
On Iterative Performance of LDPC and Root-LDPC
Codes over Block-Fading Channels

Iryna Andriyanova
ETIS group

ENSEA/UCP/CNRS-UMR8051
95014 Cergy-Pontoise, France

iryna.andriyanova@ensea.fr

Ezio Biglieri
WISER S.r.l.
Via Fiume 23

57123 Livorno, Italy
e.biglieri@ieee.org

Joseph J. Boutros
Elec. Eng. Department

Texas A&M University at Qatar
23874, Doha, Qatar

boutros@ieee.org

Abstract—This paper1 presents our investigation on iterative
decoding performances of some sparse-graph codes on block-
fading Rayleigh channels. The considered code ensembles are
standard LDPC codes and Root-LDPC codes, first proposed in
[1] and shown to be able to attain the full transmission diversity.
We study the iterative threshold performance of those codes
as a function of fading gains of the transmission channel and
propose a numerical approximation of the iterative threshold
versus fading gains, both both LDPC and Root-LDPC codes.
Also, we show analytically that, in the case of 2 fading blocks,
the iterative threshold γ∗root of Root-LDPC codes is proportional
to (α1α2)

−1, where α1 and α2 are corresponding fading gains.
From this result, the full diversity property of Root-LDPC codes
immediately follows.

I. INTRODUCTION

The nonergodic block-fading model is appropriate for a
wide variety of wireless communication systems, for example
using multiple antennas or retransmission schemes. For such
type of channels, it is known that the most probable transmis-
sion scenario (i.e. around 70% of cases for the transmission
channel with two fading blocks) is the so called unbalanced
case, when the fading gains of different transmission blocks
differ much from each other. This unbalanced regime happens
to be the outage regime for standard sparse-graph codes
(namely LDPC codes), and so they show a poor performance.
As a consequence, LDPC codes have transmit diversity 1
and their error decoding performance scales as (SNR)−1 at
high signal-to-noise ratios (SNRs). The last result have been
demonstrated in [1] by analyzing the density evolution of
LDPC codes.

However, the best decoding performance at high SNRs is
SNR−d, if d is the number of fading blocks. Codes that
guarantee this performance are said to satisfy the em full-
diversity property. The design of full-diversity sparse-graph
codes has been first addressed in [1], where the authors
proposed a new code family, the Root-LDPC codes, which
attains the maximal theoretical diversity 2 over a block-fading
channel with two independent fading realizations per coded
data packet.

In this paper we consider both LDPC and Root-LDPC
codes, and study how the iterative-decoding threshold depends

1This work was supported by the European FP7 ICT-STREP DAVINCI
project under contract INFSO-ICT-216203.

on the two fading gains parametrizing the channel. Note that
the computation of the iterative-decoding threshold for various
fading coefficients is the main part of the computation of
the outage probability, attainable for a given code ensemble.
This computation is usually performed by heavy numerical
simulations, and only the case of ergodic channels (i.e. with
one fading realization per coded data packet) is well handled;
the iterative decoding threshold is estimated by means of the
density evolution under semi-Gaussian approximation [2]. In
the case of nonergodic channels the Gaussian approximation
is not valid anymore. The approximation, proposed in this
paper, enables to estimate the outage probability achievable
with a given code ensemble without resorting to extensive,
time-consuming simulations. Previous results [2] along this
line allow to find only one point of the threshold curve—the
one corresponding to equal fading gains—which corresponds
to an ergodic block-fading channel [3]. Moreover, we confirm
the full-diversity property of Root-LDPC codes by using
information-theoretic tools.

Our channel model here is the same as in [1], where one half
of the coded data block is affected by a Rayleigh-distributed
fading gain α1, and the other half by a similarly distributed,
independent gain α2. Two different types of code ensembles
will be examined: standard random LDPC codes and Root-
LDPC codes. We hasten to recall that, while the random LDPC
codes diversity is only 1, Root-LDPC codes achieve transmit
diversity 2, and hence their error probability after decoding
decreases as SNR−2.

This paper is organized as follows. The relevant definitions
of code ensembles are given in Section II. Transmission model
and threshold curves are introduced in Section III. Numerical
and analytical approximations of the threshold curve are de-
rived in Sections IV and V, respectively. Section VI concludes
the paper.

II. LDPC AND ROOT-LDPC CODE ENSEMBLES

LDPC codes are a well-studied family of sparse-graph
codes, and Root-LDPC codes are a family specially de-
signed for transmission over block-fading channels with two
subblocks. First recall that a classical (λ, ρ) LDPC ensem-
ble is a set of binary codes whose parity-check matrix
contains a fraction λi of columns with i nonzero entries,
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i ∈ {i1, i2, . . . , imax}, and a fraction ρj of rows with j
nonzero entries, j ∈ {j1, j2, . . . , jmax}. The LDPC ensemble
is completely described by the polynomials

λ(x) ,
∑
i

λix
i−1 and ρ(x) ,

∑
j

ρjx
j−1.

A (λ, ρ) Root-LDPC ensemble is defined with the help of
multinomials λroot(µ, x) and ρroot(µ, x) with µ , (µ1, µ2)
and x , (x1, x2, x3, x4, x5, x6):

λroot(µ, x) =
1
2

∑
i

(
λi
i
µ1x

i
1 +

(i− 1)λi
i

µ1x
i
2 + λiµ1x

i
3

+λiµ2x
i
4 +

(i− 1)λi
i

µ2x
i
5 +

λi
i
µ2x

i
6

)
, (1)

ρroot(µ, x) =
1
2

∑
i

ρi

x1

∑
j

(
i

j

)
f jex

j
4g
i−j
e xi−j5

+x6

∑
k

(
i

k

)
fke x

k
3g
i−k
e xi−k2

)
. (2)

Here the variables µ1 and µ2 correspond to the two fading
gains, and the variables x1, x2, . . . , x6 to 6 edge types in the
bipartite code graph. Note that x3 and x4 are related to “parity”
edges, and the remaining variables to “information” edges,
reflecting the fact that the structure of the root-code graph
consists of four types of variable nodes (denoted 1i, 1p, 2i and
2p) and two of check nodes (denoted 1c and 2c). Permutations
of edges within edge classes are chosen uniformly at random.
Variable nodes 1i and 2i correspond to the information bits
in a codeword, while variable nodes 1p and 2p correspond
to the redundant (parity) bits. Also, fe (resp., ge) denotes the
probability that an edge connected to a given check node is a
parity (resp., information) edge. It is easy to se that

fe =
∑
i(i− 1)λii∑

i(i− 1)λii + 1
and ge =

1∑
i(i− 1)λii + 1

= 1− fe.

As discussed in detail in [1], this structure generates a code
ensemble of rate 1/2.

III. TRANSMISSION OVER BLOCK-FADING CHANNELS:
PERFORMANCE PARAMETERS

In our model, a codeword is divided into two equal
subblocks, transmitted over two Rayleigh fading channels
with common signal-to-noise ratio SNR= γ and independent
fading gains α1 and α2. The observation yi resulting from
the transmission of binary symbol x = ±1 received from
the ith channel, i = 1, 2, has the form yi = αix + zi,
where αi ∈ [0,+∞), and zi are independent and Gaussian
distributed, zi ∼ N (0, σ2), with σ2 = 1/γ.

The received data block is decoded using a standard belief
propagation algorithm. The asymptotic performance of a given
code ensemble is described by the iterative decoding threshold
γ∗—the minimum SNR at which reliable transmission is
possible, for fixed fading gains α1 and α2 and infinite code

length. γ∗ can be found by means of the density evolution,
described below for both LDPC and Root-LDPC ensembles.

A. Density Evolution

From now on, let the function γ∗(α1, α2) denote the iter-
ative threshold as a function of the fading gains realizations.
Also, let denote the probability density functions (pdfs) of
channel LLR outputs from the two transmission subchannels
by µ1(x) and µ2(x), respectively. These are normal pdfs with
means 2α2

1/γ and 2α2
2/γ and variances 4α2

1/γ and 4α2
2/γ,

respectively.
The density evolution of LDPC and Root-LDPC codes is

defined with the help of two following operations: convolution
and R-convolution.

Definition 1: The convolution of two infinite-support pdfs
α(x) and β(x) i defined as

α⊗ β(x) =
∫
R

α(t)β(x− t)dt.

Definition 2: The R-convolution of two pdfs α(x) and β(x)
is

α� β(x) = f(α̂(x)⊗ β̂(x)),

where

α̂(x) ,
2α(2th−1(x))

1− x2
, β̂(x) =

2β(2th−1(x))
1− x2

and

f(x) = cosh2

(
α̂⊗ β̂(x)

2

)
th−1(α̂⊗ β̂(x)).

Note that the convolution of pdfs corresponds to the operation,
performed over LLRs at variable nodes; the R-convolution of
pdfs corresponds to the operation 2th−1

(
th(A/2) + th(B/2)

)
over the corresponding random variables A and B, which is
exactly the operation performed at the check nodes.

For LDPC codes, let qm(x) denote the pdf of LLR messages
from variable nodes to check nodes at decoding iteration m.
With some abuse of notation, let

λ(x) =
∑
i

λix
⊗(i−1) and ρ(x) =

∑
i

ρix
⊗(i−1).

Then the density evolution operation is written as

qm+1(x) =
(
µ1(x)

2
+
µ2(x)

2

)
⊗ λ(ρ(qm(x))).

The iterative threshold γ∗ for an (λ, ρ) LDPC ensemble is
then the maximum SNR, for which, under all-zero codeword
assumption, q∞(x) = δ∞. Here δ∞ denotes the Dirac function
at the infinity.

Now consider Root-LDPC codes. Let us denote the average
pdfs for 6 edge sets by q1(x), f1(x), g1(x), g2(x), f2(x),
and q2(x), which correspond to variables x1, . . . , x6 in the
description (1). It can be shown that the evolution of the
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pdfs at the iteration m+ 1 can be described by the following
recursions:

qm+1
1 (x) = µ1(x)⊗ λ̊(ρ̃(qm2 (x), fefm1 (x) + geg

m
1 (x)))

fm+1
1 (x) = µ1(x)⊗ λ̃(ρ̃(qm2 (x), fefm1 (x) + geg

m
1 (x)))

⊗ρ̊(fefm2 (x) + geg
m
2 (x))

gm+1
1 (x) = µ1(x)⊗ λ(ρ̃(qm2 (x), fefm1 (x) + geg

m
1 (x)))

gm+1
2 (x) = µ2(x)⊗ λ(ρ̃(qm1 (x), fefm2 (x) + geg

m
2 (x)))

fm+1
2 (x) = µ2(x)⊗ λ̃(ρ̃(qm1 (x), fefm2 (x) + geg

m
2 (x)))

⊗ρ̊(fefm1 (x) + geg
m
1 (x))

qm+1
2 (x) = µ2(x)⊗ λ̊(ρ̃(qm1 (x), fefm2 (x) + geg

m
2 (x)))

where we have borrowed from [3] the following notation:

λ̃(x) ,
d̄b

d̄b − 1

∑
i

λi(i− 1)
i

x⊗(i−2); d̄b , 1/
∑
i

λi/i;

ρ̃(x) ,
d̄c

d̄c − 1

∑
i

ρi(i− 1)
i

x�(i−2); d̄c , 1/
∑
i

ρi/i;

λ̊(x) , d̄b
∑
i

λi
i
x⊗(i−1); ρ̊(x) , d̄c

∑
i

ρi
i
x�(i−1).

Also, we define

ρ̃(q, x) ,
d̄c

d̄c − 1

∑
i

ρi(i− 1)
i

q � x�(i−3).

We have the following result on the degradation of pdfs q’s,
f ’s and g’s:

Lemma 1: For a pdf α(x) for all x ∈ R, define Pe,α as
Pe,α =

∫
R−

α(x)dx. Then it can be easily shown that, for any
iteration m,

Pe,q1 ≤ Pe,f1 ≤ Pe,g1 ,
Pe,q2 ≤ Pe,f2 ≤ Pe,g2 .

The proof is straightforward and follows from density
evolution equations.

The lemma above shows that the pdfs q(x) are ”better”
when compared to corresponding pdfs f(x) and q(x). Hence,
we define the iterative threshold γ∗root as the maximum SNR
for which both q∞1 (x) and q∞2 (x) are δ∞.

B. Useful Lemma on γ∗

We have the following lemma on γ(α1, α2), simplifying a
lot our further calculation:

Lemma 2:

γ∗(α1, α2) =
γ∗(α1/α2, 1)

α2
2

=
γ∗(1, α2/α1)

α2
1

.

Proof: By direct calculation, the pdf of the LLR channel
estimate corresponding to the threshold is

pΛ∗0(α1,α2) =
1
2
N (2α2

1γ
∗, 4α2

1γ
∗) +

1
2
N (2α2

2γ
∗, 4α2

2γ
∗)

=
1

2α2
1

N (2γ∗, 4γ∗) +
1

2α2
1

N (2
α2

2

α2
1

γ∗, 4
α2

2

α2
1

γ∗)

=
pΛ∗0(1,α2/α1)

α2
1

.

Similarly, pΛ∗0(α1,α2) = pΛ∗0(α1/α2)/α
2
2 by symmetry. �

This lemma shows that, to obtain the iterative decoding
threshold for any pair of fading gains (α1, α2), it is sufficient
to compute the single-argument function γ∗(1, α), where
α , α2/α1, α ∈ R+. For notational simplicity, we write
γ∗(α) in lieu of γ∗(1, α).

C. Outage Probability versus Iterative Threshold γ∗

If one knew γ∗(α1, α2) for a given code ensemble, the
outage probability Pout could be obtained by observing that,
with α1 and α2 independent unit-mean Rayleigh random
variables,

Pout =
∫

(α1,α2)∈R∗
e−α

2
1−α

2
2 dα2

1 dα
2
2,

where R∗ denotes the region below the threshold curve
γ∗(α1, α2) (see [3] for illustration). In general, γ∗(α1, α2)
can be obtained by performing the density evolution for each
point of the curve.

IV. NUMERICAL APPROXIMATION OF γ∗(α)

Extensive numerical simulations have consistently shown
a behavior of γ∗(α) for random codes which differs consid-
erably from that associated with root codes with the same
λ(x) and ρ(x). The approximations γ̂∗rand(α) and γ̂∗root(α)
that follow were seen to match well the numerical results.

For the (λ, ρ) random LDPC ensemble,

γ̂∗rand(α) =
a(α)
α2

+
b(α)
α

+ a(α), (3)

where

a(α) , Kae
−τaα,

b(α) , Kb(1− e−τbα)

for some constants Ka, Kb, τa, and τb depending on the code
ensemble. Also, for the (λ, ρ) root-LDPC ensemble,

γ̂∗root(α) =
c(α)
α

, (4)

with
c(α) , Ka(1− e−τaα) +Kbe

−τbα.

The above approximations are remarkably close to the
numerical results obtained for all the distributions λ(x) and
ρ(x) we used in simulations. Moreover, they capture the
difference in diversity for random and root ensembles, and
in addition the root-code boundary is seen to approach outage
capacity better than its random-code counterpart.

As an example, Figs. 1 and 2 compare simulation and
approximation results for random and Root (x2, x5) LDPC
codes, respectively. In both cases, a very good match is
observed between numerical results and approximations. The
constants estimated are Ka = 100.11, Kb = 100.65, τa = 18,
and τb = 18.

We claim that (3) and (4) give a very accurate approximation
of γ(α) for random and root LDPC codes respectively. Note
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Fig. 1. Approximation bγ∗rand(α) (dashed line) compared with γ∗rand(α)
(continuous line) obtained by simulations for the (x2, x5) random LDPC
ensemble.

Fig. 2. Approximation bγ∗root(α) (dashed line) compared with γ∗root(α)
(continuous) obtained by simulations for the (x2, x5) root-LDPC ensemble.

that to obtain the approximation γ(α) for all α’s, one needs to
simulate at most four points for random ensembles, as there
are four unknowns to be estimated. For root-LDPC ensembles
the maximum nuimber of points is 2 (two unknown parameters
in (4)).

V. ANALYTICAL APPROXIMATION OF γ∗root(α1, α2)

In this section we develop an analytic approximation to
the iterative-decoding threshold curve. This is based on the
assumption that the behavior of γ∗root(α1, α2) in the high SNR
regime is similar to the behavior of the outage boundary, as
derived from the outage capacity of the corresponding block-
fading channel. An approximation to the outage boundary is
determined below.

A. Approximation of the Outage Boundary

We have an outage whenever α2
1 and α2

2 are such that the
mutual information between channel input and output is lower
than the code rate. Under our assumption of rate 1/2, an outage

occurs when α1 and α2 are such that

EX log2

(
1 + e−2α2

1X
)

+ EX log2

(
1 + e−2α2

2X
)
> 1 (5)

where X is the random variable related to the instantaneous
channel SNR, X ∼ N (γ, γ) [3]. Defining

g(α) , EX log2

(
1 + e−2α2X

)
(6)

the condition for an outage becomes

g(α1) + g(α2) > 1.

Explicitly, the function g( · ) has the general form

g(α) =
1√
2πγ

∫ ∞
−∞

log2(1 + e−2α2x)e−(x−γ)2/γ dx (7)

A good approximation to (7) comes from the observation that
the integrand function has a maximum around x = 0.5, a value
which does not change much for different values of γ. Thus,

g(α) ≈ log2(1 + e−α
2γ) (8)

Under the approximation above, the outage boundary equa-
tion is specified by

log2(1 + e−α
2
1γ) + log2(1 + e−α

2
2γ) = 1

and, hence,

α2
2 =

1
γ

ln
1 + e−α

2
1γ

1− e−α2
1γ

Using the series expansion [4, 1.513.1], we obtain the outage
boundary for large α1:

α2
2 =

2
γ
e−α

2
1γ . (9)

Similarly, for large α2
2,

α2
1 =

2
γ
e−α

2
2γ . (10)

To verify that the approximation found captures well the
behavior of the outage boundary, we compute the outage
probability using approximation (8):

Pout ≈ P
(

log2(1 + e−α
2
1γ)(1 + e−α

2
2γ) > 1

)
= P

(
(1 + e−α

2
1γ)(1 + e−α

2
2γ) > 2

)
= P

(
1 + e−α

2
1γ >

2
1 + e−α

2
2γ

)
= P

(
α2

1 <
1
γ

ln
1 + e−α

2
2γ

1− e−α2
2γ

)
Under the assumption of Rayleigh fading, α2

1 has an ex-
ponential density, and hence we may use the approximation,
valid for small x,

P(α2
1 < x) ≈ x.

which yields

Pout ≈
1
γ

E

[
ln

1 + e−α
2
2γ

1− e−α2
2γ

]
. (11)
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Using the fact that ln 1+e−α
2
2γ

1−e−α
2
2γ
≈ 2e−α

2
2γ , we obtain

Pout ≈
2
γ

E
[
e−α

2
2γ
]

=
2
γ

∫ ∞
0

e−x(γ+1) dx

=
2

γ(γ + 1)
.

Finally, for high SNR (large γ)

Pout ≈
2
γ2
, (12)

which is consistent with the result given in [3].

B. γ∗(α1, α2) for Root-LDPC Codes at High SNR

Here we derive an approximation of the threshold curve
for Root-LDPC ensembles, assuming that its behavior at high
SNRs is the same as the one of the outage boundary. We have
the following theorem:

Theorem 1: Consider a (λ, ρ) Root-LDPC ensemble. Then

γ∗root(α1, α2) ≈ 1
α2

1

W (2α2
1/α

2
2)

or, equivalently,

γ∗root(α1, α2) ≈ 1
α2

2

W (2α2
2/α

2
1),

where W (·) is the Lambert function [5].
Proof : We are interested in studying the behavior of the

function
γ = γ∗root(α1, α2)

where γ, α2
1, and α2

2 are related by the outage boundary
condition

EX log2

(
1 + e−2α2

1X
)

+ EX log2

(
1 + e−2α2

2X
)

= 1 (13)

with X ∼ N (γ, γ). As before, we may approximate (13) with

log2

(
1 + e−α

2
1γ
)

+ log2

(
1 + e−α

2
2γ
)

= 1 (14)

From (14), we can see that the function g( · ) satisfies

γ∗root(α1, α2) =
1
α2

1

γ∗root(1, α2/α1) ,
1
α2

1

γ∗root(α2/α1)

which is consistent with Lemma 2. So, our goal is tantamount
to studying the single-argument function β(γ), where

(1 + e−γ)(1 + e−βγ) = 2

and have defined β , α2
2/α

2
1. Given the symmetry of the

problem with respect to α1 and α2, we may constrain our-
selves to the consideration of either α2 ≤ α1 or α1 ≤ α2.
Thus, β ∈ [0, 1] corresponds to α2 ≤ α1, while β ∈ [1,∞)
corresponds to α1 ≤ α2.

We have the pair of values β(∞) = 0 and β(0) =∞, and
the expression

β =
1
γ

ln
1 + e−γ

1− e−γ
(15)

Using again the series expansion [4, 1.513.1]

ln
1 + x

1− x
= 2

∞∑
k=1

1
2k − 1

x2k−1, |x| < 1

we have

β =
2
γ

∞∑
k=1

1
2k − 1

e−(2k−1)γ =
2
γ

(
e−γ +

1
3
e−3γ + · · ·

)
(16)

and we can finally obtain the sought function γ(β) by invert-
ing (16).

This can be done by observing that

β =
2
γ
e−γ

is equivalent to
2
β

= γeγ

Inversion of this function yields

γ = W (2/β)

so that, finally,

γ∗root(α1, α2) =
1
α2

1

γ∗root(α2/α1) ≈ 1
α2

1

W (2α2
1/α

2
2).

�
Comparing the approximation of Theorem 1 against numer-

ical results, we can see that indeed it gives a good match in the
high-SNR region. However, the approximation of the threshold
function, derived through the outage boundary approach, is not
satisfactory at intermediate-to-low SNRs, as it does not depend
on the ensemble parameters.

VI. DISCUSSION

In this paper we have presented estimates of the iterative
threshold behavior of a sparse-graph code ensemble for the
transmission over a nonergodic block-fading Rayleigh chan-
nel with two blocks affected by two independent Rayleigh-
distributed fading gains. The first approximation comes from
the interpolation of numerical data, and allows one to obtain a
close estimate of the whole threshold behavior by simulating
only several points of the threshold curve, for both random
LDPC codes and rate-1/2 Root-LDPC codes, based on degree
distributions λ(x) and ρ(x). The second approximation con-
cerns rate-1/2 (λ(x), ρ(x))-Root-LDPC codes, it is analytic,
and works well in the high-SNR regime.
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