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1Cascade, Triangular and Two Way Source
Coding with degraded side information at the

second user
Yeow-Khiang Chia∗, Haim Permuter† and Tsachy Weissman‡

Abstract

We consider the Cascade and Triangular rate-distortion problems where the same side information is available at
the source node and User 1, and the side information available at User 2 is a degraded version of the side information
at the source node and User 1. We characterize the rate-distortion region for these problems. For the Cascade setup,
we showed that, at User 1, decoding and re-binning the codeword sent by the source node for User 2 is optimum.
We then extend our results to the Two way Cascade and Triangular setting, where the source node is interested in
lossy reconstruction of the side information at User 2 via a rate limited link from User 2 to the source node. We
characterize the rate distortion regions for these settings. Complete explicit characterizations for all settings are also
given in the Quadratic Gaussian case. We conclude with two further extensions: A triangular source coding problem
with a helper, and an extension of our Two Way Cascade settingin the Quadratic Gaussian case.

Index Terms

Cascade source coding, Triangular source coding, Two way source coding, Quadratic Gaussian, source coding
with a helper

I. I NTRODUCTION

The problem of lossy source coding through a cascade was firstconsidered by Yamamoto [1], where a source
node (Node 0) sends a message to Node 1, which then sends a message to Node 2. Since Yamamoto’s work, the
cascade setting has been extended in recent years through incorporating side information at either Nodes 1 or 2.
In [2], the authors considered the Cascade problem with sideinformationY at Node 1 andZ at Node 2, with the
Markov ChainX−Z−Y . The authors provided inner and outer bounds for this setup and showed that the bounds
coincide for the Gaussian case. In [3], the authors considered the Cascade problem where the side information is
known only to the intermediate node and provided inner and outer bounds for this setup.

Of most relevance to this paper is the work in [4], where the authors considered the Cascade source coding
problem with side information available at both Node 0 and Node 1 and established the rate distortion region for
this setup. The Cascade setting was then extended to the Triangular source coding setting where an additional rate
limited link is available from the source node to Node 2.PSfrag replacements
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Fig. 1: Cascade source coding setting
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Fig. 2: Triangular source coding setting.

In this paper, we extend the Cascade and Triangular source coding setting in [4] to include additional side
informationZ at Node 2, with the constraint that the Markov chainX−Y −Z holds. Under the Markov constraint,
we establish the rate distortion regions for both the Cascade and Triangular setting. The Cascade and Triangular
settings are shown in Figures 1 and 2, respectively. In the Cascade case, we show that, at Node 1, decoding and
re-binning the codeword sent by Node 0 to Node 2 is optimum. Toour knowledge, this is the first setting where
the decode and re-bin scheme at the Cascade is shown to be optimum. It appears to rely quite heavily on the fact
that the side information at Node 2 is degraded: Since Node 1 can decode any codeword intended for Node 2,
there is no need for Node 0 to send additional information forNode 1 to relay to Node 2 on theR1 link. Node
0 can therefore tailor the transmission for Node 1 and rely onNode 1 to decode and minimize the rate required
on theR2 link. We also extend our results to two way source coding through a cascade, where Node 0 wishes to
obtain a lossy version ofZ through a rate limited link from Node 2 to Node 0. This setup generalizes the two way
source coding result found in [5]. The Two Way Cascade SourceCoding and Two Way Triangular Source Coding
are given in Figures 3 and 4, respectively.PSfrag replacements
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Fig. 3: Setup for two way cascade source coding.

The rest of the paper is as follows. In section II, we provide the formal definitions and problem setup. In section III,
we present and prove our results for the aforementioned settings. In section IV, we consider the Quadratic Gaussian
case. We show that Gaussian auxiliary random variables suffice to exhaust the rate distortion regions and their
parameters may be found through solving a tractable low dimensional optimization problem. We also showed that
our Quadratic Gaussian settings may be transformed into equivalent settings in [4] where explicit characterizations
were given. In the Quadratic Gaussian case, we also extendedour settings to solve a more general case of Two
Way Cascade source coding. In section V, we extend our triangular source coding setup to include a helper, which
observes the side informationY , and has a rate limited link to Node 2. Our Two Way Cascade Quadratic Gaussian
Extension is shown in Figure 5 (in section IV), while our helper extension is shown in Figure 7 (in section V). We
conclude the paper in section VI.
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Fig. 4: Setup for two way triangular source coding.

II. PROBLEM DEFINITION

In this section, we give formal definitions for the setups under consideration. We will follow the notation of [6,
Lecture 1]. Unless otherwise stated, all logarithms in thispaper are taken to base 2. The source sequences under
consideration,{Xi ∈ X , i = 1, 2, . . .}, {Yi ∈ Y, i = 1, 2, . . .} and {Zi ∈ Z, i = 1, 2, . . .}, are drawn from finite
alphabetsX , Y andZ respectively. For anyi ≥ 1, the random variables(Xi, Yi, Zi) are independent and identically
distributed according top(x, y, z) = p(x)p(y|x)p(z|y); i.e. X − Y −Z. The distortion measure between sequences
is defined in the usual way. Letd : X × X̂ → [0,∞). Then,

d(xn, x̂n) :=
1

n

n
∑

i=1

d(xi, x̂i).

A. Cascade and Triangular Source coding

We give formal definition for the Triangular source coding setting (Figure 2). The Cascade setting follows from
specializing the definitions for the Triangular setting by settingR3 = 0. A (n, 2nR1 , 2nR2 , 2nR3 , D1, D2) code for
the Triangular setting consists of 3 encoders

f1 (at Node 0) : Xn × Yn → M1 ∈ [1 : 2nR1 ],

f2 (at Node 1) : Yn × [1 : 2nR1 ] → M2 ∈ [1 : 2nR2 ],

f3 (at Node 0) : Xn × Yn → M3 ∈ [1 : 2nR3 ],

and 2 decoders

g1 (at Node 1) : Yn × [1 : 2nR1 ] → X̂n
1 ,

g2 (at Node 2) : Zn × [1 : 2nR2 ]× [1 : 2nR3 ] → X̂n
2 ,

such that

E

[

1

n

n
∑

i=1

dj(Xi, X̂j,i)

]

≤ Dj, j=1,2,

whereX̂n
1 = g1(Y

n, f1(X
n, Y n)) andX̂n

2 = g2(Z
n, f2(Y

n, f1(X
n, Y n)), f3(X

n, Y n)).
Given (D1, D2), a (R1, R2, R3) rate tuple for the triangular source coding setting is said to be achievable if,

for any ǫ > 0 andn sufficiently large, there exists a(n, 2n(R1+ǫ), 2n(R2+ǫ), 2n(R3+ǫ), D1 + ǫ,D2 + ǫ) code for the
Triangular source coding setting.

The rate-distortion region, R(D1, D2), is defined as the closure of the set of all achievable rate tuples.
Cascade Source coding: The Cascade source coding setting corresponds to the case whereR3 = 0.

3



B. Two way Cascade and Triangular Source Coding

We give formal definitions for the more general Two way Triangular source coding setting shown in Figure 4. A
(n, 2nR1 , 2nR2 , 2nR3 , 2nR4 , D1, D2, D3) code for the Triangular setting consists of 4 encoders

f1 (at Node 0) : Xn × Yn → M1 ∈ [1 : 2nR1 ],

f2 (at Node 1) : Yn × [1 : 2nR1 ] → M2 ∈ [1 : 2nR2 ],

f3 (at Node 0) : Xn × Yn → M3 ∈ [1 : 2nR3 ],

f4 (at Node 2) : Zn × [1 : 2nR2 ]× [1 : 2nR3 ] → M4 ∈ [1 : 2nR4 ],

and 3 decoders

g1 (at Node 1) : Yn × [1 : 2nR1 ] → X̂n
1 ,

g2 (at Node 2) : Zn × [1 : 2nR2 ]× [1 : 2nR3 ] → X̂n
2 ,

g3 (at Node 0) : Xn × Yn × [1 : 2nR4 ] → Ẑn,

such that

E

[

1

n

n
∑

i=1

dj(Xi, X̂j,i)

]

≤ Dj , j=1,2 and,

E

[

1

n

n
∑

i=1

d3(Zi, Ẑi)

]

≤ Dj ,

whereX̂n
1 = g1(Y

n, f1(X
n, Y n)), X̂n

2 = g2(Z
n, f2(Y

n, f1(X
n, Y n)), f3(X

n, Y n)) and
Ẑn = g3(X

n, Y n, f4(Z
n, f2(Y

n, f1(X
n, Y n)), f3(X

n, Y n))).
Given (D1, D2, D3), a (R1, R2, R3, R4) rate tuple for the two way triangular source coding setting is said to be

achievable if, for any ǫ > 0 andn sufficiently large, there exists a(n, 2n(R1+ǫ), 2n(R2+ǫ), 2n(R3+ǫ), 2n(R4+ǫ), D1+
ǫ,D2 + ǫ,D3 + ǫ) code for the two way triangular source coding setting.

The rate-distortion region, R(D1, D2, D3), is defined as the closure of the set of all achievable rate tuples.
Two way Cascade Source coding: The Two way Cascade source coding setting corresponds to thecase where

R3 = 0. In the special case of Two way Cascade setting, we will useR3, rather thanR4, to denote the rate from
Node 2 to Node 0.

III. M AIN RESULTS

In this section, we present our main results, which are single letter characterizations of the rate-distortion regions
for the four settings introduced in section II. The single letter characterizations for the Cascade source coding
setting, Triangular source coding setting, Two way Cascadesource coding setting and Two way Triangular source
coding setting are given in Theorems 1, 2, 3 and 4, respectively. While Theorems 1 to 3 can be derived as special
cases of Theorem 4, for clarity and to illustrate the development of the main ideas, we will present Theorems 1 to 4
separately. In each of the Theorems, we will present a sketchof the achievability proof and proof of the converse.
Details of the achievability proofs for Theorems 1-4 are given in Appendix A. Proofs of the cardinality bounds for
the auxiliary random variables appearing in the Theorems are given in Appendix B.

A. Cascade Source Coding

Theorem 1 (Rate Distortion region for Cascade source coding): R(D1, D2) for the Cascade source coding set-
ting defined in section II is given by the set of all rate tuples(R1, R2) satisfying

R2 ≥ I(U ;X,Y |Z),

R1 ≥ I(X ; X̂1, U |Y )

4



for somep(x, y, z, u, x̂1) = p(x)p(y|x)p(z|y)p(u|x, y)p(x̂1|x, y, u) and functiong2 : U × Z → X̂2 such that

E dj(X, X̂j) ≤ Dj , j=1,2.

The cardinality ofU is upper bounded by|U| ≤ |X ||Y| + 3.
If Z = ∅, this region reduces to the Cascade source coding region given in [4]. If Y = X , this setup reduces to

the well-known Wyner-Ziv setup [7].
The coding scheme follows from a combination of techniques used in [4] and a new idea of decoding and

re-binning at the Cascade node (Node 1). Node 0 generates a descriptionUn intended for Nodes 1 and 2. Node 1
decodesUn and then re-bins it to reduce the rate of communicatingUn to Node 2 based on its side information. In
addition, Node 0 generateŝXn

1 to satisfy the distortion requirement at Node 1. We now give asketch of achievability
and a proof of the converse.
Sketch of Achievability

We first generate2n(I(X,Y ;U)+ǫ) Un sequences according to
∏n

i=1 p(ui). For eachun and yn sequences, we
generate2n(I(X̂

n
1 ;X|U,Y )+ǫ) X̂n

1 sequences according to
∏n

i=1 p(x̂i|ui, yi). Partition the set ofUn sequences into
2n(I(U ;X|Y )+2ǫ) bins,B1(m10). Separately and independently, partition the set ofUn sequences into2n(I(U ;X,Y |Z)+2ǫ)

bins,B2(m2), m2 ∈ [1 : 2n(I(U ;X,Y |Z)+2ǫ)].
Given xn, yn, Node 0 looks for a jointly typical codewordun; that is, (un, xn, yn) ∈ T

(n)
ǫ . If there are more

than one, it selects a codeword uniformly at random from the set of jointly typical codewords. This operation
succeeds with high probability since there are2n(I(X,Y ;U)+ǫ) Un sequences. Node 0 then looks for ax̂n

1 that is
jointly typical with un, xn, yn. This operation succeeds with high probability since thereare2n(I(X̂1;X|U,Y )+ǫ) x̂n

1

sequences. Node 0 then sends out the bin indexm10 such thatun ∈ B1(m10) and the index corresponding tôxn
1 .

This requires a total rate ofR1 = I(U ;X |Y ) + I(X̂n
1 ;X |U, Y ) + 3ǫ.

At Node 1, it recoversun by looking for the uniqueun sequence inB1(m10) such that(un, yn) ∈ T
(n)
ǫ . Since

there are only2n(I(X,Y ;U)−I(U ;X|Y )−ǫ) = 2n(I(U ;Y )−ǫ) sequences in the bin, this operation succeeds with high
probability. Node 1 reconstructsxn as x̂n

1 . Node 1 then sends outm2 such thatun ∈ B2(m2). This requires a rate
of R2 = I(U ;X,Y |Z) + 2ǫ.

At Node 2, note that sinceU − (X,Y ) − Z, the sequences(Un, Xn, Y n, Zn) are jointly typical with high
probability. Node 2 looks for the uniqueun in B2(m2) such that(un, zn) ∈ T

(n)
ǫ . From the Markov Chain

U − (X,Y ) − Z, I(U ;X,Y ) − I(U ;X,Y |Z) = I(U ;Z). Hence, this operation succeeds with high probability
since there are only2n(I(U ;Z)−ǫ) un sequences in the bin. It then reconstructs usingx̂i = g2(ui, zi) for i ∈ [1 : n].

Proof of Converse: Given a (n, 2nR1 , 2nR2 , D1, D2) code, defineUi = (X i−1, Y i−1, Zi−1, Zn
i+1,M2). We

have the following.

nR2 ≥ H(M2)

≥ H(M2|Z
n)

= I(Xn, Y n;M2|Z
n)

=

n
∑

i=1

I(Xi, Yi;M2|Z
n, X i−1, Y i−1)

=

n
∑

i=1

H(Xi, Yi|Z
n, X i−1, Y i−1)−H(Xi, Yi|Z

n, X i−1, Y i−1,M2)

=

n
∑

i=1

H(Xi, Yi|Zi)−H(Xi, Yi|Zi, Ui)

=

n
∑

i=1

I(Xi, Yi;Ui|Zi).

Next,

nR1 ≥ H(M1)

≥ H(M1|Y
n, Zn)

5



= H(M1,M2|Y
n, Zn) = I(Xn;M1,M2|Y

n, Zn)

=

n
∑

i=1

I(Xi;M1,M2|X
i−1, Y n, Zn)

=

n
∑

i=1

H(Xi|X
i−1, Y n, Zn)−H(Xi|X

i−1, Y n, Zn,M1,M2)

=

n
∑

i=1

H(Xi|Yi, Zi)−H(Xi|X
i−1, Y n, Zn,M1,M2)

(a)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|X
i−1, Y n, X̂1i, Z

n,M1,M2)

≥
n
∑

i=1

H(Xi|Yi)−H(Xi|X̂1i, Yi, Ui)

=

n
∑

i=1

I(Xi; X̂1i, Ui|Yi).

Step (a) follows from the Markov assumptionX − Y −Z and the fact that̂X1i is a function of(Y n,M2). Next,
let Q be a random variable uniformly distributed over[1 : n] and independent of(Xn, Y n, Zn). We note that
XQ = X , YQ = Y , ZQ = Z and

R2 ≥ I(XQ, YQ;UQ|Q,ZQ)

= I(XQ, YQ;UQ, Q|ZQ)

= I(X,Y ;UQ, Q|Z),

R1 = I(XQ; X̂1Q, UQ|YQ, Q)

= I(X ; X̂1Q, UQ, Q|Y ).

DefiningU = (UQ, Q) andX̂1Q = X̂1 then completes the proof. The existence of the reconstruction functiong2
follows from the definition ofU . The Markov ChainsU − (X,Y )−Z andZ − (U,X, Y )− X̂1 required to factor
the probability distribution stated in the Theorem also follow from definitions ofU andX̂1.

We now extend Theorem 1 to the Triangular Source coding setting.

B. Triangular Source Coding

Theorem 2 (Rate Distortion Region for Triangular Source Coding): R(D1, D2) for the Triangular source coding
setting defined in section II is given by the set of all rate tuples (R1, R2, R3) satisfying

R1 ≥ I(X ; X̂1, U |Y ),

R2 ≥ I(X,Y ;U |Z),

R3 ≥ I(X,Y ;V |U,Z)

for somep(x, y, z, u, v, x̂1) = p(x)p(y|x)p(z|y)p(u|x, y)p(x̂1|x, y, u)p(v|x, y, u) and functiong2 : U×V×Z → X̂2

such that

E dj(X, X̂j) ≤ Dj , j=1,2.

The cardinalities for the auxiliary random variables can beupper bounded by|U| ≤ |X ||Y|+4 and|V| ≤ (|X ||Y|+
4)(|X ||Y|+ 1).
If Z = ∅, this region reduces to the Triangular source coding regiongiven in [4].

The proof of the Triangular case follows that of the Cascade case, with the additional step of Node 0 generating
an additional descriptionV n that is intended for Node 2. This description is then binned to reduce the rate, with
the side information at Node 2 beingUn andZn. Node 2 first decodesUn and thenV n.
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Sketch of Achievability
The Achievability proof is an extension of that in Theorem 1.The additional step we have here is that we

generate2n(I(V ;X,Y |U)+ǫ) V n sequences according to
∏n

i=1 p(vi|ui) for eachun sequence, and bin these sequences
to 2n(I(V ;X,Y |U,Z)+2ǫ) bins,B3(m3), m3 ∈ [1 : 2nR3 ]. To send from Node 0 to Node 2, Node 0 first finds avn

sequence that is jointly typical with(un, xn, yn). This operation succeeds with high probability since we have
2n(I(V ;X,Y |U)+ǫ) vn sequences. We then send outm3, the bin number forvn. At Node 2, from the probability
distribution, we have the Markov Chain(V, U) − (X,Y )− Z. Hence, the sequences are jointly typical with high
probability. Node 2 reconstructs by looking for uniquevn ∈ B3(m3) such that(un, vn, zn) are jointly typical. This
operation succeeds with high probability since the number of sequences inB3(m3) is 2n(I(V ;Z|U)−ǫ). Node 2 then
reconstructs using the functiong2.

Proof of Converse: The converse is proved in two parts. In the first part, we derive the required inequalities
and in the second part, we show that the joint probability distribution can be restricted to the form stated in the
Theorem.

Given a(n, 2nR1 , 2nR2 , 2nR3 , D1, D2) code, defineUi = (X i−1, Y i−1, Zi−1, Zn
i+1,M2) andVi = (Ui,M3). We

omit proof of theR1 andR2 inequalities since it follows the same steps as in Theorem 1.We have

nR1 ≥
n
∑

i=1

I(Xi; X̂1i, Ui|Yi),

nR2 ≥
n
∑

i=1

I(Xi, Yi;Ui|Zi).

For R3, we have

nR3 ≥ H(M3)

≥ H(M3|M2, Z
n)

= I(Xn, Y n;M3|M2, Z
n)

=
n
∑

i=1

H(Xi, Yi|M2, Z
n, X i−1, Y i−1)−H(Xi, Yi|M2,M3, Z

n, X i−1, Y i−1)

=

n
∑

i=1

H(Xi, Yi|Ui, Zi)−H(Xi, Yi|Ui, Vi, Zi)

=

n
∑

i=1

I(Xi, Yi;Vi|Ui, Zi).

Next, letQ be a random variable uniformly distributed over[1 : n] and independent of(Xn, Y n, Zn). Defining
U = (UQ, Q), V = (VQ, Q) and X̂1Q = X̂1 then gives us the bounds stated in Theorem 2. The existence ofthe
reconstruction functiong2 follows from the definition ofU and V . Next, from the definitions ofU , V and X̂1,
we note the following Markov relation:(U, V, X̂1) − (X,Y ) − Z. The joint probability distribution can then be
factored asp(x, y, z, u, v, x̂1) = p(x, y, z)p(u|x, y)p(x̂1, v|x, y, u).

We now show that it suffices to restrict the joint probabilitydistributions to the form
p(x, y, z)p(u|x, y)p(x̂1|x, y, u)p(v|x, y, u) using a method in [4, Lemma 5]. The basic idea is that since theinequali-
ties derived rely onp(x̂1, v|x, y, u) only through the marginalsp(x̂1|x, y, u) andp(v|x, y, u), we can obtain the same
bounds even when the probability distribution is restricted to the formp(x, y, z)p(u|x, y)p(x̂1|x, y, u)p(v|x, y, u).

Fix a joint distributionp(x, y, z)p(u|x, y)p(x̂1, v|x, y, u) and let p̂(v|x, y, u) and p̂(x̂1|x, y, u) be the induced
conditional distributions. Note thatp(x, y, z)p(u|x, y)p(x̂1, v|x, y, u) andp(x, y, z)p(u|x, y)p̂(x̂1|x, y, u)p̂(v|x, y, u)
have the same marginalsp(x, y, z, u, v) and p(x, y, z, u, x̂1), and the Markov condition(U, V, X̂1) − (X,Y ) − Z
continues to hold underp(x, y, z)p(u|x, y)p̂(x̂1|x, y, u)p̂(v|x, y, u).

Finally, note that the rate and distortion constraints given in Theorem 2 depends on the joint distribution only
through the marginalsp(x, y, z, u, v) andp(x, y, z, u, x̂1). It therefore suffices to restrict the probability distributions
to the formp(x, y, z)p(u|x, y)p̂(x̂1|x, y, u)p̂(v|x, y, u).
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C. Two Way Cascade Source Coding

We now extend the source coding settings to include the case where Node 0 requires a lossy version ofZ.
We first consider the Two Way Cascade Source coding setting defined in section II (we will useR3 to denote
the rate on the link from Node 2 to Node 0). In the forward part,the achievable scheme consists of using the
achievable scheme for the Cascade source coding case. Node 2then sends back a description ofZn to Node 0,
with Xn, Y n, Un

1 as side information at Node 0. For the converse, we rely on thetechniques introduced and also
on a technique for establishing Markovity of random variables found in [5].

Theorem 3 (Rate Distortion Region for Two Way Cascade Source Coding): R(D1, D2, D3) for Two Way Cas-
cade Source Coding is given by the set of all rate tuples(R1, R2, R3) satisfying

R1 ≥ I(X ; X̂1, U1|Y ),

R2 ≥ I(U1;X,Y |Z),

R3 ≥ I(U2;Z|U1, X, Y ),

for somep(x, y, z, u1, u2, x̂1) = p(x)p(y|x)p(z|y)p(u1|x, y)p(x̂1|u1, x, y)p(u2|z, u1) and functionsg2 : U1 ×Z →
X̂2 andg3 : U1 × U2 ×X × Y → Ẑ such that

E(dj(X, X̂j)) ≤ Dj , j = 1, 2

E(d3(Z, Ẑ)) ≤ D3.

The cardinalities for the auxiliary random variables can beupper bounded by|U1| ≤ |X ||Y| + 5 and |U2| ≤
|U1|(|Z|+ 1).
If Y = X , this region reduces to the result for two way source coding found in [5].
Sketch of Achievability

The forward path (R1 andR2) follows from the Cascade source coding case in Theorem 1. The reverse direction
follows by the following. For eachun

1 , we generate2n(I(U2;Z|U1)+ǫ) un
2 sequences according to

∏n

i=1 p(u2i|u1i)
and bin them to2n(I(U2;Z|U1,X,Y )+2ǫ) bins,B3(m3), m3 ∈ [1 : 2nR3 ]. Node 2 finds aun

2 sequence that is jointly
typical with (un

1 , z
n). Since there are2n(I(U2;Z|U1)+ǫ) sequences, this operation succeeds with high probability.It

then sends out the bin indexm3, which the jointly typicalvn sequence is in. At Node 0, it recoversun
2 by looking

for the unique sequence inB3(m3) such that(un
1 , u

n
2 , x

n, yn) are jointly typical. From the Markov condition
U2 − (U1, Z)− (X,Y ) and the Markov Lemma [8], the sequences are jointly typical with high probability. Next,
since there are only2n(I(U2;X,Y |U1)−ǫ) sequences in the bin, the probability that we do not find the unique (correct)
sequence goes to zero withn. Finally, Node 0 reconstructs using the functiong3.

Proof of Converse: Given a (n, 2nR1 , 2nR2 , 2nR3 , D1, D2, D3) code, defineU1i = (M2, X
i−1, Y i−1, Zn

i+1)
andU2i = M3. We have

nR1 ≥ H(M1)

≥ H(M1|Y
n, Zn)

= H(M1,M2|Y
n, Zn)

= I(Xn;M1,M2|Y
n, Zn)

=

n
∑

i=1

I(Xi;M1,M2|X
i−1, Y n, Zn)

=

n
∑

i=1

H(Xi|X
i−1, Y n, Zn)−H(Xi|X

i−1, Y n, Zn,M1,M2)

=

n
∑

i=1

H(Xi|Yi, Zi)−H(Xi|X
i−1, Y n, Zn,M1,M2)

(a)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|X
i−1, Y n, Zn,M1,M2)
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(b)
=

n
∑

i=1

H(Xi|Yi)−H(Xi|X
i−1, X̂1i, Y

n, Zn,M1,M2)

≥
n
∑

i=1

H(Xi|Yi)−H(Xi|X̂1i, Yi, U1i)

=

n
∑

i=1

I(Xi; X̂1i, U1i|Yi),

where step (a) follows from the Markov assumptionXi − Yi −Zi and step (b) follows fromX̂1i being a function
of (Y n,M1).

Consider nowR2

nR2 = H(M2)

≥ H(M2|Z
n)

= I(M2;X
n, Y n|Zn)

=
n
∑

i=1

H(Xi, Yi|Z
n, X i−1, Y i−1)−H(Xi, Yi|Z

n, X i−1, Y i−1,M2)

≥
n
∑

i=1

I(Xi, Yi;U1i|Zi).

Next, considerR3

nR3 = H(M3)

≥ H(M3|X
n, Y n)

≥ I(M3;Z
n|Xn, Y n)

= H(Zn|Xn, Y n)−H(Zn|Xn, Y n,M3)

= H(Zn|Xn, Y n)−H(Zn|Xn, Y n,M2,M3)

≥
n
∑

i=1

H(Zi|Xi, Yi)−H(Zi|Z
n
i+1, X

i, Y i,M2,M3)

=

n
∑

i=1

I(Zi;U1i, U2i|Xi, Yi)

=

n
∑

i=1

I(Zi;U2i|Xi, Yi, U1i),

where the last step follows from the Markov relationZi − (Xi, Yi)−U1i which we will now prove, together with
other Markov relations between the random variables. The first two Markov relations below are used for factoring
the joint probability distribution while Markov relationsthree and four are used for establishing the distortion
constraints. We will use the following lemma from [5].

Lemma 1: Let A1, A2, B1, B2 be random variables with joint probability mass functions mf p(a1, a2, b1, b2) =
p(a1, b1)p(a2, b2). Let M̃1 be a function of(A1, A2) andM̃2 be a function of(B1, B2, M̃1). Then,

I(A2;B1|M̃1, M̃2, A1, B2) = 0, (1)

I(B1; M̃1|A1, B2) = 0, (2)

I(A2; M̃2|M̃1, A1, B2) = 0. (3)

Now, let us show the following Markov relations:
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1) Zi − (Xi, Yi)− (U1i, X̂1i): To establish this relation, we show thatI(Zi;U1i, X̂1i|Xi, Yi) = 0.

I(Zi; X̂1i, U1i|Xi, Yi) = I(Zi; X̂1i,M2, X
i−1, Y i−1, Zn

i+1|Xi, Yi)

≤ I(Zi; X̂1i,M2, X
i−1, Y i−1, Xn

i+1, Y
n
i+1, Z

n
i+1|Xi, Yi)

= I(Zi;X
i−1, Y i−1, Xn

i+1, Y
n
i+1, Z

n
i+1|Xi, Yi)

= 0.

2) U2i − (Zi, U1i)− (X̂1i, Xi, Yi): Note thatU2i = M3. Consider

I(X̂i, Xi, Yi;U2i|Zi, U1i) ≤ I(X̂i, X
n
i , Y

n
i ;M3|Z

n
i , X

i−1, Y i−1,M2)

= I(Xn
i , Y

n
i ;M3|Z

n
i , X

i−1, Y i−1,M2).

Now, using Lemma 1, setA1 = (X i−1, Y i−1), B1 = Zi−1, A2 = (Xn
i , Y

n
i ), B2 = (Zn

i ), M̃2 = M3 and
M̃1 = M2. Then, using the third expression in the Lemma, we see thatI(Xn

i , Y
n
i ;M3|Zn

i , X
i−1, Y i−1,M2) =

0.
3) Zi−1 − (U1i, Zi)− (Xi, Yi): Consider

I(Xi, Yi;Z
i−1|U1i, Zi) ≤ I(Xn

i , Y
n
i ;Zi−1|X i−1, Y i−1, Zn

i ,M2)

= H(Zi−1|X i−1, Y i−1, Zn
i ,M2)−H(Zi−1|Xn, Y n, Zn

i ,M2)

≤ H(Zi−1|X i−1, Y i−1, Zn
i )−H(Zi−1|Xn, Y n, Zn

i )

= H(Zi−1|X i−1, Y i−1)−H(Zi−1|X i−1, Y i−1)

= 0.

4) (Xn
i+1, Y

n
i+1)− (U1i, U2i, Xi, Yi)− Zi: Consider

I(Xn
i+1, Y

n
i+1;Zi|U1i, U2i, Xi, Yi) ≤ I(Xn

i+1, Y
n
i+1;Z

i|M2,M3, Z
n
i+1, X

i, Y i).

Applying the first expression in the Lemma withA2 = (Xn
i+1, Y

n
i+1), A1 = (X i, Y i), B1 = Zi andB2 =

Zn
i+1 givesI(Xn

i+1, Y
n
i+1;Zi|U1i, U2i, Xi, Yi) = 0.

Distortion constraints
We show that the auxiliary definitions satisfy the distortion constraints by showing the existence of functions

x̂∗
2i(U1i, Zi) and ẑ∗i (U1i, U2i, Xi, Yi) such that

E(d2(Xi, x̂
∗
2i(U1i, Zi))) ≤ E(d2(Xi, x̂2i(M2, Z

n)))

E(d2(Zi, ẑ
∗
i (U1i, U2i, Xi, Yi))) ≤ E(d2(Xi, ẑ3i(M3, X

n, Y n, Zn))),

wherex̂2i(M2, Z
n) and ẑi(M3, X

n, Y n) are the original reconstruction functions.
To prove the first expression, we have

E(d2(Xi, x̂2i(M2, Z
n))) =

∑

p(xi, yi, zn,m2)d2(xi, x̂2i(m2, z
n))

(a)
=

∑

p(u1i, z
i)p(xi, yi|u1i, z

i)d2(xi, x̂
′
2i(u1i, zi, z

i−1))

=
∑

p(u1i, zi, z
i−1)p(xi, yi|u1i, zi)d2(xi, x̂

′
2i(u1i, zi, z

i−1)),

where (a) follows from defininĝx′
2i(u1i, zi, z

i−1) = x̂2i(m2, z
n) for all xi−1, yi−1 and the last step follows from

the Markov relationZi−1 − (U1i, Zi)− (Xi, Yi). Finally, defining
(zi−1)∗ = argminzi−1

∑

xi,yi
p(xi, yi|u1i, zi)d2(xi, x̂

′
2i(u1i, zi, z

i−1)) andx̂∗
2i(u1i, zi) = x̂′

2i(u1i, zi, (z
i−1)∗) shows

that E(d2(Xi, x̂
∗
2i(U1i, Zi))) ≤ E(d2(Xi, x̂2i(M2, Z

n))) as required.

To prove the second expression, we follow similar steps. Considering the expected distortion, we have

E(d3(Zi, ẑi(M3, X
n, Y n)))

=
∑

p(zni , x
n, yn,m3)d3(zi, ẑi(m3, x

n, yn))
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=
∑

p(u1i, u2i, xi, yi, x
n
i+1, y

n
i+1)p(zi|u1i, u2i, xi, yi, x

n
i+1, y

n
i+1)d3(zi, ẑ

′
3i(u1i, u2i, xi, yi, x

n
i+1, y

n
i+1))

=
∑

p(u1i, u2i, xi, yi, x
n
i+1, y

n
i+1)p(zi|u1i, u2i, xi, yi)d3(zi, ẑ

′
i(u1i, u2i, xi, yi, x

n
i+1, y

n
i+1)),

where the last step uses Markov relation 4. The rest of the proof is omitted since it uses the same steps as the
proof for the first distortion constraint.

Finally, using the standard time sharing random variableQ as before and definingU1 = (U1Q, Q), U2 = U2Q,
X̂1 = X̂1Q, we obtain the required outer bound for the rate-distortionregion.

We now turn to the final case of Two Way Triangular Source Coding.

D. Two Way Triangular Source Coding

Theorem 4 (Rate Distortion Region for Two Way Triangular Source Coding): R(D1, D2, D3) for Two Way Tri-
angular Source Coding is given by the set of all rate tuples(R1, R2, R3, R4) satisfying

R1 ≥ I(X ; X̂1, U1|Y ), (4)

R2 ≥ I(X,Y ;U1|Z), (5)

R3 ≥ I(X,Y ;V |Z,U1), (6)

R4 ≥ I(U2;Z|U1, V,X, Y ), (7)

for somep(x, y, z, u1, u2, v, x̂1) = p(x)p(y|x)p(z|y)p(u1|x, y)p(x̂1|x, y, u1)p(v|x, y, u1)p(u2|z, u1, v) and func-
tions g2 : U1 × V × Z → X̂2 andg3 : U1 × U2 × V × X × Y → Ẑ such that

E(d1(X, X̂1)) ≤ D1, (8)

E(d2(X, X̂2)) ≤ D2, (9)

E(d3(Z, Ẑ)) ≤ D3. (10)

The cardinalities for the auxiliary random variables are upper bounded by|U1| ≤ |X ||Y|+6, |V| ≤ |U1|(|X ||Y|+3)
and |U2| ≤ |U1||V|(|Z|+ 1).
Sketch of Achievability

The forward direction (R1, R2, R3) for Two-Way triangular source coding follows the procedure in Theorem 2.
For the reverse direction (R4), it follows Theorem 3 with(U1, V ) replacing the role ofU1 in Theorem 3.

Proof of Converse: Given a(n, 2nR1 , 2nR2 , 2nR3 , 2nR4 , D1, D2, D3) code, defineU1i = (M2, X
i−1, Y i−1, Zn

i+1),
U2i = M4 andVi = (M3, U1i). TheR1 andR2 bounds follow the same steps as in Theorem 3. ForR3, we have

nR3 ≥ H(M3)

≥ H(M3|M2, Z
n)

= I(Xn, Y n;M3|M2, Z
n)

=

n
∑

i=1

H(Xi, Yi|M2, Z
n, X i−1, Y i−1)−H(Xi, Yi|M2,M3, Z

n, X i−1, Y i−1)

≥
n
∑

i=1

H(Xi, Yi|Ui, Zi)−H(Xi, Yi|U1i, Vi, Zi)

=
n
∑

i=1

I(Xi, Yi;Vi|U1i, Zi).

Next, consider

nR4 = H(M4)

≥ H(M4|X
n, Y n)

≥ I(M4;Z
n|Xn, Y n)

= H(Zn|Xn, Y n)−H(Zn|Xn, Y n,M4)
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= H(Zn|Xn, Y n)−H(Zn|Xn, Y n,M2,M3,M4)

≥
n
∑

i=1

H(Zi|Xi, Yi)−H(Zi|Z
n
i+1, X

i, Y i,M2,M3,M4)

=

n
∑

i=1

I(Zi;U1i, Vi, U2i|Xi, Yi)

=

n
∑

i=1

I(Zi;U2i|Xi, Yi, Vi, U1i),

where the last step follows from the Markov relationZi−(Xi, Yi)−(Vi, U1i) which we will now prove together with
other Markov relations between the random variables. The first 2 Markov relations are for factoring the probability
distribution while Markov relations 3 and 4 are for establishing the distortion constraints.
Markov Relations

1) Zi − (Xi, Yi)− (U1i, Vi, X̂1i): To establish this relation, we show thatI(Zi; X̂1i, U1i, Vi|Xi, Yi) = 0.

I(Zi; X̂1i, U1i, Vi|Xi, Yi) = I(Zi; X̂1i,M3,M2, X
i−1, Y i−1, Zn

i+1|Xi, Yi)

≤ I(Zi; X̂1i,M3,M2, X
i−1, Y i−1, Xn

i+1, Y
n
i+1, Z

n
i+1|Xi, Yi)

= I(Zi;X
i−1, Y i−1, Xn

i+1, Y
n
i+1, Z

n
i+1|Xi, Yi)

= 0.

2) U2i − (Zi, U1i, Vi)− (X̂1i, Xi, Yi): Consider

I(X̂i, Xi, Yi;U2i|Zi, U1i, Vi) ≤ I(X̂i, X
n
i , Y

n
i ;M4|Z

n
i , X

i−1, Y i−1,M2,M3)

= I(Xn
i , Y

n
i ;M4|Z

n
i , X

i−1, Y i−1,M2,M3).

Now, using Lemma 1, setA1 = (X i−1, Y i−1), B1 = Zi−1, A2 = (Xn
i , Y

n
i ), B2 = (Zn

i ), M̃2 = M4 and
M̃1 = M2. Then, using the third expression in the Lemma, we see thatI(Xn

i , Y
n
i ;M4|Zn

i , X
i−1, Y i−1,M2) =

0.
3) Zi−1 − (U1i, Vi, Zi)− (Xi, Yi): Consider

I(Xi, Yi;Z
i−1|U1i, Vi, Zi) ≤ I(Xn

i , Y
n
i ;Zi−1|X i−1, Y i−1, Zn

i ,M2,M3)

= H(Zi−1|X i−1, Y i−1, Zn
i ,M2,M3)−H(Zi−1|Xn, Y n, Zn

i ,M2,M3)

≤ H(Zi−1|X i−1, Y i−1, Zn
i )−H(Zi−1|Xn, Y n, Zn

i )

= H(Zi−1|X i−1, Y i−1)−H(Zi−1|X i−1, Y i−1)

= 0.

4) (Xn
i+1, Y

n
i+1)− (U1i, U2i, Vi, Xi, Yi)− Zi: Consider

I(Xn
i+1, Y

n
i+1;Zi|U1i, U2i, Vi, Xi, Yi) ≤ I(Xn

i+1, Y
n
i+1;Z

i|M2,M3,M4, Z
n
i+1, X

i, Y i).

Applying the first expression in the Lemma withA2 = (Xn
i+1, Y

n
i+1), A1 = (X i, Y i), B1 = Zi andB2 =

Zn
i+1 givesI(Xn

i+1, Y
n
i+1;Zi|U1i, U2i, Xi, Yi) = 0.

Distortion Constraints
The proof of the distortion constraints is omitted since it follows similar steps to the Two Way Cascade Source

Coding case, with the new Markov relations 3 and 4, and(U1i, Vi) replacingU1i in the proof.
Using the standard time sharing random variableQ as before and definingU1 = (U1Q, Q), U2 = U2Q, X̂1 = X̂1Q

and V = VQ we obtain an outer bound for the rate-distortion region for some probability distribution of the
form p(x, y, z, u1, u2, v, x̂1) = p(x, y, z)p(u1|x, y)p(x̂1, v|x, y, u1)p(u2|z, u1, v). It remains to show that it suffices
to consider probability distributions of the formp(x, y, z)p(u1|x, y)p(x̂1|x, y, u1)p(v|x, y, u1)p(u2|z, u1, v). This
follows similar steps to proof of Theorem 2. Let

p1 = p(x, y, z)p(u1|x, y)p(x̂1, v|x, y, u1)p(u2|z, u1, v),

p2 = p(x, y, z)p(u1|x, y)p̂(x̂1|x, y, u1)p̂(v|x, y, u1)p(u2|z, u1, v),
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where p̂(x̂1|x, y, u1) and p̂(v|x, y, u1) are the marginals induced byp1. Next, note thatR1, R2, R3, R4 and the
distortion constraints depend onp1 only through the marginalsp(x, y, z, u1, u2, v) andp(x, y, z, u1, x̂1). Since these
marginals are the same forp1 andp2, the rate and distortion constraints are unchanged. Finally, note that the Markov
relations 1 and 2 implied byp1 continues to hold underp2. This completes the proof of the converse.

IV. GAUSSIAN QUADRATIC DISTORTION CASE

In this section, we evaluate the rate-distortion regions when (X,Y, Z) are jointly Gaussian and the distortion is
measured in terms of the mean square error. We will assume, without loss of generality, thatX = A + B + Z,
Y = B+Z andZ = Z, whereA, B andZ are independent, zero mean Gaussian random variables with variances
σ2
A, σ2

B andσ2
Z respectively.

A. Quadratic Gaussian Cascade Source Coding

Corollary 1 (Quadratic Gaussian Cascade Source Coding): First, we note that ifR2 < 1
2 log

σ2
A+σ2

B

D2
, then the

distortion constraintD2 cannot be met. Hence, givenD1, D2 > 0 and R2 ≥ max{ 1
2 log

σ2
A+σ2

B

D2
, 0}, the rate

distortion region for Quadratic Gaussian Cascade Source Coding is characterized by the smallest rateR1 such that
(D1, D2, R1, R2) are achievable, which is

R1 = max

{

1

2
log

σ2
A

D1
,
1

2
log

σ2
A

σ2
A|U,B

}

,

whereU = α∗A + β∗B + Z∗, Z∗ ∼ N(0, σ2
Z∗), with α∗, β∗ andσ2

Z∗ achieving the maximum in the following
optimization problem:

maximize σ2
A|U,B

subject to R2 ≥
1

2
log

σ2
U

σ2
Z∗

D2 ≥ σ2
A+B|U

The optimization problem given in the corollary can be solved following analysis in [4]. In our proof of the corollary,
we will show that the rate distortion region obtained is the same as the case when the degraded side information
Z is available to all nodes.

Converse: Consider the case when the side informationZ is available to all nodes. Without loss of generality,
we can subtract the side information away fromX andY to obtain a rate distortion problem involving onlyA+B
andB at Node 0,B at Node 1 and no side information at Node 2. Characterizationof this class of Quadratic
Gaussian Cascade source coding problem has been carried outin [4] and following the analysis therein, we can
show that the rate distortion region is given by the region inCorollary 1.

Achievability: We evaluate Theorem 1 using Gaussian auxiliaries random variables. LetU ′ = α∗X + (β∗ −
α∗)Y + Z∗ = α∗A + β∗(B + Z) + Z∗ andV be a Gaussian random variable that we will specify in the proof.
We now rewriteR1 = I(X ;U ′, X̂1|Y ) asR1 = I(X ;U ′, V |Y ) with X̂1 = V +E(X |U ′, Y ), V independent ofU ′

andY . Let g2(U ′, Z) = E(X |U ′, Z). EvaluatingR1 andR2 using this choice of auxiliaries, we have

R1 = I(X ;U ′, V |Y )

= h(A+B + Z|B + Z)− h(X |U ′, V, Y )

=
1

2
log

σ2
A

σ2
X|U ′,V,Y

,

R2 = I(X,Y ;U ′|Z)

= h(U ′|Z)− h(U ′|X,Y, Z)

=
1

2
log

σ2
α∗A+β∗B+Z∗

σ2
Z∗

=
1

2
log

σ2
U

σ2
Z∗

.
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Next, we have

σ2
X|U ′,Y = σ2

A+B+Z|α∗A+β∗(B+Z)+Z∗,B+Z

= σ2
A|α∗A+Z∗,B+Z

= σ2
A|α∗A+Z∗

= σ2
A|U,B.

If σ2
X|U ′,Y

= σ2
A|U,B

≤ D1, we setV = 0 to obtainR1 = 1
2 log

σ2
A

σ2

X|U′,Y

. If σ2
X|U ′,Y

> D1, then we choose

V = X − E(X |U ′, Y ) + Z2 whereZ2 ∼ N(0, D1σ
2
X|U ′,Y

/(σ2
X|U ′,Y

−D1)) so thatσ2
X|U ′,V,Y

= D1 and obtain

R1 = 1
2 log

σ2
A

D1
. Therefore,R1 = max{ 1

2 log
σ2
A

D1
, 1
2 log

σ2
A

σ2
A|U,B

}.

Finally, we show that this choice of random variables satisfy the distortion constraints. ForD1, note that since
E(X − X̂1)

2 = σ2
X|U ′,V,Y

, the distortion constraintD1 is always satisfied. For the second distortion constraint, we
have

E(X − X̂2)
2 = σ2

X|U ′,Z

= σ2
A+B|α∗A+β∗(B+Z)+Z∗,Z

= σ2
A+B|α∗A+β∗B+Z∗,Z

= σ2
A+B|α∗A+β∗B+Z∗

= σ2
A+B|U

≤ D2.

Hence, our choice of auxiliaryU ′ andV satisfies the rate distortion region and distortion constraints given in
the corollary, which completes our proof.

B. Quadratic Gaussian Triangular Source Coding

Corollary 2 (Quadratic Gaussian Triangular Source Coding): GivenD1, D2 > 0 andR2, R3 ≥ 0, R2 + R3 ≥
1
2 log

σ2
A+σ2

B

D2
, the rate distortion region for Quadratic Gaussian Triangular Source Coding is characterized by the

smallestR1 for which (D1, D2, R1, R2, R3) is achievable, which is

R1 = max

{

1

2
log

σ2
A

D1
,
1

2
log

σ2
A

σ2
A|U,B

}

,

whereU = α∗A+β∗B+Z∗, Z ∼ N(0, σ2
Z∗), with α∗, β∗ andσ2

Z∗ satisfying the following optimization problem.

maximize σ2
A|U,B

subject to R2 ≥
1

2
log

σ2
U

σ2
Z∗

22R3D2 ≥ σ2
A+B|U

As with Corollary 1, the optimization problem given this corollary can be solved following analysis in [4].
Converse: The converse uses the same approach as Corollary 1. Considerthe case when the side information

Z is available to all nodes. Without loss of generality, we cansubtract the side information away fromX andY
to obtain a rate distortion problem involving onlyA+B andB at Node 0,B at Node 1 and no side information
at Node 2. Characterization of this class of Quadratic Gaussian Triangular source coding problem has been carried
out in [4] and following the analysis therein, we can show that the rate distortion region is given by the region in
Corollary 2.

Achievability: We evaluate Theorem 2 using Gaussian auxiliary random variables. LetU ′ = α∗X + (β∗ −
α∗)Y + Z∗ = α∗A + β∗(B + Z) + Z∗ and V ′ = X + ηU ′ + Z3, Z3 ∼ N(0, σ2

Z3
). Following the analysis in
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Corollary 1, the inequalities for the rates are

R1 = max

{

1

2
log

σ2
A

D1
,
1

2
log

σ2
A

σ2
A|U,B

}

,

R2 ≥
1

2
log

σ2
U

σ2
Z∗

,

R3 ≥ I(X,Y ;V |Z,U ′) = I(X ;V ′|Z,U ′)

=
1

2
log

σ2
X|Z,U ′

σ2
X|Z,U ′,V ′

.

As with Corollary 1, the distortion constraintD1 is satisfied with an appropriate choice ofX̂1. For the distortion
constraintD2, we have

D2 ≥ σ2
X|Z,U ′,V ′ .

Next, note that we can assume equality forR3, since we can adjustη andσ2
Z3

so that inequality is met. Since
this operation can will only decreaseσ2

X|Z,U ′,V ′ , the distortion constraintD2 will still be met. Therefore, setting

R3 = 1
2 log

σ2

X|Z,U′

σ2

X|Z,U′,V ′
, we have

D2 ≥ σ2
X|Z,U ′,V ′

=
σ2
X|Z,U ′

22R3
.

Sinceσ2
X|Z,U ′ = σ2

A+B|U , this completes the proof of achievability.
Remark: As alternative characterizations, we show in Appendix C that the Cascade and Triangular settings in
Corollaries 1 and 2 can be transformed into equivalent problems in [4] where explicit characterizations of the rate
distortion regions were given.

C. Quadratic Gaussian Two Way Source Coding

It is straightforward to extend Corollaries 1 and 2 to Quadratic Gaussian Two Way Cascade and Triangular Source
Coding using the observation that in the Quadratic Gaussiancase, side information at the encoder does not reduce

the required rate. Therefore, the backward rate from Node 2 to Node 0 is always lower bounded by12 log
σ2
Z|B+Z

D3
.

This rate (and distortion constraintD3) can be achieved by simply encodingZ. We therefore state the following
corollary without proof.

Corollary 3 (Quadratic Gaussian Two Way Triangular Source Coding): GivenD1, D2, D3 > 0,R2, R3 ≥ 0, R2+

R3 ≥ 1
2 log

σ2
A+σ2

B

D2
and R4 ≥ max{ 1

2 log
σ2
Z|Y

D3
, 0}, the rate distortion region for Quadratic Gaussian Two Way

Triangular Source Coding is characterized by the smallestR1 for which (R1, R2, R3, R4, D1, D2, D3) is achievable,
which is

R1 = max

{

1

2
log

σ2
A

D1
,
1

2
log

σ2
A

σ2
A|U,B

}

,

whereU = α∗A+β∗B+Z∗, Z ∼ N(0, σ2
Z∗), with α∗, β∗ andσ2

Z∗ satisfying the following optimization problem.

maximize σ2
A|U,B

subject to R2 ≥
1

2
log

σ2
U

σ2
Z∗

22R3D2 ≥ σ2
A+B|U

Remark: The special case of Two Way Cascade Quadratic Gaussian Source Coding can be obtained as a special
case by settingR3 = 0.
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Next, we present an extension to our settings for which we cancharacterize the rate-distortion region in the
Quadratic Gaussian case. In this extended setting, we have Cascade setting from Node 0 to Node 2 and a triangular
setting from Node 2 to Node 0, with the additional constraintthat Node 1 also reconstructs a lossy version ofZ.
As formal definitions are natural extensions of those presented in section II, we will omit them here. The setting
is shown in Figure 5.
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Fig. 5: Extended Quadratic Gaussian Two Way source coding

Theorem 5 (Extended Quadratic Gaussian Two Way Cascade Source Coding): GivenD1, D2 > 0, 0 < DZ1
, DZ2

≤

σ2
Z|Y andR2 ≥ max{ 1

2 log
σ2
A+σ2

B

D2
, 0}, the rate distortion region for the Extended Quadratic Gaussian Two Way

Cascade Source Coding is given by the set ofR1, R3, R4, R5 ≥ 0 satisfying the following equalities and inequalities

R1 = max

{

1

2
log

σ2
A

D1
,
1

2
log

σ2
A

σ2
A|U,B

}

,

whereU = α∗A+β∗B+Z∗, Z∗ ∼ N(0, σ2
Z∗), with α∗, β∗ andσ2

Z∗ satisfying the following optimization problem.

maximize σ2
A|U,B

subject to R2 ≥
1

2
log

σ2
U

σ2
Z∗

D2 ≥ σ2
A+B|U

and

R3 ≥
1

2
log

σ2
Z|Y

DZ1

,

R3 +R5 ≥
1

2
log

σ2
Z|Y

min{DZ1
, DZ2

}
,

R4 +R5 ≥
1

2
log

σ2
Z|Y

DZ2

.

Proof:
Converse
For the forward direction(R1, R2), we note that Node 2 can only send a function of(M1, Y

n, Zn) to Nodes 0
and 1 using theR4 andR5 links. SinceM1 andY n available at both Node 0 and 1, the forward rates are lower
bounded by the setting whereZn is available to all nodes. Further, in this setting, the distortion constraintsDZ1

andDZ2
are automatically satisfied sinceZ is available at Nodes 0 and 1. Therefore,(R3, R4, R5) do not affect

the achievable(R1, R2) rates in this modified (lower bound) setting.(R1, R2) are then obtained by the observation
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in Corollary 1 that the rate distortion region obtained for our Quadratic Gaussian Cascade setting in Corollary 1 is
equivalent to the case where the side informationZ is available at all nodes.

For the reverse direction, the lower bounds are derived by letting the side information(X,Y ) to be available
at Node 2, and for side informationX to be available at Node 1. TheD1 andD2 distortion constraints are then
automatically satisfied sinceX is available at all nodes. We then observed that(R1, R2) do not affect the achievable
(R3, R4, R5) rates in this modified (lower bound) setting. The stated inequalities forR3, R4, R5 are then obtained
from standard cutset bound arguments and the fact thatX − Y − Z form a Markov Chain.

Achievability
We analyze only the backward ratesR3, R4 andR5 since the forward direction follows from Corollary 1. For

the backward rates, we now show that the rates are achievablewithout the assumption of(X,Y ) being available
at Node 2. We will rely on results on successive refinement of Gaussian sources with common side information
given in [9]. A simplified figure of the setup for analyzing thebackward rates is given in Figure 6. We have three
cases to consider.
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Case 1: DZ1
≤ DZ2

In this case, the inequalities in the lower bound reduce to

R3 ≥
1

2
log

σ2
Z|Y

DZ1

,

R4 +R5 ≥
1

2
log

σ2
Z|Y

DZ2

.

From the successive refinement results in [9], we can show that the following rates are achievable

R3 = I(U1, U2, U3;Z|Y ),

R4 = I(U2;Z|Y ),

R5 = I(U3;Z|Y, U2)

for some conditional distributionF (U1, U2, U3|Z), Ẑ1(U1, U2, U3, Y ) and Ẑ2(U1, U2, Y ) satisfying the distortion

constraints. Now, for fixedR4 ≤ 1
2 log

σ2
Z|Y

DZ2

, chooseD′(≥ DZ2
) such thatR4 = 1

2 log
σ2
Z|Y

D′ . We now choose the

auxiliary random variables and reconstruction functions in the following manner. DefineQ(x) :=
xσ2

Z|Y

σ2
Z|Y

−x
.

U1 = Z +W1 whereW1 ∼ N(0, Q(DZ1
)),

U3 = U1 +W3 whereW3 ∼ N(0, Q(DZ2
)−Q(DZ1

)),

U2 = U3 +W2 whereW2 ∼ N(0, Q(D′)−Q(DZ2
)),

Ẑ1 = E(Z|U1, Y ),

Ẑ2 = E(Z|U3, Y ).
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From this choice of auxiliary random variables, it is easy toverify the following

R3 = I(U1, U2, U3;Z|Y )

= I(U1;Z|Y )

=
1

2
log

σ2
Z|Y

DZ1

,

R4 = I(U2;Z|Y )

=
1

2
log

σ2
Z|Y

D′
,

R4 +R5 = I(U2;Z|Y ) + I(U3;Z|Y, U2)

= I(U3, U2;Z|Y )

=
1

2
log

σ2
Z|Y

DZ2

,

E(Z − Ẑ1)
2 = DZ1

,

E(Z − Ẑ2)
2 = DZ2

.

Case 2: DZ1
> DZ2

, R3 ≥ R4

In this case, the active inequalities are

R3 ≥
1

2
log

σ2
Z|Y

DZ1

,

R4 +R5 ≥
1

2
log

σ2
Z|Y

DZ2

.

From [9], the following rates are achievable

R3 = I(U1, U2;Z|Y ),

R4 = I(U2;Z|Y ),

R5 = I(U3, U1;Z|Y, U2).

First, assumeR3 ≤ 1
2 log

σ2
Z|Y

DZ2

. ChooseDZ2
≤ D′ ≤ D′′ ≤ DZ1

. We choose the auxiliary random variables and
reconstruction functions as follows.

U3 = Z +W3 whereW3 ∼ N(0, Q(DZ2
)),

U1 = U3 +W1 whereW1 ∼ N(0, Q(D′)−Q(DZ2
)),

U2 = U1 +W2 whereW2 ∼ N(0, Q(D′′)−Q(D′)),

Ẑ1 = E(Z|U1, Y ),

Ẑ2 = E(Z|U3, Y ).

From this choice of auxiliary random variables, it is easy toverify the following

R3 = I(U1, U2;Z|Y )

= I(U1;Z|Y )

=
1

2
log

σ2
Z|Y

D′
,

R4 = I(U2;Z|Y )

=
1

2
log

σ2
Z|Y

D′′
,
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R4 +R5 = I(U2;Z|Y ) + I(U3, U1;Z|Y, U2)

= I(U3, U1, U2;Z|Y )

= I(U3;Z|Y )

=
1

2
log

σ2
Z|Y

DZ2

,

E(Z − Ẑ1)
2 = D′ ≤ DZ1

,

E(Z − Ẑ2)
2 = DZ2

.

Next, considerR3 > 1
2 log

σ2
Z|Y

DZ2

andR4 > 1
2 log

σ2
Z|Y

DZ2

. Then, it is easy to see from our achievability scheme
that we can obtainR′

4 < R4, R′
3 < R3 andR5 = 0 by settingD′ = D′′ = DZ2

. Finally, consider the case where

R3 > 1
2 log

σ2
Z|Y

DZ2

and R4 ≤ 1
2 log

σ2
Z|Y

DZ2

. Then, we observe from our achievability scheme that we can achieve

R′
3 = 1

2 log
σ2
Z|Y

DZ2

< R3 for anyR4 andR5 satisfying the inequalities by settingD′ = DZ2
.

Case 3: DZ1
> DZ2

, R3 < R4

In this case, the active inequalities are

R3 ≥
1

2
log

σ2
Z|Y

DZ1

,

R3 +R5 ≥
1

2
log

σ2
Z|Y

DZ2

.

We first consider the case whereR3 ≤ 1
2 log

σ2
Z|Y

DZ2

. We exhibit a scheme for whichR′
4 = R3 (< R4) and still

satisfies the constraints. This procedure is done by lettingU2 in case 2 to be equal toU1. For DZ2
≤ D′ ≤ DZ1

,
define the auxiliary random variables and reconstruction functions as follows.

U3 = Z +W3 whereW3 ∼ N(0, Q(DZ2
)),

U1 = U3 +W1 whereW1 ∼ N(0, Q(D′)−Q(DZ2
)),

Ẑ1 = E(Z|U1, Y ),

Ẑ2 = E(Z|U3, Y ).

Then, we have the following.

R3 = I(U1;Z|Y )

=
1

2
log

σ2
Z|Y

D′
,

R′
4 = I(U1;Z|Y )

=
1

2
log

σ2
Z|Y

D′
,

R3 +R5 = I(U1;Z|Y ) + I(U3;Z|Y, U1)

= I(U3, U1;Z|Y )

= I(U3;Z|Y )

=
1

2
log

σ2
Z|Y

DZ2

,

E(Z − Ẑ1)
2 = D′ ≤ DZ1

,

E(Z − Ẑ2)
2 = DZ2

.
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Finally, we note that in the case whereR3 > 1
2 log

σ2
Z|Y

DZ2

, we can always achieveR′
3 = 1

2 log
σ2
Z|Y

DZ2

, R′
4 =

1
2 log

σ2
Z|Y

DZ2

andR′
5 = 0 by lettingD′ = DZ2

.
Remark 1: The Two-way Cascade source coding setup given in section II can be obtained as a special case by

settingR3 = R4 = 0 andDZ1
→ ∞.

Remark 2: The rate distortion region is the same regardless of whetherNode 2 sends first, or Node 0 sends first.
This observation follows from (i) our result in Corollary 1 where we showed that the rate distortion region for the
Cascade setup is equivalent to the setup where all nodes havethe degraded side informationZ; and (ii) our proof
above where we showed that the backward rates are the same as in the case where the side information(X,Y ) is
available at all nodes.

Remark 3: For arbitrary sources and distortions, the problem is open in general. Even in the Gaussian case,
the problem is open without the Markov ChainX − Y − Z. One may also consider the setting where there is a
triangular source coding setup in the forward path from Node0 to Node 2. This setting is still open, since the trade
off in sending from Node 0 to Node 2 and then to Node 1 versus sending directly to Node 1 from Node 0 is not
clear.

V. TRIANGULAR SOURCE CODING WITH A HELPER

We present an extension to our Triangular source coding setup by also allowing the side informationY to be
observed at the second node through a rate limited link (or helper). The setup is shown in Figure 7. As the formal
definitions are natural extensions of those given in sectionII, we will omit them here.
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Fig. 7: Triangular Source Coding with a helper

Theorem 6: The rate distortion region for Triangular source coding with a helper is given by the set of rate tuples

R1 ≥ I(X ; X̂1, U1|Y, Uh),

R2 ≥ I(U1;X,Y |Z,Uh),

R3 ≥ I(X,Y ;U2|U1, Uh, Z),

Rh ≥ I(Uh;Y |Z).

for somep(x, y, z, u1, u2, uh, x̂1) = p(x)p(y|x)p(z|y)p(uh|y)p(u|x, y, uh)p(x̂1|x, y, u1, uh)p(u2|x, y, u1, uh) and
function g2 : U1 × U2 × Uh ×Z → X̂2 such that

E dj(Xj , X̂j) ≤ Dj , j=1,2.

We give a proof of the converse. As the achievability techniques used form a straightforward extension of the
techniques described in Appendix A, we give only a sketch of achievability.
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Converse: Given a(n, 2nR1 , 2nR2 , 2nR3 , 2nRh , D1, D2) code, defineUhi = (Y i−1, Zi−1, Zn
i+1,Mh), U1i =

(X i−1,M2) andU2i = (Uhi, U1i,M3). Observe that we have the required Markov conditions(Xi, Zi)− Yi − Uhi

andZi − (Xi, Yi, Uhi)− (U1i, U2i). For the helper condition, we have

nRh ≥ I(Mh;Y
n|Zn)

=
n
∑

i=1

H(Yi|Zi)−H(Yi|Y
i−1,Mh, Z

n)

=

n
∑

i=1

I(Uhi;Yi|Zi).

For the other rates, we have

nR1 ≥ H(M1)

≥ H(M1|Y
n, Zn)

= H(M1,M2|Y
n, Zn) = I(Xn;M1,M2|Y

n, Zn)

=

n
∑

i=1

I(Xi;M1,M2|X
i−1, Y n, Zn)

=

n
∑

i=1

H(Xi|X
i−1, Y n, Zn)−H(Xi, Yi|X

i−1, Y n, Zn,M1,M2)

=

n
∑

i=1

H(Xi|Yi, Zi)−H(Xi, Yi|X
i−1, Y n, Zn,M1,M2)

(a)
=

n
∑

i=1

H(Xi|Yi)−H(Xi, Yi|X
i−1, Y n, X̂1i, Z

n,M1,M2,Mh)

≥
n
∑

i=1

H(Xi|Yi, Uhi)−H(Xi|X̂1i, Yi, U1i, Uhi)

=

n
∑

i=1

I(Xi; X̂1i, U1i|Yi, Uhi).

(a) follows from the Markov chain condition. Next,

nR2 ≥ H(M2|Mh)

≥ H(M2|Z
n,Mh)

= I(Xn, Y n;M2|Z
n,Mh)

=

n
∑

i=1

I(Xi, Yi;M2|Z
n, X i−1, Y i−1,Mh)

=

n
∑

i=1

H(Xi, Yi|Z
n, X i−1, Y i−1,Mh)−H(Xi, Yi|Z

n, X i−1, Y i−1,M2,Mh)

=
n
∑

i=1

H(Xi, Yi|Zi, Uhi)−H(Xi, Yi|Zi, U1i, Uhi)

=

n
∑

i=1

I(Xi, Yi;U1i|Zi, Uhi).
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Next,

nR3 ≥ H(M3)

≥ H(M3|M2,Mh, Z
n)

= I(Xn, Y n;M3|M2,MhZ
n)

=

n
∑

i=1

H(Xi, Yi|M2,Mh, Z
n, X i−1, Y i−1)−H(Xi, Yi|M2,M3,Mh, Z

n, X i−1, Y i−1)

=

n
∑

i=1

I(Xi, Yi;U2i|U1i, Uhi, Zi).

Finaly, it remains to show that the joint probability distribution induced by our choice of auxiliary random variables,
p(x)p(y|x)p(z|y)p(uh|y)p(u|x, y, uh)p(x̂1, u2|x, y, u1, uh), can be decomposed into the required form. This step
follows closely the similar step in the proof of Theorem 2, which we therefore omit.
Sketch of Achievability

The achievability follows that of Triangular source coding, with an additional step of generating a lossy description
of Y n. The codebook generation consists of the following steps

• Generate2n(I(Y ;Uh)+ǫ) Un
h sequences according to

∏n

i=1 p(uhi). Partition the set ofUn
h sequences into

2n(I(Uh;Y |Z)+2ǫ) bins,Bh(mh), mh ∈ [1 : 2n(I(Uh;Y |Z)+2ǫ)].
• Generate2n(I(X,Y,Uh;U1)+ǫ) Un

1 sequences according to
∏n

i=1 p(u1i). Partition the set ofUn
1 sequences into

2n(I(U1;X|Y,Uh)+2ǫ) bins, B1(m10). Separately and independently, partition the set ofUn sequences into
2n(I(U1;X,Y |Z,Uh)+2ǫ) bins,B2(m2), m2 ∈ [1 : 2n(I(U ;X,Y |Z)+2ǫ)].

• For each(un
1 , u

n
h, y

n) sequence, generate2n(I(X̂
n
1 ;X|U1,Y,Uh)+ǫ) X̂n

1 sequences according to
∏n

i=1 p(x̂i|u1i, uhi, yi).
• Generate2n(I(U2;X,Y |Uh,U1)+ǫ) Un

2 sequences according to
∏n

i=1 p(u2i|u1i, uhi) for each(un
1 , u

n
h) sequence,

and partition these sequences to2n(I(U2;X,Y |U1,Uh,Z)+2ǫ) bins,B3(m3).

Encoding consists of the following steps

• Helper node: The helper node (and Nodes 0 and 1) looks for aun
h sequence such that(un

h, y
n) ∈ T

(n)
ǫ . This

step succeeds with high probability since there are2n(I(Y ;Uh)+ǫ) Un
h sequences. The helper then sends out the

bin indexmh such thatun
h ∈ B(mh). The sequences(un

h, x
n, yn, zn) are jointly typical with high probability

due to the Markov Chain(X,Z)− Y − Uh.
• Node 0: Given(xn, yn, un

h) ∈ T
(n)
ǫ , Node 0 looks for a jointly typical codewordun

1 . This operation suc-
ceeds with high probability since there are2n(I(X,Y,Uh;U1)+ǫ) Un

1 sequences. Node 0 then looks for ax̂n
1

that is jointly typical with (un
1 , x

n, yn, un
h). This operation succeeds with high probability since thereare

2n(I(X̂1;X|U1,Uh,Y )+ǫ) x̂n
1 sequences.

• Node 0 also finds aun
2 sequence that is jointly typical with(un

1 , u
n
h, x

n, yn). This operation succeeds with
high probability since we have2n(I(U2;X,Y |U1,Uh)+ǫ) vn sequences.

• Node 0 then sends out the bin indexm10 such thatun
1 ∈ B1(m10) and the index corresponding tôxn

1 to Node
1. This requires a total rate ofR1 = I(U ;X |Y ) + I(X̂n

1 ;X |U, Y ) + 3ǫ to Node 1. Node 0 also sends out the
bin indexm3 such thatun

2 ∈ B(m3) to Node 2. This requires a rate ofI(U2;X,Y |U1, Uh, Z) + 2ǫ.
• Node 1 decodes the codewordun

1 and forwards the indexm2 such thatun
1 ∈ B(m2) to Node 2. This requires

a rate ofI(U1;X,Y |Z,Uh) + 2ǫ.

Decoding consists of the following steps

• Node 1: Node 1 reconstructsun
1 by looking for the uniqueUn

1 sequence inB1(m10) such that(Un
1 , U

n
h , Y

n) ∈

T
(n)
ǫ . Since there are only2n(I(X,Y,Uh;U1)−I(U1;X|Y,Uh)−ǫ) = 2n(I(U1;Uh,Y )−ǫ) sequences in the bin, this

operation succeeds with high probability. Node 1 reconstructs Xn as X̂n
1 (m10,m11). Since the sequence

(X̂n
1 , X

n) are jointly typical with high probability, the expected distortion constraint is satisfied.
• Node 2: We note that since(U1, U2, Uh, X) − Y − Z, the sequences(Un

h , U
n
1 , U

n
2 , X

n, Y n, Zn) are jointly
typical with high probability. Decoding at node 2 consists of the following steps

1) Node 2 first looks forun
h in Bh(mh) such that(un

h, z
n) ∈ T

(n)
ǫ . This operation succeeds with high

probability since there are only2n(I(Uh;Z)−ǫ un
h sequences in the bin.
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2) It then looks forun
1 in B2(m2) such that(un

h, u
n
1 , z

n) ∈ T
(n)
ǫ . SinceI(U1;X,Y, Uh)−I(U1;X,Y |Z,Uh) =

I(U1;Z,Uh) by the Markov ChainZ − (X,Y, Uh) − U1, this operation succeeds with high probability
as there are only2n(I(U1;Z,Uh)−ǫ un

1 sequences in the bin.
3) Finally, it looks for un

2 in B3(m3) such that(un
h, u

n
1 , u

n
2 , z

n) ∈ T
(n)
ǫ . Since I(U2;X,Y |Uh, U1) −

I(U2;X,Y |Z,Uh, U1) = I(U2;Z|U1, Uh) by the Markov ChainZ − (X,Y, Uh, U1)−U2, this operation
succeeds with high probability as there are only2n(I(U2;Z|U1,Uh)−ǫ un

2 sequences in the bin.
4) Node 2 then reconstructs using the functionx̂2i = g2(u1i, u2i, uhi, zi) for i ∈ [1 : n]. Since the sequences

(Xn, Zn, Un
1 , U

n
2 , U

n
h ) are jointly typical with high probability, the expected distortion constraint is

satisfied.

VI. CONCLUSION

Rate distortion regions for the cascade, triangular, two-way cascade and two-way triangular source coding settings
were established. Decoding part of the description intended for Node 2 and then re-binning it was shown to be
optimum for our Cascade and Triangular settings. We also extended our Triangular setting to the case where there
is an additional rate constrained helper, which observesY , for Node 2. In the Quadratic Gaussian case, we showed
that the auxiliary random variables can be taken to be jointly Gaussian and that the rate-distortion regions obtained
for the Cascade and Triangular setup were equivalent to the setting where the degraded side information is available
at all nodes. This observation allows us to transform our Cascade and Triangular settings into equivalent settings
for which explicit characterizations are known. Characterizations of the rate distortion regions for the Quadratic
Gaussian cases were also established in the form of tractable low dimensional optimization programs. Our Two
Way Cascade Quadratic Gaussian setting was extended to solve a more general two way cascade scenario. The case
of generally distributedX,Y, Z, without the degradedness assumption, remains open.
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APPENDIX A
ACHIEVABILITY PROOFS

Achievability proof of Theorem 1

A. Codebook Generation

• Fix the joint distributionp(x, y, z, u, x̂1) = p(x)p(y|x)p(z|y)p(u|x, y)p(x̂1|x, y, u). Let R = R10 + R11,
Rl ≥ R10 andR2 ≥ R10.

• Generate2nR10 Un(l) sequences,l ∈ [1 : 2nR1 ], each according to
∏n

i=1 p(ui).
• Partition the set ofUn sequences into2nR10 bins,B1(m10), m10 ∈ [1 : 2nR10 ]. Separately and independently,

partition the set ofUn sequences into2nR2 bins,B2(m2), m2 ∈ [1 : 2nR2 ].
• For eachun(l) andyn sequences, generate2nR11 X̂n

1 (l,m11) sequences according to
∏n

i=1 p(x̂1i|ui, yi).
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B. Encoding at the encoder

Given a(xn, yn) pair, the encoder first looks for an indexl ∈ [1 : 2nRl ] such that(un(l), xn, yn) ∈ T
(n)
ǫ , where

T
(n)
ǫ stands for the set of jointly typical sequences. If there aremore than one suchl, it selects one uniformly at

random from the set of admissible indices. If there is none, it sends an index uniformly at random from[1 : 2nRl ]1.
Next, it finds the indexm11 such that(x̂1(l,m11), u

n(m10), x
n, yn) ∈ T

(n)
ǫ . As before, if there is more than one, it

selects one uniformly at random from the set of admissible indices. If there is none, it sends an index uniformly at
random from[1 : 2nR11 ]. Finally, it sends out(m10,m11), wherem10 is the bin index such thatun(l) ∈ B1(m10).
The total rate required isR.

C. Decoding and reconstruction at Node 1

Given (m10,m11), Node 1 looks for the uniquêl such that(un(l̂), yn) ∈ T
(n)
ǫ andun(l̂) ∈ B1(l). It reconstructs

xn as x̂n(l̂, m11). If it failed to find a unique one, or if there is more than one, it outputsl̂ = 1 and performs the
reconstruction as before.

D. Encoding at Node 1

Node 1 sends an index̂m2 such thatun(l̂) ∈ B2(m̂2). This requires a rate ofR2.

E. Decoding and reconstruction at Node 2

Node 2 looks for the index̃l such that(un(l̃), yn) ∈ T
(n)
ǫ and l̃ ∈ B2(m̂2). It then reconstructsxn according to

x̂2i = g2(u
n(l̃)i, zi) for i ∈ [1 : n]. If there is no such index, it reconstructs usingl̃ = 1.

F. Analysis of expected distortion

Using the typical average lemma in [6, Lecture 2] and following the analysis in [6, Lecture 3], it suffices to
analyze the probability of “error”; i.e. the probability that the chosen sequences will not be jointly typical with the
source sequences. LetL andM11 be the chosen indices at the encoder. Note that these define the bin indicesM10

andM2. Let M̂2 be the chosen index at Node 1. Define the following error events:

1) E0 := {(Xn, Y n) /∈ T
(n)
ǫ }

2) E1 := {(Un(l), Xn, Y n) /∈ T
(n)
ǫ } for all l ∈ [1 : 2nRl ]

3) E2 := {(Un(l), Xn, Y n, Zn) /∈ T
(n)
ǫ } for all l ∈ [1 : 2nRl ]

4) E3 := {(Un(L), X̂n(L,m11), X
n, Y n) /∈ T

(n)
ǫ } for all m11 ∈ [1 : 2nR11 ]

5) E4 := {(Un(l̂), Y n) ∈ T
(n)
ǫ } for somel̂ 6= L andUn(l̂) ∈ B1(M10)

6) E5(M̂2) := {(Un(l̃), Zn) ∈ T
(n)
ǫ } for somel̃ 6= L andUn(l̃) ∈ B2(M̂2)

We can then bound the probability of error as

Pe ≤ P{
5
⋃

i=0

Ei} =
∑

P{Ei ∩ (

i−1
⋂

j=0

Ec
j )}.

• P{E0} → 0 asn → ∞ by Law of Large Numbers (LLN).
• By the covering lemma in [6, Lecture 3],P{E1 ∩ Ec

0} → 0 asn → ∞ if

Rl > I(U ;X,Y ) + (.ǫ).

• P{E2 ∩ Ec
1 ∩ Ec

0} → 0 asn → ∞ by the Markov relationU − (X,Y )−Z and the conditional joint typicality
lemma [6, Lecture 2].

• By the covering lemma in [6, Lecture 3],P{E3 ∩ (
⋂2

j=0 E
c
j } → 0 asn → ∞ if

R11 > I(X̂1;X |U, Y ) + (.ǫ).

1For simplicity, we assume randomized encoding, but it is easy to see that the randomized encoding employed our proofs canbe incorporated
as part of the (random) codebook generation stage.
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• From the analysis of the Wyner-Ziv Coding scheme (see [7] or [6, Lecture 12]),P{E4 ∩ (
⋂3

j=0 E
c
j } → 0 as

n → ∞ if

Rl −R10 < I(U ;Y )− (.ǫ).

• For the last term, we have

P{E5(M̂2) ∩ (

4
⋂

j=0

Ec
j )}=P{E5(M̂2) ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 6= M2}}

+ P{E5(M̂2) ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 = M2}}

(a)
= P{E5(M̂2) ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 = M2}}

= P{E5(M2) ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 = M2}}

≤ P{E5(M2) ∩ Ec
2}.

Step(a) follows from the observation that(
⋂4

j=0 E
c
j ) ∩ {M̂2 6= M2} = ∅. The analysis of the probability of

error therefore reduces to the analysis for the equivalent Wyner-Ziv setup withZ as the side information at
Node 2. Hence,P{E5(M̂2) ∩ (

⋂4
j=0 E

c
j )} → 0 asn → ∞ if

Rl −R2 < I(U ;Z)− (.ǫ).

EliminatingRl in the aforementioned inequalities then gives us the required rate region.
Achievability proof of Theorem 2

As the achievability proof for the Triangular Source CodingCase follows that of the Cascade Source Coding
Case closely, we will only include the additional steps required for generatingR3 and analysis of probability of
error at Node 2. The steps for generatingR1 andR2, and for reconstruction at Node 1 are the same as the Cascade
setup.

G. Codebook Generation

• Fix p(x, y, z, u, v, x̂1) = p(x)p(y|x)p(z|y)p(u|x, y)p(x̂1|x, y, u)p(v|x, y, u).
• For eachun(l), generateV n(l3), l3 ∈ [1 : 2nR̃3 ], according to

∏n

i=1 p(vi|ui). Partition the set ofvn sequences
into 2nR3 bins,B3(m3).

H. Encoding

• Given a sequence(xn, yn) andun(l) found through the steps in the Cascade Source Coding setup, the encoder
looks for an indexl3 such that(un, vn(l, l3), x

n, yn) ∈ T
(n)
ǫ . If it finds more than one, it selects one uniformly

at random from the set of admissible indices. If it finds none,it outputs an index uniformly at random from
[1 : 2nR̃3 ]. The encoder then sends outm3 such thatL3 ∈ B3(m3).

I. Decoding

The additional decoding step is in decodingL3. Node 2 looks for the uniquêl3 such that(un(l̃), vn(l̃, l̂3), z
n) ∈

T
(n)
ǫ andvn(l̂3) ∈ B3(M3). If there is none or more than one, it outputsm̂3 = 1.
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J. Analysis of Distortion

Let L, M11 andM3 be the indices chosen by the encoder. Note that these fix the indicesM10 andM2. We
follow similar analysis as in the Cascade case, with the samedefinitions for error eventsE0 to E5. We also require
the following additional error events:

7) E6 := {(Un(L), V n(L,L3), X
n, Y n) /∈ T

(n)
ǫ }.

8) E7 := {(Un(L), V n(L,L3), X
n, Y n, Zn) /∈ T

(n)
ǫ }.

9) E8(L̃) := {(Un(L̃), V n(L̃, l̂3), Z
n) ∈ T

(n)
ǫ } for somel̂3 6= L3 and l̂3 ∈ B3(M3).

To bound the probability of error, we have the following additional terms

• By the covering lemma,P(E6 ∩ Ec
2) → 0 asn → ∞ if

R̃3 > I(V ;X,Y |U) + (.ǫ).

• P(E7 ∩ Ec
6) → 0 asn∞ from the Markov condition(V, U)− (X,Y )− Z and the conditional joint typicality

lemma.
• P{E8(L̃) ∩ Ec

5(M̂2) ∩ Ec
7 ∩ (

⋂4
j=0 E

c
j ))}. We have

P{E8(L̃) ∩ Ec
5(M̂2) ∩ Ec

7 ∩ (

4
⋂

j=0

Ec
j )}

= P{E8(L̃) ∩ Ec
5(M̂2) ∩ Ec

7 ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 = M2}}+ P{E8(L̃) ∩ Ec

5(M̂2) ∩ Ec
7 ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 6= M2}}

= P{E8(L̃) ∩ Ec
5(M̂2) ∩ Ec

7 ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 = M2}}

= P{E8(L̃) ∩ Ec
5(M2) ∩ Ec

7 ∩ (

4
⋂

j=0

Ec
j ) ∩ {M̂2 = M2}}

≤ P{E8(L̃) ∩ Ec
5(M2) ∩ Ec

7}
(a)
= P{E8(L̃) ∩ Ec

5(M2) ∩ Ec
7 ∩ {L̃ = L}}

= P{E8(L) ∩ Ec
5(M2) ∩ Ec

7 ∩ {L̃ = L}}

≤ P{E8(L) ∩ Ec
7}.

(a) follows from the observation thatEc
5(M2)∩Ec

7 ∩{L̃ 6= L} = ∅. It remains to boundP{E8(L)∩Ec
7}. Note

that the analysis of this term is equivalent to analyzing thesetup whereUn is the side information at Node 0
and (Un, Zn) is the side information at Node 2. Hence,P{E8(L) ∩ Ec

7} → 0 asn → ∞ if

R̃3 −R3 < I(V ;Z|U)− (.ǫ).

We then obtain the rate region by eliminating̃R3 andRl.
Achievability proof of Theorem 3

As with the case for the Triangular setting, the proof for this case follows the Cascade setting closely. We will
therefore include only the additional steps. We have a change of notation from the Cascade setting. We will use
U1 instead ofU

K. Codebook Generation

• Fix p(x, y, z, u1, u2, x̂1) = p(x, y, z)p(u1|x, y)p(x̂1|u1, x, y)p(u2|z, u1).
• For eachun

1 (l), generate2nR3 Un
2 (l3) sequences,l ∈ [1 : 2nR̃3 ], each according to

∏n

i=1 p(u2i|u1i). Partition
the set ofUn

2 into 2nR3 bins,B3(m3).
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L. Encoding

The additional encoding step is at Node 2. Node 2 looks for an indexL3 such that(un
1 (L), u

n
2 (L,L3), Z

n) ∈ T
(n)
ǫ .

As before, if it finds more than one, it selects an index uniformly at random from the set of admissible indices. If
it finds none, it outputs an index uniformly at random from[1 : 2nR̃3 ]. It then outputs the bin indexm3 such that
L3 ∈ B3(m3).

M. Decoding

Additional decoding is required at Node 0. Node 0 looks the index l̂3 such that(un
1 (l), u

n
2 (l, l̂3), x

n, yn) ∈ T
(n)
ǫ

and l̂3 ∈ B3(m3).

N. Analysis of distortion

Let ECascade denote the event that an error occurs in the forward Cascade path. In addition, we define the
following error events.

• ETW−1(L̂) := {(Un
1 (L̂), U

n
2 (L̂, l3), Z

n) /∈ T
(n)
ǫ for all l3 ∈ [1 : 2nR̃3 ]}.

• ETW−2(L̂) := {(Un
1 (L̂), U

n
2 (L̂, L3), Z

n, Xn, Y n) /∈ T
(n)
ǫ }.

• ETW−3(L̂) := {(Un
1 (L̂), U

n
2 (L̂, l̂3), X

n, Y n) ∈ T
(n)
ǫ for somel̂3 ∈ B3(M3), l̂3 6= L3}.

• P(ETW−1(L̂) ∩ Ec
Cascade) = P(ETW−1(L) ∩ Ec

Cascade) → 0 asn → ∞ if

R̃3 > I(U2;Z|U1) + (.ǫ).

• P(ETW−2(L̂) ∩ Ec
Cascade) = P(ETW−2(L) ∩ Ec

Cascade) → 0 asn → ∞ by the strong Markov Lemma [8].
• P(ETW−3(L̂) ∩ Ec

Cascade) = P(ETW−3(L) ∩ Ec
Cascade) → 0 asn → ∞ if

R̃3 −R3 < I(U2;X,Y |U1)− (.ǫ).

Finally, eliminatingR̃3 andRl gives us the required rate region.
Achievability proof of Theorem 4

The achievability proof for Two Way Triangular source coding combines the proofs of the Triangular source
coding case and the Two-way cascade case. As it is largely similar to these proofs, we will not repeat it here. We
will just mention that the codebook generation, encoding, decoding and analysis of distortion for the forward path
from Node 0 to Node 2 follows that of the Triangular source coding case, while codebook generation, encoding,
decoding and analysis of distortion for the reverse path from Node 2 to Node 0 follows that of the Two-way Cascade
source coding case, with(U2, V ) taking the role ofU2.

APPENDIX B
CARDINALITY BOUNDS

We provide cardinality bounds for Theorems 1-4 stated in thepaper. The main tool we will use is the Fenchel-
Eggleston-Caratheodory Theorem [10].

A. Proof of cardinality bound for Theorem 1

For eachx, y, we have

fj(pX,Y |U (x, y|u)) =
∑

u

p(u)p(x, y|u) = p(x, y).

We therefore have|X ||Y| − 1 continuous functions ofp(x, y|u). These set of equations preserves the distribution
p(x, y) and hence, by Markovity,p(x, y, z). Next, observe that the following are similarly continuousfunctions of
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p(x, y|u)

I(U ;X,Y |Z) = H(X,Y |Z)−H(X,Y, Z|U) +H(Z|U),

I(X ; X̂1, U |Y ) = H(X |Y )−H(X |U) +H(X, X̂1, Y |U),

E d1(X, X̂1) =
∑

x,x̂

p(x, x̂1)d(x, x̂1),

E d2(X, X̂2) =
∑

x,y,u

p(x, y, u)d(x, g2(x, u)),

These equations give us 4 additional continuous functions and hence, by Fenchel-Eggleston-Caratheodory Theorem,
there exists aU ′ with cardinality of|X ||Y|+3 such that all the constraints are satisfied. Note that this construction
does not preservep(x̂1), but this does not change the rate-distortion region since the associated rate and distortion
are preserved.

B. Proof of cardinality bound for Theorem 2

We will first give a bound for the cardinality ofU . We look at the following continuous functions ofp(x, y|u).

fj(pX,Y |U (x, y|u)) =
∑

u

p(u)p(x, y|u) = p(x, y), ∀x, y

I(U ;X,Y |Z) = H(X,Y |Z)−H(X,Y, Z|U) +H(Z|U),

I(X ; X̂1, U |Y ) = H(X |Y )−H(X |U) +H(X, X̂1, Y |U),

I(X,Y ;V |U,Z) = H(X,Y, Z|U)−H(Z|U)−H(X,Y, V, Z|U) +H(V, Z|U),

E d1(X, X̂1) =
∑

x,x̂

p(x, x̂1)d(x, x̂1),

E d2(X, X̂2) =
∑

x,y,u,v

p(x, y, u, v)d(x, g2(x, u)).

From these equations, there exists aU ′ with |U ′| ≤ |X ||Y|+ 4 such that the equations are satisfied. Note that the
newU ′ induces a newV ′. For eachU ′ = u, consider the following continuous functions ofp(x, y|u, v)

p(x, y|u) =
∑

v

p(v|u)p(x, y|v, u),

I(X,Y ;V |U = u, Z) = H(X,Y |U = u, Z)−H(X,Y |V, U = u, Z),

E(d2(X, X̂2)|U = u) =
∑

x,y,v

p(x, y, v|u)d(x, g2(x, u)).

From this set of equations, we see that for eachU ′ = u, it suffices to considerV ′ such that|V ′| ≤ |X ||Y| + 1.
Hence, the overall cardinality bound onV is |V| ≤ (|X ||Y|+4)(|X ||Y|+1). The jointp(x, y, z) is preserved due
to the Markov Chain(V, U)− (X,Y )− Z.

C. Proof of cardinality bound for Theorem 3

The cardinality bounds onU1 follows similar analysis as in the Cascade source coding case. The proof is therefore
omitted. For eachU1 = u1, the following are continuous functions ofp(z|u2, u1),

p(z|u1) =
∑

u2

p(u2|u1)p(z|u2, u1),

I(U2;Z|U1 = u1, X, Y ) = H(Z|U1 = u1, X, Y )−H(Z|U1 = u1, U2, X, Y ),

E(d3(Z, Ẑ)|U1 = u1) =
∑

x,y,z,u2

p(x, y, z, u2|u1)d(z, g3(x, y, u1, u2)).

From this set of equations, we see that for eachU1 = u1, it suffices to considerU ′
2 such that|U ′

2| ≤ |Z|+1. Hence,
the overall cardinality bound onU2 is |U2| ≤ |U1|(|Z| + 1). The joint p(x, y, z) is preserved due to the Markov
ChainsU1 − (X,Y )− Z andU2 − (Z,U1)− (X,Y ).
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D. Proof of cardinality bound for Theorem 4

The cardinality bounds follow similar steps to those for thefirst 3 theorems. For the cardinality bound for|U2|,
we find a cardinality bound for eachU1 = u1 andV = v. Details of the proof are omitted.

APPENDIX C
ALTERNATIVE CHARACTERIZATIONS OF RATE DISTORTION REGIONS IN COROLLARIES 1 AND 2

In this appendix, we show that the rate distortion regions inCorollaries 1 and 2 can alternatively be characterized
by transforming them into equivalent problems found in [4],where explicit characterizations were given. We focus
on the Cascade case (Corollary 1), since the Triangular casefollows by the same analysis.

Figure 8 shows the Cascade source coding setting which the optimization problem in Corollary 1 solves.PSfrag replacements

A+B

BB

R1 R2

X̂1

X̂2

Node 0
Node 1

Node 2

Fig. 8: Cascade source coding setting for the optimization problem in Corollary 1.X̂1 and X̂2 are lossy
reconstructions ofA+B.

In [4], explicit characterization of the Cascade source coding setting in Figure 9 was given.PSfrag replacements

X

Y = X + ZY = X + Z

R1 R2

X̂1

X̂2

Node 0
Node 1

Node 2

Fig. 9: Cascade source coding setting for the optimization problem in Corollary 1.X̂1 and X̂2 are lossy
reconstructions ofX andZ is independentX .

We now show that the setting in Figure 8 can be transformed into the setting in Figure 9. First, we note that
for the setting in Figure 9, the rate distortion regions are the same regardless of whether the sources are(X,Y ) or
(X,αY ) whereα 6= 0 since the nodes can simply scaleY by an appropriate constant.

Next, for Gaussian sources, the two settings are equivalentif we can show that the covariance matrix of(X,αY )
can be made equal to the covariance matrix of(A + B,B). Equating coefficients in the covariance matrix, we
require the following

σ2
X = σ2

A + σ2
B,

ασ2
X = σ2

B,

α2(σ2
X + σ2

Z) = σ2
B.

Solving these equations, we see thatα = σ2
B/(σ

2
A + σ2

B) andσ2
Z = (σ2

B −α2σ2
X)/α2. Since(σ2

B −α2σ2
X) ≥ 0,

this choice ofσ2
Z is valid, which completes the proof.
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