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Distributed Detection over Time Varying
Networks: Large Deviations Analysis

Dragana Bajović, Dŭsan Jakovetić, João Xavier, Bruno Sinopoli and José M. F.Moura

Abstract—We apply large deviations theory to study
asymptotic performance of running consensus distributed
detection in sensor networks. Running consensus is a
stochastic approximation type algorithm, recently pro-
posed. At each time stepk, the state at each sensor is
updated by a local averaging of the sensor’s own state and
the states of its neighbors (consensus) and by accounting
for the new observations (innovation). We assume Gaussian,
spatially correlated observations. We allow the underlying
network be time varying, provided that the graph that
collects the union of links that are online at least once
over a finite time window is connected. This paper shows
through large deviations that, under stated assumptions
on the network connectivity and sensors’ observations, the
running consensus detection asymptotically approaches in
performance the optimal centralized detection. That is,
the Bayes probability of detection error (with the running
consensus detector) decays exponentially to zero ask → ∞

at the Chernoff information rate–the best achievable rate
of the asymptotically optimal centralized detector.

I. I NTRODUCTION

We apply large deviations to study the asymptotic
performance of distributed detection in sensor networks.
Each node in the network senses the environment and
cooperates locally with its neighbors to decide between
the two hypothesis,H1 andH0. The nodes are connected
by a generic, time varying network, and there is no fusion
center. Specifically, we consider distributed detection
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via running consensus1 that has been recently proposed
in [2]. With running consensus, at each timek, N
nodes update their decision variables by: 1) incorporating
new observation (innovation step); and 2) mixing their
decision variables locally with the neighbors (consensus
step).

We allow the underlying communication graph be
(deterministically) time varying; but we assume that
the graph that collects all communication links that are
online (at least once) within a finite time windowB
is connected. We assume Gaussian, spatially correlated,
time–uncorrelated sensors’ observations. Under stated
assumptions on the network connectivity and the sen-
sors’ observations, we show that the running consensus
distributed detector is asymptotically optimal, as the
number of observationsk goes to infinity. That is, the
running consensus distributed detector asymptotically
approaches the performance of the optimal centralized
detector. We apply large deviations to study the asymp-
totic performance of both the (asymptotically) optimal
centralized detector, which collects observations from
all nodesi at each timek, and the running consensus
detector. For both detectors, the Bayes probability of
error decays ase−kC , whereC is the Chernoff distance
between the distributions of theN × 1 observation
vectors under the two hypothesis, i.e., the Chernoff
information.

We now briefly review the existing work on distributed
detection. Distributed detection has been extensively
studied. Prior work studies parallel fusion architectures
(see, e.g., [3], [4], [5], [6], [7], [8]) where all nodes
communicate with a fusion node. Also, consensus-based
detection schemes have been studied (with no fusion
node) in, for example, [9], [10], [11], where nodes in the
network: 1) collect measurements; and 2)subsequently
run the consensus algorithm to fuse their detection rules.
The running consensus distributed detection has been
proposed in [12]. Running consensus is different from
classical consensus detection, as it incorporates new
observations at each time stepk, in real time; thus,

1The running consensus algorithm is a type of recursive stochastic
approximation algorithm, see, e.g., [1]. Reference [1] studies more
general stochastic approximation type algorithms in the context of
distributed estimation. We use the algorithm in form given in [2] and
will refer to it as running consensus.
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unlike classical consensus, no delay is introduced from
collecting observations to reaching consensus.

We now comment on the differences between this
paper and reference [12], which also studies asymp-
totic optimality of distributed detection via running con-
sensus. Reference [12] considers the Neyman-Pearson
framework, while we adopt the Bayesian framework.
Reference [12] considers that, as the number of ob-
servationsk grows, the distribution means under the
two hypothesis become closer and closer, at the rate of
1/

√
k; consequently, ask → ∞, there is an asymptotic,

non zero, probability of miss, and asymptotic, non zero,
probability of false alarm. In contrast, we assume that
the distributions do not change withk (do not approach
each other,) and the Bayes probability of error decays to
zero; we then examine the rate of decay of the Bayes
error probability. Further, reference [12] assumes that
the observations at different sensors are independent
identically distributed, with generic distribution, while
we assume Gaussian; however, we allow for spatial
correlation among observations–a well-suited assump-
tion, e.g., for densely deployed wireless sensor networks
(WSNs). Reference [12] studies the case where the
underlying network is randomly varying; we consider
deterministically time varying network.

Paper organization. Section II reviews the large de-
viations results and the Chernoff lemma in hypothesis
testing. Section III explains data and network models
that we assume. Section IV introduces the (asymptot-
ically) optimal centralized detection, as if there was a
fusion node and its detection performance. Section V
shows that the distributed running consensus detector
asymptotically approaches in performance the optimal
centralized detector. Finally, section VI summarizes the
paper.

II. BACKGROUND

In this section, we briefly review standard large devia-
tions analysis for binary hypothesis testing and standard
asymptotic results (in particular, Chernoff lemma) in
binary hypothesis testing. We will later use these results
throughout the paper.

A. Binary hypothesis testing problem: Log-likelihood
ratio test

Consider the sequence of independent identically dis-
tributed (i.i.d.)d-dimensional random vectors (observa-
tions) y(k), k = 1, 2, ..., and the binary hypothesis test-
ing problem of deciding whether the probability measure
(law) generatingy(k) is ν0 (under hypothesisH0) or ν1
(underH1). Assume thatν1 and ν0 are mutually ab-
solutely continuous, distinguishable measures. Based on
the observationsy(1), ..., y(k), formally, a decision test
T is a sequence of mapsTk : Rkd → {0, 1}, k = 1, 2, ...,

with the interpretation thatTk(y(1), ..., y(k)) = l means
that Hl is decided,l = 0, 1. Specifically, consider the
log-likelihood ratio (LLR) test to decide betweenH0

andH1, whereTk is given as follows:

D(k) :=
1

k

k∑

j=1

log
dν1
dν0

(y(j)) (1)

Tk = I{D(k)>γk}. (2)

Here L(k) := log dν1
dν0

(y(k)) is the LLR (given by
the Radon-Nikodym derivative ofν1 with respect toν0
evaluated aty(k)), γk is a chosen threshold, andIA is
the indicator of eventA. The LLR test with threshold
γk = 0, ∀k, is asymptotically optimal in the sense
of Bayes probability of error decay rate, as will be
explained in next subsection (II-B).

B. Log-likelihood ratio test: Large deviations

This subsection studies large deviations for the LLR
decision test with decision variablesD(k) given in
eqn. (1). The large deviations analysis will be very
useful in estimating the exponential rate at which the
Bayes probability of error decays and in showing the
asymptotic optimality of the distributed running consen-
sus detector. We first give the definition of the large
deviations principle [13].

Definition 1 (Large deviations principle (LDP))
Consider a sequence of real valued random variables
{Θ(k)}∞k=1 := {Θ(k)} and denote byθk the probability
measure of Θ(k). We say that the sequence of
measures{θk} satisfies the LDP with a rate function
J : R → R ∪ {+∞} if the following holds:

1) For any closed, measurable setF ⊂ R:

lim sup
k→∞

1

k
log θk (F ) ≤ − inf

t∈F
J (t)

2) For any open, measurable setG ⊂ R:

lim inf
k→∞

1

k
log θk (G) ≥ − inf

t∈G
J (t).

It can be shown that the sequence of LLR’s{L(k)},
conditioned onHl, l = 0, 1, is i.i.d. Denote byµ(l)

k

the probability measure ofD(k) under hypothesisHl.
Using Cramér’s theorem ([13]), it can be shown that the
sequence of measures{µ(l)

k }, l = 0, 1, satisfies the LDP
with good2 rate function:

Λ⋆
(l)(t) = sup

λ∈R

(
λt− Λ(l)(λ)

)
, (3)

whereΛ(l)(·) is the log-moment generating function of
L(k) under hypothesisHl:

Λ(l)(λ) = logE
[
eλL(k)|Hl

]
. (4)

2Goodness of rate function is compactness of its sublevel sets.



That is, the rate functionΛ⋆
(l)(t) is the Fenchel-Legendre

(F-L) ([13]) transform of the log-moment generating
function of L(k) under Hl. It can be shown that
Λ⋆
(1)(t) = Λ⋆

(0)(t) − t. We summarize this result in the
following theorem, e.g., [13]:

Theorem 2The sequence of measures{µ(l)
k } of D(k)

underHl satisfies the LDP with good rate function given
by eqn. (3).

C. Asymptotic Bayes detection performance: Chernoff
lemma

We adopt the Bayes minimum probability of error
detection. Denote byP e(k) the Bayes probability of
error afterk samples are processed:

P e(k) = P (H0)α(k) + P (H1)β(k), (5)

where P (Hl) are the prior probabilities,α(k) :=
P (D(k) > γk|H0) andβ(k) := P (D(k) ≤ γk|H1) are,
respectively, the probability of false alarm and the prob-
ability of miss, andγk is the test threshold.

We will be interested in the rate at which the Bayes
probability of error decays to zero as the number of
observationsk goes to infinity. Also, as auxiliary results,
we will need the rates at whichα(k) andβ(k) go to zero
ask → ∞. That is, we will be interested in the following
quantities:

limk→∞
1

k
logP e(k) (6)

limk→∞
1

k
logα(k) (7)

limk→∞
1

k
log β(k). (8)

Theorem 4 ([13]) states that, among all possible decision
tests, the LLR test with zero threshold minimizes (6).
This result is a corollary of the Theorem 3 ([13]), that
asserts that, for a LLR test with fixed thresholdγk = γ,
α(k) and β(k) indeed (simultaneously) decay to zero
exponentially; also, Theorem 3 expresses the exponential
rate of decay in terms of the rate functions defined in
eqns. (7) and (8). Before stating the Theorem, define
L(l) := E (L(k)|Hl), l = 0, 1.

Theorem 3The LLR test with constant thresholdγk =
γ, γ ∈ (L(0), L(1)) satisfies:

lim
k→∞

1

k
logα(k) = −Λ⋆

(0)(γ) < 0 (9)

lim
k→∞

1

k
log β(k) = γ − Λ⋆

(0)(γ) < 0. (10)

Theorem 4 (Chernoff lemma)If P (H0) ∈ (0, 1), then:

inf
T

lim inf
k→∞

{
1

k
logP e(k)

}
= −Λ⋆

(0)(0), (11)

where the infimum over all possible testsT is attained
for the LLR test withγk = 0, ∀k.

The quantityΛ⋆
(0)(0) = Λ⋆

(1)(0) is called the Chernoff
distance between the distributions ofy(k) underH0 and
H1, or Chernoff information, [13].

Asymptotically optimal test. We introduce the follow-
ing definition of the asymptotically optimal test.

Definition 5 The decision testT is asymptotically opti-
mal if it attains the infimum in eqn. (11).

We will show that, for the distributed Gaussian hypoth-
esis testing over time varying networks, the running
consensus is asymptotically optimal in the sense of
Definition 5.

III. D ISTRIBUTED DETECTION MODEL: DATA AND

NETWORK MODELS

This section describes: 1) the data model (subsec-
tion III-A), i.e., the observation model at each sensor
in the network; and 2) the model of the network through
which the sensors cooperate with the running consensus
distributed detection algorithm (subsection III-B). The
distributed detection algorithm is detailed in Section V.

A. Data model

We consider Gaussian binary hypothesis testing in
spatially correlated noise. The sensors operate (in terms
of sensing and communication) synchronously, at dis-
crete time stepsk. At time k, sensori measures (scalar)
yi(k). Collect the sensor measurements in a vector
y(k) = (y1(k), y2(k), ..., yN (k))T , whereN is the total
number of sensors. Nature can be in one of two possible
states:H1−event occurring (e.g., target present); and
H0−event not occurring (e.g., target absent.) We assume
the following distribution model for the vectory(k):

under Hl : y(k) = ml + ζ(k), l = 0, 1, (12)

where ml is the (constant) signal under hypothesis
Hl, and ζ(k) is zero mean Gaussian additive noise.
We assume that{ζ(k)} is an independent identically
distributed (i.i.d.) sequence ofN × 1 random vectors
with distributionζ(k) ∼ N (0, S), whereS is a (positive
definite) covariance matrix. Thus, with our model, the
noise is temporally independent, but can be spatially cor-
related. Spatial correlation should be taken into account
due to, for example, dense deployment of wireless sensor
networks, while it is still reasonable to assume that the
observations are independent along time. (Conditioned
to Hl, {y(k)} are i.i.d. with the distributionN (ml, S).)



B. Network model and data mixing model

We consider distributed detection via running consen-
sus where each node at a timek: 1) measuresyi(k);
2) exchanges its current decision variable (denote it by
xi(k)) with its neighbors; and 3) performs a weighted
average of its own decision variable and the neighbors’
decision variables. The network connectivity is assumed
time varying. The weighted averaging, at each timek,
as with the standard consensus algorithm, is described
by theN ×N weight matrixW (k). We assumeW (k)
is a symmetric, stochastic matrix (it has nonnegative
entries and the rows sum to 1.) The weight matrix
W (k) respects the sparsity pattern of the network, i.e.,
Wij(k) = 0, if the link {i, j} is down at timek. We
define also the undirected graphG(k) = (V , E(k)),
whereV is the set of nodes with cardinality|V| = N ,
andE(k) is the set of undirected edges that are online at
time k. Formally,E(k) = {{i, j} : i < j, Wij(k) > 0}.
Define alsoJ := (1/N)11T , where1 is N × 1 vector
with unit entries. We now summarize the assumptions
on the matrices{W (k)} and the graphsG(k):

Assumption 6For the sequence of matrices{W (k)} =
{W (k)}∞k=1, we assume the following:

1) W (k) is symmetric and stochastic,∀k.
2) There exists a scalarWmin ∈ (0, 1), such thati)

Wii(k) ≥ Wmin, ∀i, ∀k; and ii ) ∀k, Wij(k) ≥
Wmin, if i 6= j and{i, j} ∈ E(k).

3) There exists an integer1 ≤ B < +∞, such that,
∀k, the graph

(
V ,∪k+B

l=k+1E(l)
)

is connected.

Assumption 6-3) says that nodes should communicate
sufficiently often (within finite time windows,) such that
the network provides sufficiently fast information flow.

IV. CENTRALIZED DETECTION: BAYES OPTIMAL

TEST

We first consider the centralized detection scenario, as
if there was a fusion node that collects and processes all
sensor observations. The decision variableD(k) and the
LLR decision test are given by eqns. (1) and (2), where
now, under the data assumptions in subsection III-A:

L(k) = (m1 −m0)
TS−1

(
y(k)− m1 +m0

2

)
(13)

Conditioned on either hypothesisH1 andH0, L(k) ∼
N

(
m

(l)
L , σ2

L

)
, where

m
(l)
L =

(−1)l+1

2
(m1 −m0)

TS−1(m1 −m0)(14)

σ2
L = (m1 −m0)

TS−1(m1 −m0). (15)

Define the vectorv ∈ R
N as

v := S−1(m1 −m0). (16)

Then, the LLRL(k) can be written as follows:

L(k) =

N∑

i=1

vi

(
yi(k)−

[m1]i + [m0]i
2

)
=

N∑

i=1

ηi(k),

(17)
where [ml]i denotes thei-th entry of vectorml, l =
0, 1. Thus, the LLR at timek is separable, i.e., the LLR
is the sum of the termsηi(k) that depend affinely on
the individual observationsyi(k). We will exploit this
fact in subsection V-A to derive the distributed, running
consensus, detection algorithm.

Applying Theorem 2 to the sequence{D(k)} (under
hypothesisHl, l = 0, 1), we have that the sequence
of measures ofD(k) satisfies the LDP with good rate
function I(l) : R → R ∪ {+∞}, which, by evaluating
the log-moment generating function ofL(k) in (13) and
its F-L transform, can be shown to be:

I(l)(t) =
(t−m

(l)
L )2

2σ2
L

, l = 0, 1. (18)

We state this result as a Corollary 7.

Corollary 7 The sequence{D(k)}, underHl, l = 0, 1,
satisfies the LDP with good rate functionI(l)(·), given
by eqn. (18).

We remark that Theorem 4 also applies to the detec-
tion problem explained in subsection III-A. Denote by
P e
cen(k) the Bayes probability of error for the centralized

detector (defined in section IV,) afterk samples are pro-
cessed. Due to the continuity of the rate functions in (18),
it can be shown that:lim infk→∞

1
k logP e

cen(k) =
lim supk→∞

1
k logP e

cen(k) = limk→∞
1
k logP e

cen(k).
Thus, Theorem 4 in this case simplifies to the following
corollary:

Corollary 8 (Chernoff lemma for the optimal centralized
detector) The LLR test withγk = 0, ∀k, is asymptoti-
cally optimal in the sense of definition 5. Moreover, for
the LLR test withγk = 0, ∀k, we have:

lim
k→∞

1

k
logP e

cen(k) = −I(0)(0) (19)

= −1

8
(m1 −m0)

⊤S−1(m1 −m0).

Remark. The LLR test with zero threshold is optimal
also in the finite timek regime, for allk, in the sense
that it minimizes the Bayes probability of error, when
the prior probabilities areP (H0) = P (H1) = 0.5. When
the prior probabilities are not equal, the LLR test is also
optimal, but the thresholdγk will be different than zero.



V. D ISTRIBUTED DETECTION ALGORITHM

A. Distributed detection via running consensus

We now present a distributed detection algorithm via
running consensus. With this detection algorithm, no
fusion node is required, and the underlying network is
generic, time varying. The running consensus is pro-
posed in [2], and it is a stochastic approximation type
of algorithm (see [1]). Reference [2] studies the case
when the observations of different sensors at a fixed time
k are i.i.d. We extend the running consensus detection
algorithm to the case of spatially correlated Gaussian
observations.

With the running consensus distributed detector, each
nodei makes local decisions based on its local decision
variablexi(k): If xi(k) > 0, then H1 is accepted; if
xi(k) ≤ 0, thenH0 is accepted. At each time stepk,
the local decision variable at nodei is improved two-
fold: 1) by exchanging information with its immediate
neighbors in the network; 2) by incorporating into the
decision process the new local observationyi(k). Recall
the definition of ηi(k) in eqn. (17). Specifically, the
update of the local decision variable at nodei is given
by the following equation:

xi(k + 1) =
k

k + 1
Wii(k)xi(k) + (20)

k

k + 1

∑

j∈Ωi(k)

Wij(k)xj(k) +
1

k + 1
Nηi(k + 1),

k = 1, 2, ...

xi(1) = Nηi(1)

Here Ωi(k) is the (time varying) neighborhood of
node i at time k, and Wij(k) are the (time varying)
averaging weights, defined together with theN × N
(time varying) matricesW (k) = [Wij(k)] in subsec-
tion III-B. Let x(k) = (x1(k), x2(k), ..., xN (k))⊤ and
η(k) = (η1(k), ..., ηN (k))⊤. The algorithm in matrix
form is given by:

x(k + 1) =
k

k + 1
W (k)x(k) +

1

k + 1
Nη(k + 1), (21)

k = 1, 2, ...

x(1) = Nη(1)

Recall the definition of theN × 1 vectorv in (16). The
sequence ofN×1 random vectors{η(k)}, conditioned to
Hl, is i.i.d. Vectorη(k) (under hypothesisHl, l = 0, 1)
is Gaussian with meanm(l)

η and covarianceSη:

m(l)
η = (−1)(l+1)Diag (v)

1

2
(m1 −m0) (22)

Sη = Diag (v)SDiag (v) . (23)

Here Diag(v) is a diagonal matrix with the diagonal
entries equal to the entries ofv.

B. Asymptotic optimality of the distributed detection
algorithm

In this subsection, we present our main result, which
states that the distributed detection via running consensus
asymptotically achieves the performance of the optimal
centralized detector, in the sense that it approaches
the exponential error decay rate of the (asymptotically)
optimal centralized detector.

Denote the probability measure ofxi(k) under hy-
pothesisHl with χ

(l)
i,k. First, we show that the sequence

of measures{χi,k}, for all nodesi, satisfies the LDP
with good rate function; the rate function for all nodes
i is the same, and it is the same as the rate function of
the optimal centralized detector in eqn. (18).

We prove that the sequence of measures for{xi(k)}
(underHl, l = 0, 1) satisfies the LDP using the Gärtner-
Ellis Theorem from large deviations theory, see [13]. We
now state Theorem 9.

Theorem 9Let assumption 6 hold. The sequence of
measures{χ(l)

i,k}, for all nodesi, satisfies the large devia-
tions principle with good rate function. The rate function
is the same as for the optimal centralized detector and
is given byI(l)(·) in eqn. (18).

Before proving Theorem 9, defineΦ(k, j), for k > j ≥
1, as follows:

Φ(k, j) := W (k − 1)W (k − 2)...W (j), (24)

and remark that the algorithm in eqn. (21) can be written
as:

x(k) =
N

k

k−1∑

j=1

Φ(k, j)η(j)+
N

k
η(k), k = 2, 3, ... (25)

Next, recall thatJ = (1/N)11⊤, introduce notation:

Φ̃(k, j) := W̃ (k − 1)W̃ (k − 2)...W̃ (j), k > j ≥ 1,
(26)

and remark that

Φ̃(k, j) = Φ(k, j)− J.

To prove Theorem 9, we borrow the following result
(Lemma 10) on the matrices̃Φ(k, j) from reference [14]
(Lemma 3.2). First, denote by[Φ̃(k, j)]il the entry ini-th
row andl-th column of matrixΦ̃(k, j).

Lemma 10Let Assumption 6 hold. Then, for the matri-
cesΦ̃(k, j), defined by eqn. (26), there holds:

max
i,l=1,...,N

|
[
Φ̃(k, j)

]
il
| ≤ θ βk−j , (27)

whereθ =
(
1− Wmin

4N2

)−2
, andβ =

(
1− Wmin

4N2

)1/B
<

1.



Lemma 10 says that, under Assumption 6, the size of the
matrix Φ̃(k, j) decays geometrically (ink − j) to zero.
This fact will be important in showing Theorem 9.

Proof of Theorem 9: Define, for µ ∈ R, the
quantity:

Λ
(l)
k (µ) := logEl [exp (µxi(k))] (28)

= logEl

[
exp

(
λ⊤x(k)

)]
, (29)

whereλ = µ ei, λ ∈ R
N , andEl [a] := E [a|Hl], l =

0, 1. Hereei denotes thei-th column ofN ×N identity
matrix. We drop the dependence oni in the definition
of Λ(l)

k (µ) for notation simplicity. Recall the expressions
for m

(l)
L andσ2

L in eqns. (14) and (15). We will show,
for all µ ∈ R, the following equality:

lim
k→∞

1

k
Λ
(l)
k (kµ) =

1

2
σ2
Lµ

2 +m
(l)
L µ, (30)

Consider the functionµ 7→ 1
2σ

2
L µ2 + m

(l)
L µ; this

function is essentially smooth, continuous, and its do-
main is R; hence, by the Gärtner-Ellis theorem ([13],
Theorem 2.3.6),{χ(l)

i,k} (the sequence of measures of
xi(k) underHl) satisfies the LDP. The corresponding
rate function equals the F-L transform of the function
µ 7→ 1

2σ
2
L µ2 + m

(l)
L µ; and it is easy to show that

the F-L transform ofµ 7→ 1
2σ

2
L µ2 + m

(l)
L µ equals the

rate functionI(l)(·) given by eqn. (18). Thus, proving
Theorem 9 reduces to showing (30). We thus proceed
with showing (30). Namely, we have:

1

k
Λ
(l)
k (k µ) =

1

k
logEl


exp


N λ⊤

k−1∑

j=1

Φ(k, j)η(j) +N λ⊤η(k)






=
1

k
logEl


exp


Nλ⊤

k−1∑

j=1

Φ(k, j)η(j)






+
1

k
logEl

[
exp

(
Nλ⊤η(k)

)]
,

where the last equality holds becauseη(k) is independent
from η(j), j = 1, ..., k − 1. We will be interested in
computing the limitlimk→∞

1
kΛ

(l)
k (k µ), for all µ ∈ R;

with this respect, remark that

lim
k→∞

1

k
logEl

[
exp

(
Nλ⊤η(k)

)]
= 0,

for all λ ∈ R
N , becauseη(k) is a Gaussian random

vector and hence it has finite log-moment generating
function at any pointNλ.

Thus, we have that limk→∞
1
kΛk(k µ) =

limk→∞
1
kL

(l)
k (k µ), where

L(l)
k (kµ) = logEl


exp


N λ⊤

k−1∑

j=1

Φ(k, j)η(j)




 ,

and we proceed with the computation ofL(l)
k (k µ). The

random variablesNλ⊤Φ(k, j)η(j), j = 1, ..., k − 1,
are independent; moreover, they are Gaussian random
variables, as linear transformation of the Gaussian vari-
ablesη(j). Recall thatm(l)

η andSη denote the mean and
the covariance ofη(k) under hypothesisHl. Using the
independence ofη(j) and η(s), s 6= j, and using the
expression for the moment generating function ofη(j),
we obtain successively:

1

k
L(l)
k (kµ) =

1

k
logEl


exp


N λ⊤

k−1∑

j=1

Φ(k, j)η(j)






=
1

k
logEl

[
Πk−1

j=1 exp
(
N λ⊤Φ(k, j)η(j)

)]
(31)

=
1

k
logΠk−1

j=1 exp
(
N λ⊤Φ(k, j)m(l)

η

)

exp

(
1

2
N2λ⊤Φ(k, j)SηΦ(k, j)⊤λ

)

=
1

k
logΠk−1

j=1 exp (N λ⊤
(
Φ̃(k, j) + J

)
m(l)

η )

exp

(
1

2
N2λ⊤

(
J + Φ̃(k, j)

)
Sη

(
J + Φ̃(k, j)⊤

)
λ

)
.

Denote further:

δ(k) =
N

k
λ⊤

k−1∑

j=1

Φ̃(k, j)m(l)
η (32)

+
N2

2k
λ⊤

k−1∑

j=1

Φ̃(k, j)SηΦ̃(k, j)⊤λ

+
N2

2k
λ⊤JSη

k−1∑

j=1

Φ̃(k, j)⊤λ

+
N2

2k
λ⊤

k−1∑

j=1

Φ̃(k, j)SηJλ

Λ(l)(µ, k) =
(k − 1)Nλ⊤Jm

(l)
η

k

+
N2(k − 1)λ⊤JSηJλ

2k
,

where dependence onHl is dropped in the definition
of δ(k). Then, it is easy to see that1kL

(l)
k (kµ) =

Λ(l)(µ, k) + δ(k). Also, we have:limk→∞ Λ(l)(µ, k) =

Nλ⊤Jm
(l)
η + N2

2 λ⊤JSηJλ =: Λ(l)(µ).

Recall the expressions forv, m(l)
L , σ2

L, m(l)
η , andSη



in eqns. (16), (14), (15), (22), (23). We proceed with the
computation ofΛ(l)(µ):

Λ(l)(µ) = (−1)l+1N

2
µ (m1 −m0)

⊤
Diag(v)J ei

+
N2

2
µ2 e⊤i J Sη J ei

= (−1)l+1 1

2
µ1⊤Diag(v)(m1 −m0)

+
1

2
µ21⊤Diag(v)SDiag(v)1

= (−1)l+1 1

2
µ (m1 −m0)

⊤
S−1 (m1 −m0)

+
1

2
µ2 (m1 −m0)

⊤ S−1 (m1 −m0)

= m
(l)
L µ+

1

2
σ2
Lµ

2.

We proceed by showing thatδ(k) → 0 ask → ∞, which
implies the equality in eqn (30). Define the quantitiesS,
m, andb, by:

S := max
i,l=1,...,N

|[Sη]il| (33)

m := max
i=1,...,N

|[m(l)
η ]i| (34)

b := max
l=1,...,N

|[SηJei]l|. (35)

Then, it can be shown that|δ(k)| is bounded as follows:

|δ(k)| ≤ N2

k
|µ|m

k−1∑

j=1

max
i,l=1,...,N

|[Φ̃(k, j)]il| (36)

+
N4

2k
µ2S

k−1∑

j=1

(
max

i,l=1,...,N
|[Φ̃(k, j)]il|

)2

+
N3

k
µ2b

k−1∑

j=1

max
i,l=1,...,N

|[Φ̃(k, j)]il|.

Applying Lemma 10 to (36), and using the fact that
βk−j < βk−j−1, k > j, we obtain successively:

|δ(k)| ≤ θ

k

(
N2m|µ|+N3µ2b

) k−1∑

j=1

βk−j−1 (37)

+
θ2

k

N4

2
µ2S

k−1∑

j=1

β2(k−j−1) (38)

≤ θ

k

(
N2m|µ|+N3µ2b

) 1

1− β
(39)

+
θ2

k

N4

2
µ2S

1

1− β2
. (40)

Letting k → +∞, we get that|δ(k)| → 0, and hence,
δ(k) → 0, which establishes eqn. (30).

We are now ready to state the main result on asymp-
totic optimality of the distributed detector (in the sense
of Definition 5.)

Corollary 11 (Chernoff lemma for the distributed de-
tector: Asymptotic optimality) The local decision test
Tk,i := I{xi(k)>0}, k = 1, 2, ..., at each nodei, is
asymptotically optimal in the sense of Definition 5.
The corresponding exponential decay rate of the Bayes
probability of error, at each nodei, is given by:

lim
k→∞

1

k
logP e

i, dis(k) = −I(0)(0) (41)

= −1

8
(m1 −m0)S

−1(m1 −m0).

Proof: Denote byαi,dis(k) and βi,dis(k), respec-
tively, the probability of false alarm and the probability
of miss for the distributed detector at sensori, i.e.,

αi,dis(k) = P (xi(k) > 0|H0) = χ
(0)
i,k ((0,+∞))

βi,dis(k) = P (xi(k) ≤ 0|H1) = χ
(1)
i,k ((−∞, 0]) .

Consider now onlyαi,dis(k) but the same applies to
βi,dis(k). By Theorem 9, the sequence of measuresχ

(0)
i,k

satisfies the LDP with good rate functionI(0)(·) given
in eqn. (18). Thus, we have the following bounds:

lim sup
k→∞

1

k
logχ

(0)
i,k ([0,+∞)) ≤ − inf

t∈[0,+∞)
I(0)(t) (42)

lim inf
k→∞

1

k
logχ

(0)
i,k ((0,+∞)) ≥ − inf

t∈(0,+∞)
I(0)(t) (43)

Due to the continuity of the functionI(0)(·) (see
eqn. (18)), the infima on the righthand sides in
eqns. (42) and (43) are equal; it is easy to see that they
are equal to−I(0)(0). Thus, we have:

−I(0)(0) ≤ lim inf
k→∞

1

k
logχ

(0)
i,k ((0,+∞))

≤ lim sup
k→∞

1

k
logχ

(0)
i,k ((0,+∞))

≤ lim sup
k→∞

1

k
logχ

(0)
i,k ([0,+∞))

≤ −I(0)(0).

From the last set of inequalities we conclude that:

lim
k→+∞

1

k
logαi,dis(k) = −I(0)(0). (44)

Similarly, it can be shown that:

lim
k→+∞

1

k
log βi,dis(k) = −I(1)(0) (45)

= −I(0)(0). (46)

Now, consider

P e
i,dis(k) = αi,dis(k)P (H0) + βi,dis(k)P (H1), (47)

for which the following inequalities hold:

P e
i,dis(k) ≤ αi,dis(k) + βi,dis(k) (48)

P e
i,dis(k) ≥ αi,dis(k)P (H0).



By eqns. (48), we obtain:

lim sup
k→∞

1

k
logP e

i, dis(k) =

max

{
lim sup
k→+∞

1

k
logαi,dis(k), lim sup

k→+∞

1

k
log βi,dis(k)

}

= −I(0)(0)

lim inf
k→∞

1

k
logP e

i, dis(k) ≥ lim inf
k→∞

1

k
logαi,dis(k)

= −I(0)(0),

and the claim of Corollary follows.

Remarks on Corollary 11. Corollary 11 says that, for
largek (i.e., in the asymptotic regime,) the Bayes prob-
ability of error at each nodei behaves as:P e

i, dis(k) ∼
e−kI(0)(0). That is,P e

i, dis(k), for largek, decays expo-
nentially at the best possible rate, equal to the rateI(0)(0)
of the (asymptotically) optimal centralized detector. This
rate does not depend on the network connectivity, pro-
vided that the graph that collects all the links that are
online (at least once) within finite time window (of
lengthB) is connected (see Assumption 6.) Intuitively,
an arbitrary time varying network, whose nodes commu-
nicate sufficiently often (within finite length time win-
dows,) provides sufficient information flow to achieve
asymptotic optimality.

We now comment on the non asymptotic finite
time regime. To this end, remark thatP e

i, dis(k) can
be expressed as:P e

i, dis(k) = Fi(k)e
−kI(0)(0), where

limk→∞
1
k logFi(k) = 0 (and thus,Fi(k) has no effect

when k grows large.) The sequence{Fi(k)} plays a
role in a finite time regime; it clearly depends on the
network connectivity and can be, in general, different
for different sensors. Analysis (by simulation) of the
finite time regime is, due to the lack of space, omitted,
and is pursued elsewhere. We briefly comment here that
our numerical experience suggests that, in the finite time
regime, the sequenceFi(k) does not have a very large
effect. The best distributed sensor–detector, among allN
sensors, is typically close in performance to the optimal
centralized detector, in the finite time regime also.

VI. SUMMARY

We applied large deviations theory to analyze the
performance of the running consensus distributed de-
tection algorithm. We considered spatially correlated
Gaussian noise and time varying networks. With running
consensus, the state at each node is updated at each time
step by: 1) exchanging information with the immediate
neighbors in the network; and 2) incorporating into the
decision process new local observations. We allowed the
underlying network be time varying, provided that the
graph that collects all the links that are at least once
online within a finite time window is connected. We

showed that, under spatially correlated Gaussian noise
and stated network connectivity assumptions, the run-
ning consensus asymptotically approaches the optimal
centralized detector. That is, the Bayes probability of
detection error at each sensor decays exponentially at
the best achievable rate, the Chernoff information rate.
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