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Abstract—We give a new achievable ergodic secrecy rate region
for the two-user fading multiple access wiretap channel. Our
scheme creates a vector channel between the two transmitters and
the intended receiver that has full-rank and creates another vec-
tor channel between the two transmitters and the eavesdropper
whose rank is 1. In this sense, our scheme removes interference
from the main receiver multiple access channel by introducing an
extra dimension in this channel, while sustaining the interference
in the eavesdropper multiple access channel by keeping the rank
of this channel equal to one. We show that the secrecy sum
rate achieved by our scheme scales with SNR. In particular, we
show that a total number of 1/2 secure degrees of freedom is
achievable for the two users. Moreover, we compare our scheme
with the Gaussian signaling scheme with cooperative jamming
which improves significantly over the plain Gaussian signaling
scheme. Our proposed scheme outperforms Gaussian signaling
schemes (with or without cooperative jamming) at high signal-to-
noise ratios (SNR). In particular, we show that Gaussian signaling
schemes with or without cooperative jamming achieve zero secure
degrees of freedom, while our proposed scheme achieves 1/2 total
secure degrees of freedom.

I. INTRODUCTION

The notion of information theoretic secrecy was first in-
troduced by Shannon in his seminal work [1]. Applying the
notion of information theoretic secrecy to channel models with
single transmitter, single receiver, and single eavesdropper
(wiretapper) was pioneered by Wyner [2], Csiszar and Korner
[3], and Leung-Yan-Cheong and Hellman [4]. Wyner [2],
introduced the wiretap channel where it is assumed that the
received signal by the eavesdropper is a degraded version
of the signal received by the legitimate receiver. For his
model, Wyner established the secrecy capacity region, which
is defined as the region of all simultaneously achievable rates
and equivocation-rates. In [3], the secrecy capacity region
was established for the general case where the eavesdropper’s
channel is not necessarily a degraded version of the main
receiver’s channel. In particular, it was shown that to achieve
the secrecy capacity region of the single user wiretap channel,
channel prefixing may be necessary. In channel prefixing, an
auxiliary random variable serves as the input of an artificially
created prefix channel, whose output is used as the input to
the original wiretap channel. In [4], the authors showed that,
through plain Gaussian signaling alone, i.e., without channel
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prefixing, one can achieve the secrecy capacity of the Gaussian
wiretap channel.

The Gaussian multiple access wiretap (MAC-WT) was
introduced by [5]. In MAC-WT, multiple users wish to have
secure communication with a single legitimate receiver, in the
presence of an external eavesdropper. In [5] and [6], achievable
secrecy rate regions were proposed for the Gaussian MAC-
WT based on Gaussian signaling. Moreover, reference [6]
goes further than plain Gaussian signaling and introduces a
technique (on top of Gaussian signaling) in which a transmitter
whose channel to the eavesdropper is stronger than its channel
to the main receiver jams the eavesdropper and consequently
helps increase the achievable secrecy rate of the other trans-
mitter. This technique is known as cooperative jamming.
Cooperative jamming can be interpreted as a channel prefixing
technique, where specific choices are made for the auxiliary
random variables [7]. In addition, cooperative jamming is the
first practical example of channel prefixing in a multi-user
wiretap channel that showed substantial improvement over
plain Gaussian signaling. There have been other works that
considered Gaussian signaling in achieving secrecy rates for
the Gaussian MAC-WT, e.g., reference [8] showed that for a
certain class of Gaussian MAC-WT, one can achieve through
Gaussian signaling a secrecy rate region that is within 0.5 bits
of the secrecy capacity region.

A common notable disadvantage of these Gaussian signaling
based schemes is that the secrecy rates that they achieve do
not scale with the signal-to-noise ratios (SNR) of the users.
In other words, the total number of secure degrees of freedom
(DoF) achieved for the MAC-WT using these schemes is zero.
This observation has a significant implication in light of recent
results on the secure DoF of Gaussian interference networks,
e.g., in [9], [10], [11], and [12]. These works showed that it
is possible to achieve positive secure DoF for some classes
of Gaussian interference channels that contain the Gaussian
MAC-WT as a special case. In particular, in each of [9] and
[10], it was shown that positive secure DoF is achievable for
a class of vector Gaussian interference channels, e.g., time-
varying interference channels where channel state information
is known non-causally, which implies that positive secure DoF
is achievable for the vector Gaussian MAC-WT. In [11] and
[12], it was shown that through structured coding (e.g. lattice
coding), it is possible to achieve positive secure DoF for a class



of scalar Gaussian channels with interference, that contains
the Gaussian MAC-WT as a special case. These observations
led to the conclusion that Gaussian signaling (with or without
channel prefixing) is sub-optimal for the Gaussian MAC-WT.

Fading Gaussian MAC-WT was first considered in [13]. In
[13], the authors have extended their Gaussian signaling and
cooperative jamming based schemes which were originally
proposed in [5] and [6] to the fading model of the MAC-WT.
Using these schemes, they gave achievable ergodic secrecy
rates for the fading MAC-WT. As intuition may suggest, as
in the non-fading setting, these achievable ergodic secrecy
rates do not scale with the average SNRs. In this paper, we
propose a new achievable scheme for the fading Gaussian
MAC-WT. Our achievable scheme is based on code repeti-
tion with proper scaling of transmitted signals. In particular,
transmitters repeat their symbols in two consecutive symbol
instants. Transmitters further scale their transmit signals with
the goal of creating a full-rank channel matrix at the main
receiver and a unit-rank channel matrix at the eavesdropper, in
every two consecutive time instants. These coordinated actions
create a two-dimensional space for the signal received by
the legitimate receiver, while sustaining the interference in a
single-dimensional space at the eavesdropper. In other words,
code repetition with proper scaling of the transmit signals at
each transmitter aligns the received signals at the eavesdropper
perfectly making it difficult for the eavesdropper decode both
messages. Consequently, we obtain a new achievable secrecy
rate region for the two-user fading MAC-WT. In addition, we
show that the resulting secrecy rates scale with SNR. Specifi-
cally, the achievable secrecy sum rate scales as 1/2 log(SNR).
Moreover, we show that the secrecy rates achieved through
Gaussian signaling with cooperative jamming in fading MAC-
WT do not scale with SNR. The significance of these results
is that, they show that indeed neither plain Gaussian signaling
nor Gaussian signaling with cooperative jamming is optimal
for the fading MAC-WT, and that, for high SNRs, one can
achieve higher secrecy rates by code repetition and signal
scaling at the transmitters.

In a recent work [14], Nazer et. al. showed that in a fading
interference channel, given that the channel state information
of all the links of the interference channel is available at all
the nodes, each transmitter may repeat its symbols over two
carefully chosen time instants, so that interference is perfectly
canceled at each receiver. Hence, the resulting individual
rates scale as 1/2 log(SNR). Thus, the rate reduction by a
factor of 1/2 comes with the benefit of perfect interference
cancelation. In this paper, we briefly discuss the extension
of the ergodic interference alignment concept to a secrecy
context and we introduce a new technique which we call
ergodic secret alignment. Using this technique, we introduce
another achievable secrecy rate region for the two-user fading
MAC-WT in which the achievable secrecy rates also scale
with SNR as 1/2 log(SNR). The difference between scaling-
based alignment discussed above and opportunistic alignment
inspired by [14] is that, in the first case, we repeat the symbol
in two consecutive time instances, and use scaling to achieve

alignment irrespective of the channel states nature provides
in these two consecutive time instances, while in the second
case, we wait for the favorable channel states, where nature
provides alignment for free.

II. SYSTEM MODEL

We consider the two-user fading multiple access channel
with an external eavesdropper. For k = 1, 2, transmitter k
chooses a message Wk from a set of equally likely messages
Wk = {1, ..., 22nRk}. Every transmitter encodes its message
into a codeword of length 2n symbols. The channel output at
the ith symbol at the intended receiver and the eavesdropper
are given by

Yi =h1iX1i + h2iX2i + Ni (1)
Zi =g1iX1i + g2iX2i + N ′

i (2)

where, for k = 1, 2, Xki is the input signal at the ith symbol at
transmitter k, hki is the channel coefficient between transmitter
k and the intended receiver at the ith symbol, gki is the
channel coefficient between transmitter k and the eavesdropper
at the ith symbol. We assume a fast fading scenario where
the channel coefficients randomly vary from one symbol to
another in i.i.d. fashion. Also, we assume the independence
of all channel coefficients h1, h2, g1, and g2 at every symbol
instant. At any instant of time, each of the channel coefficients
is a circularly symmetric complex Gaussian random variable
with zero-mean. The variances of hk and gk are σ2

hk
and

σ2
gk

, respectively. Hence, |hk|2 and |gk|2 are exponentially
distributed with mean σ2

hk
and σ2

gk
, respectively. Moreover,

we assume that all the channel coefficients are known to all
the nodes in a causal fashion. In (1), (2), Ni and N ′

i are the
Gaussian noises in the ith symbol at the intended receiver and
the eavesdropper, respectively. {Ni}2n

i=1 and {N ′
i}2n

i=1 are i.i.d.
circularly symmetric complex Gaussian random variables with
zero-mean and unit-variance. Moreover, we have the following
average power constraints

1
2n

2n∑

i=1

|Xki|2 ≤ P̄k, k = 1, 2 (3)

where P̄k is the average power of user k.

III. SCALING BASED ALIGNMENT

In this section, we propose a new achievable scheme for the
fading MAC-WT. Our achievable scheme is based on code
repetition with proper scaling of the signals transmitted by
each transmitter. This is done as follows. For the channel
described in (1)-(2), we use a repetition code such that each
transmitter repeats its channel input symbol twice over two
consecutive time instants. Due to code repetition, we may
regard each of the MACs to the main receiver and to the
eavesdropper as a vector MAC composed of two parallel scalar
MACs, one for the odd time instants and the other for the
even time instants. Consequently, we may describe the main



receiver MAC channel by the following pair of equations

Yo = h1oX1 + h2oX2 + No (4)
Ye = h1eX1 + h2eX2 + Ne (5)

where, for k = 1, 2, hko, hke are the coefficients of the kth
main receiver channel in odd and even time instants, Yo, Ye

and No, Ne are the received signal and the noise at the main
receiver in odd and even time instants. In the same way, we
may describe the eavesdropper MAC channel by the following
pair of equations

Zo = g1oX1 + g2oX2 + N ′
o (6)

Ze = g1eX1 + g2eX2 + N ′
e (7)

where, for k = 1, 2, gko, gke are the coefficients of the kth
eavesdropper channel in odd and even time instants, Zo, Ze

and No, Ne are the received signal and the noise at the
eavesdropper in odd and even time instants.

Since all the channel gains are known to all nodes in a causal
fashion, the two transmitters use this knowledge as follows.
In every symbol instant, each transmitter scales its transmit
signal with the gain of the other transmitter’s channel to the
eavesdropper. That is, in the ith time instant, the first user
multiplies its channel input with g2i, the channel gain of the
second user to the eavesdropper, and the second user multiplies
its channel input with g1i, the channel gain of the first user
to the eavesdropper. Hence the main receiver MAC can be
described as

Yo = h1og2oX1 + h2og1oX2 + No (8)
Ye = h1eg2eX1 + h2eg1eX2 + Ne (9)

and the eavesdropper MAC can be described as

Zo = g1og2oX1 + g1og2oX2 + N ′
o (10)

Ze = g1eg2eX1 + g2eg2eX2 + N ′
e (11)

It is clear from (8)-(9) that the space of the received signal
(without noise, i.e., high SNR) of the main receiver over
the two consecutive time instants is two-dimensional almost
surely. In other words, the channel matrix of the main receiver
vector MAC is full-rank almost surely. This is due to the
fact that the channel coefficients are drawn from continuous
bounded distributions. On the other hand, it is clear from (10)-
(11) that the channel matrix of the eavesdropper vector MAC
is unit-rank. That is, the two ingredients of our scheme, i.e.,
code repetition and signal scaling, let the interfering signals
at the main receiver live in a two-dimensional space, while
they align the interfering signals at the eavesdropper in a one-
dimensional space. As we will show in the next section, these
properties play the central role in achieving secrecy rates that
scale with SNR. Finally, we note that, due to signal scaling at
the transmitters, the average power constraints become

E
[(|g2o|2 + |g2e|2

)
P1

] ≤ P̄1 (12)

E
[(|g1o|2 + |g1e|2

)
P2

] ≤ P̄2 (13)

where P1 and P2, which are functions of the channel gains,

are the instantaneous powers of users 1 and 2, respectively,
while P̄1 and P̄2 are average power constraints.

IV. PREVIOUSLY KNOWN RESULTS

Here we summarize previously known results that are
relevant to our development. For the general discrete-time
memoryless MAC-WT, the best known achievable secrecy rate
region is given by the convex hull of all rate pairs (R1, R2)
satisfying [5], [6], and [7]

R1 ≤ [I(U1; Y |U2)− I(U1; Z)]+ (14)

R2 ≤ [I(U2; Y |U1)− I(U2; Z)]+ (15)

R1 + R2 ≤ [I(U1, U2; Y )− I(U1, U2;Z)]+ (16)

where the joint distribution p(x1, x2, u1, u2, y, z) factors as
p(u1)p(x1|u1)p(u2)p(x2|u2)p(y, z|x1, x2), where (.)+ de-
notes the positivity operator, i.e., (x)+ = max(0, x).

Known secrecy rate regions for the Gaussian MAC-WT can
be obtained from these expressions by appropriate selections
for the involved random variables. For instance, the Gaussian
signaling based achievable rates proposed in [5] are obtained
by choosing X1 = U1 and X2 = U2, i.e., no channel prefixing,
and by choosing X1 and X2 to be Gaussian with full power.
On the other hand, cooperative jamming based achievable rates
proposed in [6] are obtained by choosing X1 = U1 + V1

and X2 = U2 + V2, and then by choosing U1, U2, V1, V2 to
be independent Gaussian random variables. Here, U1 and U2

carry messages, while V1 and V2 are jamming signals. The
powers of (U1, V1) and (U2, V2) should be chosen to satisfy
the power constraints of users 1 and 2, respectively. These
selections yield the following achievable rate region for the
Gaussian MAC-WT [6]

R1 ≤
[
log

(
1 +

|h1|2P1

1 + |h1|2Q1 + |h2|2Q2

)

− log
(

1 +
|g1|2P1

1 + |g1|2Q1 + |g2|2(P2 + Q2)

)]+

(17)

R2 ≤
[
log

(
1 +

|h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log
(

1 +
|g2|2P2

1 + |g1|2(P1 + Q1) + |g2|2Q2

)]+

(18)

R1 + R2 ≤
[
log

(
1 +

|h1|2P1 + |h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log
(

1 +
|g1|2P1 + |g2|2P2

1 + |g1|2Q1 + |g2|2Q2

)]+

(19)

where the powers of the signals must satisfy

Pk + Qk ≤ P̄k, k = 1, 2 (20)

where for k = 1, 2, Pk and Qk are the transmission and
jamming powers, respectively, of user k.

The ergodic secrecy rate region achieved by Gaussian
signaling and cooperative jamming for the fading MAC-WT
can be expressed similarly by simply including expectations



over fading channel states [13]

R1 ≤ Eh,g

{
log

(
1 +

|h1|2P1

1 + |h1|2Q1 + |h2|2Q2

)

− log
(

1 +
|g1|2P1

1 + |g1|2Q1 + |g2|2(P2 + Q2)

) }

(21)

R2 ≤ Eh,g

{
log

(
1 +

|h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log
(

1 +
|g2|2P2

1 + |g1|2(P1 + Q1) + |g2|2Q2

) }

(22)

R1 + R2 ≤ Eh,g

{
log

(
1 +

|h1|2P1 + |h2|2P2

1 + |h1|2Q1 + |h2|2Q2

)

− log
(

1 +
|g1|2P1 + |g2|2P2

1 + |g1|2Q1 + |g2|2Q2

) }

(23)

where h = [h1 h2]T , g = [g1 g2]T , and the instantaneous
powers Pk and Qk, which are both functions of h and g,
satisfy

E [Pk + Qk] ≤ P̄k, k = 1, 2 (24)

where P̄k are average power constraints.

V. A NEW ACHIEVABLE SECRECY RATE REGION

Here we evaluate the secrecy rate region achievable by the
scaling based alignment scheme proposed in Section III. Given
the vector channels (8)-(9) and (10)-(11) created by the scheme
we proposed, the following secrecy rates are achievable [5],
[6] and [7]

R1 ≤ 1
2
[I(X1; Yo, Ye|X2, h, g)− I(X1; Zo, Ze|h, g)]+ (25)

R2 ≤ 1
2
[I(X2; Yo, Ye|X1, h, g)− I(X2; Zo, Ze|h, g)]+ (26)

R1 + R2 ≤ 1
2
[I(X1, X2; Yo, Ye|h, g)

− I(X1, X2;Zo, Ze|h, g)]+ (27)

These rates follow from (14)-(16) by treating channel states
as outputs at the receivers, and noting the independence of
channel inputs and channel states. We note that the factor of
1/2 on the right hand sides of (25)-(27) is due to repetition
coding. Now, by computing (25)-(27) with Gaussian signals,
we obtain the secrecy rate region given in the following
theorem as our main result.

Theorem 1: For the two-user fading MAC-WT, the rate
region given by all rate pairs (R1, R2) satisfying the following

constraints is achievable with perfect secrecy

R1 ≤ 1
2
Eh,g

{
log

(
1 + (|h1og2o|2 + |h1eg2e|2)P1

)

− log
(

1 +
(|g1og2o|2 + |g1eg2e|2)P1

1 + (|g1og2o|2 + |g1eg2e|2)P2

) }

(28)

R2 ≤ 1
2
Eh,g

{
log

(
1 + (|h2og1o|2 + |h2eg1e|2)P2

)

− log
(

1 +
(|g1og2o|2 + |g1eg2e|2)P2

1 + (|g1og2o|2 + |g1eg2e|2)P1

) }

(29)

R1 + R2 ≤ 1
2
Eh,g

{
log

(
1 +

(|h1og2o|2 + |h1eg2e|2
)
P1

+
(|h2og1o|2 + |h2eg1e|2

)
P2

+ |h1eh2og1og2e − h1oh2eg1eg2o|2P1P2

)

− log
(

1 +
(|g1og2o|2 + |g1eg2e|2

)
(P1 + P2)

)}

(30)

where h = [h1o h1e h2o h2e]T , g = [g1o g1e g2o g2e]T , and
P1, P2, which are functions of ho = [h1o h2o]T and go =
[g1o g2o]T , are the power allocation policies of users 1 and 2,
respectively, that satisfy

E
[(|g2o|2 + |g2e|2

)
P1

] ≤ P̄1 (31)

E
[(|g1o|2 + |g1e|2

)
P2

] ≤ P̄2 (32)

where P̄1 and P̄2 are the average power constraints.

VI. DEGREES OF FREEDOM

In this section, we show that the secrecy sum rate achieved
by our scheme scales with SNR as 1/2 log(SNR) and that the
secrecy sum rate achieved by the cooperative jamming scheme
given in [13] does not scale with SNR. What we give here are
rigorous proofs for intuitive results. Since by looking at (30),
one can note that, if we assume that P̄1 = P̄2 = P , then if we
take P1 = P2 = P , as P becomes large, roughly speaking1,
the first term inside the expectation grows as log(P 2) while the
second term grows as log(P ) and hence the overall expression
grows as 1/2 log(P ). In the same way, by considering the
secrecy sum rate achieved by the cooperative jamming scheme
given in (23), then by referring to the power allocation policies
given in [13], one can also roughly claim that for all channel
states, as the available average power goes to infinity, the
overall expression converges to a constant.

We start by the DoF analysis of our scheme. For simplicity,
we assume that P̄1 = P̄2 = P . We make the following choices

1There will be channel states where the difference inside the expectation
in (30) will be negative. These can be handled by expressing this expectation
as a nested expectation (see (64)) and by shutting down the transmit power
at channel states where the inner expectation is negative.



for the power allocation policies P1 and P2. We set P1 =
1

2σ2
g2

P , P2 = 1
2σ2

g1
P . It can be verified that these choices

satisfy the power constraints (31) and (32). Hence, the secrecy
sum rate achieved using our scheme can be written as

Rs =
1
2
Eh,g

{
log

(
1 + u1(h, g)P + u2(h, g)P 2

)

− log
(
1 + u3(g)P

)}
(33)

where

u1(h, g) =
1

2σ2
g2

(|h1og2o|2 + |h1eg2e|2)

+
1

2σ2
g1

(|h2og1o|2 + |h2eg1e|2) (34)

u2(h, g) =
1

4σ2
g1

σ2
g2

|h1eh2og1og2e − h1oh2eg1eg2o|2 (35)

u3(g) =
σ2

g1
+ σ2

g2

2σ2
g1

σ2
g2

(|g1og2o|2 + |g1eg2e|2) (36)

The achievable total number of secure DoF, η, is defined as

η , lim
P→∞

Rs

log(P )
(37)

We assume that all channel gains are drawn from continuous
bounded distributions. We also assume that all channel gains
have finite variances. Now, we show that, for the two-user
fading MAC-WT, a total number of secure DoF of η = 1/2
is achievable.

Towards this end, it suffices to show that the order of the
limit and the expectation can be reversed. To do this, we make
use of Lebesgue dominated convergence theorem. First, we
define

fP (h, g) =
1

log(P )

[
log

(
1 + u1(h, g)P + u2(h, g)P 2

)

− log
(
1 + u3(g)P

)]
(38)

Hence, the total achievable secure DoF is given by

η =
1
2

lim
P→∞

Eh,g[fP (h, g)] (39)

Now, we claim that for P ≥ 2, |fP (h, g)| is upper bounded
by ψ(h, g) where

ψ(h, g) = 4 + 2
(

log(1 +
1

σ2
g1

) + log(1 +
1

σ2
g2

)
)

+ log

(
1 +

σ2
g1

+ σ2
g2

σ2
g1

σ2
g2

)

+ 3

(
2∑

k=1

log(1 + |hko|2) +
2∑

k=1

log(1 + |hke|2)
)

+ 4

(
2∑

k=1

log(1 + |gko|2) +
2∑

k=1

log(1 + |gke|2)
)

(40)

Assuming that this claim is true, using the fact that all channel

gains have finite variances together with Jensen’s inequality,
we have

Eh,g[ψ(h, g)] < ∞ (41)

Thus, by the dominated convergence theorem, we have

lim
P→∞

Eh,g[fP (h, g)] = Eh,g[ lim
P→∞

fP (h, g)] = 1 (42)

Hence, η = 1/2.

Thus, it remains to prove that the claim is true. To do this,
observe, for P ≥ 2, we have

|fP (h, g)|

≤ 1
log(P )

[
log

(
1 +

1
σ2

g2

(|h1og2o|2 + |h1eg2e|2
)
P

+
1

σ2
g1

(|h2og1o|2 + |h2eg1e|2
)
P

+
1

σ2
g1

σ2
g2

(|h1eh2og1og2e|2 + |h1oh2eg1eg2o|2
)
P 2

+
1

σ2
g1

σ2
g2

|h1oh2oh1eh2eg1og2og1eg2e|P 2
)

+ log

(
1 +

σ2
g1

+ σ2
g2

σ2
g1

σ2
g2

(|g1og2o|2 + |g1eg2e|2
)
P

) ]

(43)

≤ 1
log(P )

[
3 log(P )

+ log
(
1 +

1
σ2

g2

(|h1og2o|2 + |h1eg2e|2
)

+
1

σ2
g1

(|h2og1o|2 + |h2eg1e|2
)

+
1

σ2
g1

σ2
g2

(|h1eh2og1og2e|2 + |h1oh2eg1eg2o|2
)

+
1

σ2
g1

σ2
g2

(|h1oh2oh1eh2eg1og2og1eg2e|)
)

+ log

(
1 +

σ2
g1

+ σ2
g2

σ2
g1

σ2
g2

(|g1og2o|2 + |g1eg2e|2
)
)]

(44)

≤ 3 + 2
(

log
(

1 +
1

σ2
g1

)
+ log

(
1 +

1
σ2

g2

))

+ log

(
1 +

σ2
g1

+ σ2
g2

σ2
g1

σ2
g2

)

+ log
(
1 + |h1og2o|2 + |h1eg2e|2

)

+ log
(
1 + |h2og1o|2 + |h2eg1e|2

)

+ log
(
1 + |h1eh2og1og2e|2 + |h1oh2eg1eg2o|2

)

+ log (1 + |h1oh2oh1eh2eg1og2og1eg2e|) (45)

where (43) follows from the triangle inequality,
(44) follows from the fact that log(1 + xP ) ≤
log(P ) + log(1 + x) if P ≥ 1, (45) follows from the
fact that log(1 + x + y) ≤ log(1 + x) + log(1 + y) and



log(1 + xy) ≤ log(1 + x) + log(1 + y) if x and y are
non-negative and the fact that log(P ) ≥ 1 if P ≥ 2.
Continuing from (45), we develop the following upper bound
on |fP (h, g)|, where we obtain a square for the term in the
last logarithm,

≤ 4 + 2
(

log
(

1 +
1

σ2
g1

)
+ log

(
1 +

1
σ2

g2

))

+ log

(
1 +

σ2
g1

+ σ2
g2

σ2
g1

σ2
g2

)

+ log
(
1 + |h1og2o|2 + |h1eg2e|2

)

+ log
(
1 + |h2og1o|2 + |h2eg1e|2)

)

+ log
(
1 + |h1eh2og1og2e|2 + |h1oh2eg1eg2o|2

)

+ log
(
1 + |h1oh2oh1eh2eg1og2og1eg2e|2

)
(46)

≤ ψ(h, g) (47)

where (46) follows from the fact that log(1+x) ≤ 1+log(1+
x2) if x is non-negative, and finally (47) follows again from
the fact that log(1 + x + y) ≤ log(1 + x) + log(1 + y) and
log(1 + xy) ≤ log(1 + x) + log(1 + y) if x and y are non-
negative.

Next, we consider the secrecy sum rate achieved by Gaus-
sian signaling with cooperative jamming [13] in the fading
MAC-WT and show that such achievable rate does not scale
with SNR. In other words, we show that the total number
of secure DoF achieved is zero. We start with the secrecy
sum rate given by the right hand side of (23). For simplicity,
we assume symmetric average power constraints in (24), i.e.,
E [P1 + Q1] ≤ P and E [P2 + Q2] ≤ P . According to
the optimal power allocation policy described in [13], for
k = 1, 2, we cannot have Pk > 0 and Qk > 0 simultaneously.
Moreover, no transmission occurs when |h1| ≤ |g1| and
|h2| ≤ |g2|. Consequently, according to the relative values of
the channel gains (|h1|, |h2|, |g1|, |g2|), there are three different
cases left for the instantaneous secrecy sum rate achieved
using the optimal power allocation after eliminating the case of
|h1| ≤ |g1| and |h2| ≤ |g2| when no transmission is possible.

Case 1: (h, g) ∈ D1 where D1 =
{
(h, g) : |h1| >

|g1|, |h2| > |g2|
}

. Consequently, Q1 = Q2 = 0. Thus, the
instantaneous secrecy sum rate, Rs(h, g), can be written as

Rs(h, g) = log
(

1 + |h1|2P1 + |h2|2P2

1 + |g1|2P1 + |g2|2P2

)
(48)

Hence, using the fact that
x + y

z + t
≤ x

z
+

y

t
if x, y, z, t > 0 (49)

we can give the following upper bound for Rs(h, g):

Rs(h, g) ≤ log
(

1 +
|h1|2
|g1|2 +

|h2|2
|g2|2

)
(50)

≤ log
(

1 +
|h1|2
|g1|2

)
+ log

(
1 +

|h2|2
|g2|2

)
(51)

Case 2: (h, g) ∈ D2 where D2 =
{
(h, g) : |h1| >

|g1|, |h2| < |g2|
}

. Consequently, Q1 = P2 = 0. Thus, the

instantaneous secrecy sum rate, Rs(h, g), can be written as

Rs(h, g) = log
(

1 + |h1|2P1 + |h2|2Q2

1 + |g1|2P1 + |g2|2Q2

)

+ log
(

1 + |g2|2Q2

1 + |h2|2Q2

)
(52)

Hence, using (49), Rs(h, g) can be upper bounded as

Rs(h, g) ≤ 1 + log
(

1 +
|h1|2
|g1|2

)
+ log

(
1 +

|g2|2
|h2|2

)
(53)

Case 3: (h, g) ∈ D3 where D3 =
{
(h, g) : |h1| <

|g1|, |h2| > |g2|
}

. Consequently, P1 = Q2 = 0. Thus, the
instantaneous secrecy sum rate, Rs(h, g), can be written as

Rs(h, g) = log
(

1 + |h1|2Q1 + |h2|2P2

1 + |g1|2Q1 + |g2|2P2

)

+ log
(

1 + |g1|2Q1

1 + |h1|2Q1

)
(54)

As in the previous case, Rs(h, g) can be upper bounded as

Rs(h, g) ≤ 1 + log
(

1 +
|h2|2
|g2|2

)
+ log

(
1 +

|g1|2
|h1|2

)
(55)

Now, since the instantaneous sum rate is zero outside
D1 ∪ D2 ∪ D3, then from (51), (53), and (55), the ergodic
secrecy sum rate, Rs, can be upper bounded as follows

Rs ≤
∫

D1

(
log

(
1 +

|h1|2
|g1|2

)
+ log

(
1 +

|h2|2
|g2|2

))
dF

+
∫

D2

(
1 + log

(
1 +

|h1|2
|g1|2

)
+ log

(
1 +

|g2|2
|h2|2

))
dF

+
∫

D3

(
1 + log

(
1 +

|h2|2
|g2|2

)
+ log

(
1 +

|g1|2
|h1|2

))
dF

(56)

where

dF =
2∏

k=1

f(|hk|2)f(|gk|2)d|hk|2d|gk|2 (57)

where, for k = 1, 2, f(|hk|2) and f(|gk|2) are the density func-
tions of |hk|2 and |gk|2, respectively. Now, since E[|hk|2] <

∞, E[|gk|2] < ∞ for k = 1, 2, | ∫ 1

0
log(x)dx| = log(e) < ∞,

| ∫ 1

0
log(1 + x)dx| = 2 − log(e) < ∞, and f(|hk|2), f(|gk|2)

are continuous and bounded for k = 1, 2, it follows that each
of the three integrals in the above expression is finite. Hence,
we have Rs < ∞, and that Rs is bounded from above by a
constant. Thus, from the definition of the achievable secure
DoF, η, we have

η = lim
P→∞

Rs

log(P )
= 0 (58)

So far, we have proposed a scaling based alignment scheme,
and showed that it scales with SNR and achieves a total secure
DoF of 1/2. A direct consequence of this result is the sub-
optimality of Gaussian signaling (with or without cooperative
jamming) in the fading MAC-WT. After we have devised this



achievable scheme, the ergodic interference alignment scheme
of Nazer et. al. [14] inspired us to propose an improved
achievable scheme. In the next section, we briefly discuss
this scheme which we call ergodic secret alignment. The new
ingredient in this scheme is to perform repetition coding at
carefully chosen time instances as opposed to two consecutive
time instances as we have done in Section III. A detailed
derivation and analysis of this scheme can be found in [15].

VII. ERGODIC SECRET ALIGNMENT

In the scaling based alignment scheme in Section III, code
repetition is done over two consecutive time instants, while
here we carefully choose the time instants over which we
do code repetition such that the received signals are aligned
favorably at the legitimate receiver while they are aligned
unfavorably at the eavesdropper. In particular, given some time
instant with the vector of the main receiver channel coefficients
and the vector of the eavesdropper channel coefficients given
by h = [h1 h2]T and g = [g1 g2]T , respectively, let X1 and X2

be the symbols transmitted in this time instant by users 1 and 2,
respectively. Our objective, roughly speaking, is to determine
the channel gains we should wait for to transmit X1 and X2

again. In fact, we can show that [15], in order to maximize
achievable secrecy rates, we should wait for a time instant in
which the main receiver channel coefficients are [h1 − h2]T

and the eavesdropper channel coefficients are [g1 g2]T . This
choice makes the vector MAC between the two transmitters
and the main receiver equivalent to an orthogonal MAC, i.e.,
two independent single-user fading channels, one from each
transmitter to the main receiver. On the other hand, this choice
makes the vector MAC between the two transmitters and the
eavesdropper equivalent to a single scalar MAC. Using this
technique, we obtain another achievable secrecy rate region for
the fading MAC-WT which is given by the following theorem
[15].

Theorem 2: For the two-user fading MAC-WT, the rate
region given by all rate pairs (R1, R2) satisfying the following
constraints is achievable with perfect secrecy

R1 ≤ 1
2
Eh,g

{
log

(
1 + 2|h1|2P1

)

− log
(

1 +
2|g1|2P1

1 + 2|g2|2P2

) }
(59)

R2 ≤ 1
2
Eh,g

{
log

(
1 + 2|h2|2P2

)

− log
(

1 +
2|g2|2P2

1 + 2|g1|2P1

) }
(60)

R1 + R2 ≤ 1
2
Eh,g

{
log

(
1 + 2|h1|2P1

)

+ log
(
1 + 2|h2|2P2

)

− log
(
1 + 2(|g1|2P1 + |g2|2P2)

) }

(61)

where h = [h1 h2]T , g = [g1 g2]T , and P1 and P2, which
are functions of h and g, are the power allocation policies of

users 1 and 2, respectively, that satisfy

E[P1] ≤ P̄1 (62)
E[P2] ≤ P̄2 (63)

where P̄1 and P̄2 are the average power constraints.
Clearly, the achievable sum secrecy rate given above scales

with the SNR as 1/2 log(SNR). This can be shown by
following the same lines of the derivation in the previous
section. Moreover, the average power constraints in the above
theorem are indeed easier to handle than those in (31)-(32). In
[15], we derive the optimum power allocations for maximizing
the secrecy sum rate given in Theorem 2.

VIII. NUMERICAL RESULTS

In this section, we verify by simulation that the secrecy sum
rate achieved by the scaling based alignment (SBA) scheme
given in Section III and the ergodic secret alignment (ESA)
scheme given in Section VII scale with SNR, while the secrecy
sum rate achieved by the Gaussian signaling with cooperative
jamming (GS/CJ) scheme given in [13] does not scale with
SNR. We also verify that the secrecy sum rate achievable by
the ESA scheme is greater than the one achievable by the SBA
scheme for all SNR values.

In our simulations, we use a rudimentary power allocation
policy for our SBA and ESA schemes. For the SBA scheme,
we first note, from (30), that the secrecy sum rate achieved
can be expressed as a nested expectation as

Rs =
1
2
Eho,go

{
Ehe,ge

[
log

(
1 +

(|h1og2o|2 + |h1eg2e|2
)
P1

+
(|h2og1o|2 + |h2eg1e|2

)
P2

+ |h1eh2og1og2e − h1oh2eg1eg2o|2P1P2

)

− log
(

1 +
(|g1og2o|2 + |g1eg2e|2

)
(P1 + P2)

)]}

(64)

where ho = [h1o h2o]T , he = [h1e h2e]T , go = [g1o g2o]T ,
and ge = [g1e g2e]T . For those channel gains ho, go for which
the inner expectation with respect to he, ge is negative, we
set P1 = P2 = 0. Otherwise, we set P1 = 1

2σ2
g
P̄1 and

P2 = 1
2σ2

g
P̄2. Note that turning off the powers for some

values of the channel gains ho, go is possible since P1 and P2

are functions of ho and go. Secondly, note that, if a power
allocation satisfies the average power constraints, then the
modified power allocation where the powers are turned off at
some channel states, also satisfies the power constraints. For
the ESA scheme, we first note, from (61), that the achievable
secrecy sum rate is

Rs =
1
2
Eh,g

{
log

(
1 + 2|h1|2P1

)

+ log
(
1 + 2|h2|2P2

)

− log
(
1 + 2(|g1|2P1 + |g2|2P2)

) }
(65)
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Fig. 1. Achievable secrecy sum rates of the Gaussian signaling with
cooperative jamming scheme (GS/CJ scheme), the scaling based alignment
scheme (SBA scheme) and the ergodic secret alignment scheme (ESA scheme)
as function of the SNR for two different values of mean eavesdropper channel
gain, σ2

g .

In this case, we set P1 = P2 = 0 for those values of
channel gains for which the difference inside the expectation
is negative. Otherwise, we set P1 = P̄1 and P2 = P̄2. Again,
turning the powers off does not violate power constraints for
a power allocation scheme which already satisfies the power
constraints. For the GS/CJ scheme, we use the optimal power
allocation scheme described in [13].

In Figure 1, the secrecy sum rate of each of the three
schemes is plotted versus the average SNR which is defined
as 1

2 (P̄1 + P̄2). In all simulations, we set σ2
h1

= σ2
h2

= 1.0,
we also take σ2

g1
= σ2

g2
and we let σ2

g be their common value.

IX. CONCLUSIONS

In this paper, we proposed two new achievable schemes for
the fading multiple access wiretap channel. Our first scheme,
the scaling based alignment (SBA) scheme, lets the interfering
signals at the main receiver live in a two-dimensional space,
while it aligns the interfering signals at the eavesdropper in
a one-dimensional space. We obtained the secrecy rate region
achieved by this scheme. These secrecy rates scale with SNR.
In particular, we showed that the secrecy sum rate achieved by
this scheme scales with SNR as 1/2 log(SNR), i.e., a total of
1/2 secure DoF is achievable with this scheme in the two-user
fading MAC-WT. We also showed that the secrecy sum rate
achieved by the Gaussian signaling with cooperative jamming
scheme does not scale with SNR, i.e., achievable secure DoF is
zero. As a direct consequence, we showed the sub-optimality

of Gaussian signaling (with or without cooperative jamming)
in the fading MAC-WT.

Our second scheme, the ergodic secret alignment (ESA)
scheme, is inspired by the ergodic interference alignment tech-
nique. In this scheme each transmitter repeats its symbols over
carefully chosen time instants such that the interfering signals
from the transmitters are aligned favorably at the main receiver
while they are aligned unfavorably at the eavesdropper. We
gave the secrecy rate region achieved by this scheme and
showed that, as in the scaling based alignment scheme, the
secrecy sum rate achieved by the ergodic secret alignment
scheme scales with SNR as 1/2 log(SNR).

Finally, we presented simulation results for the secrecy
sum rates achieved by our proposed schemes and by the
Gaussian signaling with cooperative jamming scheme. The
simulation results illustrated that our schemes yield secrecy
sum rates that scale with SNR, while the secrecy sum rate
achieved by cooperative jamming does not scale with SNR.
We note that the secrecy rates achievable by our schemes can
be further improved by appropriate power control. While the
rate expressions achieved with the scaling based alignment
scheme seem complicated, the rate expressions achieved with
the ergodic secret alignment scheme are more amenable for
optimization of power allocations. We optimize the powers
with respect to channel states in [15].
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