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Cascade, Triangular and Two Way Source
Coding with degraded side information at the
second user

Yeow-Khiang Chi&, Haim Permutérand Tsachy Weissméan

Abstract

We consider the Cascade and Triangular rate-distortiobl@nts where the same side information is available at
the source node and User 1, and the side information avaikttUser 2 is a degraded version of the side information
at the source node and User 1. We characterize the ratetiistoegion for these problems. For the Cascade setup,
we showed that, at User 1, decoding and re-binning the cadiesent by the source node for User 2 is optimum.
We then extend our results to the Two way Cascade and Triangetting, where the source node is interested in
lossy reconstruction of the side information at User 2 viag dimited link from User 2 to the source node. We
characterize the rate distortion regions for these setti@@mplete explicit characterizations for all settings also
given in the Quadratic Gaussian case. We conclude with twtbeuextensions: A triangular source coding problem
with a helper, and an extension of our Two Way Cascade sdtiitige Quadratic Gaussian case.

Index Terms

Cascade source coding, Triangular source coding, Two wagcsccoding, Quadratic Gaussian, source coding
with a helper

I. INTRODUCTION

The problem of lossy source coding through a cascade waséirstidered by Yamamot6][1], where a source
node (Node 0) sends a message to Node 1, which then sends agmésdNode 2. Since Yamamoto’s work, the
cascade setting has been extended in recent years throcmipanating side information at either Nodes 1 or 2.
In [2], the authors considered the Cascade problem withisidemationY” at Node 1 andZ at Node 2, with the
Markov ChainX — Z — Y. The authors provided inner and outer bounds for this setdpshowed that the bounds
coincide for the Gaussian case. I [3], the authors consitifte Cascade problem where the side information is
known only to the intermediate node and provided inner artdrdaounds for this setup.

Of most relevance to this paper is the work in [4], where ththaus considered the Cascade source coding
problem with side information available at both Node 0 andi&ld and established the rate distortion region for
this setup. The Cascade setting was then extended to theglitéaa source coding setting where an additional rate
limited link is available from the source node to Node 2.
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Fig. 1: Cascade source coding setting
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Fig. 2: Triangular source coding setting.

In this paper, we extend the Cascade and Triangular sourdiagcaetting in [[4] to include additional side
informationZ at Node 2, with the constraint that the Markov ch&in-Y — Z holds. Under the Markov constraint,
we establish the rate distortion regions for both the Cas@att Triangular setting. The Cascade and Triangular
settings are shown in FigurE$ 1 dad 2, respectively. In thec&te case, we show that, at Node 1, decoding and
re-binning the codeword sent by Node 0 to Node 2 is optimumodioknowledge, this is the first setting where
the decode and re-bin scheme at the Cascade is shown to beuoptit appears to rely quite heavily on the fact
that the side information at Node 2 is degraded: Since Nodanldecode any codeword intended for Node 2,
there is no need for Node O to send additional informationNode 1 to relay to Node 2 on thg; link. Node
0 can therefore tailor the transmission for Node 1 and relyNode 1 to decode and minimize the rate required
on the R, link. We also extend our results to two way source codingufioa cascade, where Node O wishes to
obtain a lossy version of through a rate limited link from Node 2 to Node 0. This setupegalizes the two way
source coding result found if][5]. The Two Way Cascade SoGmding and Two Way Triangular Source Coding
are given in Figuregl3 arid 4, respectively.
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Fig. 3: Setup for two way cascade source coding.

The rest of the paper is as follows. In secfidn I, we proviteformal definitions and problem setup. In seckiah 111,
we present and prove our results for the aforementioneidigettin sectiofi IV, we consider the Quadratic Gaussian
case. We show that Gaussian auxiliary random variablescsutifi exhaust the rate distortion regions and their
parameters may be found through solving a tractable low d&weal optimization problem. We also showed that
our Quadratic Gaussian settings may be transformed intivalgnot settings in[[4] where explicit characterizations
were given. In the Quadratic Gaussian case, we also extemgledettings to solve a more general case of Two
Way Cascade source coding. In secfidn V, we extend our tlangource coding setup to include a helper, which
observes the side informatidn, and has a rate limited link to Node 2. Our Two Way Cascade @i@dGaussian
Extension is shown in Figuig 5 (in sectibn] IV), while our helgxtension is shown in Figuié 7 (in sect[oh V). We
conclude the paper in sectignlVI.
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Fig. 4: Setup for two way triangular source coding.

1. PROBLEM DEFINITION
In this section, we give formal definitions for the setups emcbnsideration. We will follow the notation df][6,
Lecture 1]. Unless otherwise stated, all logarithms in thaper are taken to base 2. The source sequences under
consideration{X; € X,i =1,2,...},{Y; € V,i=1,2,...} and{Z; € Z,i = 1,2,...}, are drawn from finite
alphabetsY, Y and Z respectively. For any > 1, the random variablegX;, Y;, Z;) are independent and identically
distributed according t@(z, y, z) = p(z)p(y|x)p(z|y); i.e. X —Y — Z. The distortion measure between sequences
is defined in the usual way. Let: X x X — [0,00). Then,

1 n
d(a",&") =~ > d(wi, &)
i=1

A. Cascade and Triangular Source coding

We give formal definition for the Triangular source codingtisg (Figure[2). The Cascade setting follows from
specializing the definitions for the Triangular setting lefting Rz = 0. A (n, 2" 2nf2 9nRs D) D,) code for
the Triangular setting consists of 3 encoders

f1 (at Node Q) : X" x Y™ — M, € [1: 2",
f2 (at Node 1) : Y™ x [1:2"F1) — M, e [1: 2],
f3 (at Node 0) : X" x Y™ — Mz € [1 : 2%,
and 2 decoders
g1 (at Node 1) : Y™ x [1:2"%] — A7,
g2 (@t Node 2): 2™ x [1:2"%2] x [1: 27fs] 5 X7,

such that

1 @& . .
E [E ; dj (Xl, X]z)] < Dj, ]:1,27
where X7 = g, (Y™, f1(X",Y")) and XJ = go(Z", fo(Y", f1(X™,Y™)), f3(X",Y™)).

Given (D1, D), a (R1, Re, R3) rate tuple for the triangular source coding setting is saidbé achievable if,
for any e > 0 andn sufficiently large, there exists (@, 2"(F1+e) gn(fiate) on(ls+e) D, 4 ¢ Dy 4 €) code for the
Triangular source coding setting.

The rate-distortion region, R(D1, D), is defined as the closure of the set of all achievable ratesup

Cascade Source coding: The Cascade source coding setting corresponds to the case = 0.



B. Two way Cascade and Triangular Source Coding
We give formal definitions for the more general Two way Trialag source coding setting shown in Figlte 4. A
(n,2nf onkz onkis onRa D, D, Ds) code for the Triangular setting consists of 4 encoders
f1 (at Node Q) : X" x Y™ — M, € [1: 2",
f2 (at Node 1) : Y™ x [1:2"F1] = M, e [1: 2],
f3 (at Node 0) : X" x Y™ — M3 € [1 : 2"F],
f4 (at Node 2) : 2™ x [1:27F2] x [1:27Fs) — My e [1: 2],

and 3 decoders
g1 (@t Node 1): Y™ x [1:2"F1] — X7,
g2 (at Node 2): 2" x [1:27F2] x [1: 27Fs] - &,
g3 (at Node 0): X™ x Y™ x [1:2"Fa] — 27,

such that

1 — . _
- (X, X;)| <D;, =
E ln ;dﬂ (XZ’XJ;l)] <Dj;, j=1,2and

1 & .
E l;;dg(zi,m

where X7' = g1 (Y", f1(X",Y™)), X3 = g2(Z", fo(Y", f1(X™,Y™)), f3(X™,Y™)) and
2" = g3(X™ Y™ fl(Z7, (Y7, (X7, Y™), f3(X7, Y™))).

Given (Dy, D2, D3), a(R1, Re, Rs, R4) rate tuple for the two way triangular source coding settmgaid to be
achievable if, for any e > 0 andn sufficiently large, there exists (@, 2711 +¢) 2n(lz+e) on(Rste) gn(Rate) D) 4
e, D2 + ¢, D3 + €) code for the two way triangular source coding setting.

Therate-distortion region, R(D1, D2, D3), is defined as the closure of the set of all achievable ratesup

Two way Cascade Source coding: The Two way Cascade source coding setting corresponds toattee where
R3 = 0. In the special case of Two way Cascade setting, we will Rgerather thanR,, to denote the rate from
Node 2 to Node O.

SD_]a

IIl. M AIN RESULTS

In this section, we present our main results, which are sitegter characterizations of the rate-distortion regions
for the four settings introduced in sectién Il. The singléde characterizations for the Cascade source coding
setting, Triangular source coding setting, Two way Casamigce coding setting and Two way Triangular source
coding setting are given in Theorefd<1[ 2, 3 Bhd 4, respécti¢hile Theorem$1l t€]3 can be derived as special
cases of Theorefd 4, for clarity and to illustrate the develept of the main ideas, we will present Theoréms [Ilto 4
separately. In each of the Theorems, we will present a skattie achievability proof and proof of the converse.
Details of the achievability proofs for Theorem§11-4 areegiin AppendixXA. Proofs of the cardinality bounds for
the auxiliary random variables appearing in the Theoreraggaren in AppendiXB.

A. Cascade Source Coding

Theorem 1 (Rate Distortion region for Cascade source coding): R(D;, D2) for the Cascade source coding set-
ting defined in sectiof]ll is given by the set of all rate tuplés, R.) satisfying

R2 2 I(U>X7Y|Z)7
Ry > I(X; X,,U|Y)



for somep(z, y, z, u, &1) = p(z)p(ylz)p(z|y)p(ulz, y)p(2:1 |z, y,u) and functiong, : U x Z — X, such that
Ed;(X,X;) < Dj, j=1,2

The cardinality ofi/ is upper bounded bji/| < |X||V| + 3.

If Z =0, this region reduces to the Cascade source coding regiem giv[4]. If Y = X, this setup reduces to
the well-known Wyner-Ziv setug [7].

The coding scheme follows from a combination of techniquesduin [4] and a new idea of decoding and
re-binning at the Cascade node (Node 1). Node O generatescapd®n U™ intended for Nodes 1 and 2. Node 1
decoded/" and then re-bins it to reduce the rate of communicatifigto Node 2 based on its side information. In
addition, Node 0 generatééln to satisfy the distortion requirement at Node 1. We now gig&etch of achievability
and a proof of the converse.

Sketch of Achievability

We first generate™(!(X:YiU)+e) U sequences according {d_, p(u;). For eachu™ and y™ sequences, we
generate2"!(X5XIUY)+e) X sequences according {q)"_, p(#;|us, v;). Partition the set of/” sequences into
on(I(UsXIY)+2¢) hins, By (m.0). Separately and independently, partition the séf'osequences intpy*(/ (Vi X,Y12)+2¢)
bins, Ba(mz), ms € [1 : 27U (UX.Y1Z)426]]

Given z™,y™, Node 0 looks for a jointly typical codeword”; that is, (u™, 2™, y") € 7. If there are more
than one, it selects a codeword uniformly at random from tstea$ jointly typical codewords. This operation
succeeds with high probability since there aré!(X:¥:U)+<) yn sequences. Node O then looks fori# that is
jointly typical with w™, 2™, y™. This operation succeeds with high probability since tregee2"(/(X1:X[U.Y)+e) jn
sequences. Node 0 then sends out the bin index such thatu™ € B1(m19) and the index corresponding g
This requires a total rate d&; = I(U; X|Y) + I(X7; X|U,Y) + 3e.

At Node 1, it recovers,™ by looking for the unique:™ sequence i3 (mio) such that(u”, y™) € 7. Since
there are only2"(/(X,Y;U)—I(U:X[Y)—€) — 9gn(I(UsY)—€) gequences in the bin, this operation succeeds with high
probability. Node 1 reconstructs® asz?. Node 1 then sends out, such thatu™ € Bz(ms). This requires a rate
of R, =I(U; X,Y|Z) + 2e.

At Node 2, note that sinc& — (X,Y) — Z, the sequencefU™, X™, Y™, Z™) are jointly typical with high
probability. Node 2 looks for the unique™ in Bs(msg) such that(u™,z") € 7™ From the Markov Chain
U-(X,Y)-Z, IU;X,Y) - I(U;X,Y|Z) = I(U; Z). Hence, this operation succeeds with high probability
since there are onlg”(ViZ)=<) 4 sequences in the bin. It then reconstructs using g»(u;, z;) for i € [1 : n].

Proof of Converse: Given a(n,2"f1, 2"2 D, D) code, define/; = (X~ Yi~! Zi=1 Zn | M,). We
have the following.

RRQ Z H(MQ)
> H(Ms|Z")
= I(X",Y" My|Z")
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Next,

an 2 H(Ml)
> H(M Y™, Z")



H(My, Ma|Y™, Z™) = I[(X™; My, Ma|Y™, Z")

I(Xg; My, M| X071 Y™, Zm)

[
M=

1

.
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H(X;| X7 y™ Zm) — H(X; | XY™, Z™, My, M)

I

N
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H(X;|Y;, Z;) — H(X;| X" Y™, Z™, My, M)

[
M=

~

S
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s
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H(XZ|}/Z) - H(X’L'|Xi717Yn7X1ia ZnaMlvMQ)

H(X,|Y;) — H(X| X1, Y3, U;)

-

@
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A

I1(Xi; X14, Ui]Y7).

I
M=

1

Step (a) follows from the Markov assumptidh — Y — Z and the fact thafXy; is a function of(Y", Ms). Next,
let @ be a random variable uniformly distributed oviér: n] and independent ofX™, Y™, Z™). We note that
XQZX,YQZY, ZQ:Zand

.
Il

Ry > 1(Xq,Yo: UqglQ, Zg)
=1(Xq. Yo Ug, Q|Zq)
=1(X,Y;Uq,Q|Z),

Ry = I(Xq: X10,Uqg|Yo, Q)
= I(X; X1, Uq, QIY).

DefiningU = (Ug, Q) and XlQ = X, then completes the proof. The existence of the reconsdrudtinction g-
follows from the definition of. The Markov Chaind/ — (X,Y) — Z and Z — (U, X,Y') — X, required to factor
the probability distribution stated in the Theorem alsddia! from definitions ofU/ and X;. [ |

We now extend Theorefd 1 to the Triangular Source codingnsetti

B. Triangular Source Coding
Theorem 2 (Rate Distortion Region for Triangular Source Coding): R(D;, D) for the Triangular source coding

setting defined in sectidnl Il is given by the set of all ratelesgR,, R2, R3) satisfying

Rl Z I(Xa le U|Y)7

R2 Z I(X7Y7U|Z)a

R3 > I(X,Y,VlU, Z)
for somep(x,y, z, u, v, &1) = p(a)p(y|x)p(z[y)p(ulz, y)p(d: |2, y, w)p(v]z, y,u) and functiongs : UxVx Z — X,
such that

Ed;(X,X;) < Dj;, j=1,2

The cardinalities for the auxiliary random variables carupper bounded by/| < |X||Y|+4 and|V| < (|X||V|+
4)(| X[V +1).
If Z =0, this region reduces to the Triangular source coding regioen in [4].

The proof of the Triangular case follows that of the Cascaakecwith the additional step of Node 0 generating
an additional descriptiofr” that is intended for Node 2. This description is then binrededuce the rate, with
the side information at Node 2 beirdg® and Z". Node 2 first decode&™ and thenV",



Sketch of Achievability

The Achievability proof is an extension of that in TheorEinThe additional step we have here is that we
generate ! (ViX.YIU)+e) yn sequences according I;_; p(v;|u;) for eachu™ sequence, and bin these sequences
to 2nU(ViXYIU.Z)+2) hins, By(ms), ms € [1 : 2"]. To send from Node 0 to Node 2, Node O first finds™a
sequence that is jointly typical witku™, 2™, y™). This operation succeeds with high probability since weehav
on(I(V;XY[U)+e) 4n sequences. We then send aug, the bin number fon™. At Node 2, from the probability
distribution, we have the Markov Cha{iV,U) — (X,Y) — Z. Hence, the sequences are jointly typical with high
probability. Node 2 reconstructs by looking for uniqefe € Bs(ms) such that(u™, v™, 2™) are jointly typical. This
operation succeeds with high probability since the numbesequences i3 (m3) is 2"/ (ViZIV)=<) Node 2 then
reconstructs using the functigs.

Proof of Converse: The converse is proved in two parts. In the first part, we @etite required inequalities
and in the second part, we show that the joint probabilityrithistion can be restricted to the form stated in the
Theorem.

Given a(n, 2" 2nf2 9nfls Dy D,) code, defind/; = (X1 Y=, Z=1 Zm | M) andV; = (U;, Ms). We
omit proof of theR; and R, inequalities since it follows the same steps as in Theddekvel have

nly > ZI(Xi;XlivUiD/i)v
i=1
nRky > ZI(Xi,Yi;Ui|Zz‘)-
i=1
For R3, we have
nR3 Z H(Mg)
> H(M3|Ms, Z™)
=I(X",Y" Ms|Ms, Z™)

H(Xia 1/ilj\427 Zna Xi_la Yi_l) - H(Xi7 Y;|M27 M37 Zna Xi_la Yi_l)

|

N
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-
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[
M=

I(X;,Y3, VilUs, Zs).
1
Next, let@Q be a random variable uniformly distributed ovér: n] and independent ofX™, Y™, Z™). Defining
U= (Ug,Q), V= (Vo,Q) and X, = X, then gives us the bounds stated in Theofém 2. The existentte of
reconstruction functiony, follows from the definition ofU and V. Next, from the definitions of/, V' and X,
we note the following Markov relationl/, V, X;) — (X,Y) — Z. The joint probability distribution can then be
factored a(x,y, z, u,v, 1) = p(x, y, 2)p(ulz, y)p(&1, v|z, y, uw).

We now show that it suffices to restrict the joint probabilifgtributions to the form
p(z,y, 2)p(ulz, y)p(21|z, y, w)p(v|z,y, u) using a method if ]4, Lemma 5]. The basic idea is that sincéntiguali-
ties derived rely om(&1, v|z, y, u) only through the marginals(i |z, y, u) andp(v|z, y, u), we can obtain the same
bounds even when the probability distribution is restdcte the formp(z, y, 2)p(u|z, y)p(Z1 |z, y, w)p(v|z, y, u).

Fix a joint distributionp(z, y, 2)p(ul|x, y)p(i1, v|z,y,w) and letp(v|z, y,v) and p(z1|z,y,w) be the induced
conditional distributions. Note tha{z, y, 2)p(u|z, y)p(Z1, v|z, y,uw) andp(z, y, 2)p(u|z, y)p(Z1 |z, y, w)p(v|z, y, u)
have the same marginalgz, y, z, u,v) and p(z, y, z,u, 1), and the Markov conditioffU, V,Xl) - (X,Y)-Z
continues to hold undes(x, y, 2)p(ulz, y)p(i1 |z, y, w)p(v|z, y, u).

Finally, note that the rate and distortion constraints igiire Theoreni R depends on the joint distribution only
through the marginalg(z, y, z, u, v) andp(z, y, z, u, &1). It therefore suffices to restrict the probability distrilons
to the formp(x, y, z)p(u|x, y)p(&1 |z, y, w)p(v|z, y, ). [ |

-
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C. Two Way Cascade Source Coding

We now extend the source coding settings to include the cdmsemNode O requires a lossy version 2f
We first consider the Two Way Cascade Source coding settifigedein sectiorl 1l (we will useR3 to denote
the rate on the link from Node 2 to Node 0). In the forward p#re achievable scheme consists of using the
achievable scheme for the Cascade source coding case. Nibd# Zends back a description Bf" to Node 0,
with X™, Y™ U}* as side information at Node 0. For the converse, we rely ortaéblniques introduced and also
on a technique for establishing Markovity of random vamsblound in [5].

Theorem 3 (Rate Distortion Region for Two Way Cascade Source Coding): R(D1, D2, D3) for Two Way Cas-
cade Source Coding is given by the set of all rate tupRs R, R3) satisfying

Ry > I(X; X1, Uh[Y),
R2 Z I(U17X7Y|Z)a
R3 Z I(U27Z|U17X7 Y)a

for somep(z, y, 2, u1, uz, 1) = p(z)p(y|=)p(2|y)p(u1 |z, y)p(Z1|u1, 2, y)p(uz|z,u1) and functionsy, : Uh x 2 —
Xoandgs : U; x Uy x X x Y — Z such that

E(d;(X,X;)) <Dy, j=1,2
E(ds(Z,Z)) < Ds.

The cardinalities for the auxiliary random variables canupper bounded byi/;| < |X||Y| + 5 and |Us| <
L4 [(12] +1).
If Y = X, this region reduces to the result for two way source codmmd in [5].
Sketch of Achievability

The forward path R; and ;) follows from the Cascade source coding case in Theblem & r@Verse direction
follows by the following. For each?, we generate@"(!(Uz2IU)+9) 42 sequences according {d;_, p(uzilu1;)
and bin them t@" (V221U X.Y)+2¢) pins, B3(m3), ms € [1 : 2"7]. Node 2 finds au} sequence that is jointly
typical with (u}, 2™). Since there ar@"!/(U2iZ1U1)+<) sequences, this operation succeeds with high probability.
then sends out the bin indexs, which the jointly typicalv™ sequence is in. At Node O, it recover$ by looking
for the unique sequence iBs3(ms) such that(ul,uf,z™, y™) are jointly typical. From the Markov condition
Us — (U1, Z) — (X,Y) and the Markov Lemmé_[8], the sequences are jointly typicéh Wwigh probability. Next,
since there are onlg"((U2:X.Y[U1)—¢) sequences in the bin, the probability that we do not find thiguen(correct)
sequence goes to zero with Finally, Node 0 reconstructs using the functign

Proof of Converse:  Given a(n, 2"t 2nR2 2nfs D, D, Ds) code, defind/y; = (Mo, X1 Y71, Z1 )

andU,; = M5. We have

nRy > H(M,)

> H(Mi Y™, Z™)

= H(My, Ma|Y™, Z™)
I(X™ My, Ma|Y™, Z™)

I(Xg; My, My | X071 Y™, Zm)

[
NIE

1

.
Il

H(X;| X7 y™ Z2™) — H(X| XY™, 2™, My, M)

[
M=

1

.
Il

H(X;|Y;, Z;) — H(X;| X" Y™, Z™, My, My)

[
NIE

~

I

s
Il
-
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Q
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H(X;|Y:) — H(X;| X1 Y™, Z™, My, Ms)



H(X;|Y:) — H(X,| XY X0, Y™, 2™, My, My)

=
INgE

N
Il
-

H(X;|Y;) — H(X;| X1, Vi, Uyy)

I(XZ,XH,U11|Y)

=1

where step (a) follows from the Markov assumpti&in— Y; — Z; and step (b) follows fromX;; being a function
of (Y™, My).
Consider nowRs

TLRQ = H(Mg)
> H(M|Z")
= I(My; X", Y"|Z™)

= H(X, Y| Zz", XLy =Y — H(X,, Y| 2™, XL Y M)
1

1=

'M=

N
Il
-

I(Xla}/ly U17,|Z )

Next, considerRs
nRs = H(Ms3)
> H(Ms| X", Y™)
> I(Ms; Z"|X™,Y™)
=H(Z" X", Y") - H(Z"X",Y", M)
=H(Z"| X", Y")— H(Z"| X", Y", My, Ms3)

> " H(Zi|X:,Y:) — H(Zi| Z]s1, X', Y, My, Ms)
I(Zi; Uvs, Ugi| X3, Ys)

i=1
PRI
> I

I(Zs; Ui X4, Y3, Uri),

where the last step follows from the Markov relatigh— (X;,Y;) — U; which we will now prove, together with
other Markov relations between the random variables. Tisetiivo Markov relations below are used for factoring
the joint probability distribution while Markov relationthree and four are used for establishing the distortion
constraints. We will use the following lemma from [5].

Lemma 1: Let Ay, Ay, By, B2 be random variables with joint probability mass functions (us, az, b1, ba) =
p(a1,b1)plaz, be). Let M; be a function of(Ay, As) and M- be a function of(Bl,Bg,Ml) Then,

I(AQ;Bl|M1,M2,A1,B2) = O, (1)
I(By; My|Ay, By) =0, @)
I(A2§M2|M17A1,Bz) =0. (3)

Now, let us show the following Markov relations:



1) Z, — (Xi,Y5) — (UlZ,XM) To establish this relation, we show th&{Z;; Uh,Xh|X1,YZ) 0.
I(Zi; X14, Uni| X3, Ys) = I(Zs; X1iy Mo, X1 Y71 201X, V)
< I(Zi; Xugy Mo, XL Y7L X2 Y 20| X0, V)
_I(Z Xl ! YZ ! X?+17K117Z?+1|Xi7§/;)
=0.
2) Usi — (Zi,Ur;) — (X145, X;,Y;): Note thatlUs; = Ms. Consider
I(Xy, X3, Y5, U Zi, Ury) < I(Xy, X2 Y Ms| 2P, X778 YL My)
= I(X, Y Ms|Z, X1 Yt My).
Now, using Lemma 1, sel; = (X~} Y1), By = 7271, Ay = (X[, Y}"), B2 = (Z]'), M2 = M3 and

M, = M,. Then, using the third expression in the Lemma, we see[(iféjt‘ ZYl", M|z, XL Yt My) =
0.
3) Zi=1 — (U, Z;) — (X;,Y:): Consider
I(X;,Y;; Z0NU G, Z) < I(XP, Y 207X Yyt zr, My)

= H(Z7 Xy 1,ZZ-",M2) — H(Z7Y X" Y™, Z, My)
<HZ7YXx"hy' ol zhy - H(ZTHX™ Y™, Z0)
— H(Zifl|Xi71,Yi71) _ H(Zifl|Xiflvyi71)
=0.

4) (XZL+1,}/;+1) (U1i7 Ugi,Xi,Y;) — Zi: Consider
I(XP, Y Zi\ Ui, Usi, Xa, Yi) < I(XP, Y 28 Mo, M3, 271, X, Y.

Applying the first expression in the Lemma with, = (X7, V%), 41 = (X', Y"), By = Z' and By =
ZP . gives (X7, Y/ ; ZilUys, Uz, X3, Yy) = 0.
Distortion constraints
We show that the auxiliary definitions satisfy the distantioonstraints by showing the existence of functions
jzi(Uli; Zl) and ?:’Z*(UM, UQZ', Xl', }/1) such that

E(d2(Xi, 25;(Uri, Zi))) < E(da(Xi, $2i(M2, Z"™)))
E(dg(Zz, z; (Ulu Usi, X, Y))) < E(dg(Xi, Z3; (M3, X", Y™, Z"))),

whereiq; (M2, Z™) and 2;(Ms5, X™,Y™) are the original reconstruction functions.
To prove the first expression, we have

E(dz(Xi,JA?m(MmZn) = ZP fi yi 2" m2)d2($i,if72i(m272n))
@ ZP (s, 2)p(i, yilurs, 2°)da (2, & (urs, 26, 27 1))
= pui, 20, 2" )plas, yiluni, 20)da (i, &9 (ui, 2, 2 1)),
where (a) follows from defining; (u1i, zi, 2 71) = Z2:(ma, 2™) for all 2771, =1 and the last step follows from
the Markov relationZ~! — (Uy;, Z;) — (X;,Y;). Finally, defining
(z"71)* =argmin,i-1 Y o Py Yiluai, 2i)do (24, 25, (i, 26, 2 D)) ands, (u1s, 2i) = &, (u1s, zi, (2771)*) shows
that E(ds (X, 5, (Ui, Zl))) < E(da( Xy, 22:,(M2, Z™))) as required.
To prove the second expression, we follow similar steps.s@@i@ning the expected distortion, we have
E(ds(Z;, 2:(M5, X", Y")))

= Zp(zzlvxna yna m3)d3(zi; éi(mfia Invyn))

10



o n n n n ol n n

= E p(ulivu%vxivyiaIi+1ayi+1)p(zi|u1ivu2iaIiayiaIi+1ayi+1)d3(2iaz3i(ulivu2iaIiayivxiJrlvyiJrl))
— n n ol n n

= E (Ui, Uiy Tiy Yis i1 s Yie1)P(Zi|wri, w2i, 4, yi)da (26, 2 (Wi, wai, Ty Vi, T 1, Yier))s

where the last step uses Markov relation 4. The rest of thefpsoomitted since it uses the same steps as the
proof for the first distortion constraint.

Finally, using the standard time sharing random variaplas before and defining; = (U1g,Q), Uz = Uaq,
X = XlQ, we obtain the required outer bound for the rate-distortegion. [ |

We now turn to the final case of Two Way Triangular Source Cgdin

D. Two Way Triangular Source Coding

Theorem 4 (Rate Distortion Region for Two Way Triangular Source Coding): R(D1, D2, D3) for Two Way Tri-
angular Source Coding is given by the set of all rate tuples R», Rs, R4) satisfying

Ry > I(X; X1, U]Y), (4)
Ry > I(X,Y;Uh|2), (5)
Rs > I(X,Y:V|Z,Uy), (6)
Ry > 1(Up; Z|UL, V, X,Y), (7)

for somep(z,y, z,ur, uz, v, 21) = p(x)p(ylo)p(z[y)p(us|z, y)p(E1 |z, v, u)p(v]z, y, ur)p(uz|z, ur,v) and func-
tionsgs : Uy xVx Z — Xgandgs : Uy xUs x V x X x Y — Z such that

E(di(X,X1)) < Dy, 8)
E(da(X, X3)) < Da, 9)
E(ds(Z,2)) < Ds. (10)

The cardinalities for the auxiliary random variables arparbounded byt | < |X||V|+6, [V| < [th|(|X]|V]|+3)
and [Us| < [Lh|V[(|Z] +1).
Sketch of Achievability
The forward direction R, R2, R3) for Two-Way triangular source coding follows the proceslim Theoreni 2.
For the reverse directiony), it follows TheoreniB with(U;, V') replacing the role of/; in Theoren{B.
Proof of Converse: Given a(n, 2", 2nft2 anfs onla Dy Dy Ds) code, defind/y; = (Mo, X1 Vit 7z ),
Usi = My andV; = (M3, Uy;). The Ry and Ry bounds follow the same steps as in Theorem 3. Bgrwe have

TLR3 Z H(Mg)
> H(M3|Ms, Z™)
=I(X", Y™ Ms|Ms, Z™)

H(X;, Y| M, 2", X1 YY) — H(X,,Yi|My, M3, Z", X1 Y1)

NE

1

Y
M=

I

s
Il
-

Next, consider
nR4 = H(M4)
> H(My| X", Y™)
> I(My; Z™ X", V")
=H(Z"| X", Y") = H(Z"|X",Y", My)

11



H(Zn|Xn’Yn) - H(Zn|Xn3Yn7M27M3;M4)

M-

@
Il
A

H(Z’L|XZ’ }/Z) - H(Z’L'|Zztﬂ+17Xi7 Yia MQ; M37 M4)

I(Zi; Uvs, Vi, Ugi| X3, Ys)

I

N
Il
-

I

I(Zza U2i|X’ia }/iv ‘/’i; Uli))
i=1

where the last step follows from the Markov relatidn- (X;, Y;)— (V;, Uy;) which we will now prove together with
other Markov relations between the random variables. Tise ZitMarkov relations are for factoring the probability
distribution while Markov relations 3 and 4 are for estdtilig the distortion constraints.

Markov Relations

1) Z; — (X,,Y;) — (U, Vi, X1;): To establish this relation, we show thBtZ;; X1;, Uys, Vi| X;, Y;) = 0.
I(Zi; X15, Ui, Vi| X3, YV3) = 1(Z5; Xay M, Ma, X771 Y70 20 [X,Y)
S I(Zu Xli7 M37 M27 Xi_la Yi_la Xin+17 Y;'ﬁ»lu Zin+1|Xi7 }/7,)
= I(Zi; Xi_la Yi_la in-f-lv iﬁ-la Zin-ﬁ-1|Xi7 Y;)
=0.
2) Us; — (Zi, Uri, Vi) — (X1, X4, Y3): Consider
I(X3, X3, Y3 Uil Zi, Uni, Vi) < I(Xo, X2 Y M| Z0, X1 Y71 My, M)
= I(in7 Y;n; M4|Zzn7 Xiila Yiila M27 M3)
Now, using Lemma 1, setl; = (X""1, Y1), B; = Z'"1, Ay = (X, Y"), By = (Z]'), M, = M, and
M; = M. Then, using the third expression in the Lemma, we seelfiaf, Y;"; M| 2", X=1, Y71 M) =
0.
3) Zi=t — (U1, Vi, Z;) — (X3, Y;:): Consider
(X3, Y5 27 UG Vi, Ze) < TXP Y 207 XL Y1 27, My, M)
= H(Z7NXTL Y 20 Mo, Ms) — H(Z7HX™, Y™, Z", Mo, M3)
SHZ7HXTLY'TLZ0) - H(ZH X Y 27
— H(zi—1|Xi—l, Yi—l) _ H(zi—1|Xi—l, Yi—l)
=0.
4) (XinJrl, }/111) — (U1i7 Ugi, ‘/1', Xl', }/z) — Zz Consider
I( 7;n+17 i?—l; Zi|Uli7 U2i7 V;a Xia }/7,) S I( 7;n+17 i’r-;’-l; Zi|M21 M37 M47 in+17 Xia Y,L)
Applying the first expression in the Lemma with, = (X7, ,,Y/,), A1 = (X",Y"), By = Z* and B, =
ZZ-nJrl giVGSI(XinJrl, Yvﬁrl; Zi|U1i7 Usi, X, Y;) =0.
Distortion Constraints
The proof of the distortion constraints is omitted sinceoitdws similar steps to the Two Way Cascade Source
Coding case, with the new Markov relations 3 and 4, &lid, V;) replacinglUy; in the proof. R R
Using the standard time sharing random variaplas before and defining; = (Ui, Q), Uz = Usg, X1 = X1¢
and V' = Vg, we obtain an outer bound for the rate-distortion region fome probability distribution of the
form p(z,y, z, u1, us, v, 1) = p(x,y, 2)p(ur |z, y)p(&1, v|x, y, u1)p(us|z, u1,v). It remains to show that it suffices

to consider probability distributions of the forp(x, y, 2)p(u1|z, y)p(Z1 |z, y, u1)p(v|x, y, u1 )p(uz|z, ui,v). This
follows similar steps to proof of Theorem 2. Let

b1 = p(Ia Y, Z)p(u1|x, y)p(j:la U|Ia yvul)p(u2|za Ul,’U),
b2 = p(Ia Y, Z)p(u1|x, y)ﬁ(j?lh:a y,ul)ﬁ(vh?, y,ul)p(uz|z, Ul,’U),
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wherep(i1|z,y,u1) andp(v|z, y,u1) are the marginals induced ky. Next, note thatR,, R., Rs, R4 and the
distortion constraints depend on only through the marginals(z, v, z, u1, us, v) andp(z, y, z, u1, &1). Since these
marginals are the same fpr andp,, the rate and distortion constraints are unchanged. kjnadte that the Markov
relations 1 and 2 implied by, continues to hold undes,. This completes the proof of the converse. [ |

IV. GAUSSIAN QUADRATIC DISTORTION CASE

In this section, we evaluate the rate-distortion regionem(X, Y, Z) are jointly Gaussian and the distortion is
measured in terms of the mean square error. We will assunteouwtiloss of generality, thak = A + B + Z,
Y =B+ ZandZ = Z, whereA, B andZ are independent, zero mean Gaussian random variables avitimees
0%, 0% and o respectively.

A. Quadratic Gaussian Cascade Source Coding

Corollary 1 (Quadratic Gaussian Cascade Source Coding): First, we note that ifR, < 5 log M then the

distortion constraintD, cannot be met. Hence, giveR;, D, > 0 and Ry, > max{Qlog ”A+”B O} the rate
distortion region for Quadratic Gaussian Cascade SourcinGas characterized by the smallest réte such that
(D1, Do, Ry, R2) are achievable, which is

1 o4 1 o2
Ry = “log-2, -1 A
1 Inax{2 OgD172 OgUiU,B}7
whereU = o*A + *B + Z*, Z* ~ N(0,0%.), with o*, 3* ando%. achieving the maximum in the following
optimization problem:

. 2
maximize o3 p
2

subjectto Ry > log
Z*
Dy > 0%

The optimization problem given in the corollary can be sdlf@lowing analysis in[[4]. In our proof of the corollary,
we will show that the rate distortion region obtained is thene as the case when the degraded side information
Z is available to all nodes.
Converse: Consider the case when the side informatiois available to all nodes. Without loss of generality,
we can subtract the side information away frdmandY to obtain a rate distortion problem involving only+ B
and B at Node 0,B at Node 1 and no side information at Node 2. Characterizaifothis class of Quadratic
Gaussian Cascade source coding problem has been carriéga [@itand following the analysis therein, we can
show that the rate distortion region is given by the regioCarollary[1. [ |
Achievability: We evaluate Theorefd 1 using Gaussian auxiliaries randorables. LetU’ = o* X + (8* —
)Y + 7" =a*A+ pB*(B+Z)+ Z* andV be a Gaussian random variable that we will specify in the froo
We now rewriteR;, = I(X;U’, X,|Y) asRy, = I(X;U’,V|Y) with X; = V +E(X|U",Y), V independent of/’
andY. Let go(U', Z) = E(X|U’ 7). EvaluatingRy and Ry using this choice of auxiliaries, we have
Ry =1(X;U,V[Y)
=hA+B+Z|B+Z)—h(X|U,V,Y)
2
_ 1 log 07A7
2 0X|U’ VY
Ry =1(X,Y;U'|Z)
= W(U'|Z) - h(U'|X. Y. Z)
2
O o* A4+B* B+2Z*

—11g
=-lo
0%.

2

11 02
o)

5 g

UZ*
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Next, we have

2 _ 2
OX\U'Y = 9A4+B+Z|a* A+B*(B+2)+2Z*,B+Z
_ 2
= OAla*A+Z* B+Z
_ 2
= OAla*A+2Z*

2
= 0AlU,B-

If U§(|U’,Y = U?MU,B < Dy, we setV = 0 to obtainR; = 5 log —A—_ If C’gqU/,y > D, then we choose

X U’y
V=X- E(X|U’ Y) + Z where Zy ~ N(0, D10% 1 v /(0% 0y — Dy)) so thato% ;. .y = D1 and obtain
Ry = 1log %*. Therefore,R; = max{3 log D%, 5 log =~ i }.
A
F|naIIy, we show that this choice of random vanables satthe distortion constraints. Fdp,, note that since

E(X - X1)? = = 0%ur.v.y» the distortion constrainD, is always satisfied. For the second distortion constraigt, w
have o

> \2 2
E(X = Xo)" = oxpr 2
2
= A4 Bla*A+B*(B+2Z)+2Z*,Z
_ 2
= OA4Bla*A+B*B+2Z*.Z
_ 2
= OA4+B|a*A+B*B+2*
_ 2
= 0A+B|lU
< Ds.

Hence, our choice of auxiliaryy’ and V' satisfies the rate distortion region and distortion coirgisagiven in
the corollary, which completes our proof. |

B. Quadratic Gaussian Triangular Source Coding

Corollarg 2 (Quadratic Gaussian Triangular Source Coding): Given Dy, Dy > 0 and Re, R3 > 0, Ro + R3 >

1 5 log "“”B , the rate distortion region for Quadratic Gaussian Tridag&ource Coding is characterized by the
smaIIestR1 for which (Dy, D2, Ry, Ro, R3) is achievable, which is

2 1 0?4
R1 = max 1og D_1 3 log = ,
A|U,B

whereU = a*A+ B*B+Z*, Z ~ N(0,0%.), with o*, 3* andc%. satisfying the following optimization problem.

Fo 2
maximize UA|UB
. 0'2
subject to Ry > log
Z*
2R:
2 gD2 > 0 ply

As with Corollary[d, the optimization problem given this ottary can be solved following analysis inl [4].

Converse: The converse uses the same approach as Corbllary 1. Cotisidease when the side information

Z is available to all nodes. Without loss of generality, we sabtract the side information away from andY

to obtain a rate distortion problem involving onl/+ B and B at Node 0,B at Node 1 and no side information

at Node 2. Characterization of this class of Quadratic GansEriangular source coding problem has been carried

out in [4] and following the analysis therein, we can showt tifve rate distortion region is given by the region in

Corollary[2. [ |
Achievability: We evaluate Theorefd 2 using Gaussian auxiliary randomblasalLetU’ = o*X + (8* —

)Y + 72" = A+ " (B+Z)+ Z* andV' = X + U’ + Zs, Z3 ~ N(0,0%,). Following the analysis in

14



Corollary[d, the inequalities for the rates are

R 1 04 L1y, %4
= max og ==, = lo ,
1 ng ) gai‘UﬂB

2

1 o

> = U
R2_210g0%*
Ry > I(X,Y;V|Z,U) = 1(X;V'|Z,U")

_1 UX|Z ol

2 X|Z ULV

As with Corollaryd, the distortion constraiti?; is satisfied with an appropriate choice &f. For the distortion
constraintD,, we have

2
D2 Z UXIZU/ R

Next, note that we can assume equality f&y, since we can adjust and aZ so that inequality is met. Since
this operation can will only decrea&@lZU, v+ the distortion constrainD, will still be met. Therefore, setting

R3 = 3log 25—, we have
x|z, u', v/
D2 Z 0§(|Z,U’,V’
2
 I%x1zu
- 22R3
Sinceo|, v = 0% +pju» this completes the proof of achievability. u

Remark: As alternative characterizations, we show in Apperdix G tha Cascade and Triangular settings in
Corollaried1 anf[]2 can be transformed into equivalent problin [4] where explicit characterizations of the rate
distortion regions were given.

C. Quadratic Gaussian Two Way Source Coding

It is straightforward to extend Corollariek 1 did 2 to QuédiGaussian Two Way Cascade and Triangular Source
Coding using the observation that in the Quadratic Gaussaae, side information at the encoder doesznot reduce
the required rate. Therefore, the backward rate from Nodz Rade O is always lower bounded l%ylog UZI‘D%.

This rate (and distortion constraifi?;) can be achieved by simply encodidy We therefore state the following
corollary without proof.

Corollary 3 (Quadrauc Gaussian Two V\ay Triangular Source Coding): GivenD;, Do, D3 > 0, Ry, R3 > 0, Ro+

Ry > 1 5 log “AJ“’B and Ry, > max{ log — oy ,0}, the rate distortion region for Quadratic Gaussian Two Way
Tnangular Source Coding is charactenzed by the smaltgdor which (R1, Ra, Rs, R4, D1, D2, D3) is achievable,

which is
1 o2 1 o
Ry = “log =2, 21 A
1 Inax{2 OgD172 OgUiU,B}7

whereU = a*A+ B*B+Z*, Z ~ N(0,0%.), with o*, 3* andc%. satisfying the following optimization problem.

maximize U?4|UB
2
subjectto Ry > log

Z*
2R3
2 D2 > 0 ply

Remark: The special case of Two Way Cascade Quadratic Gaussianes@oring can be obtained as a special
case by setting?; = 0.
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Next, we present an extension to our settings for which we d@aracterize the rate-distortion region in the
Quadratic Gaussian case. In this extended setting, we hasea@e setting from Node 0 to Node 2 and a triangular
setting from Node 2 to Node 0, with the additional constralirat Node 1 also reconstructs a lossy versiorfof
As formal definitions are natural extensions of those prieskim sectior ]I, we will omit them here. The setting
is shown in Figuréls.

X 2

Fig. 5: Extended Quadratic Gaussian Two Way source coding

Theorem 5 (Extended Quad2rati(2: Gaussian Two Way Cascade Source Coding): GivenDi, Dy > 0,0 < Dz, , D, <
o, top

O'%IY and Ry > max{% log D—z,O}, the rate distortion region for the Extended Quadratic GansTwo Way
Cascade Source Coding is given by the sekRofR3, R4, R5 > 0 satisfying the following equalities and inequalities

1 o4 1 o2
R, = “log -2, 21 A
' max{2 OgD172 o 0'124U.,B}7

whereU = a*A+B*B+2*, Z* ~ N(0,0%.), with o*, 3* ando%. satisfying the following optimization problem.

- 9
maximize o3 5

2
oy
2
UZ*

. 1
subjectto Ry > 3 log

2
Dy 2 04y g

and
2
1 97|y
R3 >z 1Og ’
2°° Dy
2
1 o7y
Rs+ Rs > —lo ,
3 2 & min{Dy, ,Dyz,}
2
1 9z1y
Ry + Rs > - log
2 °° Dy,
Proof:
Converse

For the forward directiof{ R, R2), we note that Node 2 can only send a function &f;, Y™, Z™) to Nodes 0
and 1 using thek, and R5 links. SinceM; and Y™ available at both Node 0 and 1, the forward rates are lower
bounded by the setting whet&™ is available to all nodes. Further, in this setting, theati&n constraints z,
and Dz, are automatically satisfied sincg is available at Nodes 0 and 1. Therefof®;, R4, R5) do not affect
the achievabléR;, R,) rates in this modified (lower bound) setting?:, R2) are then obtained by the observation

16



in Corollary[d that the rate distortion region obtained for Quadratic Gaussian Cascade setting in Corollary 1 is
equivalent to the case where the side informatibis available at all nodes.

For the reverse direction, the lower bounds are derived tilngethe side informatior{X,Y") to be available
at Node 2, and for side informatioN to be available at Node 1. ThB, and D, distortion constraints are then
automatically satisfied sinc¥ is available at all nodes. We then observed tiiat, R2) do not affect the achievable
(Rs, R4, R5) rates in this modified (lower bound) setting. The stated uiadities for Rs, R4, R5 are then obtained
from standard cutset bound arguments and the factxhatY — Z form a Markov Chain.

Achievability

We analyze only the backward rat&s, R, and R5 since the forward direction follows from Corollaky 1. For
the backward rates, we now show that the rates are achiewadtleut the assumption ofX,Y") being available
at Node 2. We will rely on results on successive refinement afissian sources with common side information
given in [9]. A simplified figure of the setup for analyzing thackward rates is given in Figuré 6. We have three
cases to consider.

Node 0 Node 2

Fig. 6: Setup for analysis of achievability of backward sate

Case 1: DZ1 < D22
In this case, the inequalities in the lower bound reduce to

2
92y

Dy’

U%pf

Dy,

From the successive refinement resultsin [9], we can shottlileafollowing rates are achievable
R3 = I(Uy,Us,Us; Z]Y),
Ry = I(Uy; Z|Y),
Rs = I(Us; Z|Y, Uz)

for some conditional distributiod (U, 12]2, Us|Z), Zl(Ul, Us,Us,Y) and Zg(Ul, UQ,Y)2satisfying the distortion

constraints. Now, for fixed?, < %log UDZZ‘Z chooseD’(> Dy,) such thatR, = %1og ”g,". We now choose the

1
R3 > 510%%
1

R4+R52510g

2
Togy

auxiliary random variables and reconstruction functionshie following manner. Defin€)(z) := ——=--.
Z|Y

Uy = Z + Wy whereW; ~ N(0,Q(Dz,)),

U3 = Ul + W3 WhereW3 ~ N(OaQ(D22) - Q(DZ1))1

Uy =Us+ W,y WhereWg ~ N(O,Q(D/) — Q(Dzz)),

7, = E(Z|U.,Y),

Zy = E(Z|Us,Y).

17



From this choice of auxiliary random variables, it is easyéoify the following

R3 = I(Uy,Us,Us; Z|Y)

= I(Uh; Z|Y)

llo U%|Y
2 %Dy

I(Us; Z]Y)

Ry

= —log

Ry + Rs = I(Us; Z|Y') + 1(Us; Z]Y, Us)

= 1(Us,Us; Z|Y)

_1y Gy
“2 %D,
E(Z - Z1)* = Dy,,
E(Z — Z5)? = Dy,.

Case 2: Dy, > Dyz,, R3 > Ry
In this case, the active inequalities are

From [9], the following rates are achievable
R3 = I(Ul, UQ; Z|Y),
Ry =I1(Uy; Z|Y),
Rs = 1(Us, Uy; Z]Y, Us).

2
First, assumeRs < %log UDZ%. ChooseDz, < D' < D" < Dy,. We choose the auxiliary random variables and
. . 2
reconstruction functions as follows.

Us = Z + W5 whereWs ~ N(0,Q(Dz,)),
U; = Us + Wy whereW; ~ N(0,Q(D’) — Q(Dz,)),
Uy = Uy + Wy whereW, ~ N(0,Q(D") — Q(D")),
7z, = E(Z|U.,Y),
Zy = E(Z|Us,Y).

From this choice of auxiliary random variables, it is easyweoify the following

Rg = I(Ul, UQ;Z|Y)

= I(Uh; Z|Y)

_ 1 %y
2% Tp
R4=I(U2;Z|Y)
1 U%\Y

RERCI T

18



Ry + Rs = I(U; ZIY) + 1(U3, Uy; Z|Y, Us)
=1(U3, Uy, Us; Z|Y)
= 1(Us; Z]Y)

2
921y

Dy’
E(Z —7)? = D' < Dy,
E(Z — Z5)* = Dy,.

1
3 log

Next, considerRs > 1 log 3 v and Ry > 1 1og L
Z2
that we can obtanR4 < R4, R3 < Rg andRs = 0 by settlngD’ = D" = Dy,. Finally, consider the case where

Rs > 1log & Z‘Y and Ry < }log 5 Z‘Y . Then, we observe from our achievability scheme that we cdriewe

Ry = 1log Z“/ < R3 for any Ry and Rs satisfying the inequalities by setting’ = D,.

Case 3 D212> Dzz, R3 < Ry
In this case, the active inequalities are

1 zZ|ly
Rs > -1
3 = 2 0g DZ1 )
1 U%|Y

We first consider the case whem;, < & 1og o 21y . We exhibit a scheme for whicl®), = R3 (< R4) and still

satisfies the constraints. This procedure is done by lettingn case 2 to be equal t6,. For Dz, < D' < Dy,
define the auxiliary random variables and reconstructioctions as follows.

Us = Z + W5 whereWs ~ N(0,Q(Dgz,)),
Uy = Us + Wy whereW; ~ N(0,Q(D") — Q(Dgz,)),
Zy = E(Z|U1,Y),
Zy = E(Z|Us,Y).
Then, we have the following.
Rs; =I(Uy; Z|Y)
U%pf

D’
R, =1(Uy; Z|Y)

1
= ilog

= l]og Ty
2 D'’
Rs+ Rs = I(Uy; Z|Y) + 1(Us; Z|Y, Uy)
= I(Us,Uy; Z|Y)
=1(Us; Z]Y)
— llog U%W’
2 °° Dy,
E(Z - 7,)? =D’ < Dy,
E(Z — Z3)? = Dy,.
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2 2
H H 1 9|y H /7 1 9|y /
Finally, we note that in the case whefey > ;log Dy, We can always achiev&®; = ;log e R, =

2
1log Z and R = 0 by letting D’ = D, n

Remark 1: The Two-way Cascade source coding setup given in seLlioanlbe obtained as a special case by
settingR; = R4 =0 and Dz, — oc.

Remark 2: The rate distortion region is the same regardless of whedbde 2 sends first, or Node O sends first.
This observation follows from (i) our result in Corolldty lhere we showed that the rate distortion region for the
Cascade setup is equivalent to the setup where all nodestiadegraded side informatigsi; and (ii) our proof
above where we showed that the backward rates are the samdrasdase where the side informatioki, V) is
available at all nodes.

Remark 3: For arbitrary sources and distortions, the problem is opegeneral. Even in the Gaussian case,
the problem is open without the Markov Chalh — Y — Z. One may also consider the setting where there is a
triangular source coding setup in the forward path from N@de Node 2. This setting is still open, since the trade
off in sending from Node 0 to Node 2 and then to Node 1 versudisgrdirectly to Node 1 from Node 0 is not
clear.

V. TRIANGULAR SOURCE CODING WITH A HELPER

We present an extension to our Triangular source codingpdeyualso allowing the side informatiori to be
observed at the second node through a rate limited link (fpehe The setup is shown in Figuré 7. As the formal
definitions are natural extensions of those given in seflowe will omit them here.

Node 1
Ry

Node 2

Ry,

Helper

Fig. 7: Triangular Source Coding with a helper

Theorem 6: The rate distortion region for Triangular source codingwéthelper is given by the set of rate tuples
Ry > I(X; Xy, U1|Y, Uy),
R2 > I(U17X7Y|Za Uh)a
R3 Z I(Xa Y7 U2|U17 Uha Z)a
Ry > I(Up;Y|2).

for Somep(Ia Y, 2, U1, U2, Up, 551) = Ap(I)p(y|I)p(Z|y)p(’UJh|1/)p(U|ZC, Y, uh)p(jjl |Ia Y, uz, uh)p(u2|x7 Y, u1, uh) and
functiongs : Uy x Us x U, x Z — X5 such that

Ed;(X;, X;) <D;, j=1,2

We give a proof of the converse. As the achievability techagused form a straightforward extension of the
techniques described in AppendiX A, we give only a sketchobfievability.
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Converse: Given a(n, 2" 22 onfis onfn Dy D,) code, definely, = (Y1, 2071, Z, My,), Uy =
(X1 M) andUsy; = (Up;, Uy, M3). Observe that we have the required Markov conditiohis, Z;) — Y; — Up;
and Z; — (X;,Y:, Un;) — (U14, Us;). For the helper condition, we have

nRy, > I(Mh; Yn|Zn)

= > HY\Z) — HYY'™, M, 27)

s
Il
-

I(Uni; Yil Zs).

|

N
Il
-

For the other rates, we have

an 2 H(Ml)
> H(M,|Y™, Z™)
= H(My, Ma|Y™, Z") = I(X™; My, Ma|Y™, Z™)

I(Xy; My, Mo| X Y™ Z™)

[
NE

1

.
Il

H(Xi|Xi717Yn7 Zn) - H(Xiaani717Yn7 Zn7M17M2)

|

N
Il
-

H(X7,|Y;7 Zz) - H(Xiaani_laynu Zn7M17M2)

I
[M]=

<.

S
0= L

H(X;|Y;) — H(X,;, Yi| XL Y™, Xy, Z7, My, Ma, My,)
1

.
Il

H(X:|Y:, Upi) — H(Xi| X 14, Vi, Urg, Uni)

M-

@
I
A

(X3 X4, Uy |Yi, Uni).

[
NE

1

.
Il

(a) follows from the Markov chain condition. Next,
TLRQ Z H(M2|Mh)
> H(Ma|Z", Mp)
=I(X", Y™ Ms|Z"™, Mp,)

I(Xi7Y;;M2|Zn7Xi717Yi717Mh)

|

N
Il
-

H(Xiu}/i|Zn7Xi_luyi_luMh) - H(Xi7Y;|Zn7Xi_17Yi_17M27Mh)

|

N
Il
-

H(X;,Yi|Z;,Upi) — H(X;,Y;|Z;, Ui, Upi)

|

N
Il
-

I

s
Il
-

I(X;,Y3; Uil Zs, Upy).
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Next,

nR3 2 H(Mg)
> H(M3|Mz, My, Z"™)
=I(X", Y™ Ms|My, Mp,Z™)

H(X;,Yi| My, My, Z™, X'71 YY) — H(X,, Y| My, M3, My, 2", X' Y1)

I

N
Il
-

|

-
Il
-

I(X;,Y3; Usi|Uvi, Uni, Zs).

Finaly, it remains to show that the joint probability dibtition induced by our choice of auxiliary random variables,
p(@)p(ylx)p(zly)p(unly)p(u|z, y, up)p(E1, uslz, y, ui,up), can be decomposed into the required form. This step
follows closely the similar step in the proof of TheorEin 2,iethwe therefore omit.

Sketch of Achievability

The achievability follows that of Triangular source codimagth an additional step of generating a lossy description

of Y. The codebook generation consists of the following steps

e Generate2"(!(YiUn)+e) Upr sequences according [}, p(un;). Partition the set ofU}' sequences into
2n(I(Uh;Y\Z)+26) binS,Bh(mh), mp € [1 . 2n(I(Uh;Y|Z)+2€)]'

e Generate"!(X.Y:UniUn)+e) /n sequences according {d}_; p(u1;). Partition the set of/] sequences into
on(I(UnXY,Un)+2¢) pins, By (m1,). Separately and independently, partition the setU#f sequences into
2n(I(U1;X,Y|Z.,Uh)+25) binS,Bg(mQ), my € [1 . 2n([(U;X,Y|Z)+2€)]_

e Foreachu?, uy,y") sequence, generate!/(XiX|U1.Y:Un)+€) Xn sequences according [y, p(&:|u1s, wni, yi)-

e Generate"!!(UzX.Y|UnUn)+€) 72 sequences according §d;_, p(uz:|u1i, un;) for each(uy,u}) sequence,
and partition these sequencestg’(VzX:Y1U1.Un.2)+2¢) hins, Bs(msg).

Encoding consists of the following steps

e Helper node: The helper node (and Nodes 0 and 1) looks igf sequence such that), y") € 7;(”). This
step succeeds with high probability since there2é(¥:U»)+<) /" sequences. The helper then sends out the
bin indexm,, such that}} € B(ms). The sequence@.), =™, y™, 2™) are jointly typical with high probability
due to the Markov ChaitiX, Z) — Y — Uy,.

e Node 0: Given(z",y",u}}) € 7;(”), Node 0 looks for a jointly typical codewordy. This operation suc-
ceeds with high probability since there a2&!(X.Y:UniUn)+e) [/ sequences. Node O then looks foria
that is jointly typical with (uf,z",y", u};). This operation succeeds with high probability since there
on(I(XuX[ULUnY)+e) g1 sequences.

e Node 0 also finds a} sequence that is jointly typical witbw?, u}, 2™, y™). This operation succeeds with
high probability since we have((UzXY[U1,Un)+e) 4 sequences.

e Node 0 then sends out the bin index, such that:}' € B;(m10) and the index corresponding ¢ to Node
1. This requires a total rate dt, = I(U; X|Y) + I(X}; X|U,Y) + 3¢ to Node 1. Node 0 also sends out the
bin indexms such thatu} € B(ms) to Node 2. This requires a rate &fUsz; X, Y |U1, Uy, Z) + 2e.

e Node 1 decodes the codewaugl and forwards the index:; such that} € B(mz) to Node 2. This requires
arate of [(Uy; X,Y|Z,Up) + 2e.

Decoding consists of the following steps

e Node 1: Node 1 reconstructg by looking for the uniqué/{* sequence i, (m1o) such that U7, U;', Y") €
74, Since there are onlgn(/(X.Y:UnsUD)=I(UiX|Y.Un)—e) — 9n(I(UiUn,Y)=€) sequences in the bin, this
operation succeeds with high probability. Node 1 recor$riX™ as Xf(m1o,m11). Since the sequence
(Xf,X") are jointly typical with high probability, the expected @igion constraint is satisfied.

e Node 2: We note that sincd/;, U, Uy, X) — Y — Z, the sequencedJ}’, UT, Uy, X™, Y™, Z") are jointly
typical with high probability. Decoding at node 2 consistslee following steps

1) Node 2 first looks foru} in By (ms) such that(u}, z™) € 7™ This operation succeeds with high
probability since there are onby*(/(Uri%)—< y» sequences in the bin.
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2) Itthen looks foruf in B2(ms) such thatuj, uy, z") € T, Sincel (Uy; X, Y, Up)—1(U1; X, Y|Z,Up,) =
I(Uy; Z,Uy) by the Markov ChainZ — (X, Y, Uy,) — Uy, this operation succeeds with high probability
as there are onlg"(/(U1;2.Un)=¢ 41 sequences in the bin.

3) Finally, it looks for uy in Bs(ms) such that(u},uy,uy,z") € 7. Since I(Uy; X, YU, Uy) —
1(Us; X, Y|Z,Up,Uy) = I(Us; Z|Uy, Uy,) by the Markov ChainZ — (X, Y, Uy, Uy) — Us, this operation
succeeds with high probability as there are oily! (V2:41Un.Un) =< 41 sequences in the bin.

4) Node 2 then reconstructs using the function= g2 (w14, ua;, upi, 2;) fori € [1 : n]. Since the sequences
(X, Z™, Uy, Uy, Ur) are jointly typical with high probability, the expected wigion constraint is
satisfied.

[ |

VI. CONCLUSION

Rate distortion regions for the cascade, triangular, tveg-sascade and two-way triangular source coding settings
were established. Decoding part of the description intdrfde Node 2 and then re-binning it was shown to be
optimum for our Cascade and Triangular settings. We alsenebetd our Triangular setting to the case where there
is an additional rate constrained helper, which obseFgegor Node 2. In the Quadratic Gaussian case, we showed
that the auxiliary random variables can be taken to be jpiGtussian and that the rate-distortion regions obtained
for the Cascade and Triangular setup were equivalent toettieg where the degraded side information is available
at all nodes. This observation allows us to transform ourc@&s and Triangular settings into equivalent settings
for which explicit characterizations are known. Charagtgions of the rate distortion regions for the Quadratic
Gaussian cases were also established in the form of trackadl dimensional optimization programs. Our Two
Way Cascade Quadratic Gaussian setting was extended ma&ohore general two way cascade scenario. The case
of generally distributedX, Y, Z, without the degradedness assumption, remains open.
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APPENDIXA
ACHIEVABILITY PROOFS

Achievability proof of Theorem [Tl

A. Codebook Generation

e Fix the joint distributionp(x,y, z,u, 1) = p(z)p(y|x)p(zly)p(u|z, y)p(&1 |z, y,u). Let R = Rio + Ri1,
R; > Rip and Ry > Ryp.

e Generate2" 0 (1) sequenced, € [1 : 2"%1], each according t§];_, p(u;).

e Partition the set of/" sequences int@"1o bins, By (m1g), mio € [1 : 2"F10]. Separately and independently,
partition the set o/ sequences int@"2 bins, Ba(ms), ma € [1 : 27F2].

e For eachu™(l) andy" sequences, generat&™ X7 (I, m,;) sequences according {d)"_, p(#1i|ui, vi).
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B. Encoding at the encoder

Given a(z",y") pair, the encoder first looks for an indéx [1 : 2"%] such that(u™ (1), z", y") € 7 where
7;(") stands for the set of jointly typical sequences. If thereraoge than one such it selects one uniformly at
random from the set of admissible indices. If there is nongemnds an index uniformly at random frdin: 2"Rl]ﬁ
Next, it finds the indexny; such that(@, (I, m11), u"(mig), 2™, y") € 7;("). As before, if there is more than one, it
selects one uniformly at random from the set of admissibiéces. If there is none, it sends an index uniformly at
random from[1 : 27F11], Finally, it sends oufmig, m11), wherem is the bin index such that" (1) € By (m1o).
The total rate required i&.

C. Decoding and reconstruction at Node 1

Given (m10, m11), Node 1 looks for the uniquesuch that(u™(1),y") € 7 andun (I) € By(1). It reconstructs
2™ asi™(l,mq). If it failed to find a unique one, or if there is more than ortepuitputs! = 1 and performs the
reconstruction as before.

D. Encoding at Node 1
Node 1 sends an inde, such thatu"(i) € Ba(mmg). This requires a rate aRs.

E. Decoding and reconstruction at Node 2

Node 2 looks for the index such that(u™ (1), y") € 7 andi e Bz (rz). It then reconstructs™ according to
Zo; = g2(u™(1)i, z;) for i € [1: n]. If there is no such index, it reconstructs using 1.

F. Analysis of expected distortion

Using the typical average lemma inl [6, Lecture 2] and follogvthe analysis in[]6, Lecture 3], it suffices to
analyze the probability of “error”; i.e. the probabilityahthe chosen sequences will not be jointly typical with the
source sequences. Letand M, be the chosen indices at the encoder. Note that these deéir@rthindicesM; g
and M,. Let M, be the chosen index at Node 1. Define the following error esvent

1) &= {(x"v") ¢ T}

2) & = {(U™(1), X", V") ¢7;”>} for all 1 € [1: 274

3) & = {(U™(]), xmyn ARN:: 7" } for aII l € [1:2nf]

4) & = {(U™(L),X™(L, m11) X"Y") ¢ 71 for all myy € [1: 2nFu]
5) & = {(U™(]), Y") e 7" } for somel # L andU™ (1) € B1(Mio)

6) Es(My) := {(U™(I), Z™) € } for somel # L and U™ (1) € By (M)
We can then bound the probab|I|ty of error as

5 1—1
P. <P{lJ&} =D _Pl&n( &N}
i=0 Jj=0

P{&} — 0 asn — oo by Law of Large Numbers (LLN).
By the covering lemma in[6, Lecture 3p{&1 NES} — 0 asn — oo if

Ry > I(U; X,Y) + (e).

P{&NEFNESH — 0 asn — oo by the Markov relatiol/ — (X,Y) — Z and the conditional joint typicality
lemma [6, Lecture 2].
By the covering lemma i [6, Lecture 3p{&; N (N

¢} —0asn — oo if

JOJ

Ri1 > I(Xl,XlU,Y) + (6)

For simplicity, we assume randomized encoding, but it iy ¢éasee that the randomized encoding employed our proofdeancorporated
as part of the (random) codebook generation stage.
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e From the analysis of the Wyner-Ziv Coding scheme (§ée [76oikcture 12])P{&, N (N°
n — oo if

=0 J}—>Oas

Rl—R10<I(U;Y)—(€).

e For the last term, we have
4
P{&s (M) N ([) £5)}=P{&5(M2) N ﬂgc N{Ma # M}}
P 20
4
+ P{&(M2) N ﬂ )N {M; = Ms}}

W pyes (M) N ﬂ )N {0y = My}

= P{&(M2) N ([) &) N {My = My}}
7=0
< P{& (M) N ES).

Step(a) follows from the observation tha(ﬂ &N {M, # My} = (). The analysis of the probability of
error therefore reduces to the anaIyS|s for the equivalgmenZiv setup withZ as the side information at
Node 2. HenceP{&; (M) N (Ni_, )} — 0 asn — oo if

j=0"%J
R — Ry < I(U; Z) — (e).

Eliminating R; in the aforementioned inequalities then gives us the redquiate region.
Achievability proof of Theorem[2

As the achievability proof for the Triangular Source CodiGgse follows that of the Cascade Source Coding
Case closely, we will only include the additional steps iegflifor generatingRs and analysis of probability of
error at Node 2. The steps for generatiRg and R», and for reconstruction at Node 1 are the same as the Cascade
setup.

G. Codebook Generation
o Fix p(z,y,z,u,v,11) = p(x)p(ylr)p(z|y)p(ulz, y)p(2:1]2, y, u)p(v]z, y, u).
e For eachu™ (1), generatd/™(l3), I3 € [1 : 2"%3], according to[ [}, p(v;|u;). Partition the set of™ sequences
into 27 bins, B3 (m3).

H. Encoding

e Given a sequencge™, ™) andu™ (1) found through the steps in the Cascade Source Coding sheipntoder
looks for an indexs such that(u™, v™(l,13), 2™, y™) € 7™ 1f it finds more than one, it selects one uniformly
at random from the set of admissible indices. If it finds naheutputs an index uniformly at random from
[1:2"%3], The encoder then sends out such thatLs € Bs(ms).

I. Decoding

The additional decoding step is in decodihg Node 2 looks for the uniqug such that(u™ (1), v" (I, l3), 2™) €
7;(") andv™(l3) € Bs(Ms3). If there is none or more than one, it outpuitg = 1.
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J. Analysis of Distortion

Let L, My, and M3 be the indices chosen by the encoder. Note that these fix theemM,, and M,. We

follow similar analysis as in the Cascade case, with the sd@fiaitions for error event§, to . We also require
the following additional error events:

7) & = {(U(L),V™(L,Ls), X", Y") ¢ T},

8) & = {(U"(L), V"(L, La), X" Y™, 27) £ Ty )

9) &(L) = {(U™L),V"(L,is), Zz") € T{™} for somels # Ls andis € Bs(Ms).
To bound the probability of error, we have the following aatial terms

e By the covering lemmaR (& N ES) — 0 asn — oo if

Ry > I(V; X, Y|U) + (e).

e P(&;NES) — 0 asnoo from the Markov conditionV, U) — (X,Y) — Z and the conditional joint typicality
lemma.

o P{ES(L) N ES(VE) NES N (ML, £5))). We have

P{E(L) NES(My) N ESN ﬂsc

= P{&(L) NES(Ma) N ES N ﬂec N{My = My}} + P{E(L) N ES(My) N EEN ﬂsc N{My # Ms}}
7=0

= P{&s(L) NES(ML) N &SN ﬂfc N (M = Mo}}

= P{&(L) N ES(Ma) N ES N (ﬂ E)N{My = M}}

< P{Eg( ) N 55(M2) n 57}
W plgs(L)nEL(My) NEEN{L = L}}
=P{&(L)NEM)NEN{L=L}}
< P{&(L) N ESY.
(a) follows from the observation thaft¢(M,) NESN{L # L} = 0. It remains to boun®{& (L) NES}. Note
that the analysis of this term is equivalent to analyzinggewip wherd/" is the side information at Node 0
and (U™, Z™) is the side information at Node 2. Hend®{&s(L) N &S — 0 asn — oo if
Ry — Ry < I(V; Z|U) — (e).
We then obtain the rate region by eliminatify and R;.
Achievability proof of Theorem[3

As with the case for the Triangular setting, the proof fostbase follows the Cascade setting closely. We will
therefore include only the additional steps. We have a oharighotation from the Cascade setting. We will use

U, instead ofU
K. Codebook Generation

o FiX p(x,y,2,u1,u2,21) = p(x,y, 2)p(ur|z, y)p(&1|u, z, y)p(uz| 2, u1).

e For eachu?(l), generate™?: U2 (i3) sequenced, € [1 : 2"%], each according t§[;__, p(us;|ui;). Partition
the set ofU} into 2" bins, B (ms3).
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L. Encoding

The additional encoding step is at Node 2. Node 2 looks fondexLs such tha(u (L), u5 (L, Ls), Z™) € T,
As before, if it finds more than one, it selects an index umifigrat random from the set of admissible indices. If
it finds none, it outputs an index uniformly at random frgm 27%s]. It then outputs the bin indexs such that
L3 € Bg(mg).

M. Decoding

Additional decoding is required at Node 0. Node O looks thieins such that(u? (1), ug (1, ls), 2™, y™) € 7"
andlg S 83(m3).

N. Analysis of distortion

Let Ecascade denote the event that an error occurs in the forward Cascatte j addition, we define the
following error events.

o Erwo1(L) = {(UML),U3(L,1s), ") ¢ T for all Iy € [1: 27Fs]}.

o Erwoa(L) = {(U(L), U (L, Ly), 2", X", Y") ¢ TV} A

o Erw—s(L) = {(U}(L), U3(L,I5), X", Y™") e 7™ for somels € Bs(Ms), Is # Ls}.
o P(Erw—1(L) NEEgseque) = PErw—1(L) NEEqseaqe) — 0 aST — 00 f

Ry > I(Us; Z|U1) + (e).

P(ETW,Q(Z:;) N E¢qseade) = P(Erw—2(L) NEE 4scade) — 0 @SN — oo by the strong Markov Lemmal[8].
P(£TW*3(L) n gé‘ascade) - P(£TW73(L) n gé’ascade) —0asn — oo if

Ry — Ry < I(U2; X, Y|U1) — (e).

Finally, eliminatingRs and R; gives us the required rate region.
Achievability proof of Theorem[4l

The achievability proof for Two Way Triangular source caglicombines the proofs of the Triangular source
coding case and the Two-way cascade case. As it is largellasito these proofs, we will not repeat it here. We
will just mention that the codebook generation, encodiregodling and analysis of distortion for the forward path
from Node O to Node 2 follows that of the Triangular sourceingdcase, while codebook generation, encoding,
decoding and analysis of distortion for the reverse patimfiinde 2 to Node 0 follows that of the Two-way Cascade
source coding case, witfUs, V') taking the role ofUs.

APPENDIXB
CARDINALITY BOUNDS

We provide cardinality bounds for Theorefdgl1-4 stated inpyger. The main tool we will use is the Fenchel-
Eggleston-Caratheodory Theorem][10].

A. Proof of cardinality bound for Theorem[I]
For eachz, y, we have

filpx y vz, ylu) ZP p(z, ylu) = p(z,y).

We therefore havéX||)| — 1 continuous functions op(z, y|u). These set of equations preserves the distribution
p(z,y) and hence, by Markovityy(z, y, z). Next, observe that the following are similarly continudusctions of
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p(z, ylu)
IU;X,Y|Z) = H(X,Y|Z) - H(X,Y, Z|U) + H(Z|U),
I(X; X1, U)Y) = H(X|Y) = H(X|U) + H(X, X1, Y|U),
Edi(X,X1) =Y pla,d1)d(x, 1),

EdQ(X7X2) = Z p(:v,y,u)d(:v,gg(x,u)),
T,y,u

These equations give us 4 additional continuous functiodsh&nce, by Fenchel-Eggleston-Caratheodory Theorem,
there exists &/ with cardinality of|X'||)’| 4+ 3 such that all the constraints are satisfied. Note that thistcaction

does not preserve(, ), but this does not change the rate-distortion region siheeassociated rate and distortion
are preserved.

B. Proof of cardinality bound for Theorem[2
We will first give a bound for the cardinality df. We look at the following continuous functions pfx, y|u).

Fioxyw(@,ylu) =S pu)p(e, ylu) = p(z,y), Va,y

u

I(U;X,Y|Z)=H(X,Y|Z) - H(X,Y, Z|U) + H(Z|U),
I(X; X,,U|Y) = H(X|Y) — HX|U)+ H(X, X,,Y|U),
I(X,Y;V|U,Z)=H(X,Y,Z|U) - H(Z|U) - H(X,Y,V, Z|U) + H(V, Z|U),
Edi(X,X1) =Y plw,d1)d(z, 1),

x,T

Edg(X,Xz): Z p(x,y,u,v)d(x,gg(x,u)).

z,Y,u,v

From these equations, there exist&/awith |i//| < |X||V| + 4 such that the equations are satisfied. Note that the
new U’ induces a new’. For eachU’ = u, consider the following continuous functions pfx, y|u, v)

pla, ylu) = Zp vlu)p(z, ylv, u),

I(X,Y,V|U—U,Z)— (X,Y|U—U,Z)— (X,Y|V,U:U,Z),
E(dQ(Xa X2)|U = U) = Z p(Iayvv|u)d(I392(Iau))'

z,Y,v

From this set of equations, we see that for eadth= w, it suffices to considel’’ such that|V’| < |X||YV| + 1.

Hence, the overall cardinality bound énis V| < (|X||Y] +4)(JX||Y| + 1). The jointp(x,y, =) is preserved due
to the Markov ChainV,U) — (X,Y) — Z.

C. Proof of cardinality bound for Theorem[3
The cardinality bounds ofi; follows similar analysis as in the Cascade source coding. dad® proof is therefore
omitted. For eacli/; = u;, the following are continuous functions gfz|us, u1),

(z|u) ZP uz|u1)p(zlusz, u1),

I(UQ;Z|U1 = ul,X,Y) = (ZlUl = ul,X,Y) —H(ZlUl = ul,Ug,X,Y),
E(ds(Z, 2)|Ur =w) = > pla,y, 2, uslur)d(z, gs(@, y, w1, us)).
T,Y,Z,U2

From this set of equations, we see that for etlgh= w1, it suffices to considel’; such thatif;| < |Z|+1. Hence,
the overall cardinality bound ofY; is |Us| < |U4|(|Z]| 4+ 1). The jointp(x,y, z) is preserved due to the Markov
ChainslU; — (X,Y) — Z andU, — (Z,U;) — (X,Y).
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D. Proof of cardinality bound for Theorem[4]

The cardinality bounds follow similar steps to those for finst 3 theorems. For the cardinality bound fof|,
we find a cardinality bound for eadli, = u; andV = v. Details of the proof are omitted.

APPENDIXC
ALTERNATIVE CHARACTERIZATIONS OF RATE DISTORTION REGIONSN COROLLARIES[IIAND [2

In this appendix, we show that the rate distortion region€amollariedl anfl2 can alternatively be characterized
by transforming them into equivalent problems found[in [#here explicit characterizations were given. We focus
on the Cascade case (Corollaly 1), since the Triangular fodlsevs by the same analysis.

Figure[8 shows the Cascade source coding setting which tti@ination problem in Corollar{J1 solves.

Fig. 8: Cascade source coding setting for the optimizationblem in Corollary[]l. X; and X, are lossy
reconstructions ofd + B.

In [4], explicit characterization of the Cascade sourceirgdetting in Figuréld was given.

Node 0 * Node 2

Q Node 1 Q N
X - - — X,
R1 RQ

f |

Y=X+42Z2 Y=X+2

Fig. 9: Cascade source coding setting for the optimizatiomblem in Corollary[]l. X; and X, are lossy
reconstructions ofX and 7 is independenfX .

We now show that the setting in Figuré 8 can be transformem timé setting in Figur€]9. First, we note that
for the setting in Figurgl9, the rate distortion regions & same regardless of whether the sourceg &r&") or
(X,aY) wherea # 0 since the nodes can simply scafeby an appropriate constant.

Next, for Gaussian sources, the two settings are equivdlemt can show that the covariance matrix(0f, aY)
can be made equal to the covariance matrix 4f+ B, B). Equating coefficients in the covariance matrix, we
require the following

0% =04 +0p,
omg( = 0']23,
(0% +0%) = 0%,
Solving these equations, we see that 0% /(0% + 03) andoy = (03 — a?0%)/a?. Since(o%, — ac%) > 0,
this choice ofo?% is valid, which completes the proof.
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