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Abstract— We address the question of optimal trading of
bandwidth (service) contracts in wireless spectrum markets,
for the primary spectrum providers. We propose a structured
spectrum market and consider two basic types of spectrum
contracts that can help attain desired flexibilities and trade-
offs in terms of service quality, spectrum usage efficiency and
pricing: long-term guaranteed-bandwidth contracts, and short-
term opportunistic-access contracts. A primary provider (seller)
creates and maintains a portfolio composed of an appropriate
mix of these two types of contracts. The optimal contract
trading question in this context amounts to how the spectrum
contract portfolio of a seller in the spectrum market should
be dynamically adjusted, so as to maximize return subject to
meeting the bandwidth demands of its own subscribers. We
formulate the optimal contract trading question as a stochastic
dynamic programming problem, and obtain structural prop-
erties of the optimal dynamic trading strategy that takes into
account the current market prices of the contracts and the
subscriber demand process in the decision-making.

I. INTRODUCTION

The number of users of the wireless spectrum, as well
as the demand for bandwidth per user, has been growing
at an enormous pace in recent years. Since spectrum is
limited, its effective management is vitally important to meet
this growing demand. The spectrum available for public use
can be broadly categorized into the unlicensed and licensed
zones. In the unlicensed part of the spectrum, any wireless
device is allowed to transmit. To use the licensed part, how-
ever, license must be obtained from appropriate government
authority – the Federal Communications Commission (FCC)
in the United States, for example – for the exclusive right to
transmit in a certain block of the spectrum over the license
time period, typically for a fee. The need for bringing
market-based reform in spectrum trading, with the goal of en-
suring efficient use of spectrum and fairness in allocation and
pricing of bandwidth, is being increasingly recognized by
both economists and engineers [4], [7], [14], [16], [15], [23].
The literature on the economics of spectrum allocation has so
far mostly focused on the debate of spectrum commons [12],
[14], [16] and spectrum auction mechanism design [10], [17],
[22], [21]. Spectrum sharing games and/or pricing issues
have been considered in [5], [6], [13], [8], [20]. A clear
design of the spectrum market structure, precise definition
of spectrum contracts, or how the different contracts can be
optimally traded in a dynamic market environment is yet to
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emerge. This is the space in which we contribute in this
paper.

We consider a spectrum market where the license holders
(referred to as primary providers henceforth) can potentially
sell to the secondary providers1 the spectrum they have
licensed from the FCC but do not envision using in near
future. Primary providers may either be providers of TV
broadcasts, or large providers of wireless service who oper-
ate nationwide. Secondary providers are relatively smaller,
but larger in number, and can be geographically limited
providers, whose access to spectrum occurs through the
bandwidth (service) contracts that they buy from primary
providers. Providers in both categories have their subscriber
(TV or mobile communication subscriber) bases whom they
need to serve using the spectrum they respectively license
from the FCC or buy in the spectrum market. This spectrum
market structure is motivated by, and closely resembles,
secondary financial markets used for trading of financial
instruments (such as stocks, bonds) among investment banks,
hedge-funds etc. Like in secondary financial markets, we
allow trading in spectrum markets, not only of the raw
spectrum (bandwidth), but also of the different kinds of
service contracts derived from the use of spectrum. A
question that is key to the efficient operation of the spectrum
market is how the primary providers should trade spectrum
(bandwidth/service) contracts dynamically, based on time-
varying demand patterns arising from their subscribers, to
maximize their returns while satisfying their subscriber base.
This is the central focus of this paper.

We formulate and evaluate the solutions for the spectrum
contract trading problem for the primary providers. We
consider two basic forms of contracts that are used for
selling/buying spectral resources: i) Guaranteed-bandwidth
(Type-G) contracts, and (ii) Opportunistic-access (Type-O)
contracts. Under the Type-G contracts, a secondary provider
purchases a guaranteed amount of bandwidth (in units of
frequency bands or sub-bands) for a specified duration of
time (typically a “long term”) from a primary provider, and
pays a fixed fee (either as a lump-sum or as a periodic
payment through the duration of the contract) irrespective of
how much it uses this bandwidth. If after selling the contract,
the primary is unable to provide the promised bandwidth
(this may for example happen when the primary is forced
to use a band it has sold due to an unexpected rise in its
subscriber demand), the primary financially compensates the
secondary for contractual violation. On the other hand, Type-

1Note that our notion of “primary” and “secondary” spectrum providers
must be distinguished from similar terms often associated with users
(subscribers in our case) in the spectrum allocation literature.



O contracts are short-term (one time unit in our model), and
a secondary which buys a Type-O contract pays only for the
amount of bandwidth it actually uses on the corresponding
band. The primary does not provide any guarantee on a
Type-O contract and may use the channel sold as a Type-
O contract without incurring any penalty. Thus, a Type-O
contract provides the secondary the right to use the channel
if the primary is not using it.

The spectrum contract trading problem that we formulate
and solve allows the primary provider to dynamically adjust
its spectrum contract portfolio, i.e, choose how much of each
type of contract to sell at any time, so as to maximize its
profit subject to satisfying its own subscriber demand that
varies with time, and given the current market prices of
Type-G and Type-O contracts which also vary with time. We
address the Primary’s Spectrum Contract Trading (Primary-
SCT) problem in Sections II and III. We formulate the
problem as a finite horizon stochastic dynamic program
whose computation time is polynomial in the input size. We
prove several structural properties of the optimum solutions.
For example, we show that the optimal number of Type-G
contracts are monotone (increasing or decreasing) functions
of the subscribers’ demands and the contract prices. These
structural results provide more insight into the problems, and
allow us to develop faster algorithms for solving the dynamic
programs.

Although the spectrum contract trading problem has been
motivated by analogues in financial markets, the actual
questions posed and the techniques used to answer them turn
out to be quite different owing to the nature of the specific
commodity, that is RF spectrum, under consideration. First,
the primary must decide its trading strategy considering its
subscriber demand which changes with time. For example,
a primary can not simply decide to sell a large number of
Type-G contracts at any given time at which their market
prices are high. This is because the primary will need to pay
a hefty penalty if it can not deliver the promised bandwidth
owing to an increase in its subscriber demand. The portfolio
optimization literature in finance does not usually address the
demand satisfaction constraint. Next, spectrum usage must
satisfy certain temporal and spatial constraints that are per-
haps unique. Specifically, a frequency band can not be simul-
taneously successfully used at neighboring locations (without
causing significant interference), but can be simultaneously
successfully used at geographically disparate locations. Thus,
the spectrum trading solution for the primary provider must
also take into account spatial constraints for spectrum reuse,
and therefore the computation of the optimal trading strategy
requires a joint optimization across all locations. We prove
a surprising separation theorem in this context: when the
same signal is broadcast at all locations, the Primary-SCT
problem can be solved separately for each location and the
individual optimal solutions can subsequently be combined
so as to optimally satisfy the global reuse constraints, and
obtain the same revenue as the solution of a computationally
prohibitive joint optimization across locations (Section III).

II. THE PRIMARY-SCT PROBLEM

In this section, we pose and address Primary-SCT, the
spectrum contract trading question from a primary provider’s
perspective. We formulate the problem when a primary
provider owns channels in a single region (Section II-A),
solve it using a stochastic dynamic program (Section II-B),
and identify the structural properties of the optimal solution
(Section II-C). In Section III, we formulate and solve the
trading problem when the primary owns channels in multiple
locations, considering the spatial reuse of channels across
different locations.

A. SCT in a single region

We now define the Primary-SCT problem for a primary
provider that owns M frequency bands (channels) in a single
region, which it sells as Type-G or Type-O contracts to sec-
ondary providers. We assume that each channel corresponds
to one unit of bandwidth and at most one contract – either
Type-G or Type-O – can stand leased on a channel at any
time. We also assume that the market has infinite liquidity:
there is a large number of buyers, and hence the primary
provider can sell any or all of the channels it owns anytime
and in any combination of Type-G and Type-O contracts.

We assume that time is slotted; at the beginning of each
slot t, the primary determines the number of channels xG(t)
and xO(t) to be sold as Type-G and Type-O contracts
respectively. We consider optimization over a finite time
horizon of T time slots. A Type-G (“long term”) contract
that is sold at the beginning of any slot t = 1, . . . , T lasts till
the end of the horizon. T therefore represents the maximum
duration of a Type-G contract. Type-O contracts last for a
single slot from the time they are negotiated.

The prices of both types of contracts (i.e, the prices at
which they can be bought/sold in the spectrum market) vary
randomly with time and are determined “by the market”,
possibly depending on the current supply-demand balance
in the market and other factors. The “per-slot” market prices
for Type-G and Type-O contracts at time t are denoted by
cG(t) and cO(t) respectively. When a Type-G contract is sold
at slot t, it remains active for T − t + 1 slots (that is, until
the end of the optimization horizon), and therefore fetches a
revenue of α(T−t+1)cG(t), where α(n) is a (deterministic)
increasing function of n and captures the increase in value
of a Type-G contract with the number of slots for which it
remains active, e.g., α(n) = n. We assume that the process
{cG(t)} (respectively, {cO(t)}) constitutes a Discrete time
Markov chain (DTMC) with a finite number of states and
transition probability HG

c,d (respectively, HO
c,d) from state c

to d. For simplicity, we assume that the DTMCs {cG(t)}
and {cO(t)} are independent of each other, although our
results readily extend to the case when the joint process
{cG(t), cO(t)} is a DTMC.

Each primary provider is associated with a randomly time-
varying demand process, {i(t)} which corresponds to its
subscriber demand (of TV channel subscribers or wireless
service subscribers, for example) that it must satisfy. We
assume that the process {i(t)} constitutes a DTMC with a



finite number of states and transition probability Qij from
state i to j, which is independent of the price process; each
demand state corresponds to an integral amount of bandwidth
consumption in subscriber demand.

We assume that the transition probabilities {HG
c,d}, {HO

c,d}
and {Qij} are known to the primary provider. They can
be estimated from the history of the price and demand
processes.

The contract trading is done at the beginning of time
slot t, and (xG(t), xO(t)) are determined after the market
prices cG(t), cO(t) and demand levels i(t) are known. Let
(aG(t), xO(t)) denote the spectrum contract portfolio held
by the primary during time slot t, i.e. the number of Type-
G and Type-O contracts that stand leased. Since Type-G
contracts last till the end of the time horizon, we have:

aG(t) =
∑
t′≤t

xG(t
′) (1)

The bandwidth not leased as Type-G contracts or used to
satisfy the demand is sold as Type-O contracts. Thus, at any
time t:

xO(t) = K(aG(t), i(t)) := max{0,M − aG(t)− i(t)}. (2)

However, for all slots, t, for which aG(t) + i(t) > M ,
the primary will have to use channels already sold under
Type-G contracts to satisfy its subscriber demand, due to
unavailability of additional bandwidth. In this case, the
primary incurs a penalty, Y (aG(t), i(t)), for breaching Type-
G contracts. The penalty is proportional to the number of
such channels the provider uses for satisfying its subscriber
demand. Thus,

Y (aG(t), i(t)) = βmax{0, aG(t) + i(t)−M}, (3)

where β is the proportionality constant. We make the natural
assumption that the penalty is hefty; in particular, β is greater
than or equal to the maximum possible price of a Type-O
contract.

The Primary-SCT problem then is to choose the primary’s
trading strategy ((xG(t), xO(t)) , t = 1, . . . T ), so as to max-
imize its expected revenue, expressed as

E

(
T∑

t=1

(α(T − t+ 1)cG(t)xG(t) + cO(t)xO(t)

−Y (aG(t), i(t)))) , (4)

subject to relations (1)-(3). The optimum strategy must be
causal in that for each t ∈ {1, . . . T}, (xG(t), xO(t)) must be
chosen by time t. Note that at time t, {i(t′), cG(t′), cO(t′) :
t′ = 1, . . . , t} are known, but {i(t′), cG(t′), cO(t′) : t′ =
t+ 1, . . . , T} are not known to the primary provider. From
(1) and (2), xO(t) is a function of {xG(t

′) : t′ = 1, . . . , t}
and the current demand i(t). Therefore, the Primary-SCT
problem as defined above reduces to finding the optimal
(xG(t), t = 1, . . . , T ).

Note that the revenue function in (4) ignores any revenue
earned from the primary’s subscribers. Since the subscriber
demand process i(t) is unaffected by the trading decisions,

such revenue adds a constant offset to the revenue in (4),
and therefore does not influence the optimal spectrum trading
decisions.
Generalizations:
1) For a Type-O contract, the secondary provider pays the
primary only for the amount of bandwidth it uses. Thus,
the expected revenue earned by a primary on selling such
a contract equals the secondary’s expected usage of such a
channel times the market price of such a contract. We can
incorporate this by considering the revenue from a Type-O
contract in slot t as κcO(t), where κ is the secondary’s
expected usage of such a channel. The formulation and the
results extend to this case.
2) Our formulation and results can be extended to consider
the case that i(t) is only an estimate of the demand in slot
t, and the estimation error in each slot is an independent,
identically distributed random variable whose distribution
is known to the primary. Then, xO(t) must be selected
so that M − xO(t) − aG(t) is greater than or equal to
the actual demand with a desired probability. Thus, xO(t)
will be a function, K (aG(t), i(t)), of (aG(t), i(t)), which
may be different from that in (2), but can nevertheless
be determined from the knowledge of the distribution of
the estimation error. Also, in this case, the lack of exact
knowledge of the demand will force the primary to use part
or whole of the bandwidth it has sold as Type-O contracts
to satisfy its demand. This will not incur any penalty for
the primary owing to the nature of the contract, but will
reduce the secondary’s expected usage κ of each channel
sold as a Type-O contract, and thereby reduce the expected
amount κcO(t) the secondary pays the primary for each
such channel.
3) For clarity of exposition, we assumed integral demands
i(t). However, in practice, the demands may be fractional.
For example, when a set of subscribers intermittently access
the Internet on a channel, a fraction of the bandwidth on a
channel is used every slot. In this case, a Type-G or Type-O
contract may be sold on the channel (while incurring a
penalty proportional to the fraction used on the channel for
the former). All our results apply without change in this case.

B. Polynomial-time optimal trading

We show that the Primary-SCT problem defined in Sec-
tion II-A can be solved as a stochastic dynamic program
(SDP) [18]. A policy [18] is a rule, which specifies the
decisions (xG(t) and xO(t)) at each slot t, as a function of
the demands and prices and past decisions. Now, since the
demand and prices are Markovian, the statistics of the future
evolution of the system from slot t onwards are completely
determined by the vector (aG(t − 1), i(t), cG(t), cO(t)),
which we call the state at slot t, and the primary’s decisions
{xG(t

′) : t′ = t, . . . , T} under the policy being used. Now,
in general, a policy may determine (xG(t), xO(t)) at slot t
based on all past states and actions. However, a well-known
result (Theorem 4.4.2 in [18]) shows that there exists an
optimal policy which specifies the optimal xG(t) at any slot



t only as a (deterministic) function of the current state and
t 2. We next compute such an optimal policy by solving a
SDP.

For a given t, let n = T − t + 1 be the number of slots
remaining until the end of the horizon, and Vn(a, i, cG, cO)
denote the maximum possible revenue from the remaining n
slots, under any policy, when the current state is (aG(t −
1), i(t), cG(t), cO(t)) = (a, i, cG, cO). In particular, note
that VT (0, i, cG, cO) is the maximum possible value of the
expected revenue in (4) under any policy when i(1) = i,
cG(1) = cG and cO(1) = cO. The function Vn(.) is called
the value function [18]. We have:

Vn(a, i, cG, cO) = max
0≤x≤M−a

Wn(a, i, cG, cO, x), (5)

where Wn(a, i, cG, cO, x) = α(n)cGx+ J(x+ a, i, cO) +∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

QijVn−1(a+ x, j, dG, dO), and (6)

J(aG(t), i(t), cO(t)) = cO(t)K(aG(t), i(t))−Y (aG(t), i(t)),
(7)

and the maximum in (5) is over integer values of x in
[0,M − a]. Equation (5) is called Bellman’s optimality
equation [18] and holds because, by definition of Vn−1(.),
Wn(a, i, cG, cO, x) defined by (6) is the maximum possible
expected revenue when n slots remain until the end of the
horizon and xG(t) = x is chosen. Note that the first two
terms in (6) account for the revenue earned in slot t from
the sale of Type-G and Type-O contracts minus the penalty
paid. The last term in (6) is the maximum expected revenue
from slot t+1 onwards. We get (5) by taking the maximum
over all permissible values of x. Denote the (largest) x
that maximizes Wn(a, i, cG, cO, x) by x∗

n(a, i, cG, cO). The
function x∗

n(.) provides the optimal solution to the Primary-
SCT problem.

Now, the value function and optimal policy can be found
from (5) using backward induction [18], which proceeds
as follows. Note that V0(.) = 0. Thus, W1(.) can be
computed using (6), and V1(.) using (5), and similarly,
W2(.), V2(.) . . .Wn(.), Vn(.) can be successively computed.
This backward induction consumes O((NGNOM

2)2T ) time,
where NG (NO) is the number of states in the Markov
Chain {cG(t)} ({cO(t)})– the computation time is therefore
polynomial in the input size.

Remark 1: Note that we consider a finite horizon formula-
tion. An alternative would be to consider an infinite horizon
formulation, in which a Type-G contract is valid for T slots
from the time of sale (instead of until the end of horizon).
But in this case, at a given slot, the state would include
(yG1 (t), . . . , y

G
T (t)), where yGj (t) is the number of Type-G

contracts that are valid for j slots more. Thus, the size of
the state space is O(MT ), which is exponential in T . Hence,
we do not consider an infinite horizon formulation.

2Such a policy is called a deterministic Markov policy [18].

C. Properties of the optimal solution

We analytically prove a number of structural properties
of the optimal policy, which provide insight into the nature
of the optimal solution. Our results are quite general in that
they hold not only for the K(.), Y (.) functions defined in
(2), (3), but also for any functions that satisfy the following
properties (which are of course satisfied by those in (2), (3)).
This loose requirement allows our results to extend to the
generalizations described at the end of Section II-A.

Property 1: K(a, i) decreases in a and Y (a, i) increases
in a for each i. Hence, by (7), for each i and cO, J(a, i, cO)
decreases in a.

Property 2: The K(.), Y (.) functions should be such that
J(a, i, cO) is concave 3 in a for fixed i, cO.

Property 3: The K(.), Y (.) functions should be such that,
for each a, J(a, i, cO) − J(a + 1, i, cO) is an increasing
function of i.

We next state a technical assumption on the statistics of
the demand and price processes that we need for our proofs.

Assumption 1: If Xi is the demand in the next slot given
that the present demand is i, or, if Xi is the price of a Type-
G (respectively, Type-O) contract in the next slot given that
the present price is i, then for i ≤ i′, Xi ≤st Xi′ (Xi is
stochastically smaller [19] than Xi′), i.e., for each b ∈ R,
Pr(Xi > b) ≤ Pr(Xi′ > b).

Intuitively, this assumption says that the primary’s demand
and the prices do not fluctuate very rapidly, and the demand
(or price) in the next slot is more likely to be high when the
current demand (or price) is high as opposed to when the
current demand (or price) is low.

We are now ready to state the structural properties of
the optimum trading policy. We defer the proofs of these
properties to the Appendix.

The first property identifies the relation between
x∗
n(a, i, cG, cO) and a:
Theorem 1: For each n, i, cG, cO,

x∗
n(a+ 1, i, cG, cO) = max(x∗

n(a, i, cG, cO)− 1, 0). (8)
Intuitively, this theorem suggests that for each n, i, cG, cO,

there exists an optimal portfolio level of Type-G contracts,
a∗G(t), such that if aG(t − 1) = a, then xG(t) should be
chosen so as to make aG(t) = a∗G(t). That is, the optimal
xG(t) = a∗G(t)− a (if the latter is non-negative).

Also, due to Theorem 1, for each n, i, cG and cO,
it is sufficient to find x∗

n(a, i, cG, cO) only for a = 0
while performing backward induction, and x∗

n(a, i, cG, cO)
for other a can be deduced from (8). This reduces the overall
computation time by a factor of M : the optimal policy can
now be computed in O((NGNO)

2M3T ) time.
The next two results identify the nature of the dependence

between x∗
n(a, i, cG, cO) and the demand i and prices cG, cO.

Theorem 2: For each n, a, cG and cO, x∗
n(a, i, cG, cO) is

monotone decreasing in i.

3A function f(k) with domain being a subset of the integers is con-
cave [3] if f(k + 2)− f(k + 1) ≤ f(k + 1)− f(k) for all k [19]. If the
inequality is reversed, f(.) is convex.



Theorem 2 confirms the intuition that when the primary’s
demand is high, it should sell fewer Type-G contracts so as
to reserve bandwidth to meet its demand and vice versa. At
the same time, note that this result is not obvious– when the
demand is lower, more free bandwidth is available, which
can be sold as Type-G or as Type-O contracts. Clearly,
the number of Type-G versus Type-O contracts sold would
influence the states reached in the future and the revenue
earned. Theorem 2 asserts that the primary should sell at
least as many Type-G contracts as before (that is, as for
the high demand state), while possibly also increasing the
number of Type-O contracts to sell.

Theorem 3: x∗
n(a, i, cG, cO) is monotone increasing in cG

for fixed n, a, i, cO and monotone decreasing in cO for fixed
n, a, i, cG.

Theorem 3 confirms the intuition that the primary should
preferentially sell the type of contract (G or O) with a “high”
price.

Remark 2: Theorems 2 and 3 can be used to speed up
the computation of the optimal policy using the monotone
backward induction algorithm [18]. Similarly, in Theorem 7
(in the Appendix), we prove that the value function is
concave, which can be used to speed up the computation
of x∗

n(.) from the value function since the maximizer in
(5) can be found in O(logM) time using a binary search
like algorithm [9]. In both cases, the worst case asymptotic
running time remains the same, although substantial savings
in computation can be obtained in practice.

III. SCT ACROSS MULTIPLE LOCATIONS

We now consider spectrum contract trading across multiple
locations from a primary provider’s point of view. Wireless
transmissions suffer from the fundamental limitation that the
same channel can not be successfully used for simultane-
ous transmissions at neighboring locations, but can support
simultaneous transmissions at geographically disparate lo-
cations. Thus, a primary provider can not trade contracts
in the same channel at neighboring locations, but can do
so at far off locations. Hence, the spectrum contract trading
problem at different locations is inherently coupled, and must
be optimized jointly. We now extend the problem formulation
to consider the case of multiple locations, taking into account
possible interference relationships between adjacent regions.

Consider an undirected graph G with the set of nodes S.
Each node represents a certain area at some location in the
overall region under consideration. There is an edge between
two nodes if and only if transmissions at the corresponding
locations on the same channel interfere with each other. A
primary provider can sell contracts on M channels at each
location. At any time slot, at a given node, on each channel
(a) either a Type-G contract can be sold, (b) a Type-O
contract can be sold or (c) no contract can be sold, subject
to the constraint that at no point in time, a contract can stand
leased at neighbors on the channel, that is, the set of nodes
at which a contract stands leased constitutes an independent
set [24].

A primary provider needs to satisfy its subscriber demand
which is also subject to certain reuse constraints. We consider
the case where the subscribers of a primary provider require
broadcast transmissions. This, for example, happens when
the primary is a TV transmitter which broadcasts signals
across all regions over different channels. At any given slot
t, the primary needs to broadcast over a certain number, say
i(t), channels which randomly varies with time depending
on subscriber demands. Whenever the primary broadcasts
on a channel, the broadcast reaches all nodes, and thus the
channel can not be used by the secondaries at any node.
Hence, if the primary has sold a Type-G contract on the
channel at any node it incurs a penalty of β at the node.
Thus, at slot t, i(t) represents the primary’s demand at all
nodes. Note that the set of nodes at which the primary uses
a given channel for demand satisfaction does not constitute
an independent set (as opposed to the set of nodes at which
contracts stand leased). Also, the primary’s usage status on
any given channel at any given time (i.e., whether or not
the primary is using the channel for subscriber demand
satisfaction) is the same across all nodes.

The durations of Type-G and Type-O contracts are as
described in Section II-A. We assume that at any slot t,
Type-G (respectively, Type-O) contracts have equal prices
cG(t) (respectively, cO(t)) at all nodes. The processes
(i(t), cG(t), cO(t)) evolve as per independent DTMCs as
stated in Section II-A.

The spectrum contract trading problem across multiple
locations for a primary (Primary-SCTM) is to optimally
choose at each slot t, the type of contract to sell (if any)
at each location on each channel so as to maximize the total
expected revenue from all nodes over a finite horizon of T
slots.

Theorem 4: Primary-SCTM is NP-Hard.
Proof: See the Appendix.

We now characterize the optimal solution of the Primary-
SCTM problem.

Lemma 1: Consider the class of policies F , such that a
policy f ∈ F operates as follows. At the beginning of the
horizon, it finds a maximum independent set, I(S), in G.
Then, in each slot, it sells contracts only at nodes in I(S).
There exists a policy in F that optimally solves the Primary-
SCTM problem.

Proof: See the Appendix.
We refer to a policy in F , which at each node in I(S),

sells contracts according to the optimal solution of the
Primary-SCT problem with demand and price processes
{i(t), cG(t), cO(t)} as a Separation Policy.

Theorem 5 (Separation Theorem): The Separation Policy
optimally solves the Primary-SCTM problem.

Proof: By Lemma 1, we can restrict our search for an
optimal policy to the policies in F . Now, the total revenue
of a policy in F is the sum of the revenues at the nodes in
I(S). Clearly, the total revenue is maximized if the stochastic
dynamic program for the single node case is executed at
each node. Note that this solution satisfies the spatial reuse
constraints since I(S) is an independent set.



Note that the optimum solution at any node can be
computed in polynomial time using the SDP presented in
Section II-A. However, computation of a maximum size
independent set is an NP-hard problem [11]. This compu-
tation therefore seems to be the basis of the NP-hardness
of Primary-SCTM. Also, the following theorem, which is
a direct consequence of Theorem 5, shows that Primary-
SCTM can be approximated in polynomial time within a
factor of µ if the maximum independent set problem can be
approximated in polynomial time within a factor of µ.

Theorem 6 (Approximate Separation Theorem): Consider
a µ-separation policy that differs from a separation policy
in that it sells contracts as per the single node optimum
solution, at each node of an independent set whose size is
at least 1

µ times that of a maximum independent set. This
policy’s expected revenue is at least 1

µ times the optimal
expected revenue.

However, in a graph with N nodes, the maximum size
independent set problem can not in general be approximated
to within a factor of O(N ϵ) for some ϵ > 0 in polyno-
mial time unless P = NP [1]. Nevertheless, polynomial
time approximation algorithms (PTAS) i.e., algorithms that
compute an independent set whose size is within (1 − ϵ)
of the maximum size independent set, for any given ϵ > 0,
using a computation time of O(N1/ϵ) are known in important
special cases, e.g., when the degree of each node is upper-
bounded [2] (this happens in our case when the number of
locations each location interferes with is upper-bounded).
Thus, in view of Theorem 6, for any given ϵ > 0, the
Primary-SCTM problem can be approximated within a factor
of 1−ϵ using a computation time of O(N1/ϵ) in such graphs.

IV. CONCLUSION

In this paper, we proposed a spectrum market with two
types of contracts and studied the problem of selecting an
optimal portfolio of these two contract types for the primary
providers. We formulated the problem using stochastic dy-
namic programming and analytically proved a number of
structural properties of the optimal solutions. We believe
that the insights provided by our study will help in the
design of future spectrum markets. A direction for future
research is the analysis of the contract selection problem for
the secondary providers.
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APPENDIX

Notation: Let R denote the set of real numbers.
First, we note that with Xi as in Assumption 1, the

assumption Xi ≤st Xi′ for i ≤ i′ is equivalent to the
following condition [19]:

Condition 1: For every increasing function f(i),

E(f(Xi)) ≤ E(f(Xi′)) ∀i ≤ i′

i.e.,
∑

j Qijf(j),
∑

j H
G
ijf(j) and

∑
j H

O
ijf(j) are increas-

ing functions of i.
Note that in the summations in Condition 1, as well as in

those in the rest of this section, the summation is over all
possible states of the respective Markov Chain.



A. Proof of Theorem 1

We first prove that the value function is concave in a
(Theorem 7). Then, using Theorem 7, we prove Theorem 1.
We start with a simple lemma, which is used in the proof of
Theorem 7.

Lemma 2: For fixed i, cG, cO, Vn(a, i, cG, cO) decreases
in a.

Proof: We prove the result by induction. Let
V0(a, i, cG, cO) = 0. Then the claim is true for n = 0.
Suppose Vn−1(a, i, cG, cO) decreases in a for each i, cG, cO.
Now, let a1 ≥ 1 and x∗

n(a1, i, cG, cO) = x1 for some x1.
Then, by (5):

Vn(a1, i, cG, cO) = Wn(a1, i, cG, cO, x1) (9)

Now,

Vn(a1 − 1, i, cG, cO)

≥ Wn(a1 − 1, i, cG, cO, x1)

= α(n)cGx1 + J(x1 + a1 − 1, i, cO) +∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

QijVn−1(a1 + x1 − 1, j, dG, dO)

≥ α(n)cGx1 + J(x1 + a1, i, cO) +∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

QijVn−1(a1 + x1, j, dG, dO)

= Wn(a1, i, cG, cO, x1)

= Vn(a1, i, cG, cO) (by (9))

where the second inequality follows from induction hypoth-
esis and Property 1. The result follows.

Theorem 7: For each n, Vn(a, i, cG, cO) is concave in a
for fixed i, cG, cO.

Proof: We prove the result by induction.
V0(a, i, cG, cO) is concave in a since it is equal to 0.
Suppose Vn−1(a, i, cG, cO) is concave in a for fixed
i, cG, cO. Recall that Vn−1(a, i, cG, cO) is defined for
integer values of a. Now, for fixed i, cG and cO, define
Ṽn−1(a, i, cG, cO) for a real as the function obtained
by linearly interpolating Vn−1(a, i, cG, cO) between each
pair of adjacent integers a0 and a0 + 1. Similarly, define
J̃(a, i, cO).

Now, J(x+a, i, cO) (respectively, Vn−1(x+a, i, cG, cO))
is concave decreasing in x+ a for fixed i, cO (respectively,
for fixed i, cG, cO) by Properties 1 and 2 (respectively, by
Lemma 2 and induction hypothesis). Hence, we get:

Property 4: J̃(x + a, i, cO) (respectively, Ṽn−1(x +
a, i, cG, cO)) is concave decreasing in x + a for fixed i, cO
(respectively, for fixed i, cG, cO).

Now, consider the function

W̃n(a, i, cG, cO, x) = α(n)cGx+ J̃(x+ a, i, cO)

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij Ṽn−1(a+ x, j, dG, dO) (10)

as a function of the two real variables a, x, i.e. the vector
(a, x).

Recall the following property of composition of func-
tions [3]:

Property 5: Let h : R → R, g : Rk → R, where k ≥
1 and Rk denotes the k-dimensional Euclidean space. Let
f : Rk → R be defined by f(v) = h(g(v)). If h(.) is
concave and decreasing, and g(v) is convex in v, then f(v)
is concave in v.

By the fact that a + x is convex in (a, x), Property 4
and Property 5, it follows that J̃(x+ a, i, cO) (respectively,
Ṽn−1(a + x, j, dG, dO)) is concave in (a, x) for fixed i, cO
(respectively, for fixed j, dG, dO). Also, x is clearly concave
in (a, x). Hence, W̃n(a, i, cG, cO, x) being a nonnegative
weighted linear combination of these functions, is concave
in (a, x) for fixed i, cG, cO.

Now, define:

Ṽn(a, i, cG, cO) = sup
x∈R,0≤x≤M−a

W̃n(a, i, cG, cO, x) (11)

Note that {x : x ∈ R, 0 ≤ x ≤ M − a} is a non-empty
convex set. Recall the following property [3]:

Property 6: If f(a, x) is concave in (a, x) and C is a
convex nonempty set, then the function

g(a) = sup
x∈C

f(a, x)

is concave in a, provided g(a) < ∞ for some a.
Now, Ṽn(a, i, cG, cO) < ∞ (assuming that cG and cO

are upper bounded). So by Property 6, Ṽn(a, i, cG, cO) is
concave in a for fixed i, cG, cO.

Now, we will show that Vn(a, i, cG, cO) = Ṽn(a, i, cG, cO)
for a integer, which will imply that Vn(a, i, cG, cO) is
concave.

Fix i, cG, cO and an integer a. Note that Vn(a, i, cG, cO)
is the maximum of W̃n(a, i, cG, cO, x) over integer x,
whereas Ṽn(a, i, cG, cO) is the supremum over real x in the
range [0,M − a]. Hence, to prove that Vn(a, i, cG, cO) =
Ṽn(a, i, cG, cO), it will suffice to show that the supremum
over real x occurs at integer x.

Now, by the definition of the functions J̃(.) and Ṽn−1(.),
f(x) = W̃n(a, i, cG, cO, x) is continuous and piecewise
linear in x, with breakpoints at the integers. Also, note that
the endpoints of the domain of f(x), viz. 0 and M − a
are integers that are contained in the domain. As a result, it
can be checked that the maximum of f(x) must occur at an
integer. This completes the proof.
Note that Wn(a, i, cG, cO, x) is concave in (a, x) and
Vn(a, i, cG, cO) is the maximum of Wn(.) over a non-convex
set, namely the set of integers in [0,M − a]. This makes the
above proof more involved, since had the maximum been
over a convex set, the concavity of Vn(a, i, cG, cO) would
have simply followed from Property 6.

Proof: [Proof of Theorem 1] From (6), we have:

Wn(a, i, cG, cO, x) = Wn(a+ 1, i, cG, cO, x− 1)

+α(n)cG, ∀x ≥ 1 (12)

Now, by optimality of x∗
n(a, i, cG, cO):

Wn(a, i, cG, cO, x
∗
n(a, i, cG, cO)) ≥ Wn(a, i, cG, cO, x) ∀x ≥ 1

(13)



If x∗
n(a, i, cG, cO) ≥ 1, then from (12) and (13) and some

algebra, we get:

Wn(a+ 1, i, cG, cO, x
∗
n(a, i, cG, cO)− 1)

≥ Wn(a+ 1, i, cG, cO, x− 1) ∀x ≥ 1

which shows that x∗
n(a+1, i, cG, cO) = x∗

n(a, i, cG, cO)− 1
if x∗

n(a, i, cG, cO) ≥ 1.
Now, suppose x∗

n(a, i, cG, cO) = 0. By Theorem 7 and
Property 2, since Vn−1(a+x, j, dG, dO) and J(x+ a, i, cO)
are concave in x for fixed a, j, dG, dO, i, cO, it follows from
(6) that Wn(a, i, cG, cO, x) is concave in x. For x ≥ 2, we
have:

Wn(a+ 1, i, cG, cO, x− 1)−Wn(a+ 1, i, cG, cO, 0)

= Wn(a, i, cG, cO, x)−Wn(a, i, cG, cO, 1) (by (12))
≤ Wn(a, i, cG, cO, x− 1)−Wn(a, i, cG, cO, 0)

(by concavity)
≤ 0 (since x∗

n(a, i, cG, cO) = 0)

which shows that x∗
n(a+ 1, i, cG, cO) = 0.

B. Proofs of Theorems 2 and 3

The proofs of Theorems 2 and 3 are based on the concepts
of submodularity and supermodularity, which we briefly
review. Let I ⊆ R and X ⊆ R be two sets. A function
g(i, x) : I × X → R is called supermodular [18] if for
i+ ≥ i− in I and x+ ≥ x− in X ,

g(i+, x+) + g(i−, x−) ≥ g(i+, x−) + g(i−, x+)

If the inequality is reversed, g is called submodular [18].
We will require the following key result [18].
Theorem 8: If g(i, x) is supermodular (submodular) on

I ×X , then the (largest) maximizer of g(i, x) for a given i:

f(i) = max{x′ : x′ ∈ argmax
x

g(i, x)}

is increasing (decreasing) in i.
To prove Theorem 2, we show that Wn(a, i, cG, cO, x) is

submodular in (i, x). The monotonicity of x∗
n(a, i, cG, cO)

in i then follows from Theorem 8. First, we prove some
lemmas.

The following lemma provides a necessary and sufficient
condition for submodularity.

Lemma 3: Let g(i, x) be a function with domain being
integer values of x and real values of i. g(i, x) is submodular
in (i, x) if and only if g(i, x)− g(i, x+ 1) is an increasing
function of i for all x.

Proof: The necessity directly follows from the defi-
nition of submodularity. We now prove sufficiency. For an
integer z > 0:

g(i, x)− g(i, x+ z) = [g(i, x)− g(i, x+ 1)] + . . .

+[g(i, x+ z − 1)− g(i, x+ z)]

So g(i, x)−g(i, x+z), being the sum of increasing functions,
is increasing in i.

Hence, for x− < x+, g(i, x−)− g(i, x+) is increasing in
i. So for i− < i+:

g(i−, x−)− g(i−, x+) ≤ g(i+, x−)− g(i+, x+)

Hence, g(i, x) is submodular in (i, x) by definition.
For m ≥ 1, define 4

imn (a, cG, cO) = max {i : x∗
n(a, i, cG, cO) ≥ m} . (14)

Lemma 4: If x∗
n(a, i, cG, cO) is monotone decreasing in i,

then

i1n(a, cG, cO) ≥ i2n(a, cG, cO) ≥ . . . ≥ iM−a
n (a, cG, cO)

Also, x∗
n(a, i, cG, cO) = m if and only if imn (a, cG, cO) ≥

i > im+1
n (a, cG, cO).
Proof: The result follows by definition of imn (.).

The next lemma establishes a sufficient condition for
monotonicity of x∗

n(i, a, cG, cO).
Lemma 5: Fix n. Suppose Vn−1(a, j, dG, dO)−Vn−1(a+

1, j, dG, dO) is an increasing function of j for each a, dG
and dO. Then x∗

n(a, i, cG, cO) is monotone decreasing in i
for each a,cG and cO.

It is important to note that the lemma requires
Vn−1(a, j, dG, dO)−Vn−1(a+1, j, dG, dO) to be increasing
in j for a fixed n, and asserts that x∗

n(a, i, cG, cO) is
monotone decreasing in i for that n.

Proof: By (6):

Wn(a, i, cG, cO, x)−Wn(a, i, cG, cO, x+ 1)

= −α(n)cG + [J(a+ x, i, cO)− J(a+ x+ 1, i, cO)]

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij (Vn−1(a+ x, j, dG, dO)

−Vn−1(a+ x+ 1, j, dG, dO))

The first term on the right hand side is constant, the second
term is increasing in i by Property 3 and the third term is
increasing in i since Vn−1(a+x, j, dG, dO)−Vn−1(a+x+
1, j, dG, dO) is increasing in j and by Condition 1.

So Wn(a, i, cG, cO, x) − Wn(a, i, cG, cO, x + 1) is in-
creasing in i. Hence, by Lemma 3, Wn(a, i, cG, cO, x) is
submodular in (i, x) and so by Theorem 8, x∗

n(a, i, cG, cO)
is monotone decreasing in i.

The next lemma is a simple consequence of (8).
Lemma 6: Fix n. If x∗

n(a, i, cG, cO) is monotone decreas-
ing in i for each a, cG, cO, then im+1

n (a, cG, cO) = imn (a +
1, cG, cO) for m = 1, 2, . . ..

Lemma 7: For each n, Vn(a, i, cG, cO) − Vn(a +
1, i, cG, cO) is an increasing function of i for each a, cG, cO.

Proof: We prove the claim by induction. Since
V0(a, i, cG, cO) ≡ 0, the claim is true for n = 0.

Suppose the statement is true for n − 1, i.e.,
Vn−1(a, j, dG, dO) − Vn−1(a + 1, j, dG, dO) is an increas-
ing function of j for each a, dG, dO. Then by Lemma 5,
x∗
n(a, i, cG, cO) is monotone decreasing in i. Hence, by

Lemma 6, im+1
n (a, cG, cO) = imn (a + 1, cG, cO) for m =

1, 2, . . ..

4If x∗
n(a, i, cG, cO) < m ∀i, then let imn (a, cG, cO) be equal to the

smallest demand state.



Now, we show that Vn(a, i, cG, cO)−Vn(a+1, i, cG, cO)
is an increasing function of i. Fix a, cG and cO. We have the
following cases:

Case 1: i > i1n(a, cG, cO)
By Lemma 4 and Lemma 6:

i > i1n(a, cG, cO) ≥ i2n(a, cG, cO) = i1n(a+ 1, cG, cO)

So by Lemma 4, x∗
n(a, i, cG, cO) = x∗

n(a+1, i, cG, cO) = 0.
Hence, by (5) and (6):

Vn(a, i, cG, cO)− Vn(a+ 1, i, cG, cO)

= Wn(a, i, cG, cO, 0)−Wn(a+ 1, i, cG, cO, 0)

= (J(a, i, cO)− J(a+ 1, i, cO))

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij(Vn−1(a, j, dG, dO)

−Vn−1(a+ 1, j, dG, dO)) (15)

Case 2: imn (a, cG, cO) ≥ i > im+1
n (a, cG, cO), where m ≥

1.
By Lemma 4, x∗

n(a, i, cG, cO) = m and hence by Theorem 1,
x∗
n(a + 1, i, cG, cO) = m − 1. So by (5) and (6) and some

cancellation of terms, we get:

Vn(a, i, cG, cO)− Vn(a+ 1, i, cG, cO)

= Wn(a, i, cG, cO,m)−Wn(a+ 1, i, cG, cO,m− 1)

= α(n)cG (16)

By (15) and (16), Vn(a, i, cG, cO)− Vn(a+ 1, i, cG, cO)

=


α(n)cG if i ≤ i1n(a, cG, cO),
(J(a, i, cO)− J(a+ 1, i, cO))
+
∑

dG

∑
dO

HG
cGdG

HO
cOdO

∑
j Qij(Vn−1(a, j, dG, dO)

−Vn−1(a+ 1, j, dG, dO)) if i > i1n(a, cG, cO).

The expression for Vn(a, i, cG, cO)−Vn(a+1, i, cG, cO) for
i > i1n(a, cG, cO) is an increasing function of i by Property 3,
induction hypothesis and Condition 1. Thus, to show that
Vn(a, i, cG, cO)−Vn(a+1, i, cG, cO) is increasing in i, it is
sufficient to show that for i > i1n(a, cG, cO):

(J(a, i, cO)− J(a+ 1, i, cO))

+
∑
dG

∑
dO

HG
cGdG

HO
cOdO

∑
j

Qij(Vn−1(a, j, dG, dO)

− Vn−1(a+ 1, j, dG, dO)) ≥ α(n)cG (17)

By (6), (17) is equivalent to Wn(a, i, cG, cO, 0) ≥
Wn(a, i, cG, cO, 1), which is true because x∗

n(a, i, cG, cO) =
0 for i > i1n(a, cG, cO). The result follows.

From the above lemmas, we get the desired monotonicity
of x∗

n(i, a, cG, cO).
Proof: [Proof of Theorem 2] Fix n, a, cG and cO. By

Lemma 7, Vn−1(a, j, dG, dO)−Vn−1(a+1, j, dG, dO) is an
increasing function of j for each dG, dO. The result follows
by Lemma 5.

Proof: [Proof of Theorem 3] The proof is very similar
to the proof of Theorem 2 and hence omitted.

C. Proofs of results in Section III

Proof: [Proof of Theorem 4] We show that the Max-
imum Independent Set (MIS) problem is a special case
of Primary-SCTM. Consider the following special case of
Primary-SCTM: M = 1, T = 1. At each node, the primary’s
demand is always 0, and the prices of Type G and O
contracts are fixed, equal to 1

2 and 1 respectively. Thus, it is
optimal never to sell a type G contract.

The Primary-SCTM problem reduces to that of finding a
maximum independent set of nodes (at which to sell Type
O contracts). The result follows, since the MIS problem is
NP-Hard [11].

Proof: [Proof of Lemma 1] Let N t
e,j be the number of

Type-j contracts (j ∈ {G,O}) sold by a policy P in slot t
on channel e. We make the following key observations:
(1) The revenue of any policy depends only on the number
of Type-G and Type-O contracts it sells on each channel, in
each slot, independent of which nodes it sells them at. That
is, the revenue of the policy P is completely determined by:

{N t
e,G, N

t
e,O : e = 1, . . . ,M ; t = 1, . . . , T}

This follows from the fact that on each channel, the prices of
both types of contracts and the usage status (i.e., whether or
not the primary is using the channel for subscriber demand
satisfaction) are the same at all nodes.
(2) For every policy, on each channel, at any time, the total
number of Type-G and Type-O contracts currently leased is
at most equal to |I(S)|.
That is, for the above policy P , for every slot t:

t∑
τ=1

Nτ
e,G +N t

e,O ≤ |I(S)|, e = 1, . . . ,M (18)

This follows from the fact that I(S) is a maximum indepen-
dent set.

Now, let P be an optimal policy. Consider a policy f ∈ F ,
which initially finds a maximum independent set I(S). Also,
whenever P sells a contract, f sells the same type of contract
on the same channel at a node in I(S) at which no contract
has been sold on this channel. More precisely, number the
nodes in I(S) from 1 to |I(S)|. In slot t, on channel e, policy
f sells Type-G contracts at the nodes

∑t−1
τ=1 N

τ
e,G + 1 to∑t

τ=1 N
τ
e,G and Type-O contracts at the nodes

∑t
τ=1 N

τ
e,G+

1 to
∑t

τ=1 N
τ
e,G + N t

e,O. It can be checked that on each
channel e, (a) for policy f , two or more contracts never
stand leased at the same node and (b) by (18), in each slot
t, f finds enough nodes in I(S) to sell contracts at.

Now, by observation (1), the revenue of f is the same as
that of P , and therefore f is optimal.


