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Distributed Detection over Time Varying
Networks: Large Deviations Analysis

Dragana Bajovit, Dsan Jakovetic, Joao Xavier, Bruno Sinopoli and José Mddura

Abstract—We apply large deviations theory to study via running consenstighat has been recently proposed
asymptotic performance of running consensus distributed  jn [2]. With running consensus, at each tinkg N
detection in sensor networks. Running consensus is apq4es update their decision variables by: 1) incorporating

stochastic approximation type algorithm, recently pro- . . . ) - .
posed. At each time stepk, the state at each sensor is new observation (innovation step); and 2) mixing their

updated by a local averaging of the sensor’s own state and decision variables |0ca."y with the neighbors (Consensus
the states of its neighbors (consensus) and by accountingstep).

for the new observations (innovation). We assume Gaussian, e allow the underlying communication graph be
spatially correlated observations. We allow the underlyimg (deterministically) time varying; but we assume that

network be time varying, provided that the graph that L .
collects the union of links that are online at least once the graph that collects all communication links that are

over a finite time window is connected. This paper shows online (at least once) within a finite time window

through large deviations that, under stated assumptions is connected. We assume Gaussian, spatially correlated,
on the network connectivity and sensors’ observations, the time—uncorrelated sensors’ observations. Under stated
running consensus detection asymptotically approaches in assumptions on the network connectivity and the sen-

performance the optimal centralized detection. That is, ' ob . h hat th .
the Bayes probability of detection error (with the running  SOr'S’ Observations, we show that the running consensus

consensus detector) decays exponentially to zero hs—s oo distributed detector is asymptotically optimal, as the
at the Chernoff information rate—the best achievable rate number of observations goes to infinity. That is, the

of the asymptotically optimal centralized detector. running consensus distributed detector asymptotically
approaches the performance of the optimal centralized
detector. We apply large deviations to study the asymp-
totic performance of both the (asymptotically) optimal

. centralized detector, which collects observations from
We apply large deviations to study the asymptotig, - 1esi at each timek

|I. INTRODUCTION

, the Bayes probability of

- ; _ 3for decays as~*¢, whereC is the Chernoff distance
cooperates locally with its neighbors to decide betwe tween the distributions of they x 1 observation

the two hypothesisif; andHy. The nodes are connectedq yors ynder the two hypothesis, i.e., the Chernoff
by a generic, time varying network, and there is no fUSi%formation
center. Specifically, we consider distributed detection '
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unlike classical consensus, no delay is introduced frowith the interpretation thafy (y(1), ..., y(k)) = [ means

collecting observations to reaching consensus. that H; is decided,l = 0,1. Specifically, consider the
We now comment on the differences between thisg-likelihood ratio (LLR) test to decide betweeH,

paper and reference [12], which also studies asymgnd H;, whereTy, is given as follows:

totic optimality of distributed detection via running con-

sensus. Reference [12] considers the Neyman-Pearson Dk) = ZIOg dVl : (1)
framework, while we adopt the Bayesian framework. dVo
Reference [12] considers that, as the number of ob- T, = I{D(k»%}' @)

servationsk grows, the distribution means under the

two hypothesis become closer and closer, at the ratefdgre L(k) := log 2 (y(k)) is the LLR (given by
1/\/E; consequently, as — oo, there is an asymptotic, the Radon-Nikodym derlvative af; with respect toy
non zero, probability of miss, and asymptotic, non zergvaluated ay(k)), v, is a chosen threshold, arfd, is
probability of false alarm. In contrast, we assume th##e indicator of eventd. The LLR test with threshold
the distributions do not change with(do not approach 7« = 0, Vk, is asymptotically optimal in the sense
each other,) and the Bayes probability of error decays @ Bayes probability of error decay rate, as will be
zero; we then examine the rate of decay of the Bay@gplained in next subsection (II-B).

error probability. Further, reference [12] assumes that Log-likelihood ratio test: Large deviations

the observations at different sensors are independen
identically distributed, with generic distribution, wiil
we assume Gaussian; however, we allow for spatl
correlation among observations—a well-suited assump
tion, e.g., for densely deployed wireless sensor networE
(WSNSs). Reference [12] studies the case where the
underlying network is randomly varying; we consider
deterministically time varying network.

Paper organization. Section Il reviews the large de-

viati_ons resu_lts and the Qhernoff lemma in hypothesisefinition 1 (Large deviations principle (LDP))

testing. Section IIl explains data and network modelSonsider a sequence of real valued random variables
that we assume. Section IV introduces the (asymptato(k)}s° | := {©(k)} and denote by, the probability
ically) optimal centralized detection, as if there was measure of ©(k). We say that the sequence of
fusion node and its detection performance. Section Measures{6,,} satisfies the LDP with a rate function
shows that the distributed running consensus detectgr: R — R U {+o00} if the following holds:

asymptotically approaches in performance the optimah) For any closed, measurable $et- R:
centralized detector. Finally, section VI summarizes the

II'hls subsection studies large deviations for the LLR
?CISIOH test with decision variableB(k) given in

(1). The large deviations analysis will be very
eful in estimating the exponential rate at which the
ayes probability of error decays and in showing the
symptotlc optimality of the distributed running consen-
sus detector. We first give the definition of the large
deviations principle [13].

aper. —i
pap 11£b;p 7 log by (F) < — inf 7 (t)
Il. BACKGROUND 2) For any open, measurable ggtc R:
In this section, we briefly review standard large devia- 1 .
tions analysis for binary hypothesis testing and standard liminf -~ log 0 (G) 2 — Inf F ().

asymptotic results (in particular, Chernoff lemma) in

binary hypothesis testing. We will later use these resuilts't €@n be shown that the sequence of LLRB(k )(]f)
throughout the paper. conditioned onH;, [ = 0,1, is i.i.d. Denote byuk

the probability measure db(k) under hypothesidd;.
A. Binary hypothesis testing problem: Log-likelihoodJsing Cramér’s theorem ([13]), it can be shown that the

ratio test sequence of measuréag)}, 1 =0,1, satisfies the LDP
Consider the sequence of independent identically diith good rate function:
tributed (i.i.d.) d-dimensional random vectors (observa- Afy(t) = sup (M= Apy(V), 3)

tions) y(k), k = 1,2, ..., and the binary hypothesis test-

ing problem of deC|d|ng whether the probability measur\ﬁ:,hereA
(law) generatingy(k) is vy (under hypothesigly) or 14
(under Hy). Assume thats; and vy are mutually ab-
solutely continuous, distinguishable measures. Based on Ap(A) =logE [eAL(k)|Hl} _ (4)
the observationg(1), ..., y(k), formally, a decision test

T is a sequence of maf : R* — {0,1},k=1,2, ..., 2Goodness of rate function is compactness of its sublevel set

)() is the log-moment generating function of
L(k) under hypothesigi;:



That is, the rate functioA7, () is the Fenchel-Legendrewhere the infimum over all possible testsis attained

(F-L) ([13]) transform o% the log-moment generatingor the LLR test with~; = 0, Vk.

function of L(k) under H,. It can be shown that

ATy () = Afy(t) — t. We summarize this result in theThe quantity A7, (0) = Af;,(0) is called the Chernoff

foﬁlowing theorem, e.g., [13]: distance between the distributionsygf) underH, and
z Hy, or Chernoff information, [13].

Theorem 2The sequence of measuréﬁl(c)} of D(k)  Asymptotically optimal test. We introduce the follow-

underH,; satisfies the LDP with good rate function giver;ng definition of the asymptotically optimal test.
by eqgn. (3).

C. Asymptotic Bayes detection performance: Chernqffefinition 5 The decision test is asymptotically opti-
lemma mal if it attains the infimum in eqn. (11).

We adopt the Bayes minimum probability of error
detection. Denote byP¢(k) the Bayes probability of We will show that, for the distributed Gaussian hypoth-

error afterk samples are processed: esis testing over time varying networks, the running
. consensus is asymptotically optimal in the sense of
Pe(k) = P (Ho) a(k) + P (Hy) B(k), ) Definition 5.
where P (H;) are the prior probabilitiesw(k) :=
P (D(k) > yx|Ho) and3(k) := P (D(k) < vx|H1) are,  |||. DISTRIBUTED DETECTION MODEL DATA AND
respectively, the probability of false alarm and the prob- NETWORK MODELS

ability of miss, andy,, is the test threshold.

We will be interested in the rate at which the Bayes This section describes: 1) the data model (subsec-
probability of error decays to zero as the number dgion IlI-A), i.e., the observation model at each sensor
observationg goes to infinity. Also, as auxiliary results,in the network; and 2) the model of the network through
we will need the rates at which(k) and (k) go to zero which the sensors cooperate with the running consensus
ask — oo. Thatis, we will be interested in the following distributed detection algorithm (subsection 111-B). The

guantities: distributed detection algorithm is detailed in Section V.
. L
oo 7 1og PA(K) ©) A Data model
. 1
limy oo - log a(k) (7)  We consider Gaussian binary hypothesis testing in
. 1 spatially correlated noise. The sensors operate (in terms
limy .0 Elogﬁ(k)- (8) of sensing and communication) synchronously, at dis-

Theorem 4 ([13]) states that, among all possible decisigrﬁete time steps. At time £, sensor measures (scalar)
Collect the sensor measurements in a vector

tests, the LLR test with zero threshold minimizes (6)y.i(k)'

— T H
This result is a corollary of the Theorem 3 ([13]), thay(k)b_ (ylf(k)’yQ(k)"'\'l"tyN(k)) ,bwhereN 'Sf f[he total bl
asserts that, for a LLR test with fixed thresheld= ~, NUMDET Of SeNSOrs. Nalure can be In one of two possib'e

a(k) and (k) indeed (simultaneously) decay to zeroStatES:Hl_evem oceurring (e.g., target present); and
—event not occurring (e.g., target absent.) We assume

exponentially; also, Theorem 3 expresses the exponenféﬂ . R i
rate of decay in terms of the rate functions defined irbe following distribution model for the vectqi(k):

eqgns. (7) and (8). Before stating the Theorem, define  under H, : y(k) = m; +((k), [ =0,1, (12)
L(l) = E(L(/{”Hl), l= O, 1. . . .
where m; is the (constant) signal under hypothesis
Theorem 3The LLR test with constant threshotg, = 111 @nd ¢(k) is zero mean Gaussian additive noise.
7,7 € (Lo), L1)) satisfies: We assume _tha(g(k)} is an independent identically
distributed (i.i.d.) sequence oV x 1 random vectors

lim 1 loga(k) = —Af(y) <0 9) with (_jistributiong(k) ~ N(_O, S), wher(_aS is a (positive
IHOO]i definite) covariance matrix. Thus, with our model, the
kli—>120 . log B(k) = 7—Afy(y) <0. (10) noise is temporally independent, but can be spatially cor-

related. Spatial correlation should be taken into account
due to, for example, dense deployment of wireless sensor
networks, while it is still reasonable to assume that the
ere 1 . s observations are independent along time. (Conditioned
inf lim inf {; log P (’“)} =A©: A o g, 1y(k)} are ii.d. with the distributionV'(my, S).)

Theorem 4 (Chernoff lemmdj P(Hy) € (0,1), then:



B. Network model and data mixing model Then, the LLRL(k) can be written as follows:

We consider distributed detection via running consen- N mals + [mols N
sus where each node at a timte 1) measureg; (k);  L(k) = » v, <yi(k:) - H) = mik),
2) exchanges its current decision variable (denote it by i=1 2 i=1

x;(k)) with its neighbors; and 3) performs a weighted ) (17)
average of its own decision variable and the neighbor&nere [n]; denotes thei-th entry of vectorm, I =
decision variables. The network connectivity is assuméd - Thus, the LLR at timé: is separable, i.e., the LLR
time varying. The weighted averaging, at each time IS the sum of the termg; (k) that depend affinely on
as with the standard consensus algorithm, is describl§ individual observationg; (k). We will exploit this
by the N' x N weight matrixW (k). We assuméV (k) fact in subsection y—A to dgrlve the distributed, running
is a symmetric, stochastic matrix (it has nonnegati@®NSensus, detection algorithm.

entries and the rows sum to 1.) The weight matrix APplying Theorem 2 to the sequen¢®(k)} (under
W (k) respects the sparsity pattern of the network, i.dlypothesisH;, I = 0,1), we have that the sequence
Wi;(k) = 0, if the link {i,j} is down at timek. We Of measures ofD(k) satisfies the LDP with good rate
define also the undirected graphi(k) = (V,&(k)), function i) : R — R U {+oo}, which, by evaluating
whereV is the set of nodes with cardinality| = N, the log-moment generating function 6t%) in (13) and
and& (k) is the set of undirected edges that are online 8 F-L transform, can be shown to be:

time k. Formally,£(k) = {{i,5} : i <j, Wi;(k) > 0}. (t— m(l))z

Define alsoJ := (1/N)11%, wherel is N x 1 vector Ig(t) = 272L,l =0,1. (18)

with unit entries. We now summarize the assumptions L

on the matrice{W (k)} and the graphs&i(k): We state this result as a Corollary 7.

Assumption 6For the sequence of matricsV (k)} =

{W(k)}z2,, we assume the following: Corollary 7 The sequencéD(k)}, underH;, | = 0,1,
1) W (k) is symmetric and stochastig. satisfies the LDP with good rate functidg)(-), given

2) There exists a scaldi, € (0,1), such that) Dy eqn. (18).
Wii(k) > Wi, Vi, Vk; and ii) Yk, Wi;(k) >

Winin, if i # j and{i, j} € £(k). We remark that Theorem 4 also applies to the detec-
3) There exists an integer < B < oo, such that, tion problem explained in subsection IIIl-A. Denote by
vk, the graph(V, U7 | £(1)) is connected. P¢, (k) the Bayes probability of error for the centralized

Assumption 6-3) says that nodes should communica‘%eteCtor (defined in sec_t|or_1 V.) aftérsamples_ are pro
. A . céssed. Due to the continuity of the rate functions in (18),
sufficiently often (within finite time windows,) such that. T 1 . .
. o . . it can be shown thatliminfy . log P5,, (k) =
the network provides sufficiently fast information flow. .. 1 . o 1 .
limsupy,_, ., log P, (k) = limp oo 3 log P, (k).

IV. CENTRALIZED DETECTION; BAYES OPTIMAL Thus, Theorem 4 in this case simplifies to the following
TEST corollary:

We first consider the centralized detection scenario, as
if there was a fusion node that collects and processes all ] )
sensor observations. The decision variable) and the Corollary 8 (Chernofflemma for the optimal centralized
LLR decision test are given by eqgns. (1) and (2), whef$t€cto) The LLR test withv;, = 0, Vk, is asymptoti-

now, under the data assumptions in subsection IlI-A: cally optimal in the sense of definition 5. Moreover, for
’ the LLR test withy, = 0, Yk, we have:

— (my —mg)T S~ _matmo
L(k) - (ml mO) S (y(k) 2 ) (13) khm %bg Pcecn(k) — _I(O) (O) (19)
— 00
Conditioned on either hypothesi#; and Hy, L(k) ~ 1 T ool
=—= - S - .
N (mg),ai), where S(ml mo) (ma = mo)
-1 +1 _ . . .
mg) _ (-1) (m1 — mo)TS™ (m1 — mo)14) Remgrk. Thg _LLR_ test Wlth zero thresh_old is optimal
2 also in the finite timek regime, for allk, in the sense
o7 = (mi—mo) S (my —mo). (15) that it minimizes the Bayes probability of error, when

the prior probabilities aré(Hy) = P(H;) = 0.5. When
the prior probabilities are not equal, the LLR test is also
v:=8"Y(my —mo). (16) optimal, but the thresholdl, will be different than zero.

Define the vectow € RY as



V. DISTRIBUTED DETECTION ALGORITHM B. Asymptotic optimality of the distributed detection
A. Distributed detection via running consensus algorithm

We now present a distributed detection algorithm via !N this subsection, we present our main result, which
running consensus. With this detection algorithm, nefates that the distributed detection via running consensu
fusion node is required, and the underlying network @Symptotically achieves the performance of the optimal
generic’ time Varying_ The running consensus is pr&.entraliZEd deteCtOf, in the sense that it approaches
posed in [2], and it is a stochastic approximation typ&€ exponential error decay rate of the (asymptotically)
of algorithm (see [1]). Reference [2] studies the ca¥Ptimal centralized detector.
when the observations of different sensors at a fixed timeDenote the probability measure of (k) under hy-

k are i.i.d. We extend the running consensus detectig@thesisH; with XEI;)C First, we show that the sequence
algorithm to the case of spatially correlated Gaussi@f measuresx; x}, for all nodesi, satisfies the LDP
observations. with good rate function; the rate function for all nodes

With the running consensus distributed detector, ea¢his the same, and it is the same as the rate function of
nodei makes local decisions based on its local decisidhe optimal centralized detector in eqn. (18).
variable z; (k): If =;(k) > 0, then H, is accepted; if =~ We prove that the sequence of measures{fa(k)}
x;i(k) < 0, then Hy is accepted. At each time stép (underH;, | = 0, 1) satisfies the LDP using the Gartner-
the local decision variable at nodeis improved two- Ellis Theorem from large deviations theory, see [13]. We
fold: 1) by exchanging information with its immediatenow state Theorem 9.
neighbors in the network; 2) by incorporating into the
decision process the new local observatigfi:). Recall Theorem 9Let assumption 6 hold. The sequence of
the definition ofn;(k) in egn. (17). Specifically, the measuregx\')}, for all nodes, satisfies the large devia-
update of the local decision variable at nadis given tions principle with good rate function. The rate function

by the following equation: is the same as for the optimal centralized detector and
k is given by I (-) in egn. (18).
ri 1) = e Wik +(20) v
k 1 Before proving Theorem 9, defink(k, j), for k > j >
" > Wilk)a;(k) + T N+, 1, as follows:

Jem®) 1o O(k,j) = W(k - )W (k—2)..W (),  (24)

(1) = Nmi(1) ng remark that the algorithm in egn. (21) can be written
Here Q;(k) is the (time varying) neighborhood of

nodei at time k, and W;;(k) are the (time varying) z(k) =

averaging weights, defined together with the x N

(time varying) matricesV (k) = [W;;(k)] in subsec-

tion 1I-B. Let z(k) = (x1(k),22(k),....,2zn (k)" and

n(k) = (m(k),...,nn(k))T. The algorithm in matrix — &(k, j) := W(k — )W (k = 2)..W(j), k> j > 1,

form is given by: (26)

k and remark that

1
b+ 1) = g Wkja(k) + k—ﬂzn(k;;)’ (21) ®(k, j) = @k, j) — J.

==

k—1 N
Jj=1

Next, recall that/ = (1/N)117, introduce notation:

To prove Theorem 9, we borrow the following result
z(1) = Nn(1) (Lemma 10) on the matriceB(k, j) from reference [14]

Recall the definition of theV x 1 vectorv in (16). The (Lemma 3.2). First, denote s (k, j)]u the entry ini-th
sequence oN x 1 random vectorgn(k)}, conditioned to fow andi-th column of matrix®(k, j).

Hy, is i.i.d. Vectorn(k) (under hypothesig¢{;, [ = 0,1)

is Gaussian with meam%l) and covarianceS”: Lem~ma 10Let ASSUmption 6 hold. Then, for the matri-
1 ces®(k, j), defined by eqn. (26), there holds:

mi) = (~1)"*Diag (v) 5(m1 —mo) (22)

o max |[B(kj)| |08, (@)

Diag (v) SDiag (v) . (23) il=1,...,N

Here Diag(v) is a diagonal matrix with the diagonalwheref = (1 — %’;}5‘“)_2, andjg = (1 - %)1/3 <
entries equal to the entries of 1.



Lemma 10 says that, under Assumption 6, the size of thieny . k,/:(l (k ), where

matrix tI)(k j) decays geometrically (it — j) to zero.
This fact will be important in showing Theorem 9.

Proof of Theorem 9: Define, for u € R, the
quantity:

AY ()

logE; [exp (uzi(k))] (28)
logE; [exp (ATz(k))],  (29)

where\ = pe;, A € RY, andE,; [a] := E[a|H)], | =
0,1. Heree; denotes thé-th column of N x N identity
matrix. We drop the dependence orin the definition
of A,(f)(u) for notation simplicity. Recall the expression
for m§> ando? in eqgns. (14) and (15). We will show,
for all u € R, the following equality:

. 1,q 1 !
Jim A (k) = Soip® +mi) . (30)
Consider the functionu %o—% u? + m(Ll) w; this

function is essentially smooth, continuous, and its do-

S

k—1

L0 (kp) = log By exp [ NAT S @(k, j)n(i) | |
j=1

and we proceed with the computaﬂonbf) kw). The

random variablesNAT ®(k, /)n(j), j = 1,. k 1,

are independent; moreover, they are Gaussmn random
variables, as linear transformation of the Gaussian vari-

ablesn(j). Recall thatm%l) andS” denote the mean and
the covariance of)(k) under hypothesidi;. Using the
independence ofy(j) andn(s), s # j, and using the
expression for the moment generating function¢f),

we obtain successively:

1 k—1

EﬁEj’(lm) klogIEl exp [ NAT Y @k, j)n())
j=1

1ogEl [H7 1exp (N/\ Dk, 5)n(j ))] (31)

k

main is R; hence, by the Gartner-Ellis theorem ([13],

Theorem 2.3.6),{X1(.l,)€} (the sequence of measures of —
x;(k) under H;) satisfies the LDP. The corresponding
rate function equals the F-L transform of the function
and it is easy to show that

po Lo u +m

the F-L transform ofy +— 0

1

aL p? +my’ p equals the

rate functionI®)(-) given by eqgn. (18) Thus, proving
Theorem 9 reduces to showing (30). We thus proceed

with showing (30). Namely, we have:
1
EAEJ)(/@ ) =
k—1
klogEl exp N/\TZQD (k, )n(5) + N XTn(k)
7j=1
k—1

.
klogIEl exp [ NA z;qwg n(j)
J

+ %logEl [exp (NATn(k))],

where the last equality holds becaugg) is independent
from n(j), 7 = 1,....,k — 1. We will be interested in
computing the limitlimy,_, o, %A,(f)(k w), for all u € R;
with this respect, remark that

1
Jim 3 log ) [exp (NAT (k)] =0,

1
long_lexp (N AT ®(E, 5) mgll))

exp (%NQATCI)(k,j)S”CI)(k,j)T/\)

= llogﬂk exp (N AT (&D(k J)+ J) m)
k 1 : "
12T S ) gn B AT

(2N)\ (J—l—@(k,j))s (J+<I>(k,y) ))\ .

Denote further:

exp

I(k) (32)

N kel
T A0,
k/\ Z@(kz,])m
j=1
N2 kel
IV NT = . n~ AT
T ;‘1’(/6,3)5 (k,j) A
k-1

N2 ~
T n AT
i IS ;q)(k,j) A

N2 kel
—)\T Zcb k,§)S"JA
(k — )NATJm,,
k
N2(k — 1DATJSTIA
2k ’

K(l) (/La k)

+

for all A € RY, becausey(k) is a Gaussian randomWwhere dependence of; is dropped in the definition

vector and hence it has finite log-moment generatirj o(

function at any pointvV .

Thus, we have that limy_, kA (k)

af o(k). Then, it is easy to see thatly’(ku) =
A(l) (,u, k) + 6(k) Also, we havelimy_, A(l)(ﬂa k) =
NATIm) + BEAT T8N = Ky ().

2 ()

Recall the expressions far, mg), o7, my’, andS"



in egns. (16), (14), (15), (22), (23). We proceed with th€orollary 11 (Chernoff lemma for the distributed de-

computation ofA ;) (1):

Aoy(w) = (-1) pu(my —my) " Diag(v) J e;

1
+ §M2 1" Diag(v)SDiag(v)1

1 _
= (—1)l+1§M(m1 —mo)" 7 (my —mp)
1

+ 2M2( —mo)" S~ (m1 —mo)

(l)

= M+ ULM

2
We proceed by showing thatk) — 0 ask — oo, which
implies the equality in eqn (30). Define the quantitigs
m, andb, by:

K- P
§ o= max [[S7a] (33)
o o— 1.
m i:r?,?.?fjv |[m77 Ji] (34)

<>
Il
=B
Q0
"

s e (35)

Then, it can be shown thqﬂ(k:)| is bounded as follows:

tector: Asymptotic optimaliy The local decision test
Ty = T{zy>o0y, k = 1,2,.., at each node, is
asymptotically optimal in the sense of Definition 5.
The corresponding exponential decay rate of the Bayes
probability of error, at each nodg is given by:

o1 e
kliﬁgo p log P 4i5(k) = —1(0)(0) (41)
1
= —g(ml —mg)S~H (m1 — mo).

Proof: Denote by, qis(k) and j; ais(k), respec-
tively, the probability of false alarm and the probability
of miss for the distributed detector at senspor.e.,

aiais(k) = P(ai(k) > 0]Ho) = x\% (0, +00))

Biais(k) = P (zi(k) <O[H1) = x{} ((—00,0]).
Consider now onlya; 4i5(k) but the same applies to
Bi.ais(k). By Theorem 9, the sequence of meas%@g

satisfies the LDP with good rate functidiy)(-) given
in egn. (18). Thus, we have the following bounds:

. 1 (0) .
1 ~1 (1o < — £ Ip(t) (42
linjipk 08 Xy, ([0, +00)) < te[&roo) () (42)

o (0) >
hkrgg.}fklogxl ((0,400)) =2 te(g}fm)hm(t) (43)

Due to the continuity of the function/(y)(-) (see

S < 22 k . 36) €A (18)), the infima on the righthand sides in
o)l < |u| mz N lal - (36) egns. (42) and (43) are equal; it is easy to see that they
. o1 ) are equal to-1(¢(0). Thus, we have:
Nt o
—u“S k, )i
+ ok ! = (ufqax (@ (k)] l|> —Iy(0) < llnigfglogx(o) ((0, +00))
N® 5 < i L 1og (0
+ 7#25 .llanNH‘I’(kaj)]ilL < 1]I€ILSOI;P k 0g X 1; ((0, +00))
=17
(0
<
Applying Lemma 10 to (36), and using the fact that - h,?ljip k 108 Xk ([0, +00))
Bk=i < pk=i=1 k> j, we obtain successively: < —I1(0).
0 _ , From the last set of inequalities we conclude that:
5(k)| < - (NPmlul + N°uB) Y 4 (37)
k , .1
. j=1 kEI}} E log ai,dis(k) = _I(O) (O) (44)
62 N* =
+ = —u Z 2(k=3-1) (38) Similarly, it can be shown that:

6 1
< —(N*m N3u%b) —— 39
< Wl + NP) =5 (39)

92 N+ _— 1
— —u%S .
E 2 1-8

+ (40)

Letting £ — +o00, we get that|/d(k)| — 0, and hence,

d(k) — 0, which establishes eqn. (30).

1
kggloo E 1Ogﬂi,dis(k) = —I(l)(O) (45)
= —Ip)(0). (46)
Now, consider
P ais(k) = i ais(k) P(Ho) + Biais(k)P(Hy), (47)

for which the following inequalities hold:

We are now ready to state the main result on asymp- .
totic optimality of the distributed detector (in the sense Plais(k) < aiais(k) + Biais(k) (48)

of Definition 5.)

Pf 4. (K) ; i dis(k) P(Ho).

Z7



By egns. (48), we obtain:

1
lim sup z log P 4is (k) =

k— o0
1 1

max {lim sup — log a; qis(k), limsup — log B qis (k)
k—+oo k k—+o0 k

= —10)(0)
1 1
lim inf A log Pf 4is(k) > liminf z log a; ais(k)

k— o0 k— o0
= —1(0)(0),
and the claim of Corollary follows. [ ]
Remarks on Corollary 11. Corollary 11 says that, for

}

showed that, under spatially correlated Gaussian noise
and stated network connectivity assumptions, the run-
ning consensus asymptotically approaches the optimal
centralized detector. That is, the Bayes probability of
detection error at each sensor decays exponentially at
the best achievable rate, the Chernoff information rate.

(1]

(2]

largek (i.e., in the asymptotic regime,) the Bayes prob-

ability of error at each nodé behaves asry 4 (k) ~

e *(©), That is, Pf 4, (k), for large k, decays expo-
nentially at the best possible rate, equal to the fafe0)

of the (asymptotically) optimal centralized detector.shi
rate does not depend on the network connectivity, pr

(3]

(4]

O_

vided that the graph that collects all the links that aré5]

online (at least once) within finite time window (of

length B) is connected (see Assumption 6.) Intuitively,
an arbitrary time varying network, whose nodes commu-

nicate sufficiently often (within finite length time win-

6]
(7]

dows,) provides sufficient information flow to achieve

asymptotic optimality.

(8]

We now comment on the non asymptotic finite

time regime. To this end, remark tha’ (k) can
be expressed asPf . (k) = Fi(k)e " where
limy—,o0 7 log Fi(k) = 0 (and thus,F;(k) has no effect
when k& grows large.) The sequendgF;(k)} plays a

El

[10]

role in a finite time regime; it clearly depends on the
network connectivity and can be, in general, different

for different sensors. Analysis (by simulation) of thd?

finite time regime is, due to the lack of space, omitted,
and is pursued elsewhere. We briefly comment here that

our numerical experience suggests that, in the finite tinkes!

regime, the sequenck; (k) does not have a very large
effect. The best distributed sensor—detector, amony all

sensors, is typically close in performance to the optimg13]
[14]

centralized detector, in the finite time regime also.

V1. SUMMARY

We applied large deviations theory to analyze the
performance of the running consensus distributed de-
tection algorithm. We considered spatially correlated
Gaussian noise and time varying networks. With running
consensus, the state at each node is updated at each time

step by: 1) exchanging information with the immediat
neighbors in the network; and 2) incorporating into th
decision process new local observations. We allowed t

e
e
he

underlying network be time varying, provided that the
graph that collects all the links that are at least once
online within a finite time window is connected. We
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