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Abstract—One major open problem in network coding is of the network by equivalent or bounding models with fewer
to characterize the capacity region of a general multi-sowre |inks. At each step of the process, one component of the
multi-demand network. There are some existing computatioal network is replaced by a simpler structure with the same

tools for bounding the capacity of general networks, but theg . . .
computational complexity grows very quickly with the size & inputs and outputs. The model is an upper bounding model

the network. This motivates us to propose a new hierarchical if all functions that can be implemented across the original
approach which finds upper and lower bounding networks of network can also be implemented across the model. The

smaller size for a given network. This approach sequentia) model is a lower bounding model if all functions that can
replaces components of the network with simpler structures be implemented across that model can also be implemented

i.e., with fewer links or nodes, so that the resulting netwok th . tIf th del is both
is more amenable to computational analysis and its capacity across the given component. € same model Is both an

provides an upper or lower bound on the capacity of the origial  UpPer bounding model and a lower bounding model for a_given
network. The accuracy of the resulting bounds can be bounded component, then the component and its model are equivalent.

as a function of the link capacities. Surprisingly, we are ate to  \Where possible, we try to find upper and lower bounds that
simplify some families of network structures without any lcss in have identical structures, since bounding the accurachef t
accuracy. resulting capacity bounds is easier when the topologiebef t
upper and lower bounding networks match.

The organization of this paper is as follows. Section II

Finding the network coding capacity of networks with gendescribes the system model. The problem of finding equivalen
eral topologies and communication demands is a challengioig bounding networks of smaller size and the properties of
open problem, even for networks consisting of noiselesstpoisuch networks is discussed in Section Ill. Sections IV and
to-point links. Information theoretic inequalities can bsed V describe a variety of operations for finding such networks.
to bound network capacities, but it is in general a comple3ection VI treats accuracy bounds. The networks considered
task to find the best combination of inequalities to applyn this paper are assumed to be acyclic. The effect of cycles
While various bounds (e.g. [1], [2], [2], [3]) can be obtaineand delay is discussed in Section VII. Finally, Section VIII
by clever choices of inequalities, we would like to haveoncludes the paper.
systematic general techniques for bounding the capacity in
arbitrary network problems. We hope to derive these bounds Il. SYSTEM MODEL
in a way that allows us to bound the accuracy of the obtainedWe mainly use the model and notation introduced in [10].
bounds and to trade off tightness and computation. The OPe network is modeled by an acyclic directed gragh=
outer bound [4], which gives the tightest outer bound inplie(?/, £), where ¥ and £ C ¥ x ¥ denote the set of nodes
by Shannon-type inequalities and has been implemente@asdhd links, respectively. Each directed lik= (v1,v2) € E
software programs Information Theoretic Inequalitiesvero represents a noiseless link of capadiy between the nodes
(ITIP) [5] and XITIP [6], has complexity exponential inv; andv, in AL, For each node, let In(v) and Outv) denote
the number of links in the network and can thus only b#he set of incoming and outgoing links of nodeespectively.
used to compute capacity bounds for relatively small proble We assume that the source nodg$ énd sink nodes®)
instances. Inner bounds can be obtained by restrictingtaite are distinct, i.e.,.S7 = 0, and each source (sink) node
to scalar linear, vector linear or abelian codes e.g. [1],48t has only outgoing (incoming) links. There is no loss of
the complexity of such approaches also grows quickly in tlgenerality in this assumption since any network that vesat
network size. This motivates us to seek systematic tools filrese conditions can be modified to form a network that
bounding the capacity of a network by the capacity of anothsatisfies these conditions and has the same capacity. Aftee t
network with fewer links and characterizing the differemge modifications, each nodec 7/ falls into one of the following
capacity. categories: i) source nodes)( i) sink nodes (') and iii) relay

In this paper we introduce a novel approach for analyzimgpdes (). Relay nodes have both incoming and outgoing links,
capacity regions of acyclic networks consisting of capded and they do not observe any external information. Their role
noiseless links with general demands. Inspired by [9], ws to facilitate data transfer from the source nodes to thk si
employ a hierarchical network analysis that replaces gieagodes.

I. INTRODUCTION
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A subnetwork A\s = (1%, Es) of network AL = (V,E) is subnetworkAj with the same number of input (source) and
constructed based on a subset of relay nages! as follows. output (sink) nodes (writted\y C A2) if all functions{ fi }ics
The set of sources and sinks of the subnetwiglare defined of sources that can be reconstructed at the sinkgafan also
asSs={ve V:vé¢ L,V € L, (vV) € E}, andZs = {ve be reconstructed at the sinks @f can also be reconstructed
V:vég I,V € I, (V,v) € E}. Then, V5= SsU LU%Z, and at the sinks ofAA5. Here, each functiorf;, for t € 7, is a
Es={ec E:e=(vV),vV € Vs}. function of the information sources that are available arce

A coding scheme of block length for this network is nodes. Subnetwork®} andA; are equivalent ifAj C A% and
described as follows. Each source nade S observes some A, C Aj.
messageMs € Xs = {1,2,...,2"™s}, Each sink nodda € 7 When deriving upper and lower bounding networks, it is
is interested in recovering some of the messages that desirable to find upper and lower bounding networks that have
observed by source nodes. LBft) C S denote the set of the same topologies. In this case, we can bound the differenc
source nodes that the notlés interested in recovering. Thebetween the capacity of a netwofl{ and capacitie® (A{)
coding operations performed by each node can be categoriaed R () of lower and upper bounding networkg and A(,
as follows using a bound from [11]. Note that by having identical graphs

1) Encoding functions performed by the source nodewe€ also require that all links have non-zero capacity in both

For eachs € §, ande € Out(s), the encoding function networks.

corresponding to linke is described as For comparing two networkg{ and Ay which have iden-
Ce tical topologies, define the difference factor betwekgnand
ge:Xs—){l,Z,...,Z } (1) %as
2) Relay functions performed at realy nodesvi S|J7, R Ce(AQ)
then for eacte € Out(v), the relay function correspond- AN, ANu) = max (5)

ez Ce(AA()’

whereCe(A{) andCe(A) denote the capacities of the lirk
is A and Ay, respectively. Note thaf\(Af, AL) > 1. Let R
(Ru) denote the capacity region &ff (Ay). Then

ing to the linke is described as

ge: [ {1,2,....2%%} 5 {1,2,....2%C}. (2
eeln(v)

3) Finally, for eacht € 7', and eachs € 3(t), a decoding

function is defined as RCRC Ry, (6)
o [1{L2...2% =X (3) Wwhile
In(t

s o Ry C BN, AR ©)
A rate vectorR corresponding to the sdfRs}scs is said to
be achievable on network(, if for any € > 0, there exists IV. BASIC SIMPLIFICATION OPERATIONS
large enough and a coding scheme of block lemggluch that ~ One of the simplest operations for deriving an upper-
for allt € 7 andse B(t) bounding network for a given network is merging nodes.

P(I\7I§t) LX) <, @) Coalescing two nodes is equivalent to adding two links of

infinite capacity from each of them to the other one. This is

whereM{ denotes the reconstruction of messagigat node Precisely the approach employed in cut-set bounds. Because

t. Let R (A() denote the set of achievable rates on netwgrk Of these infinite-capacity links, combining nodes, unlessed
Throughout the paper, vectors are denoted by bold uppMSEly, potentlally can result in very loose bOUndS.- HOWE-VG

case letters, e.gA, B, etc. Sets are denotes by calliWe show that in some cases, nodes can be combined without

graphic upper-case letters, g, B, etc. For a vectoA = affecting the network capacity. One simple example is when
(a1,a2,...,a,) of lengthn and a setF c {1,2,...,n}, A, the sum of the capacities of the incoming links of a nade
denotes a vector of lengtl¥ | formed by the elements of the'S Ies§ that the capacity of each qf its outgoing links. Irs thi
vectorA whose indices are in the s@tin the order they show Situation, the node can be combined with all nodesuch
up in A. that (v,w) € £.
Another possible operation for getting upper or lower
lll. EQUIVALENT AND BOUNDING NETWORKS bounding networks is reducing or increasing the link capac-
The problem we consider is defined formally as follows. Faties. As a special case of such operations, one can reduce

a given networkA/, we wish to find a network” with fewer the capacity of a link to zero which is the same as deleting
links for which the set of achievable rates either bouRd$9() the link. In some cases reducing/increasing link capacite
from below @ (N) C R(N))), boundsR (A’) from above helpful in simplifying the network.
(R(N) € R(N)) or describes it perfectlyR (N) = R(N)). Another type of operation for simplifying networks is based
We take a hierarchical approach, sequentially applying opa network cut-sets. A cu® between two sets of nodeB)
erations to simplify the given network. Following [9], eactand M4 is a partition of the network node® into two sets
operation replaces a subnetwork of the network with a bourde; and 7% such that#i C V1, Wh C 1%. The capacity of a
ing model. Subnetwork\ is an upper bounding model for acut is defined as the sum of capacities of the forward links of



X X
the cut, i.e. links(v,w) such thatv e 74,w € 7%. Links (v,w) ' 2

such thatv € 75, w € 1} are called backward links of the cut. rv ra
For example, if we find a minimum cut separating a sink from
its corresponding sources and all other sink nodes, andecbnn
the forward links directly to the sink node while preservaig rs
the backward links, this results in an upper-bounding ngtwo
If instead of keeping the backward links, we delete them, a y
lower-bounding network is obtained. In the case where there
are no backward links, this procedure results in an equivale
network. We can of course repeat this procedure for every
sink.

Another simplification operation involves removing a setnd then(1+a)b bits received fromk, to n(1-+a)c bits sent
4 of links or components and possibly replacing it witfo nodey.
additional capacity that might be spread over the remaining!n order to run the same code oig, consider using the
network. A simple lower bounding network can be obtaingdetworkm times, wherem is chosen such thatm/(1+a)n
by removing a set4, while an upper bounding networkandm/(1+a)n are both integers. Note that sinads rational
can be obtained from replacing a setby adding sufficient by assumption, it is always possible to find sunhLet k; =
capacity to the remaining network to be able to carry arfym/(1+a)nand ko £ m/(14a)n.
information that could have been carried by the getFor During thesem channel uses the intersection node at the
example, if the remaining network contains paths from tHgeft hand side receivesia bits fromx; and mb bits from x,.
inputs to the Outputs of the Sﬂ, we can formulate a linear This is equal to the bits received by the intersection node
program, based on generalized flows, to find the minimuth A2 duringma/(1+a)an=kz coding sessions. Therefore,
factor k by which scaling up the capacities of the remaininES'ng the code used of\;, these bits can be mapped into
links uniformly gives an upper bounding netwériince the ken(1+a)c=mc bits that will be sent toy. Similarly, the
lower bounding network obtained by just removing the s&umber of bits received by the intersection node on the right
q differs from the upper bounding network by the Sca"n?and Side durinm Channel uses iS equal to the bItS that W0u|d
factor k, this gives a multiplicative bound ok — 1 on the have been received by the intercession node\@rduring ky
potential capacity difference associated with the uppet afoding sessions.

Fig. 1. A Y-network

lower bounding operations. . o
Lemma 1 serves as a useful tool in our network simplifica-
V. Y-NETWORKS AND GENERALIZATIONS tions. For an example of how to employ this result, consider

Consider the network shown in Fig. 1 consisting of fouthe network shown in Fig. 3. This network can be considered
nodes and three directed links with capacitiesr,,r3). This as a combination of two overlapping Y-networks.
topology is probably the simplest network in which nodes are
sharing resources to send their information. We will refer t
such a network as a Y-netwolk(ry,r2,r3).

Now consider the network shown in Fig. 2 which consists
of two Y-networks with shared input and output nodes. The
following lemma shows that in some special cases this nétwor
is equivalent to another Y-network. This simplification ueds
the number of links by 3 and the number of nodes by 1.

Lemma 1. Consider the network shown in Fig. 2, when
d=aa, b=ab andc¢=ac. This network is equivalent ta,

a Y-networkY((1+a)a, (14 a)b,(1+a)c). Fig. 2. 2 Y-networks with shared source and sink nodes andragprelay
Proof: Clearly, a Y-networkY((1+a)a, (14 a)b,(1+ links

a)c) is an outer bound for the network of Fig. 2. Hence, we

only need to show that it also serves as an inner bound. Lemma 2: Let B £ biLry- If Ba+ (1—B)c <d, then the

For the rest of the proof assume tloais a rational number network shown in Fig. 3 is equivalent to a Y-netwofka, b+
(If it is not rational, it can be approximated by rationab/,c).
numbers with arbitrary precision). Proof: Clearly a Y-networkY(a,b+b',c) is an upper-

Consider a code of block lengththat runs on network\,. bounding network for the network of Fig. 3. We show that if
The middle node maps the(1+ a)a bits received fromx; the constraints in the lemma is satisfied, it also serves as a

lower-bounding network.

10ne way to think of this is to associate a commodity with edok br To find a lower bounding network. consider breaking the
path segment 4. Conversions between commodities take place accordi ’

to the link capacity ratios im. The linear program minimizek subject to r](']nks in Fig' 3 into paraIIeI links as in Fig' 4, Whgm:
flow conservation of these commodities. a;+ap+as, b="bs+by+bs, etc. The network contains two
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Fig. 3.  Two nodes communicating with one sink node via twayeatodes
Fig. 5. Breaking the network in Fig. 3 into two Y-networks

capacity-disjoint Y-networks as illustrated in Fig. 5. Qyoal
is to combine these two Y-networks by applying Lemma 1,
and in order to be able to do this, we requite= d; = aay,
by =aby andcy =dy = % The combination of these two
Y-networks will be a Y-networkY ((1+ a)ay, (14 a)by, (14
a)cy) which is a lower-bounding network for our original
network. Now choosing; =b, by =b’ anda = % from the
link capacities constraints, we should have

b/

Za <
(1+ b)al <a,

/

b <d 8
Ba1+ Ci=da. (8) Fig. 6. Generalization of the network of Fig. 3

From these inequalities, ffa+ (1— f3)c < d, we can choose
a; = (1-P)aandc; = (1—B)c and get a lower-bounding Y-

networkY (a,b+ b/, c). i belb 5d>a

i. b=b —d>2¢,
ii. b>b—-d>c

Again consider the network shown in Fig. 3 where all
the links have capacity 1 except for the link of capadity
From Lemma 2, fod > 0.5x 1+ 0.5x 1 =1, this network
is equivalent to a Y-networK (1,2,1). Our proof approach in
Lemma 2 does not say anything about the case wtietel.

It might be the case that even for some valdes 1, still this
equivalence holds. As we show through an example this cannot
happen, and fod < 1 the Y-network ofY(1,2,1) is a strict
upper bound for our network. Assume that and (by,bg)

are available ax; andx, respectively, wherd; € {0,1}. The

goal is reconstructindp;b, + biby + bs at nodey, where all
operations are irGF(2). This can be done easily in the Y-
networkY(1,2,1), but is impossible in the original network
ford < 1.

Fig. 6 shows a generalization of the network of Fig. 3, where
Fig. 4. Breaking the links in Fig. 3 into parallel links instead of 2 intermediate nodes, there krel intermediate
nodes. Letng £ 1, aj £ by /bo, foric {1,...,k},

[ |
In order to get a better understanding of the required
constraint stated in Lemma 2, consider the following specia _
cases: is1



we get Lemma 3.
Lemma 3: If, for i € {1,...,k},
i—1 k

Z)ajcl+ Zajal <d, 9) Eg g A pair of upper and lower bounding networks for thewwek of
p— = ig. 3.
1= =l

and c
1—|—_z (of
=1 min(b/,c—d) min(b’, c)
By extending the proof of Lemma 2 to this more general case, d d

then the network shown in Fig. 6 is equivalent to a Y-network
Y(a § bi,c) (da,b+b',8c) denoted byA;. Comparing the link capacities
e o . of the upper and lower bounding Y-networks, their differenc
Another possible generalization of a Y-network is shown ipyctor is A(Af, AG) = 8. If d < Ba+ (1—P)c, thend < 1,
Fig. 7. Here, while the number of relay nodes is kept as tWeyeaning that the bounds become very loose in such cases.
the number of source nodes is increased. For this network, werg solve this problem, consider another possible pair of up-
can prove Lemma 4 with straightforward extension of Lemrr@er and lower bounding networks shown in Fig. 8, which have

2. . a topology different than a Y-network. Here the assumptson i
Lemma 4: Fori={2,....k}, let that d < c. It is easy to check that these are indeed upper
A b and lower bounding networks. For deriving the upper-bound,
Bi = H the incoming information from linksa and b are assumed

to be transmitted directly to the final node, and since the
incoming capacity of the final node ¢ the information sent
n n to it from link b’ can be captured by a direct link of capacity
d> i;Bia-F i;(l— Bi)c, (10) min(b’, c). For the lower bound, sinaé< c, all the information
. ) ) . on link c can be directed to the final node. By this strategy,
the two intermediate nodes can be combined without changltrp.% remaining unused capacity of linkis c—d which can
the performance. be dedicated to link. If min(c—d,b) = b/, thenc < d + b,
then the upper and lower bounding networks coincide, and we
have an equivalent network. The more interesting case isiwhe
c>d+b, and therefore mifc—d,b’) = c—d. In this case the
difference factor of the upper and lower bounding netwosks i
at least - d/c. Choosing the best bound depending on the
link capacities, givera,b,b’ andc the worst difference factor
is

Then, if

d c
Ba+ (1-B)c’ c+pa+ (1-P)c
As an example, for the case where-b=b' = c=1, the worst
case difference factor is.® which corresponds ta = 0.5.
This means that choosing the best pair of bounds for difteren
values ofd, the difference factor of our selected pair is always
lower bounded by .
Fig. 7. Another generalization of the network of Fig. 3 We conclude this section by discussing how the approach in

the section generalizes to a larger class of network tojpedog

Again consider the network shown in Fig. 3, and assun§eonsider the networkAj shown in Fig. 9. A Y-network
thatd < Ba+ (1—B)c. As shown in the previous section, a¥ (¥ a,y bi,y ¢i) is always an upper bound for the network
Y-network Y (a,b+b',c), A(, serves as a strict upper bound\a. On the other hand, if we can show, as in the proof of
for the network of Fig. 3. In order to get a lower boundingemma 2, thatAj contains two capacity-disjoint Y-networks
Y-network, we reduce the capacities of the lirkandc by a of the formY(aya,aybi,ayc) and Y((1—-a)y &, (1 -
factor 8, such thatd = Bda+ (1— B)3c. Hence, a)ybi,(1-a)yc) thenY(ya,ybi,yc) is also a lower

d bound for, and thus equivalent t@§. Subfigures (b) and (c)
= provide two simple examples of networks where this is the
Ba+(1-PB)c case. This construction can also be generalized by reglacin
and from our assumption9 d < 1. Using this, we can again the basicY-shaped topology with star-shaped topologies with
invoke Lemma 2 and get a lower-bounding Y-network odrbitrary numbers of inputs and outputs.

: d
rrynmax{ 1-— E} = (11)

z
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(a) NetworkAj
on A4, rate vectoR — &1, wherel denotes an all-one vector
y of length|$|, is achievable o\, as well.

One such example is the case of multicast networks. In that
case, the capacity of the network is determined by the values
of the cuts from the sources to the sinks. Therefore, since
removing a link of capacitg does not change the values of

zb+(l-e  the cuts by more thas, the capacity of the network will not
be affected by more than
Another example, is the case where all sources are con-
nected directly by a link to a super-source node which has
therefore access to the information of all sources. Without
z loss of generality, lets = {1,2,...,|S|}. As before, assume
(b) Example 1 (c) Example 2 that each sink nodee 7 is interested in recovering a subset
of sources denoted b¥(t).

Fig. 9. A family of components that can be replaced with aniatent  Theorem 1: For the described network with a super source-
component. The labels represent the link capacities, whatlsfy a=a; +

a+...8n, b=b1+by+...bm C=C1+Co+...q, and 0< r < 1. node and arbitrary demands, removing a link of capacitgn
change the capacity region by at maest
Proof:
VI|. EFFECT OF LINK CAPACITIES Assume that the rate vectBr= (R]_, R2, ey R\S\) is achiev-

able onAj. Since in the single source case, capacity regions
Consider two networks\q and AL which have identical corresponding to zero and asymptotically zero probabdity
topologies and link capacities except for some Imkvhich errors coincide [12], we can assume there exist a coding
has capacityCe1 in A3 and capacityCe2 < Ce1 In Ap. Let  scheme of block lengtim that achieves rat® on A; with
R1 and R, denote the set of achievable rates & and A2  zero probability of error.
respectively. The question is how this difference affetis t Based on this zero-error code, we construct another code
performances of these two networks. One way of doing thisr network A\, that achieves rat® — €1 with asymptotically
comparison is based on what was mentioned earlier, i.e.,z@ro probability of error.
compute the ratio betwedly; andCe,. However, this might By our assumption about the network structure, the super
not always give the best possible bound. The reason is thagaurce-node observes a message vektor (Mg, ..., M),
might be case that whilge 1 andCe> are both small comparedwhereMs € {1,2,...,2"%s}, for se {1,2,...,|S|}.
to the capacity region of the network(A{, Au) = Ce1/Ce2 Now consider the linke = (v1,v2) in network A3 which
is very large. In this section, we study this problem in morgas been removed in netwofi. During the coding process
details. on A}, the bits sent across this link can take on at most
Note that the link of capacit€e1 in network A4 into two 2™ different values. Consider binning the message vectors
parallel links of capacitie€e1 —Ceo and Cep. Clearly this M = (Ml,Mz,...,Mm) into 2" different bins based on the
process does not affect the capacity regionAgf By this bit stream sent over this link during their transmissiomc8i
transformation, network\5 is equivalent to this new network the code is a deterministic code, each message vector only
with link of capacitye 2 Ce1 —Ce1 being removed. Therefore, corresponds to one bin. Since there exi8&s2Fs distinct
in the rest of this section, instead of changing the capafity message vectors, based on the Pigeonhole principle, thiére w
link, we assume that a link of capacityis removed as shown be at least one bin with more thdt2ss R—¢) message vectors.
in Fig. 10, and prove that at least in some cases changing enote the message vectors contained in this bin by the set
capacity of a link bye cannot have an effect larger tharon M.
the set of achievable rates, i.e., if the rate veB@s achievable  In A%, no message can be sent fremto v, through linke.



Therefore, in order to run the code 3§ on networkAs, we Therefore,
need to specify the assumption of nogeabout the message

that it would have received from node in AG. Let nodev, H(Uza) =H(Us) —H(Ug 2)

assume that it always receives the bit pattern correspgndin > n(z Rs—¢) — z H (Us)

to the bin containingMp. Making this assumption and having SES ses\4

the rest ofA; to perform as i\, it is clear that all message > n(z Rs—€) — z NnRs

vectors inp can be delivered with zero probability of error T & sS4

on AL as well. In other words, if the input to the super source —n( z Rs—€). (15)
node in AL is one of the message vectors i, then each 5

sinkt € 7 recovers its intended messadg ;) with probability

one. In the rest of the proof we show how this Sé can be  Itis easy to check that the poiftty, r2,...,rs) =n(R—¢l)
used to deliver independent information to different reess satisfies all inequalities required by (12). Hence, using th
over networkAb. networkA, as a DBC, the rate vect®& — ¢ can be transmitted

Define random vectolJ = (Uy,Up,...,Uj5) to have a to nodes in7s. _ _
uniform distribution over the elements 6f. For each input ~ We now argue that the described DBC code, with no extra
vectorU, each sink node, recoversg ;) perfectly. effort, delivers_the rate vecttR—.s on networkA& to all sinks,

The described model with inpus, and ouputsUp ), for not just those inZ. The reason is that.for each message vector
te T is a deterministic broadcast channel (DBGyhose M € . and consequently for each inpuf all sink nodes in
capacity region is known. Therefore, we can employ this D that are interested in recovering a souscee., for allt € 7e.
to deliver information or\. such thatB(t)_: s, receiveMs with prob_ablhty one. Hence, if

Before doing this, we slightly change the set of sink nodeon the described coding scheme r&els delivered to one of
and replace the sét of sink& by T, as described in the em, then the rest are able to receive the same data stream at

N rate Rs as well. ]

following. This modification does not affect the functioial ; . .
For some simple cases of multi-source multi-demand case

of the network, but simplifies the statement of the prooﬁetworks for instance when the link of capacitis directl
Divide each sink nodé into |B(t)| sink nodes, such that each ' Pactys y

one has access to all the information available to the nlooleconnected to one of the sources, the same result still holds,

but is only interested in reconstructing one of the sources. l.e. removing that link cannot change the capacny region by
. . : more thane. However, for the general case, it remains open

Te denote this expanded set of sinks. Consider a subgdt . . .

; , as to how much removing a link of capacitycan affect the

size|S| of Z¢ such that each sourees S is recovered by one capacity region of the network

of the sinks in7Zs. Since each sink irZg only recovers one pacity reg )

source, hence there should be a one-to-one correspondence

between the elements ¢f and Zz. VII. CYCLES AND DELAYS

Now consider the DBC with input) and output{U }tc . In [13], the capacity of a channel is defined in terms of
Since the code is zero-error, and there is a one-to-one Cjis per channel use. In the case where there are no cycles,
respondence between the elementssa@nd s, {Us}scs can  this definition is equivalent to defining capacity in terms of
be replaced by{Us}scs. The capacity region of this DBC, aspits transmitted per unit time. However, we do not know
explained in Appendix A, can be described by the set of rat@hether in a general network with cycles and delays, these

(r1,rz,...,r)) satisfying two definitions, i.e., bits per channel use versus bits pér un
time, could result in different capacity regions. For ex&mp
z rs < H(Ug), (12) consider two networks\y and A\, that are identical except
s€a for a single component cycle, illustrated in Fig. 11.44 the

transmission delay fromy to vz is larger than im\; due to the
for all 4 c S. From our construction, added noder, assuming that each link introduces unit delay.
Now, we do not know whether achieving capacity@ncould
H(Usg) = H(U,U Us) require intera(_:tive communicatiqn over a feedback Ioope_lwh
S L2 S| each successive symbol transmittedvipylepends on previous
n( z Rs—€). (13) symbols received from, and vice versa. If we try to run the
se$ same code oM\, the number of symbols per unit time that
can be exchanged by nodes and v, is decreased because

On the other hand, for eacA C § of the additional delay introduced by node. Hence, if the
rate is defined in terms of bits communicated per unit time,
H(Us) =H(Ugz) +H(Ug\ a). (14) this additional delay will reduce the capacity region. Huere

if the capacity is defined in terms of bits communicated per
channel use, by letting each node wait until it has received
2DBCs and their capacity regions are briefly described in AppeA. the information it requires to generate its next symbol, the



Vo
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(a) Component of\j (b) Component ofA,

Fig. 11.
node

Changing the delay between two nodes by introdueingextra

delivered rates and consequently the capacity region will n
be affected?
In most of the operations introduced in this paper, the

Y1 = f1(X)
Yo = f2(X)
X DBC
Y1 = fe1(X)
Yic = f(X)
Fig. 12. Deterministic broadcast channel

number of hops between nodes is different in the originelescribed by functions(f, ..., fx) where

network compared to its simplified version. Therefore, such
operations in a cyclic graph with delay can potentially d@an

fi: X — 9%, (A-1)

the capacity region in ways that are not predicted by oandY; = fj(X) for i € {1,2,... k}. In (A-1), X and 9 refer

analysis. Hence, in this paper we have restricted ourseltesthe channel input alphabet and the output alphabet of the

to the case of acyclic graphs. However, studying the efféct i channel respectively.
these operations in a general network with cycles remains aghe capacity region of &-user DBC can be described by

a question for further study.

VIIl. CONCLUSIONS
In this paper, we proposed new techniques for efficiently

the union of the set of rategdRy, Ry, ..., Ry) satisfying

Y R <H(Ya),¥AC{1,....k}, (A-2)

iea

approximating or bounding the capacity of networks witfPr someP(X) [14], [15] .

complex topologies and arbitrary communication demands,
such as non-multicast and functional demands. We proposed t
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can be applied recursively to simplify large networks, so
to facilitate the application of computational boundingl
Besides its generality, another motivation for such a r&ear
graph-based approach is that it lends itself to tractakigde- 1]
and-conquer” algorithms for analyzing very large networké
and allows computation to be traded off against tightness 4]
obtained bounds according to the extent of simplification.
) . ) 3]
Techniques proposed for networks of directed nmseleés
point-to-point links (bit pipes) can be readily applied to
networks of noisy multi-terminal channels by using the hassu 4]
of Koetter et al. [9] to replace each noisy link with a bourgdin g
model consisting of such bit pipes. However, it may be
possible to obtain better bounds by developing simplifizati (6]
tools that are directly applicable to noisy networks. Thus, 171
will seek to extend the above work to networks containings]
noisy broadcast, multiple access and interference links.

(0]
APPENDIX A (101
DETERMINISTIC BROADCAST CHANNEL [11]

Deterministic broadcast channels (DBC) are spacial cases
of general broadcast channels. IiKauser DBC, [12]

P((Yj_,...,YK) = (yla---7YK)|X = X) S {0, 1}.

In other words, since in a BC the capacity region only depend4l
on the marginal distributions [13], &-user DBC can be [15]

(23]

SNote that in the case of multicast, since it is known that cipachieving
codes do not require such communication over feedback |dbpscapacity
region remains unchanged under both definitions, even ircdise of cyclic
graphs.
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