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Abstract—One major open problem in network coding is
to characterize the capacity region of a general multi-source
multi-demand network. There are some existing computational
tools for bounding the capacity of general networks, but their
computational complexity grows very quickly with the size of
the network. This motivates us to propose a new hierarchical
approach which finds upper and lower bounding networks of
smaller size for a given network. This approach sequentially
replaces components of the network with simpler structures,
i.e., with fewer links or nodes, so that the resulting network
is more amenable to computational analysis and its capacity
provides an upper or lower bound on the capacity of the original
network. The accuracy of the resulting bounds can be bounded
as a function of the link capacities. Surprisingly, we are able to
simplify some families of network structures without any loss in
accuracy.

I. I NTRODUCTION

Finding the network coding capacity of networks with gen-
eral topologies and communication demands is a challenging
open problem, even for networks consisting of noiseless point-
to-point links. Information theoretic inequalities can beused
to bound network capacities, but it is in general a complex
task to find the best combination of inequalities to apply.
While various bounds (e.g. [1], [2], [2], [3]) can be obtained
by clever choices of inequalities, we would like to have
systematic general techniques for bounding the capacity in
arbitrary network problems. We hope to derive these bounds
in a way that allows us to bound the accuracy of the obtained
bounds and to trade off tightness and computation. The LP
outer bound [4], which gives the tightest outer bound implied
by Shannon-type inequalities and has been implemented as the
software programs Information Theoretic Inequalities Prover
(ITIP) [5] and XITIP [6], has complexity exponential in
the number of links in the network and can thus only be
used to compute capacity bounds for relatively small problem
instances. Inner bounds can be obtained by restricting attention
to scalar linear, vector linear or abelian codes e.g. [7], [8], but
the complexity of such approaches also grows quickly in the
network size. This motivates us to seek systematic tools for
bounding the capacity of a network by the capacity of another
network with fewer links and characterizing the differencein
capacity.

In this paper we introduce a novel approach for analyzing
capacity regions of acyclic networks consisting of capacitated
noiseless links with general demands. Inspired by [9], we
employ a hierarchical network analysis that replaces pieces

of the network by equivalent or bounding models with fewer
links. At each step of the process, one component of the
network is replaced by a simpler structure with the same
inputs and outputs. The model is an upper bounding model
if all functions that can be implemented across the original
network can also be implemented across the model. The
model is a lower bounding model if all functions that can
be implemented across that model can also be implemented
across the given component. If the same model is both an
upper bounding model and a lower bounding model for a given
component, then the component and its model are equivalent.
Where possible, we try to find upper and lower bounds that
have identical structures, since bounding the accuracy of the
resulting capacity bounds is easier when the topologies of the
upper and lower bounding networks match.

The organization of this paper is as follows. Section II
describes the system model. The problem of finding equivalent
or bounding networks of smaller size and the properties of
such networks is discussed in Section III. Sections IV and
V describe a variety of operations for finding such networks.
Section VI treats accuracy bounds. The networks considered
in this paper are assumed to be acyclic. The effect of cycles
and delay is discussed in Section VII. Finally, Section VIII
concludes the paper.

II. SYSTEM MODEL

We mainly use the model and notation introduced in [10].
The network is modeled by an acyclic directed graphN =
(V ,E), whereV and E ⊆ V ×V denote the set of nodes
and links, respectively. Each directed linke = (v1,v2) ∈ E

represents a noiseless link of capacityCe between the nodes
v1 andv2 in N . For each nodev, let In(v) and Out(v) denote
the set of incoming and outgoing links of nodev respectively.

We assume that the source nodes (S ) and sink nodes (T )
are distinct, i.e.,S

⋂
T = /0, and each source (sink) node

has only outgoing (incoming) links. There is no loss of
generality in this assumption since any network that violates
these conditions can be modified to form a network that
satisfies these conditions and has the same capacity. After these
modifications, each nodev ∈ V falls into one of the following
categories: i) source nodes (S ), ii) sink nodes (T ) and iii) relay
nodes (I ). Relay nodes have both incoming and outgoing links,
and they do not observe any external information. Their role
is to facilitate data transfer from the source nodes to the sink
nodes.
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A subnetworkNs = (Vs,Es) of network N = (V ,E) is
constructed based on a subset of relay nodesIs ⊂ I as follows.
The set of sources and sinks of the subnetworkNs are defined
as Ss = {v ∈ V : v /∈ Is,∃v′ ∈ Is,(v,v′) ∈ E}, and Ts = {v ∈
V : v /∈ Is,∃v′ ∈ Is,(v′,v) ∈ E}. Then,VS = Ss

⋃
Is
⋃

Ts, and
Es = {e ∈ E : e = (v,v′),v,v′ ∈ Vs}.

A coding scheme of block lengthn for this network is
described as follows. Each source nodes ∈ S observes some
messageMs ∈ Xs = {1,2, . . . ,2nRs}. Each sink nodet ∈ T

is interested in recovering some of the messages that are
observed by source nodes. Letβ(t) ⊆ S denote the set of
source nodes that the nodet is interested in recovering. The
coding operations performed by each node can be categorized
as follows

1) Encoding functions performed by the source nodes:
For eachs ∈ S , and e ∈ Out(s), the encoding function
corresponding to linke is described as

ge : Xs → {1,2, . . . ,2nCe}. (1)

2) Relay functions performed at realy nodes: Ifv /∈ S
⋃

T ,
then for eache ∈ Out(v), the relay function correspond-
ing to the linke is described as

ge : ∏
e′∈In(v)

{1,2, . . . ,2nCe′ }→ {1,2, . . . ,2nCe}. (2)

3) Finally, for eacht ∈ T , and eachs ∈ β(t), a decoding
function is defined as

gs
t : ∏

e∈In(t)

{1,2, . . . ,2nCe}→ Xs. (3)

A rate vectorR corresponding to the set{Rs}s∈S is said to
be achievable on networkN , if for any ε > 0, there existsn
large enough and a coding scheme of block lengthn such that
for all t ∈ T and s ∈ β(t)

P(M̂(t)
s 6= Xs)≤ ε, (4)

whereM̂(t)
s denotes the reconstruction of messageMs at node

t. Let R (N ) denote the set of achievable rates on networkN .
Throughout the paper, vectors are denoted by bold upper-

case letters, e.g.A, B, etc. Sets are denotes by calli-
graphic upper-case letters, e.g.A , B , etc. For a vectorA =
(a1,a2, . . . ,an) of length n and a setF ⊂ {1,2, . . . ,n}, AF

denotes a vector of length|F | formed by the elements of the
vectorA whose indices are in the setF in the order they show
up in A.

III. E QUIVALENT AND BOUNDING NETWORKS

The problem we consider is defined formally as follows. For
a given networkN , we wish to find a networkN ′ with fewer
links for which the set of achievable rates either boundsR (N )
from below (R (N ′) ⊆ R (N )), boundsR (N ) from above
(R (N )⊆R (N ′)) or describes it perfectly (R (N ) =R (N ′)).
We take a hierarchical approach, sequentially applying op-
erations to simplify the given network. Following [9], each
operation replaces a subnetwork of the network with a bound-
ing model. SubnetworkN2 is an upper bounding model for a

subnetworkN1 with the same number of input (source) and
output (sink) nodes (writtenN1 ⊆ N2) if all functions{ ft}t∈T

of sources that can be reconstructed at the sinks ofN1 can also
be reconstructed at the sinks ofN2 can also be reconstructed
at the sinks ofN2. Here, each functionft , for t ∈ T , is a
function of the information sources that are available at source
nodes. SubnetworksN1 andN2 are equivalent ifN1 ⊆N2 and
N2 ⊆ N1.

When deriving upper and lower bounding networks, it is
desirable to find upper and lower bounding networks that have
the same topologies. In this case, we can bound the difference
between the capacity of a networkN and capacitiesR (Nl)
andR (Nu) of lower and upper bounding networksNl andNu

using a bound from [11]. Note that by having identical graphs,
we also require that all links have non-zero capacity in both
networks.

For comparing two networksNl and Nu which have iden-
tical topologies, define the difference factor betweenNl and
Nu as

∆(Nl ,Nu), max
e∈E

Ce(Nu)

Ce(Nl)
, (5)

whereCe(Nl) andCe(Nu) denote the capacities of the linke
is Nl and Nu respectively. Note that∆(Nl ,Nu) ≥ 1. Let Rl

(Ru) denote the capacity region ofNl (Nu). Then

Rl ⊆ R ⊆ Ru, (6)

while

Ru ⊆ ∆(Nl ,Nu)Rl . (7)

IV. BASIC SIMPLIFICATION OPERATIONS

One of the simplest operations for deriving an upper-
bounding network for a given network is merging nodes.
Coalescing two nodes is equivalent to adding two links of
infinite capacity from each of them to the other one. This is
precisely the approach employed in cut-set bounds. Because
of these infinite-capacity links, combining nodes, unless done
wisely, potentially can result in very loose bounds. However,
we show that in some cases, nodes can be combined without
affecting the network capacity. One simple example is when
the sum of the capacities of the incoming links of a nodev
is less that the capacity of each of its outgoing links. In this
situation, the node can be combined with all nodesw such
that (v,w) ∈ E .

Another possible operation for getting upper or lower
bounding networks is reducing or increasing the link capac-
ities. As a special case of such operations, one can reduce
the capacity of a link to zero which is the same as deleting
the link. In some cases reducing/increasing link capacities is
helpful in simplifying the network.

Another type of operation for simplifying networks is based
on network cut-sets. A cutP between two sets of nodesW1

and W2 is a partition of the network nodesV into two sets
Vc1 and V2 such thatW1 ⊆ V1,W2 ⊆ V2. The capacity of a
cut is defined as the sum of capacities of the forward links of



the cut, i.e. links(v,w) such thatv ∈ V1,w ∈ V2. Links (v,w)
such thatv ∈ V2,w ∈ V1 are called backward links of the cut.
For example, if we find a minimum cut separating a sink from
its corresponding sources and all other sink nodes, and connect
the forward links directly to the sink node while preservingall
the backward links, this results in an upper-bounding network.
If instead of keeping the backward links, we delete them, a
lower-bounding network is obtained. In the case where there
are no backward links, this procedure results in an equivalent
network. We can of course repeat this procedure for every
sink.

Another simplification operation involves removing a set
A of links or components and possibly replacing it with
additional capacity that might be spread over the remaining
network. A simple lower bounding network can be obtained
by removing a setA , while an upper bounding network
can be obtained from replacing a setA by adding sufficient
capacity to the remaining network to be able to carry any
information that could have been carried by the setA . For
example, if the remaining network contains paths from the
inputs to the outputs of the setA , we can formulate a linear
program, based on generalized flows, to find the minimum
factor k by which scaling up the capacities of the remaining
links uniformly gives an upper bounding network1. Since the
lower bounding network obtained by just removing the set
A differs from the upper bounding network by the scaling
factor k, this gives a multiplicative bound ofk − 1 on the
potential capacity difference associated with the upper and
lower bounding operations.

V. Y- NETWORKS AND GENERALIZATIONS

Consider the network shown in Fig. 1 consisting of four
nodes and three directed links with capacities(r1,r2,r3). This
topology is probably the simplest network in which nodes are
sharing resources to send their information. We will refer to
such a network as a Y-networkY (r1,r2,r3).

Now consider the network shown in Fig. 2 which consists
of two Y-networks with shared input and output nodes. The
following lemma shows that in some special cases this network
is equivalent to another Y-network. This simplification reduces
the number of links by 3 and the number of nodes by 1.

Lemma 1: Consider the network shown in Fig. 2,N1, when
ã = αa, b̃ = αb and c̃ = αc. This network is equivalent toN2,
a Y-networkY ((1+α)a,(1+α)b,(1+α)c).

Proof: Clearly, a Y-networkY ((1+ α)a,(1+ α)b,(1+
α)c) is an outer bound for the network of Fig. 2. Hence, we
only need to show that it also serves as an inner bound.

For the rest of the proof assume thatα is a rational number
(If it is not rational, it can be approximated by rational
numbers with arbitrary precision).

Consider a code of block lengthn that runs on networkN2.
The middle node maps then(1+α)a bits received fromx1

1One way to think of this is to associate a commodity with each link or
path segment inA . Conversions between commodities take place according
to the link capacity ratios inA . The linear program minimizesk subject to
flow conservation of these commodities.
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Fig. 1. A Y-network

and then(1+α)b bits received fromx2 to n(1+α)c bits sent
to nodey.

In order to run the same code onN1, consider using the
network m times, wherem is chosen such thatαm/(1+α)n
andm/(1+α)n are both integers. Note that sinceα is rational
by assumption, it is always possible to find suchm. Let k1 ,

αm/(1+α)n andk2 , m/(1+α)n.
During thesem channel uses the intersection node at the

left hand side receivesma bits from x1 and mb bits from x2.
This is equal to the bits received by the intersection node
in N2 during ma/(1+α)an = k2 coding sessions. Therefore,
using the code used onN2, these bits can be mapped into
k2n(1+α)c = mc bits that will be sent toy. Similarly, the
number of bits received by the intersection node on the right
hand side duringm channel uses is equal to the bits that would
have been received by the intercession node onN2 during k1

coding sessions.

Lemma 1 serves as a useful tool in our network simplifica-
tions. For an example of how to employ this result, consider
the network shown in Fig. 3. This network can be considered
as a combination of two overlapping Y-networks.PSfrag replacements

a b̃
bã

c c̃

x1 x2

y

Fig. 2. 2 Y-networks with shared source and sink nodes and separate relay
links

Lemma 2: Let β , b′
b+b′ . If βa + (1− β)c ≤ d, then the

network shown in Fig. 3 is equivalent to a Y-networkY (a,b+
b′,c).

Proof: Clearly a Y-networkY (a,b+ b′,c) is an upper-
bounding network for the network of Fig. 3. We show that if
the constraints in the lemma is satisfied, it also serves as a
lower-bounding network.

To find a lower bounding network, consider breaking the
links in Fig. 3 into parallel links as in Fig. 4, wherea =
a1+ a2+ a3, b = b1+ b2+ b3, etc. The network contains two
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Fig. 3. Two nodes communicating with one sink node via two relay nodes

capacity-disjoint Y-networks as illustrated in Fig. 5. Ourgoal
is to combine these two Y-networks by applying Lemma 1,
and in order to be able to do this, we requirea2 = d2 = αa1,
b′1 = αb1 and c1 = d1 = c2

α . The combination of these two
Y-networks will be a Y-networkY ((1+α)a1,(1+α)b1,(1+
α)c1) which is a lower-bounding network for our original
network. Now choosingb1 = b, b′1 = b′ and α = b′

b from the
link capacities constraints, we should have

(1+
b′

b
)a1 ≤ a,

(1+
b′

b
)c1 ≤ c,

b′

b
a1+ c1 ≤ d. (8)

From these inequalities, ifβa+(1−β)c≤ d, we can choose
a1 = (1−β)a andc1 = (1−β)c and get a lower-bounding Y-
networkY (a,b+ b′,c).
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Fig. 4. Breaking the links in Fig. 3 into parallel links

In order to get a better understanding of the required
constraint stated in Lemma 2, consider the following special
cases:
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Fig. 5. Breaking the network in Fig. 3 into two Y-networks
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Fig. 6. Generalization of the network of Fig. 3

i. b ≪ b′ → d ≥ a,
ii. b = b′ → d ≥ a+c

2 ,
iii. b ≫ b′ → d ≥ c.

Again consider the network shown in Fig. 3 where all
the links have capacity 1 except for the link of capacityd.
From Lemma 2, ford ≥ 0.5×1+ 0.5×1 = 1, this network
is equivalent to a Y-networkT (1,2,1). Our proof approach in
Lemma 2 does not say anything about the case whered < 1.
It might be the case that even for some valuesd < 1, still this
equivalence holds. As we show through an example this cannot
happen, and ford < 1 the Y-network ofY (1,2,1) is a strict
upper bound for our network. Assume thatb1 and (b2,b3)
are available atx1 andx2 respectively, wherebi ∈ {0,1}. The
goal is reconstructingb1b2+ b̄1b̄2 + b3 at nodey, where all
operations are inGF(2). This can be done easily in the Y-
networkY (1,2,1), but is impossible in the original network
for d < 1.

Fig. 6 shows a generalization of the network of Fig. 3, where
instead of 2 intermediate nodes, there arek+1 intermediate
nodes. Letα0 , 1, αi , bi/b0, for i ∈ {1, . . . ,k},

a1 ,
a

1+
k
∑

i=1
αi

,



and
c1 ,

c

1+
k
∑

i=1
αi

.

By extending the proof of Lemma 2 to this more general case,
we get Lemma 3.

Lemma 3: If, for i ∈ {1, . . . ,k},

i−1

∑
j=0

α jc1+
k

∑
j=i

α ja1 ≤ di, (9)

then the network shown in Fig. 6 is equivalent to a Y-network

Y (a,
k
∑

i=0
bi,c).

Another possible generalization of a Y-network is shown in
Fig. 7. Here, while the number of relay nodes is kept as two,
the number of source nodes is increased. For this network, we
can prove Lemma 4 with straightforward extension of Lemma
2.

Lemma 4: For i = {2, . . . ,k}, let

βi ,
bi

b′i
.

Then, if

d ≥
n

∑
i=1

βia+
n

∑
i=1

(1−βi)c, (10)

the two intermediate nodes can be combined without changing
the performance.

d

c
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Fig. 7. Another generalization of the network of Fig. 3

Again consider the network shown in Fig. 3, and assume
that d < βa+(1−β)c. As shown in the previous section, a
Y-network Y (a,b+ b′,c), Nu, serves as a strict upper bound
for the network of Fig. 3. In order to get a lower bounding
Y-network, we reduce the capacities of the linksa andc by a
factor δ, such thatd = βδa+(1−β)δc. Hence,

δ =
d

βa+(1−β)c
,

and from our assumption 0< δ < 1. Using this, we can again
invoke Lemma 2 and get a lower-bounding Y-network of

PSfrag replacements a b

d
min(b′,c)

min(b′,c− d)
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min(b′,c− d)

Fig. 8. A pair of upper and lower bounding networks for the network of
Fig. 3.

(δa,b+ b′,δc) denoted byNl . Comparing the link capacities
of the upper and lower bounding Y-networks, their difference
factor is ∆(Nl ,Nu) = δ. If d ≪ βa+ (1− β)c, then δ ≪ 1,
meaning that the bounds become very loose in such cases.

To solve this problem, consider another possible pair of up-
per and lower bounding networks shown in Fig. 8, which have
a topology different than a Y-network. Here the assumption is
that d < c. It is easy to check that these are indeed upper
and lower bounding networks. For deriving the upper-bound,
the incoming information from linksa and b are assumed
to be transmitted directly to the final node, and since the
incoming capacity of the final node isc, the information sent
to it from link b′ can be captured by a direct link of capacity
min(b′,c). For the lower bound, sinced < c, all the information
on link c can be directed to the final node. By this strategy,
the remaining unused capacity of linkc is c− d which can
be dedicated to linkb′. If min(c−d,b′) = b′, thenc ≤ d+b′,
then the upper and lower bounding networks coincide, and we
have an equivalent network. The more interesting case is when
c> d+b′, and therefore min(c−d,b′) = c−d. In this case the
difference factor of the upper and lower bounding networks is
at least 1− d/c. Choosing the best bound depending on the
link capacities, givena,b,b′ andc the worst difference factor
is

min
d

max{
d

βa+(1−β)c
,1−

d
c
}=

c
c+βa+(1−β)c

. (11)

As an example, for the case wherea= b= b′= c=1, the worst
case difference factor is 0.5 which corresponds tod = 0.5.
This means that choosing the best pair of bounds for different
values ofd, the difference factor of our selected pair is always
lower bounded by 0.5.

We conclude this section by discussing how the approach in
the section generalizes to a larger class of network topologies.
Consider the networkN1 shown in Fig. 9. A Y-network
Y (∑ai,∑bi,∑ci) is always an upper bound for the network
N1. On the other hand, if we can show, as in the proof of
Lemma 2, thatN1 contains two capacity-disjoint Y-networks
of the form Y (α∑ai,α∑bi,α∑ci) and Y ((1− α)∑ai,(1−
α)∑bi,(1− α)∑ci), then Y (∑ai,∑bi,∑ci) is also a lower
bound for, and thus equivalent to,N1. Subfigures (b) and (c)
provide two simple examples of networks where this is the
case. This construction can also be generalized by replacing
the basicY -shaped topology with star-shaped topologies with
arbitrary numbers of inputs and outputs.
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(a) NetworkN1
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(b) Example 1
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(c) Example 2

Fig. 9. A family of components that can be replaced with an equivalent
component. The labels represent the link capacities, whichsatisfy a = a1 +
a2+ . . .an, b = b1+b2+ . . .bm, c = c1+ c2+ . . .cl , and 0< r < 1.

VI. EFFECT OF LINK CAPACITIES

Consider two networksN1 and N2 which have identical
topologies and link capacities except for some linke which
has capacityCe,1 in N1 and capacityCe,2 < Ce,1 in N2. Let
R1 and R2 denote the set of achievable rates onN1 and N2

respectively. The question is how this difference affects the
performances of these two networks. One way of doing this
comparison is based on what was mentioned earlier, i.e., to
compute the ratio betweenCe,1 andCe,2. However, this might
not always give the best possible bound. The reason is that it
might be case that whileCe,1 andCe,2 are both small compared
to the capacity region of the networks,∆(Nl ,Nu) =Ce,1/Ce,2

is very large. In this section, we study this problem in more
details.

Note that the link of capacityCe,1 in networkN1 into two
parallel links of capacitiesCe,1 −Ce,2 and Ce,2. Clearly this
process does not affect the capacity region ofN1. By this
transformation, networkN2 is equivalent to this new network
with link of capacityε,Ce,1−Ce,1 being removed. Therefore,
in the rest of this section, instead of changing the capacityof a
link, we assume that a link of capacityε is removed as shown
in Fig. 10, and prove that at least in some cases changing the
capacity of a link byε cannot have an effect larger thanε on
the set of achievable rates, i.e., if the rate vectorR is achievable

PSfrag replacements
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Fig. 10. NetworksN1 andN2 which are with and without linke respectively.

on N1, rate vectorR− ε1, where1 denotes an all-one vector
of length |S |, is achievable onN2 as well.

One such example is the case of multicast networks. In that
case, the capacity of the network is determined by the values
of the cuts from the sources to the sinks. Therefore, since
removing a link of capacityε does not change the values of
the cuts by more thanε, the capacity of the network will not
be affected by more thanε.

Another example, is the case where all sources are con-
nected directly by a link to a super-source node which has
therefore access to the information of all sources. Without
loss of generality, letS = {1,2, . . . , |S |}. As before, assume
that each sink nodet ∈ T is interested in recovering a subset
of sources denoted byβ(t).

Theorem 1: For the described network with a super source-
node and arbitrary demands, removing a link of capacityε can
change the capacity region by at mostε.

Proof:
Assume that the rate vectorR= (R1,R2, . . . ,R|S |) is achiev-

able onN1. Since in the single source case, capacity regions
corresponding to zero and asymptotically zero probabilityof
errors coincide [12], we can assume there exist a coding
scheme of block lengthn that achieves rateR on N1 with
zero probability of error.

Based on this zero-error code, we construct another code
for networkN2 that achieves rateR− ε1 with asymptotically
zero probability of error.

By our assumption about the network structure, the super
source-node observes a message vectorM = (M1, . . . ,M|S |),
whereMs ∈ {1,2, . . . ,2nRs}, for s ∈ {1,2, . . . , |S |}.

Now consider the linke = (v1,v2) in network N1 which
has been removed in networkN2. During the coding process
on N1, the bits sent across this link can take on at most
2nε different values. Consider binning the message vectors
M = (M1,M2, . . . ,M|S |) into 2nε different bins based on the
bit stream sent over this link during their transmission. Since
the code is a deterministic code, each message vector only
corresponds to one bin. Since there exist 2n∑s∈S Rs distinct
message vectors, based on the Pigeonhole principle, there will
be at least one bin with more that 2n(∑s∈S Rs−ε) message vectors.
Denote the message vectors contained in this bin by the set
M0.

In N2, no message can be sent fromv1 to v2 through linke.



Therefore, in order to run the code forN1 on networkN2, we
need to specify the assumption of nodev2 about the message
that it would have received from nodev1 in N1. Let nodev2

assume that it always receives the bit pattern corresponding
to the bin containingM0. Making this assumption and having
the rest ofN2 to perform as inN1, it is clear that all message
vectors inM0 can be delivered with zero probability of error
on N2 as well. In other words, if the input to the super source
node in N2 is one of the message vectors inM0, then each
sink t ∈ T recovers its intended messageMβ(t) with probability
one. In the rest of the proof we show how this setM0 can be
used to deliver independent information to different receivers
over networkN2.

Define random vectorU = (U1,U2, . . . ,U|S |) to have a
uniform distribution over the elements ofM0. For each input
vectorU, each sink nodet, recoversUβ(t) perfectly.

The described model with inputU, and ouputsUβ(t), for
t ∈ T is a deterministic broadcast channel (DBC)2 whose
capacity region is known. Therefore, we can employ this DBC
to deliver information onN2.

Before doing this, we slightly change the set of sink nodes,
and replace the set of sinksT by Te as described in the
following. This modification does not affect the functionality
of the network, but simplifies the statement of the proof.
Divide each sink nodet into |β(t)| sink nodes, such that each
one has access to all the information available to the nodet,
but is only interested in reconstructing one of the sources.Let
Te denote this expanded set of sinks. Consider a subsetTsof
size |S | of Te such that each sources ∈ S is recovered by one
of the sinks inTS. Since each sink inTs only recovers one
source, hence there should be a one-to-one correspondence
between the elements ofS andTs.

Now consider the DBC with inputU and outputs{Ut}t∈Ts .
Since the code is zero-error, and there is a one-to-one cor-
respondence between the elements ofS and Ts, {Us}s∈S can
be replaced by{Us}s∈S . The capacity region of this DBC, as
explained in Appendix A, can be described by the set of rates
(r1,r2, . . . ,r|S |) satisfying

∑
s∈A

rs ≤ H(UA), (12)

for all A ⊂ S . From our construction,

H(US ) = H(U1,U2, . . . ,U|S |)

n(∑
s∈S

Rs − ε). (13)

On the other hand, for eachA ⊂ S

H(US ) = H(UA)+H(US\A). (14)

2DBCs and their capacity regions are briefly described in Appendix A.

Therefore,

H(UA) = H(US )−H(US\A)

≥ n(∑
s∈S

Rs − ε)− ∑
s∈S\A

H(Us)

≥ n(∑
s∈S

Rs − ε)− ∑
s∈S\A

nRs

= n(∑
s∈A

Rs − ε). (15)

It is easy to check that the point(r1,r2, . . . ,r|S |) = n(R−ε1)
satisfies all inequalities required by (12). Hence, using the
networkN2 as a DBC, the rate vectorR−ε can be transmitted
to nodes inTs.

We now argue that the described DBC code, with no extra
effort, delivers the rate vectorR−ε on networkN2 to all sinks,
not just those inTs. The reason is that for each message vector
M ∈ M0, and consequently for each inputU, all sink nodes in
Te that are interested in recovering a sources, i.e., for allt ∈ Te

such thatβ(t) = s, receiveMs with probability one. Hence, if
by the described coding scheme rateRs is delivered to one of
them, then the rest are able to receive the same data stream at
rateRs as well.

For some simple cases of multi-source multi-demand case
networks, for instance when the link of capacityε is directly
connected to one of the sources, the same result still holds,
i.e. removing that link cannot change the capacity region by
more thanε. However, for the general case, it remains open
as to how much removing a link of capacityε can affect the
capacity region of the network.

VII. C YCLES AND DELAYS

In [13], the capacity of a channel is defined in terms of
bits per channel use. In the case where there are no cycles,
this definition is equivalent to defining capacity in terms of
bits transmitted per unit time. However, we do not know
whether in a general network with cycles and delays, these
two definitions, i.e., bits per channel use versus bits per unit
time, could result in different capacity regions. For example,
consider two networksN1 and N2 that are identical except
for a single component cycle, illustrated in Fig. 11. InN2 the
transmission delay fromv1 to v2 is larger than inN1 due to the
added nodev0, assuming that each link introduces unit delay.
Now, we do not know whether achieving capacity onN1 could
require interactive communication over a feedback loop, where
each successive symbol transmitted byv1 depends on previous
symbols received fromv2 and vice versa. If we try to run the
same code onN2, the number of symbols per unit time that
can be exchanged by nodesv1 and v2 is decreased because
of the additional delay introduced by nodev0. Hence, if the
rate is defined in terms of bits communicated per unit time,
this additional delay will reduce the capacity region. However,
if the capacity is defined in terms of bits communicated per
channel use, by letting each node wait until it has received
the information it requires to generate its next symbol, the
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Fig. 11. Changing the delay between two nodes by introducingan extra
node

delivered rates and consequently the capacity region will not
be affected.3

In most of the operations introduced in this paper, the
number of hops between nodes is different in the original
network compared to its simplified version. Therefore, such
operations in a cyclic graph with delay can potentially change
the capacity region in ways that are not predicted by our
analysis. Hence, in this paper we have restricted ourselves
to the case of acyclic graphs. However, studying the effect of
these operations in a general network with cycles remains as
a question for further study.

VIII. C ONCLUSIONS

In this paper, we proposed new techniques for efficiently
approximating or bounding the capacity of networks with
complex topologies and arbitrary communication demands,
such as non-multicast and functional demands. We proposed to
take a new approach based on systematic graph operations that
can be applied recursively to simplify large networks, so as
to facilitate the application of computational bounding tools.
Besides its generality, another motivation for such a recursive
graph-based approach is that it lends itself to tractable “divide-
and-conquer” algorithms for analyzing very large networks
and allows computation to be traded off against tightness of
obtained bounds according to the extent of simplification.

Techniques proposed for networks of directed noiseless
point-to-point links (bit pipes) can be readily applied to
networks of noisy multi-terminal channels by using the results
of Koetter et al. [9] to replace each noisy link with a bounding
model consisting of such bit pipes. However, it may be
possible to obtain better bounds by developing simplification
tools that are directly applicable to noisy networks. Thus,we
will seek to extend the above work to networks containing
noisy broadcast, multiple access and interference links.

APPENDIX A
DETERMINISTIC BROADCAST CHANNEL

Deterministic broadcast channels (DBC) are spacial cases
of general broadcast channels. In aK-user DBC,

P((Y1, . . . ,YK) = (y1, . . . ,yK)|X = x) ∈ {0,1}.

In other words, since in a BC the capacity region only depends
on the marginal distributions [13], aK-user DBC can be

3Note that in the case of multicast, since it is known that capacity-achieving
codes do not require such communication over feedback loops, the capacity
region remains unchanged under both definitions, even in thecase of cyclic
graphs.
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Fig. 12. Deterministic broadcast channel

described byk functions( f1, . . . , fk) where

fi : X → Yi, (A-1)

andYi = fi(X) for i ∈ {1,2, . . . ,k}. In (A-1), X and Yi refer
to the channel input alphabet and the output alphabet of the
ith channel respectively.

The capacity region of ak-user DBC can be described by
the union of the set of rates(R1,R2, . . . ,Rk) satisfying

∑
i∈A

Ri ≤ H(YA),∀A ⊂ {1, . . . ,k}, (A-2)

for someP(X) [14], [15] .
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