated count is increased via (30) but f has
not been executed since the last increase of the count. This
parameter also determines the amount of evidence required
for increasing the estimated count. It can be concluded from
S3 of the SWD algorithm that, if a very small α is chosen,
a large number of observations has to be available before
the estimated count is increased. In this case, f may have
been executed more than once before the estimated count
is increased by one, and the SWD tends to undercount.
Conversely, if α is very large, a small number of observations
(possibly from events irrelevant to execution of f ) may cause
the estimated count to increase. In this case, f may not
have been executed when the estimated count is increased,
and the SWD tends to overcount. Selection of the best α

for optimal performance is largely dependent on the DEDS
and its sensor configuration (for generating the observations).
There is currently no closed form expression for finding the
best α for a given system. A good α is found by comparing
computer simulation results using various values for α.
Finally, we refer to the observations in between increases

of the estimated count as observation windows. The SWD
utilizes the state probability update (27) in the windows
to sequentially update estimated count. Hence, the name
sequential window diagnosers.

IV. APPLICATION

For the application considered here, the monitored plant
of Fig. 1 is a material flow system depicted in Fig. 3. This

Fig. 3. Material Flow System

system corresponds to a manufacturing facility where two
types of materials are processed. The possible routes of the

first (second) type of material is depicted with arrowed plain
(dotted) lines.
The numbered rectangles represent Input/Working/Output

stations where materials is processed and transfer to/from.
Station 7 represents an input station where materials enter
the facility. Stations 1, 2, 3, and 4 are internal material
processing stations. Stations 5 and 6 are output stations
where the processed materials leave the facility.
The next subsection describes the monitored plant as a

DEDS considered in Section II-A.

A. Stochastic Automata System Model
A set of automata is used to model the material flows

among stations. For example, the automaton in Fig. 4 cap-
tures the material flow at station 1. State (Wi, j, k) means
that internal material processing station i has j number of
material type 1 and k number of material type 2. Event
(i, j, k) means that a material of type k is moved from
station j to station i. For simplicity, we assume one buffering
capacity for all internal material processing stations.3 There-
fore, for instance, after event (1, 7, 1), the feasible events
for W1 are the transportation events of material type 1 from
station 1 to some other stations, that is, (2, 1, 1) and (3, 1, 1).
The automata models O5 and O6 for output stations 5 and
6 are depicted in Figs. 5 and 6, respectively. As one can
observe, output stations 5 and 6 are assumed to take materials
indefinitely. For input station 7, we assume that there are
infinite number of materials to be processed. The automaton
model of input station 7 is denoted by I7 and depicted in
Fig. 7.

Fig. 4. Working Station Automaton Model: W1

Fig. 5. Output Station Automaton Model: O5

The global system model is constructed by composing all
component models:

SA := W1||W2||W3||W4||O5||O6||I7

where || is the parallel composition operator as in [2].

3Modeling buffering capabilities may amount to introduce more states
depending on the given material processing policies (FIFO, LIFO, etc.) and
define appropriate transitions.



Fig. 6. Output Station Automaton Model: O6

Fig. 7. Input Station Automaton Model: I7

Constructing transition probability function a may require
the assessments of experts and/or samplings from system
operations. Here, for simplicity, we assume that the transition
probability is equally-likely for all active events of a given
state x. That is, ∀x ∈ X , σ ∈ Σ,

a(x, σ, x′) =
1

|act(x)|
,

where act(x) = {σ ∈ Σ : ∃x′ ∈ X s.t. a(x, σ, x′) > 0} and
|act(x)| denotes the cardinality of act(x).
Assume that, initially, the working stations of the material

flow system do not have materials being processed. That is,
the initial probability distribution is π0(x) = 1 when

π0(x) =

{
1 if x = (W1,0, . . . , W4,0, O5,0, O6,0, I7,∞)
0 o.w.

where
Wi,0 := (Wi, 0, 0), i = 1, . . . , 4;
Oi,0 := (Oi, 0, 0), i = 5, 6;
I7,∞ = (I7,∞,∞).

B. Sensor Models
In this subsection, we describe the observation model in

Fig 1 for this application.
Three types of sensors can be installed at internal working

stations, W1, W2, W3, and W4, and output stations, O5

and O6. These three sensor types are motion sensors, tag
sensors, and material type sensors. Motion sensors are
able to identify the first attribute of the executed event
(i.e., identify that a material is transferring to the sensor’s
location). Tag sensors are able to identify the second
attribute of the executed event (i.e., identify the previous
location of the material transferring to the sensor’s location).
Finally, material type sensors are able to identify the third
attribute of the executed event (i.e., identify the material type
of a material transferring to the sensors’s location). In this
specific application, only motion and material type sensors
are considered. Unidentified attributes of events are marked
with ∗. We consider the following two sensor configurations.

(Case 1) Internal working stations, W1, W2, and W3

are installed with motion sensors only, while W4 and O6

are installed with both motion and material type sensors.
The sensor characteristics are such that, for i = 1, 2, 3,

b1((i, j, k), (i′, ∗, ∗))=

{
0.87 if i′ = i (�1),
0.01 if i′ ∈ {1, 2, 3, 4} \ {i} (†1),

b1((i, j, k), ε) = 0.1 (‡1)
For i = 4, 6,

b1((i, j, k), (i, ∗, k′)) =

{
0.8 if k′ = k (��1),
0.1 if k′ ∈ {1, 2} \ {k} (††1),

b1((i, j, k), ε) = 0.1 (‡‡1).
For i �∈ {1, 2, 3, 4, 6}, b1((i, j, k), ε) = 1.

(Case 2) Motion sensors are installed at all internal
working stations, while no material type sensors are
installed. The sensor characteristics are such that, for
i ∈ W := {1, 2, 3, 4},

b2((i, j, k), (i′, ∗, ∗)) =

{
0.87; if i′ = i; (�2)
0.01, if i′ ∈ W \ {i}; (†2)

b2((i, j, k), ε) = 0.1 (‡2).
For i �∈ {1, 2, 3, 4}, b2((i, j, k), ε) = 1.

Above, �i represents the probability of detection for
stations with only motion sensors in Case i; (†i) is to model
the probabilities of misclassifications for stations with only
motion sensors in the Case i; (‡i) is for the probability of
misdetection for stations with only motion sensors in the
Case i; finally, ��1, ††1, and ‡‡1 are used to model the
probabilities of detection, misclassifications, and misdetec-
tion for the stations in Case 1 with both motion and material
type sensors. It is obvious to see that the sensor configuration
in Case 1 gives more information about the executed events
than the configuration in Case 2.

C. Performance Measure

Different methods may be proposed to evaluate the per-
formance of SWDs. However, the performance measure
described below seems to work best. Suppose the system
runs for N event executions with n occurrences of a special
event, f . Let executed events be sequentially indexed from
one through N . Let ik denote the index of the event, where
f is executed the kth time. Let T (i) denote the true number
of times f has been executed and T̂ (i) denote the value of
the estimated count, c(m), just after the execution of the ith
event. The average normalized error,

ANE =
1

n

n∑
k=1

|T (ik) − T̂ (ik)|

T (ik)
, (34)

is used to compare the performances of the SWDs. In this
expression, for each occurrence of f , the error of the count
estimate is calculated and normalized by the true number
of occurrences of f . This value is then averaged over all
occurrences of f .



D. Simulation Results
Suppose we are interested in estimating the number of

times the event (2, 1, 1) has been executed, i.e., the special
event f is (2, 1, 1). Simulations results for sensor configu-
rations in Cases 1 and 2 are shown, respectively, in Figs. 8
and 9, where T (i) and T̂ (i) are plotted against the number
of executed events. The simulations were terminated when f

was executed for the 200th time. As shown in the figures, the
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Fig. 8. SWD results for sensor configuration in Case 1 with α = 0.29

0 500 1000 1500 2000 2500 3000 3500
0

50

100

150

200

250

executed events i

to
ta

l
co

u
n
t

true count T (i)

estimated T̂ (i)

Fig. 9. SWD results for sensor configuration in Case 2 with α = 0.36

SWDs track the number of times that f occurred accurately.
The values of α for simulations generating the figures were
chosen by comparing performances of SWDs for a range of
values of α. Tables I and II show the ANE averaged over 20
trails for each listed candidate value of α for Cases 1 and
2, respectively. The ANE corresponding to values of α not
listed in Table I are larger than those corresponding to values
of α listed. The same is true for Table II. The values of α

TABLE I
ANE AVERAGED OVER 20 TRAILS FOR VARIOUS α FOR CASE 1

α 0.25 0.26 0.27 0.28 0.29 0.30
ANE 0.0869 0.0764 0.0701 0.0651 0.0636 0.0640

α 0.31 0.32 0.33 0.34 0.35
ANE 0.0659 0.0705 0.0786 0.0923 0.1024

chosen for simulations generating Figs. 8 and 9 are 0.29 and

TABLE II
ANE AVERAGED OVER 20 TRAILS FOR VARIOUS α FOR CASE 2

α 0.30 0.31 0.32 0.33 0.34 0.35
ANE 0.1458 0.1277 0.1136 0.0981 0.0842 0.0774

α 0.36 0.37 0.38 0.39 0.40
ANE 0.0751 0.0769 0.0835 0.0946 0.1056

0.36, which yield the least ANE (i.e., 0.0636 and 0.0751)
in Tables I and II, respectively. Moreover, as expected, the
SWD in Case 1, having more information about the executed
events, is able to estimate the number of times f occurred
with less ANE than the SWD in Case 2.
For comparison, Figs. 10 and 11 show the results of

stochastic counters developed in [12] for Cases 1 and 2,
respectively. The ANE averaged over 20 trails are 0.0490
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Fig. 10. Stochastic counter results for sensor configuration in Case 1
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Fig. 11. Stochastic counter results for sensor configuration in Case 2

and 0.070 for Cases 1 and 2, respectively.
Although SWDs did not yield better performance than

stochastic counters in this particular application, there is one
potential advantage of SWDs. Note that the design of both
SWDs and stochastic counters are based on knowledge of
the system to be observed (the DEDS model) and its sensor
configurations (the observation model). Suppose that model
inaccuracies (e.g., malfunction of sensors) are discovered
only after designed diagnosers are implemented in hardware.
In this case, it is likely that both SWDs and stochastic



counters may exhibit degraded performance. Fortunately, it
is possible for SWDs to tune the parameter α to improve
performance, while there is no way to correct the perfor-
mance for stochastic counters without re-designing and re-
implementing the hardware (which might be expensive). To
capitalize on the additional parameter, α, it is important
to have a good understanding of relations among α, the
system model, the observation model, and the performance
measure (e.g., ANE). This understanding may come from
numerical experiments or closed form formulae derivations.
This work is in progress and results will be reported in future
correspondences.

V. CONCLUSIONS
The SWD algorithm for counting occurrences of special

events in partially observed DEDS was developed. Initially,
both the probability that special events has occurred and
the estimated count of the special event occurrences are set
to zero. The algorithm sequentially updates the conditional
probability that special events have occurred given avail-
able observations until this probability exceeds a threshold
determined by the false alarm tolerance parameter. Then,
the algorithm increases the estimated count by one, resets
the probability that special events occurred to zero, and
repeats the above process. The updates of the probability are
achieved by simple vector-matrix multiplications using the
state probability vectors and stochastic diagnoser probability
transition matrices introduced in [9].
As an application, SWDs were applied to a material

flow system, where occurrences of an abnormal routing
event were counted. The SWDs worked well in tracking
the number of times the abnormal routing event has been
executed. To fully exploit the potential of SWDs, a work in
progress is to explore and describe the relations among of
the false alarm tolerance, system model, observation model,
and the performance of SWDs.
We note that, in the SWD algorithm, resetting the proba-

bility that f has occurred to zero (via (31) and (32)) after an
estimated occurrence of f is counted is based on heuristics.
A better procedure for the reset operation is currently under
development.
Finally, developing optimization algorithms for finding a

least costly sensor configuration, while maximizing perfor-
mance of the SWD (in terms of minimizing ANE) is also a
work in progress.
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