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Abstract—This paper presents a simple yet effective method for
designing nested families of LDPC codes. Rate compatible codes
are essential for many communication applications, e.g. hybrid
automatic repeat request (HARQ) systems, and their design is
nontrivial due to the difficulty of simultaneously guaranteeing
the quality of several related codes. Puncturing can be used
to generate rate-compatible LDPC codes, but it produces a
gap to capacity that, in practice, often significantly exceeds the
gap of the mother code. We propose an alternative method
based on successively extending a high-rate protograph. The
resulting codes not only inherit the advantages of protograph
codes, namely low encoding complexity and efficient decoding
algorithms, but also cover a wide range of rates and have very
good performance with iterative decoding thresholds that are
within 0.2 dB of their capacity limits.

Index Terms—LPDC codes, protograph codes, rate-
compatible, iterative decoding threshold, EXIT chart.

I. INTRODUCTION

ARate-compatible family of codes allows coding across
a range of rates using a common encoder/decoder in-

frastructure [1]–[8]. This allows convenient matching of the
code rate to channel conditions and also provides an efficient
realization for incremental hybrid automatic repeat request
(HARQ). In HARQ, upon an unsuccessful reception, the trans-
mitter transmits incremental parity bits to allow the decoder
to decode the data with a lower-rate (more powerful) code.
This requires a rate-compatible family of codes.

The most common way of generating a rate-compatible
family of codes is by puncturing, i.e., starting with a low-
rate mother code and then selectively discarding some of the
coded bits (parity bits) to arrive at higher rate codes [2]–
[4]. This approach is simple but is not free of problems [9].
Specifically, (1) the mother code is optimally designed for low
rates, so higher-rate punctured codes have iterative decoding
thresholds with a wider gap to capacity than that of the mother
code; (2) the optimal low rate code structure and puncturing
patterns are designed separately, which is suboptimal. Even
though it has been shown that puncturing can theoretically
achieve the same gap to capacity as the mother code, in
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practice puncturing has increased the gap significantly [2],
[10].

In this paper, we propose a simple, systematic procedure
to search for good nested protograph LDPC codes that have a
low decoding threshold (close to the capacity limit) and also a
minimum distance that grows linearly with block-length [11],
[12], a necessary condition for avoiding an error floor. A
protograph code is an LDPC code that can be constructed
from a small protomatrix with a few elements [13]. We start
by producing nested protograph codes where the parity check
matrix of the higher rate code is a lengthened version of
the lower rate one. This lengthening structure is motivated
by [11] but the resulting codes are better than those reported
in [11]. This family is suitable for applications where adaptive
coding and/or unequal error protection is required as well
as low complexity. However, code lengthening changes the
information block size, thus the resulting codes are not useful
for some applications, e.g., HARQ.

To achieve full rate-compatibility, we use another approach
involving code extension. Code extension starts with a high-
rate code (a daughter code), then lower rate codes are obtained
by extending the parity check matrix of the daughter code [5],
[9], [14], [15]. Most existing extension-based LDPC codes [5],
[9], [14] are designed as rate-compatible irregular LDPC codes
with highly optimized framework and unstructured design that
does not promote low-complexity encoding. In contrast, the
proposed rate-compatible protograph-based codes can achieve
very good thresholds with low encoding complexity allowed
by circulant permutations [11], [16].

Several protograph-based rate-compatible codes have ap-
peared in the literature [11], [17]–[20]. While some of these
codes have reasonably good performance, the designs are
by trial-and-error and thus time consuming. Some designs
manually manipulate within a given structure [11], [21] or
use node splitting and edge growth techniques [11], [18]. But
without a comprehensive search one may easily miss good
codes in this class, in fact this paper shows the protograph
codes mentioned above can be improved upon. Furthermore,
manual design makes it impractical to use larger protographs
that are needed for implementing a wide range of rates, and
also for better performance. Also noteworthy is [15] which
produced rate-compatible protograph codes based on node-
splitting and attaching additional accumulators, but [15] only
produces rates higher than 1/2 and furthermore the resulting
iterative decoding threshold gaps to capacity are higher than
that of the codes reported in this paper.

To summarize, the main contribution of this paper is a
simple method to design rate-compatible codes within a wide
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range of rates, for adaptive coding and HARQ applications.
Rate compatible codes are produced with rates from 0.32
to 0.88 with iterative decoding thresholds within 0.2 dB of
capacity and a linear minimum distance growth property [11].
As a by-product of our main results, we also produce nested
protograph codes that do not have uniform information size.
The rates of these codes range from 1/2 to 9/10 and have
thresholds within 0.2 dB of capacity. Our protograph codes
perform close to capacity uniformly and have the lowest
iterative decoding thresholds among structured LDPC codes
with linear minimum distance growth property reported so far
in the literature.

II. DESIGN OF PROTOGRAPH CODES

A protograph [13] is a Tanner graph with a relatively
small number of nodes, connected by a small number of
edges, which also allows parallel edges. A protograph is
represented by a protomatrix whose entries indicate the num-
ber of edges connecting the respective variable and check
nodes. A protograph code (an equivalent LDPC code) is a
larger derived graph constructed by applying a “copy-and-
permutation” operation on a protograph. Protograph LDPC
codes are a subclass of multi-edge type LDPC codes [22]
where each edge of a protograph corresponds to one edge
type.

The decoding threshold of a protograph refers to the mini-
mum channel SNR that supports reliable iterative decoding of
asymptotically large LDPC codes built from the protograph.
The decoding threshold of an LDPC code can be computed
by using density evolution (DE) [23]. The density evolution
algorithm tracks the distribution of messages exchanged in
the Tanner graph, but it is computationally cumbersome,
especially for our purposes because we intend to use it inside
an optimization loop as explained in the sequel. There are
approximate techniques that reduce the complexity of the
calculation of the decoding threshold: the extrinsic information
transfer (EXIT) chart [24] and reciprocal channel approxima-
tion (RCA) [11]. In this paper we use a variation of the EXIT
chart.

It is important to note that threshold calculation for a
protograph code does not exactly follow the ordinary LDPC
threshold calculation, because the copy-and-permute operation
does not allow full randomization of the edges of the code
graph; the edge(s) arriving in a node in one copy of the
protograph can only be permuted with the edges of the similar
node in other copies of the protograph. Thus, a protograph
code has more structure than a general LDPC code with
similar degree distribution, and therefore may not have the
same threshold. In fact, two LDPC protograph codes arising
from two different protographs, even though having the same
degree distribution, may not have the same threshold. The
decoding threshold of a protograph code is a function of both
the degree distribution as well as its protograph protomatrix.

Because of this dependency the general EXIT chart, which
is designed for generic LDPC ensembles, cannot be accu-
rately applied to protograph codes: it can neither account for
degree-1 variables nor the dependency on the protomatrix as
mentioned above [25]. To solve these problems, Liva and Chi-
ani [25] proposed the PEXIT method. The PEXIT algorithm

computes the iterative threshold of a protograph based on its
edge degree distribution (via its protomatrix) rather than node
degree distribution as in general EXIT chart [24]. We use the
PEXIT algorithm in this paper.

A. Properties of a Good Protograph

1) Low Iterative Decoding Threshold: It is well known
that optimized degree distribution of unstructured LDPC code
ensemble should contain at least one very high degree vari-
able nodes and a substantial fraction of degree-2 variable
nodes [23]. This also applies to protograph structures [11],
[13]. Protograph-based iterative decoding threshold can be
further improved by including a few degree-1 variable nodes
(usually called a pre-coder) and a very high degree variable
node that is optionally punctured. This construction appeared
in the accumulate-repeat-accumulate code [21]. The role of
degree-1 variable nodes was also observed by Richardson in
multi-edge type codes [22]. To summarize, the combination
of one or more degree-1 variable node, one very high degree
variable node and several degree-2 variable nodes are likely
to lead to a good protograph.

2) Linear Minimum Distance Growth: Linear minimum
distance growth is a desired property of an LDPC code,
which can be verified by computing the asymptotic ensemble
weight enumerator [11]. It is known that the LDPC codes with
variable node degrees greater than or equal to 3 automatically
have such a property [23]. However, as seen in the previous
subsection, a good protograph usually includes degree-2 and
even degree-1 variable nodes. In order to include degree-2
variable nodes within the graph structure, Divsalar, et al. [11]
proposed a check node splitting method that allows to build
a graph with degree-2 from a graph having variable nodes
that have higher degree (≥ 3) while still preserving its linear
minimum distance growth property. This technique requires
the maximum number of degree-2 variable nodes in the
protograph to be limited by total number of checks minus
1, and also there should be neither parallel edges nor cycles
among these degree-2 nodes [26].

3) Protograph Structure with Degree-1 Variable Nodes:
Degree-1 variable nodes (accumulators) are pre-coders that
improve the iterative decoding threshold. We divide the proto-
graph into two sub-graphs: One sub-graph contains the degree-
1 variable nodes, the corresponding check nodes, and any
variables connected to these check nodes. The other subgraph
contains all variables with degree greater than 1. The latter
subgraph is LDPC-like, since good random LDPC codes do
not have degree-1 variable nodes. The two subgraphs have in
common certain variables of degree > 1 that are connected
to the check node(s) associated with degree-1 node(s) (see for
example Fig. 1).

Since the degree-1 variables do not affect the growth of
minimum distance with codeword length [11], any discussion
regarding linear growth of minimum distance applies only to
the LDPC subgraph.

As an example, the structure of the rate-1/2 AR4JA code
from [11] is shown in Fig. 1 in which dark circles are
transmitted variable nodes, the white circle is un-transmitted
(punctured) variable node and plus circles are check nodes.
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Rate-1 accumulator part

LDPC part

Fig. 1. The rate 1/2 AR4JA protograph as a concatenation of a pre-coder
and a protograph-based LDPC code.

It is a concatenation of a pre-coder (degree-1 part or a rate-1
accumulator) with an LDPC subgraph. The protomatrix of the
rate-1/2 AR4JA protograph is

H1/2 =

⎛
⎝

1
0
0

2 0 0 0
3 1 1 1
1 2 2 1

⎞
⎠ (1)

Using the PEXIT technique, we find this rate-1/2 code has a
threshold of 0.6337 dB.

The LDPC protograph subgraph, i.e., the two rows in
the right-bottom part of (1), consists of only two check
nodes. Following the linear minimum distance criteria, there
is only one degree-2 variable node allowed in the protograph
structure.

Although it is a good code, the AR4JA code has not been
designed by a systematic search of the design space and
therefore it can be improved upon. In the following, we outline
a method for a systematic and efficient search of the design
space that finds better codes.

B. Design Method

Based on the discussion above, our design procedure is:

1) Start with a desired code rate, determine number of
check and variable nodes.

2) Impose empirical constraints for good threshold (see
Section II-A1.)

3) Impose constraints for linear minimum distance growth
(see Section II-A2.)

4) Among the graphs satisfying the constraints, select the
graph with the lowest iterative decoding threshold.

The rate of the code does not uniquely determine the num-
ber of check and variable nodes, rather, if the number of check
and variable nodes is respectively nc and nv, assuming np

punctured variable nodes, R = nv−nc

nv−np
. So for the same rate,

we may have larger or smaller protographs. Larger protographs
of the same rate may yield better thresholds because of the
larger search space and the design flexibility. However, as
protographs grow bigger there is a point of diminishing returns
for the optimization of threshold and the search algorithm
becomes more complex. Furthermore, if the overall codeword
length is constant, a larger protograph means that the repetition
factor of the protograph will be smaller, which restricts the
design of the interleaver and makes it more difficult to avoid
an error floor due to trapping sets.

With all that in mind, consider the following example for
the design of a rate-1/2 protograph code. We begin with a
simple protograph structure which has 7 variable nodes (of
which the third node is punctured) and 4 check nodes. We

shall see that this choice of the number of check and variable
nodes leads to a threshold that is within a small fraction of a
dB to capacity, therefore a larger protograph is not needed.1

The rate of the proposed protograph is R = 7−4
7−1 = 3

6 = 1
2 .

We include a punctured variable node since it has been
observed that punctured (un-transmitted) variable nodes can
improve the performance [11], [18], [22]. We represent the
protograph by its 4×7 protomatrix. This protomatrix contains
28 elements each indicating how many parallel edges connect
the respective check node (row) and variable node (column).
Optimization over these 28 variables is computationally com-
plex and the finding of the optimum in a high-dimensional
space is difficult, therefore adjustments to this optimization
problem are necessary to make a practical solution viable.

As discussed earlier, we institute one degree-1 variable (one
column of weight-1), and one degree-2 variable node (column
of weight-2). Therefore the protomatrix is:

Hsearch
1/2 =

⎛
⎜⎜⎝

1 0 y1 y2 y3 y4 y5
0 1 x1 x4 x7 x10 x13

0 1 x2 x5 x8 x11 x14

0 0 x3 x6 x9 x12 x15

⎞
⎟⎟⎠

4×7

(2)

The variables xi and yj designate the remainder of the
protograph to be designed. The overall code is effectively the
concatenation of an LDGM code (first row and column) with
an LDPC code (columns 2 through 7, rows 2 through 4). The
linear minimum distance growth only involves the LDPC part
of (2), therefore all the comments in the remainder of this
paragraph are focused on this submatrix. As shown in [26], to
have linear minimum distance growth, the number of degree-2
nodes in an LDPC protograph must be limited to the number
of check nodes in the LDPC part minus 1, that is 3− 1. It is
also known that degree-2 nodes cannot form a cycle among
themselves. However, in our design, we only search for one
degree-2 variable node since extensive experiments show that
two degree-2 variable nodes will produce an inferior threshold.

Other variable nodes within the LDPC part of the matrix
must have degree at least 3, therefore the sum of columns
containing xi, except for up to two degree-2 nodes, must be
3 or higher.

To limit the search space, we constrain the maximum
number of parallel edges in the protograph. Via experiments,
we observed that increasing the number of parallel edges
beyond a certain point is not useful. The reason is that subject
to a given code length, increasing the number of parallel edges
will increase the likelihood of short cycles. For the remaining
nodes, we set the maximum number of parallel edges to 3.

These constraints reduce both the dimensionality of the
search space as well as the breadth of the discrete search in
each dimension, making a systematic search viable. Thus we
find:

H ′
1/2 =

⎛
⎜⎜⎝

1 0 2 0 0 1 0
0 1 3 1 1 1 0
0 1 1 2 2 2 1
0 0 2 0 0 0 2

⎞
⎟⎟⎠

4×7

(3)

1Experiments showed that smaller protographs were not satisfactory.
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LDPC part

Protograph-based LDGM code

Fig. 2. The new rate 1/2 protograph with a threshold of 0.395 dB.

Protograph-based LDGM code Protograph-based LDGM code

Protograph-based LDPC code

Fig. 3. A rate 1/2 protograph with a threshold of 0.250 dB.

The threshold of this code is 0.395 dB which shows a gap of
0.208 dB of capacity. The new protograph is shown in Fig. 2.
This code shows improvements over the AR4JA rate-1/2 code
reported in [11]. However, it should also be mentioned that
the AR4JA protograph has fewer nodes, and within the class
of protographs with 5 variable nodes the AR4JA code remains
very attractive.

It is instructive to note that if we do not impose the
linear minimum distance growth criteria, the optimization
procedure yields a protograph with a lower threshold that has
a protomatrix as follows

Hopt
1/2 =

⎛
⎜⎜⎝

1 0 2 0 0 1 0
0 1 2 0 0 1 0
0 1 1 2 2 2 0
0 0 3 1 1 1 1

⎞
⎟⎟⎠ (4)

This code has a threshold of 0.250 with a gap of only 0.063
dB to capacity. This is the best iterative decoding threshold
reported for a structured (non-random) code in the literature,
but it does not mean it is a good code. In fact, this is the
concatenation of two LDGM codes (the first column-row; and
last column-row in (4)) with one LDPC code (corresponding
to the middle sub-matrix of (4)) as plotted in Fig. 3. The LDPC
subgraph has too many degree-2 variable nodes (3 degree-2
variables and 2 checks) which violates the condition for linear
minimum distance [11], [26]. Therefore the minimum distance
of this code does not grow linearly with codeword length and
it suffers from an error floor.

III. DESIGN OF HIGH RATE PROTOGRAPH CODES BY

LENGTHENING

So far we have concentrated on rate-1/2 protograph codes.
Designing higher rate protographs is more difficult because
the protomatrix contains many more elements. In this section,
we propose a simple approach to overcome this difficulty. We
produce codes whose iterative decoding thresholds are close

to capacity, form a nested family of codes and offer a range
of rates.

We construct a family of high-rate protograph codes from a
low-rate protograph by code lengthening, i.e., by lengthening
the parity check matrix of a lower-rate code (a base code) in
the form of

Hhigh rate = [H1He] (5)

where H1 is the parity check matrix of the low-rate code and
He is an extension matrix.

Several families of nested protograph codes based on code
lengthening have been reported in the literature [11], [21]
using node splitting and permutation of the edges in an ad-hoc
manner that cannot be generalized to arbitrary mother codes
and rates. Therefore, there is motivation to find a systematic
approach for the design of nested protograph codes.

We will describe in the following an example for the design
of high-rate codes with rate R = n+1

n+2 , n = 1, 2, . . . as an
extension of our optimized rate-1/2 protograph of Eq. (3).
These codes have a minimum distance that grows linearly with
code length. Similar to the previous section, we describe the
search space for our code in the following way

Hsearch
n+1
n+2

=

⎛
⎜⎜⎝H ′

n
n+1

y1 y2 y3
x1 x4 x7

x2 x5 x8

x3 x6 x9

⎞
⎟⎟⎠ (6)

where variables yj in the first row correspond to the check
node that connects to the degree-1 variable node. Variables xi

in rows 2-4 constitute the extension to the LDPC subgraph.
In order to preserve the linear growth of minimum distance
for the new high rate codes, the column sums in the LDPC
subgraph, namely sums of columns designated with variable
xi, should be 3 or higher. This constraint ensures that all
variables in LDPC part of the extension structures have degree
≥ 3.

We further simplify the problem by setting the maximum
number of parallel edges to 2 (i.e., xi, yj ∈ {0, 1, 2}). We
obtain:

H ′
2/3 =

⎛
⎜⎝H ′

1/2

0 1 1
1 0 1
2 2 2
0 1 0

⎞
⎟⎠ H ′

3/4 =

⎛
⎜⎝H ′

2/3

0 0 1
1 2 0
2 1 2
0 0 2

⎞
⎟⎠

H ′
4/5 =

⎛
⎜⎝H ′

3/4

0 1 2
1 1 2
2 2 1
0 0 0

⎞
⎟⎠ H ′

5/6 =

⎛
⎜⎝H ′

4/5

0 0 0
0 2 2
2 1 1
2 0 0

⎞
⎟⎠

H ′
6/7 =

⎛
⎜⎝H ′

5/6

0 1 2
1 1 2
2 2 2
0 0 0

⎞
⎟⎠ H ′

7/8 =

⎛
⎜⎝H ′

6/7

0 0 1
2 2 0
1 2 1
0 0 2

⎞
⎟⎠

H ′
8/9 =

⎛
⎜⎝H ′

7/8

0 0 1
1 2 1
2 1 2
0 1 0

⎞
⎟⎠ H ′

9/10 =

⎛
⎜⎝H ′

8/9

0 0 2
2 2 0
1 1 2
0 0 2

⎞
⎟⎠

The iterative decoding thresholds of these codes are given
in Table I. For rates > 2/3, the produced codes have decoding
thresholds within 0.09 dB of capacity, and the rate-2/3 code
has a threshold within 0.122 dB of capacity. This shows an
improvement of 0.2 dB compared with the AR4JA family [11].
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TABLE I
THRESHOLD OF THE NEW PROTOGRAPH CODE FAMILY

Code Protograph Capacity Gap to
Rate threshold (dB) threshold (dB) capacity
1/2 0.395 0.187 0.208
2/3 1.181 1.059 0.122
3/4 1.701 1.626 0.075
4/5 2.112 2.040 0.062
5/6 2.445 2.362 0.083
6/7 2.702 2.625 0.077
7/8 2.930 2.845 0.085
8/9 3.123 3.042 0.081
9/10 3.288 3.199 0.089

IV. DESIGN OF RATE-COMPATIBLE PROTOGRAPH CODES

Although we have successfully designed a family of nested
codes in Section III, the information block-lengths of the
nested codes are not identical. The same is true of AR4JA
codes [11]. Thus, these codes are not truly rate-compatible
and are unsuitable e.g. for HARQ applications. Several works
in the literature design irregular LDPC rate-compatible codes
using puncturing and code extension [2], [3], [5], [9], [14] in
a manner that requires painstaking optimization and further-
more their encoders are unstructured therefore computation-
ally complex. Our design avoids the weaknesses of puncturing
by using a code extension approach.

El-Khamy et al. [18] design rate-compatible protograph
LDPC codes by first extending and randomly pruning from
an existing protograph to produce a low-rate code, and then
obtaining other high-rate codes by puncturing this low-rate
code. As mentioned in Section I, puncturing has several
weaknesses and usually results in codes that have iterative
decoding thresholds with a wider gap to capacity than that of
the low-rate mother code. The weaknesses of puncturing can
be avoided by using a code extension approach, as discussed
below for our designs.

The new rate-compatible family of codes is constructed by
extending the parity check matrix H of a high-rate protograph
code by an equal number of columns (variable nodes) and
rows (check nodes), ensuring that the new code will have
the same information block size (Fig. 4). In this figure, the
parity check matrix H1/2 of the rate 1/2 code is extended to
create H1/3, which in turn is extended to obtain H1/4. The
zero submatrices ensure that the incremental variable nodes
are indeed new parity bits determined only by the new parity
check equations, thus guaranteeing that the high-rate code is
nested inside the low-rate code.

In the interest of brevity, we only present one construction
of a nested rate-compatible family of codes. However, the
proposed method is completely general; we can start from any
high-rate code to build a successive set of lower-rate codes.
The starting point for the following construction is the rate-5/6
protograph code designed in the last section. Since an equal
number of columns and rows are added to the protomatrix, the
lower-rate codes obtained from the rate-5/6 code above have
rates R = 19−4

19−1+n = 15
18+n , where n is the number of checks

and variables added. For each value of n, the new code will

H1/2 0
0

H1/3

H1/4

Fig. 4. Rate-compatible parity check matrices by extension.

require a search. As a representative sample, we concentrate
on the search for n = 2, which yields a rate R = 15

20 = 0.75
code. The search space for this new code is in the form

H1
0.75 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0
0 0

H ′
5/6 0 0

0
0 x1 y1 x3 . . . x17 1 0
0 x2 y2 x4 . . . x34 z 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(7)

The problem is to find edges that connect the old graph (the
rate-5/6 code) to 2 new check nodes and variable nodes. The
unknown edges are represented with variables xi, yj and z,
which are divided into two types. The first edge type connects
the variables of the old graph to new checks, denoted by xi and
yj , where variables yj is the number of edges connecting to the
highest degree variable node in the old graph, and variables xi

are the remaining edges connecting to the rest of old variables
except degree-1 node. The other type consists of edges that
connect the new variable nodes to the new check nodes,
denoted by variable z in the right-bottom corner sub-matrix.
In order to maintain linear growth of minimum distance, more
care is needed in this case since degree-2 variables might arise
that form short cycles. Therefore we also further simplify the
problem by setting this submatrix to be lower triangular.

The optimization process is simplified by further limiting
the maximum number of parallel edges. For example, we can
set yj to the values of 1, 2, xi and zk to the values of 0, 1. The
resulting rate-0.75 protograph has a protomatrix given by:

H0.75 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 0 1 0 0 1 1 0 0 1 0 1 2 0 0 0 0 0
0 1 3 1 1 1 0 1 0 1 1 2 0 1 1 2 0 2 2 0 0
0 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 1 0 0
0 0 2 0 0 0 2 0 1 0 0 0 2 0 0 0 2 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0
0 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

This protograph has an iterative decoding threshold of 1.706
dB with a gap of only 0.078 dB to capacity. Applying this
procedure, we are able to generate a family of rate-compatible
codes with rates ranging from 0.32 to 0.88, based on the
rate-5/6 protograph. To get as many lower rate codes as
possible, we only add one variable node and one check node
to the mother code. These codes have rates R = 15

19−1+n ,
n = 1, . . . , 28, i.e., rates from 15

46 = 0.32 to 5
6 = 0.83. The
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TABLE II
THRESHOLD OF RATE-COMPATIBLE PROTOGRAPH CODE FAMILY

Code Protograph Capacity Gap to Code Protograph Capacity Gap to
Rate threshold (dB) threshold (dB) capacity Rate threshold (dB) threshold (dB) capacity
15/17 3.137 2.945 0.192 15/32 0.132 0.050 0.082
5/6 2.445 2.362 0.083 15/33 0.080 -0.014 0.094

15/19 2.046 1.948 0.098 15/34 0.032 -0.070 0.102
3/4 1.706 1.628 0.078 3/7 0.002 -0.118 0.116

15/21 1.434 1.364 0.070 15/36 -0.067 -0.170 0.103
15/22 1.208 1.143 0.065 15/37 -0.106 -0.217 0.111
15/23 1.027 0.968 0.059 15/38 -0.144 -0.256 0.112
15/24 0.878 0.816 0.062 15/39 -0.171 -0.295 0.124
3/5 0.785 0.682 0.103 15/40 -0.231 -0.334 0.103

15/26 0.706 0.559 0.147 15/41 -0.259 -0.375 0.116
5/9 0.548 0.471 0.077 15/42 -0.316 -0.410 0.094

15/28 0.432 0.357 0.075 15/43 -0.357 -0.432 0.075
15/29 0.383 0.265 0.118 15/44 -0.382 -0.469 0.087
1/2 0.278 0.188 0.090 1/3 -0.402 -0.501 0.099

15/31 0.198 0.109 0.089 15/46 -0.421 -0.532 0.111

rate-0.88 (15/17) protograph is obtained by puncturing the
degree-1 variable node in the rate-5/6 protograph structure.
The protomatrix of the smallest rate (R = 15/46) code in this
rate-compatible structure is given in Eq. (9), from which all
other protomatrices can be deduced. This protograph has 47
variable and 32 check nodes with the highest degree variable
node is punctured. The thresholds of the new rate-compatible
codes are given in Table II. As seen in the table, these codes
have thresholds uniformly within 0.2 dB of their capacity
limits. All the codes have linear minimum distance growth
property [11].

V. ENSEMBLE TRAPPING SET ANALYSIS

In the design of LDPC codes with belief propagation
decoding one must avoid graph imperfections due to non-
codewords such as trapping sets, which may result in error
floors. Obtaining the exact trapping sets has difficulty that
grows with block length,2 therefore we provide an ensemble
trapping set analysis that applies to protograph codes with
linear minimum distance growth property, a property that our
codes enjoy. Our simulations show that from the viewpoint of
the end results, this approach has worked well.

Instead of computing trapping set enumerators for specific
protograph codes [27], we prove that under certain conditions
the minimum size (a, b) trapping sets grows linearly with
the block length if linear minimum distance property for
protograph code is satisfied. Our codes satisfy this property
via the number of degree-2 nodes with respect to the checks
and lack of loops among degree-2 nodes. This is in fact a
condition that is required for linear minimum size growth of
(a, b) trapping sets with the block length if b < a. Here we
present a sketch of the proof.

An (a, b) trapping set τa,b is a set of variable nodes of size
a which induces a subgraph with exactly b odd-degree check
nodes (unsatisfied check nodes) and an arbitrary number of
even-degree check nodes.

Define Δ = b/a, and trapping sets τΔ = {τa,b|b = Δ.a}.
Let d(Δ) represent the size of the (d,Δ.d) trapping set in τΔ.

2Not coincidentally, works involving exact trapping set calculation often
target short block lengths.

Let the code block length to be n = N × nv where N is the
protograph expansion factor. The number of variable nodes
is denoted by nv, the number of checks by nc. Denote the
degree of variable node vi by qvi and degree of check node
ci by qci . Consider a class of protograph LDPC codes where
degree-2 subgraph of the protograph does not have any cycles.
This requires the number of degree-2 nodes in the subgraph be
strictly less than the number of checks in the subgraph. Denote
the total number of degree-2 variable nodes by t2 < nc. The
enumerator in [27] to count the trapping sets (a, b) is based on
modifying the base protograph by adding an additional degree-
1 variable node to each check for counting the unsatisfied
check nodes. Thus the total number of variable nodes in the
modified protograph is n

′
v = nv +nc, and the modified check

nodes are denoted by c
′
j . With this modification the weight

enumerators analysis can be used to count the trapping sets
(a, b).

Theorem 1: For the ensemble of protograph-based LDPC
codes with linear minimum distance property, a typical mini-
mum trapping set size δmin(Δ) > 0 exists for some 0 < Δ <
Δ∗, i.e. Pr{d(Δ) < Nδmin(Δ)} → 0 as N → ∞.

Proof: Define Xd(Δ) as the number of (d,Δ.d) trapping
sets with size d(Δ). The probability that a trapping set in τΔ
with this size exits is P (d) = Pr{Xd ≥ 1} ≤ Ad,Δ.d. Thus

Pr{d(Δ) < Nδmin(Δ)} <

�Nδmin(Δ)�∑
d=1

Ad,Δ.d

In [27], the trapping set enumerator Aa,b is given by

Aa,b =
∑

{di:vi∈S}

∑
{dk:vk∈Sf}

A(d), (10)

under the constraint
∑

{di:vi∈S} di = a and
∑

{di:vi∈Sf} di =
b, where S represents the variable nodes in the trapping set,
Sf represents the set of degree-1 variable nodes that count the
unsatisfied checks, and

A(d) =

∏nc

j=1 A
c′j (dj)

∏n′
v

i=1

(
N
di

)qvi−1
. (11)

where b = Δ.a. For notations and details please refer to [27].
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H32×47 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 0 1 0 0 1 1 0 0 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 3 1 1 1 0 1 0 1 1 2 0 1 1 2 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 2 0 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 1 0 0 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 2 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 2 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

We upper bound (11) and (10).

Lemma 1: The weight-vector enumerator A(d) given in
Theorem 1 can be upper bounded as

A(d) ≤ ν

n
′
v∏

i=1

e
1
2 (qvi−2)di ln

di
N +

qvi
(2+qmax

c ln 2)

2 di . (12)

where ν is a constant independent of N and qmax
c = maxi qci .

Proof: The proof can be accomplished via the upper
bounding technique and inequalities in Appendix C of [27].
Detailed proof is omitted for brevity.

Next we partition nv nodes into t2 nodes with degree-2 and
nv − t2 nodes with degree 3 or higher. The remaining nodes
in the modified protograph correspond to degree-1 nodes that
count the unsatisfied check nodes. Let us denote the weights
of the degree-2 nodes by lk, the weights of the degree 3 or
higher nodes by ui, and the weights of degree-1 nodes in Sf

are denoted by bj . Then,

A(d) ≤ ν

nv−t2∏
i=1

e(
qvi
2 −1)ui ln

ui
N +

qvi
(2+qmax

c ln 2)

2 ui

×
t2∏

k=1

e(2+qmax
c ln 2)lk

nc∏
j=1

e−
1
2 bj ln

bj
N +

(2+qmax
c ln 2)

2 bj

(13)

The slope of (
qvi
2 −1)ui ln

ui

N +
qvi (2+qmax

c ln 2)

2 ui with respect
to qvi ≥ 3 is strictly negative over the range of interest i.e.
d ≤ �Nδmin(Δ)�. Thus we can upper bound this expression

by replacing qvi by 3.

Let
∑t2

k=1 lk = L,
∑nv−t2

i=1 ui = u, and
∑nc

j=1 bj = b. Also
note that ln ui

N ≤ ln u
N and u = d − L (note that we used

notation d instead of a of trapping set (a, b)). Furthermore

−
nc∑
j=1

bj
b
ln

bj
b

≤ lnnc , (14)

which implies

−
nc∑
j=1

bj ln
bj
N

≤ b ln(nc)− b ln
b

N
, (15)

Let b = Δd, then A(d) can be upper bounded as

A(d) ≤ νeE(d,L) , (16)

where

E(d, L) =
1

2
(d− L) ln

(d− L)

N
+

3(2 + qmax
c ln 2)

2
(d− L)

+ (2 + qmax
c ln 2)L+

(2 + qmax
c ln 2)

2
Δd

+Δd ln(nc)−Δd ln
Δd

N
(17)

At this point we obtain an upper bound on L by using the
following inequality for a check node of degree qc

max{w1, w2, . . . wqc} ≤ 1

2

qc∑
k=1

wk . (18)

where wi is the weight on the i-th edge of the check node.
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Manipulation of this inequality results the following upper
bound on L.

L ≤ γ1u+ γ2Δd (19)

The worst case upper bound on γ1 and γ2 are γ1 ≤ t2
2 q

max
v ,

and γ2 ≤ t2
2 where qmax

v = maxi qvi . If there are no degree-2
nodes then γ1 = 0, and γ2 = 0 and L = 0.

Since u = d−L then L ≤ γ1+γ2Δ
1+γ1

d. This implies Δ ≤ 1
γ2

.
Note that the second derivative of the function E(d, L) with
respect to L is strictly positive. Thus the function is convex,
and boundary values at L ≤ γ1+γ2Δ

1+γ1
d are greater than the

boundary value at L = 0 in the region of interest as mentioned
before. Therefore E(d, L) ≤ E(d, γ1+γ2Δ

1+γ1
d). The weight

vector enumerator can be upper bounded as

A(d) ≤ νeE(d,
γ1+γ2Δ
1+γ1

d) . (20)

where E(d, γ1+γ2Δ
1+γ1

d) = φ1d ln
d
N + (φ2 − (1 + Δ))d. We

obtain

φ1 =
1−Δ/Δ∗

2(1 + γ1)
, (21)

2φ2 = (2 + qmax
c ln 2)(2 + Δ− 1− γ2Δ

1 + γ1
)

+
1− γ2Δ

1 + γ1
ln

1− γ2Δ

1 + γ1
−Δ ln

Δ

nc
+ 2(1 + Δ) (22)

where Δ∗ = 1
1+γ1+γ2

.

Ad,Δd =
∑

{di:vi∈S}

∑
{dk:vk∈Sf}

A(d)

≤ ν|{di : vi ∈ S}||{dk : vk ∈ Sf}|
×eφ1d ln d

N +(φ2−(1+Δ))d

(23)

However |{di : vi ∈ S}| =
(
d+nv−1

d

) ≤ ed+nv−1, and
|{dk : vk ∈ Sf}| =

(
Δd+nc−1

d

) ≤ eΔd+nc−1.
Following a similar steps as in Appendix C of [27], for

weight enumerators we can show that

Ad,Δ.d ≤ νenv+nc−2eNF (δ) (24)

where δ = d/N , and F (δ) = φ1δ ln δ + φ2δ. Both φ1 >
0, and φ2 > 0 depend on Δ. To have φ1 > 0 we require
that 0 < Δ < Δ∗. This upper bound requires the number of
degree-2 nodes to be less than checks and no loop to exist
between degree-2 nodes and checks connected to them. This
is the same condition for protographs to have linear minimum
distance property. Define δo = e−φ2/φ1 , then F (δ) is convex
and negative for 0 ≤ δ ≤ δo. Then if we choose δmin(Δ) =
δo − 4

N ln(Nδo/2) we can show that

�Nδmin(Δ)�∑
d=1

Ad,Δ.d < cN−2φ1

where c is a constant independent of N . It is worth noting that
when there is no degree-2 variable nodes in the protograph,
Δ∗ = 1. This number decreases as we add more degree-2
nodes to a protograph. When Δ = 0 then the trapping sets
(a, 0) represent the true codewords and our analysis coincides
with ensemble codeword weight analysis.
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Fig. 5. Performance of nested codes of Section III.

VI. SIMULATION RESULTS

LDPC protograph codes are derived from our proposed
protographs in two lifting steps. First, the protograph was
lifted by a factor of 4 using the progressive edge growth
(PEG) algorithm [28] in order to remove all parallel edges.
Then based on desired information block-length, the resulting
graph was lifted again using PEG to determine a circulant
permutation of each edge class in order to maximize the girth
of an overall bipartite graph.

In our nested codes of Section III, the parity check matrix
for the lower-rate code can be obtained by removing certain
columns from the parity check matrix of the higher rate code,
and this produces economies in the design of the decoders. In
fact, it is enough to design a decoder for the largest rate code
(9/10). To decode the lower-rate codes, the missing coded bits
are replaced by erasure at the decoder. In the same manner,
the rate-compatible codes generated in Section IV only need
the decoder of the lowest rate. Other higher-rate codes are
decoded by replacing missing parity bits by erasure at the
decoder.

The performances of our nested high-rate codes with rates
1/2, 2/3, 3/4, 5/6, 7/8 and 9/10 over the binary-input
AWGN channel are shown in Fig. 5. All codes are simulated
with the information block-length of 16k. The nested high-rate
protographs given in Section III are first lifted by a factor of
4. This results in larger protographs that are lifted again with
factors of 1365, 683, 455, 273, 195 and 152, respectively. For
the rate-compatible protographs given in Section IV, we only
need to lift the largest protograph (rate-15/46), by factor of 4
and then 273. Other high rate codes are obtained by removing
the redundant parity bits. The performances of rate-compatible
codes are shown in Figs. 6 and 7.

The resulting protograph codes have girth ≥ 8 except the
protograph codes with rates 7/8, 9/10 and 15/46 where
the girth is 6. The equivalent parity check matrices of all
protograph codes have full rank except the rate-1/2 protograph
plotted in Fig. 2 whose the parity check matrix has a row null
space of dimension one. Thus, the rate loss is negligible. The
maximum number of iterations is set to 200. No error floors
were observed up to FER of 10−6. The practical performance
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Fig. 6. FER performance of rate-compatible codes of Section IV.
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Fig. 7. BER performance of rate-compatible codes of Section IV.

at FER = 10−6 shows a gap of less than 0.6 dB to threshold
and 0.8 dB to capacity, thus the waterfall regions are steep.

Fig. 8 shows a comparison between our rate-1/2 code
(protomatrix deduced from Equation (9)) and the rate-1/2
AR4JA code reported in CCSDS standard [29]. The new code
outperforms the AR4JA code by approximately 0.2 dB. A
comparison is also shown in the same figure with the rate-
1/2 LDPC code reported in the DVB-S2 standard for video
broadcasting [30]. The standard provides the code structure
as a concatenation of BCH and LDPC codes, and reports the
code performance with the information block-length of 32k.
Even with a smaller block-length, the new code outperforms
the standard code.

VII. CONCLUSION

This paper presents a simple approach for constructing rate-
compatible LDPC codes based on protographs which perform
within 0.2 dB of their capacity limits. The rate-compatible
structure has the advantage of low encoding complexity and
efficient decoding algorithm with one hardware implementa-
tion for all members of the code family.
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Fig. 8. Comparison of the rate-1/2 code produced in Section IV and
AR4JA, both with information block-length of 16k, and DVB-S2 code with
information block-length of 32k.
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