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Abstract—We study a four terminal parallel relay-
eavesdropper channel which consists of multiple independent
relay-eavesdropper channels as subchannels. For the discrete
memoryless case, we establish inner and outer bounds on the
rate-equivocation region. For each subchannel, secure trans-
mission is obtained through one of the two coding schemes
at the relay: decoding-and-forwarding the source message or
confusing the eavesdropper through noise injection. The inner
bound allows relay mode selection. For the Gaussian model
we establish lower and upper bounds on the perfect secrecy
rate. We show that the bounds meet in some special cases,
including when the relay does not hear the source. We illustrate
the analytical results through some numerical examples.

I. I NTRODUCTION

The relay channel has been analyzed in [1], [2] (and
references therein), but the focus was on how to increase
achievable rate and reliability. The idea of cooperation be-
tween users in the context of security was introduced in [3]
(and references therein). The premise is that when the main
channel is more noisy than the channel to the eavesdropper,
cooperation between users is utilized to obtain a positive
secrecy capacity. Secrecy is achieved by using the relay as
a trusted node which facilitates the information decoding at
the destination while confusing the eavesdropper.

In this paper, we study a parallel relay-eavesdropper chan-
nel. A parallel relay-eavesdropper channel consists of a gen-
eralization of the setup in [3] to the case in which each of the
source-to-relay (S-R), source-to-destination (S-D), source-to-
eavesdropper (S-E), relay-to-destination (R-D) and relay-to-
eavesdropper (R-E) link is composed of several independent
parallel channels as subchannels. The model is depicted in
Figure 1. For this model, we establish outer and inner bounds
on the rate-equivocation region for the discrete memoryless
case. The inner bound is obtained with a coding scheme in
which, for each subchannel, the relay operates in decode-
and-forward (DF) or noise forwarding (NF) mode. The outer
bound does not follow directly from the single-letter outer
bound for the relay-eavesdropper channel developed in [3,
Theorem 1] and so, a converse is needed. This converse
includes a redefinition of the involved auxiliary random
variables, a technique much similar to the one used before in
the context of secure transmission over broadcast channels
[4]. We also show that the bounds on the equivocation
rate coincide in the case in which all the subchannels are
degraded, thus characterizing the secrecy capacity.

For the Gaussian model, we focus on the perfect secrecy
case. We establish lower and upper bounds on the perfect
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Fig. 1. Parallel relay-eavesdropper channel.

secrecy rate. We note that establishing a computable upper
bounds on the secrecy rate for the Gaussian model is non-
trivial. In part, this is because converse techniques that
are obtained directly from the analysis in the discrete case
involves auxiliary random variables, the optimal choice of
which is difficult to obtain. We develop a new upper bound on
the secrecy rate for the parallel Gaussian relay-eavesdropper
channel. Our converse proof uses elements from converse
techniques developed in [5], [6] in the context of multi-
antennas wiretap channel; and in a sense, can be viewed
as a partial extension of these results to the case of the
studied model. The established upper bound on the secrecy
rate shows some degree of separability for different parallel
subchannels. It is especially useful when the multiple access
part of the channel is the bottleneck.

We also study a special Gaussian case in which the
relay does not hear to the source, for example due to very
noisy source-to-relay links. In this case, we show that noise-
forwarding on all links achieves the secrecy capacity. The
converse proof follows from the general converse established
for the general Gaussian case, and a new genie-aided upper
bound that assumes full cooperation between the relay and
the destination, and a constrained eavesdropper. The eaves-
dropper is constrained in the sense that it has to treat the
relay’s transmission as unknown noise for all subchannels,
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an idea used previously in the context of a class of classic
relay-eavesdropper channel with orthogonal components in
[7]. These assumptions turn the parallel Gaussian relay-
eavesdropper channel into a parallel Gaussian wiretap chan-
nel, the secrecy capacity of which is established in [4].

Furthermore, we apply the results developed for the paral-
lel Gaussian relay-eavesdropper channel to the fading relay-
eavesdropper channel, which is a special case of parallel
Gaussian relay-eavesdropper channel, with each fading state
corresponding to one subchannel. We illustrate our results
through some numerical examples.

In this paper, the notationX[1,L] is used as a shorthand
for (X1, X2, . . . , XL), the notationXn

[1,L] is used as a
shorthand for(Xn

1 , X
n
2 , · · · , Xn

L) where for l = 1, . . . , L,
Xn
l := (Xl1, Xl2, · · · , Xln) and the notationX1[1,L] is used

as a shorthand forX11×X12 . . .×X1L. We define the function
C(x) as 1

2 log2(1 + x). Throughout the paper the logarithm
function is taken to the base 2.

II. T HE PARALLEL RELAY-EAVESDROPPERCHANNEL

A parallel relay-eavesdropper channel is a four terminal
network consisting ofX1[1,L],X2[1,L] as finite input alphabets
and Y[1,L],Y1[1,L],Y2[1,L] as finite output alphabets. The
transition probability distribution is given by

L
∏

l=1

p(yl, y1l, y2l | x1l, x2l) (1)

wherex1l ∈ X1l, x2l ∈ X2l, y1l ∈ Y1l, yl ∈ Yl andy2l ∈ Y2l,
for l = 1, · · · , L. For the subchannell, X1l andX2l are the
inputs from the source and relay; andY1l, Y2l, Yl are the out-
puts at the relay, eavesdropper and destination, respectively.
The source sends a messageW ∈ W = {1, · · · , 2nR} using
a (2nR, n) code consisting of: 1) a stochastic encoder at the
source that mapsW → Xn

1[1,L], 2) a relay encoder that maps

fi(Y
i−1
1[1,L]) → X2[1,L],i for 1 ≤ i ≤ n, and 3) a decoding

function g(Y n[1,L]) → W . The average error probability of a
(2nR, n) code is defined as

Pne =
1

2nR

∑

W∈W
p{g(Y n[1,L]) 6=W |W}. (2)

The eavesdropper listens to what the source and relay trans-
mit for free, due to the wireless nature of the medium. It then
tries to guess the information being transmitted. Denoting
Y n2[1,L] the output at the eavesdropper, the equivocation rate
per channel use is defined asRe = H(W |Y n2[1,L])/n. Perfect
secrecy for the channel is obtained when the eavesdropper
gets no information aboutW from Y n2[1,L]. That is, the
equivocation rate is equal to the unconditional source entropy.
A rate equivocation pair (R,Re) is achievable, if for any
ǫ > 0 there exists a sequence of codes (2nR, n) such that for
anyn ≥ n(ǫ)

H(W )

n
≥ R− ǫ,

H(W |Y n2[1,L])
n

≥ Re − ǫ,

Pne ≤ ǫ. (3)

III. D ISCRETE MEMORYLESS CHANNEL

In this section, we establish outer and inner bounds on
the rate-equivocation region of a parallel relay-eavesdropper
channel.

A. Outer bound

Theorem 1: For the parallel relay-eavesdropper channel
with L subchannels, and for any achievable rate-equivocation
pair (R,Re), there exists a set of random variablesUl →
(V1l, V2l) → (X1l, X2l) → (Yl, Y1l, Y2l), l = 1, . . . , L, such
that (R,Re) satisfies

R ≤ min

{ L
∑

l=1

I(V1lV2l;Yl),

L
∑

l=1

I(V1l;YlY1l | V2l)
}

Re ≤ R

Re ≤ min

{ L
∑

l=1

I(V1lV2l;Yl | Ul)− I(V1lV2l;Y2l | Ul),

L
∑

l=1

I(V1l;YlY1l | V2lUl)− I(V1lV2l;Y2l | Ul)
}

. (4)

Proof: The proof of Theorem 1 is given in Appendix I.

B. Achievable rate-equivocation region

Theorem 2: For the parallel relay-eavesdropper channel
with L subchannels, the rate pairs in the closure of the convex
hull of all (R,Re) satisfying

R ≤ min

{

∑

l∈A
I(V1lV2l;Yl|Ul),

∑

l∈A
I(V1l;Y1l|V2lUl)

}

+
∑

l∈Ac

I(V1l;Yl|V2l)

Re ≤ R

Re ≤ min

{

∑

l∈A
I(V1lV2l;Yl|Ul)− I(V1lV2l;Y2l|Ul),

∑

l∈A
I(V1l;Y1l|V2lUl)− I(V1lV2l;Y2l|Ul)

}

+
∑

l∈Ac

I(V1l;Yl|V2l) + min

{

∑

l∈Ac

I(V2l;Yl),

∑

l∈Ac

I(V2l;Y2l|V1l)
}

−min

{

∑

l∈Ac

I(V2l;Yl),

∑

l∈Ac

I(V2l;Y2l)

}

−
∑

l∈Ac

I(V1l;Y2l|V2l), (5)

for some distributionp(ul, v1l, v2l, x1l, x2l, yl, y1l, y2l) =
p(ul)p(v1l, v2l|ul)p(x1l, x2l|v1l, v2l)p(yl, y1l, y2l|x1l, x2l)
for l ∈ A and p(v1l, v2l, x1l, x2l, yl, y1l, y2l) =
p(v1l)p(v2l)p(x1l|v1l)p(x2l|v2l)p(yl, y1l, y2l|x1l, x2l) for
l ∈ Ac, are achievable.

In the statement of Theorem 2, setsA andAc represent the
subchannels for which relay operates in DF and NF mode,
respectively. The region in Theorem 2 is obtained through a
coding scheme which combines appropriately DF and NF



schemes. The rates for the DF scheme can be obtained
readily by settingU := U[1,|A|], V1 := V1[1,|A|], V2 :=
V2[1,|A|], Y := Y[1,|A|], Y1 := Y1[1,|A|] and Y2 := Y2[1,|A|],
for l ∈ A in [3, Theorem 2]. Similarly the rates for
NF scheme can be readily obtained by settingV1 :=
V1[1,|Ac|], V2 := V2[1,|Ac|], Y := Y[1,|Ac|], Y1 := Y1[1,|Ac|]
andY2 := Y2[1,|Ac|], for l ∈ Ac in [3, Theorem 3].

Remark 1: For a parallel relay-eavesdropper channel in
which all subchannels are degraded1, i.e.,

p(yl, y1l, y2l | x1l, x2l)
= p(y1l | x1l, x2l)p(yl | y1l, x2l)p(y2l | yl, y1l, x1l, x2l),

for l = 1, . . . , L, the perfect secrecy capacity is given by

Cs =maxmin

{ L
∑

l=1

[I(V1lV2l;Yl | Ul)− I(V1lV2l;Y2l | Ul)]+,

L
∑

l=1

[I(V1l;Y1l | V2lUl)− I(V1lV2l;Y2l | Ul)]+
}

(6)

where maximum is overUl → (V1l, V2l) → (X1l, X2l) →
(Yl, Y1l, Y2l), for l = 1, . . . , L.

Proof: The achievability follows from Theorem 2 by
setting Ac = ∅. The converse follows along the lines of
Theorem 1 and is omitted for brevity.

IV. GAUSSIAN CHANNEL

In this section we study a parallel Gaussian relay-
eavesdropper channel. We focus on perfectly secure achiev-
able rates, i.e.,(R,Re)= (R,R). The received signals at the
relay, destination and eavesdropper are given by

Y1l,i = X1l,i + Z1l,i

Yl,i = X1l,i +
√
ρ1lX2l,i + Zl,i

Y2l,i = X1l,i +
√
ρ2lX2l,i + Z2l,i (7)

where i is the time index,{Z1l,i}, {Zl,i} and {Z2l,i} are
noise processes, independent and identically distributed(i.i.d)
with the components being zero mean Gaussian random
variables with variancesσ2

1l, σ
2
l and σ2

2l; X1l,i and X2l,i

are the inputs from the source and relay nodes respectively.
The parameterρ1l indicates the ratio of the R-D link signal-
to-noise (SNR) to the S-D link SNR andρ2l indicates the
ratio of the R-E link SNR to the S-E link SNR for thelth

subchannel. The source and relay input sequences are subject
to the following average transmit power constraints

1

n

L
∑

l=1

n
∑

i=1

E[X2
1l,i] ≤ P1, (8)

1

n

L
∑

l=1

n
∑

i=1

E[X2
2l,i] ≤ P2. (9)

1In parallel relay-eavesdropper channel if all the subchannels are de-
graded, the entire relay-eavesdropper channel may not necessarily be de-
graded.

A. Lower bound on the perfect secrecy rate

For the parallel Gaussian relay-eavesdropper channel, de-
fined by (7), we apply Theorem 2 to obtain a lower bound
on the perfect secrecy rate.

Corollary 1: For the parallel Gaussian relay-eavesdropper
channel (7), a lower bound on the perfect secrecy rate is
given by (10).

Proof: The achievability follows by applying Theorem
2 with the choiceUl = constant,V1l=X1l, V2l=X2l, X1l =

X̃1l+
√

ᾱlP1l

P2l

X2l, ᾱl = 1−αl, X̃1l ∼ N (0, αlP1l) indepen-
dent ofX2l ∼ N (0, P2l) for l ∈ A; andX1l ∼ N (0, P1l)
independent ofX2l ∼ N (0, P2l) for l ∈ Ac. Straightforward
algebra which is omitted for brevity gives (10).

The parametersP1l and P2l indicate the source and relay
power allocated for transmission over the subchannell. In
(10), after some straightforward algebra, the contribution
to the equivocation of information sent through NF (set
Ac) can be condensed by observing that we only need
to considermin{∑l∈Ac I(X2l, Y2l),

∑

l∈Ac I(X2l, Yl)} =
∑

l∈Ac I(X2l, Y2l) in set Ac, to get a higher secrecy rate.
A simplified expression forRlow

e is given by (11).

B. Upper bound on the perfect secrecy rate

The following theorem provides an upper bound on the
secrecy rate of the parallel Gaussian relay-eavesdropper chan-
nel.

Theorem 3: For the parallel Gaussian relay-eavesdropper
channel (7), an upper bound on the secrecy rate is given by

Rup
e ≤ max

{KPl∈KPl}l=1...L

L
∑

l=1

I(X1lX2l;Yl)− I(X1lX2l;Y2l) (12)

where the maximization is over[X1l, X2l] ∼ N (0,KPl)

with KPl =

{

KPl : KPl =
[

P1l ψl
√
P1lP2l

ψl
√
P1lP2l P2l

]

,−1 ≤

ψl ≤ 1

}

, for l = 1, . . . , L, with the covariance matrices

E[X1[1,L]X
T
1[1,L]], E[X2[1,L]X

T
2[1,L]] satisfying (8) and (9)

respectively.

Proof: The result in Theorem 1 established for the DM
case can be extended to memoryless channels with discrete
time and continuous alphabets using standard techniques [8,
Chapter 7]. Taking the first term of the minimization in the
bound on the equivocation rate, we get

Re ≤ max

L
∑

l=1

I(V1lV2l;Yl | Ul)− I(V1lV2l;Y2l | Ul) (13)

whereUl → (V1l, V2l) → (X1l, X2l) → (Yl, Y1l, Y2l), for
l = 1, . . . , L. The rest of the proof uses elements from related



works in [4] and [5]. Continuing from (13), we obtain

Re ≤
L
∑

l=1

I(V1lV2l;Yl | Ul)− I(V1lV2l;Y2l | Ul)

(a)

≤
L
∑

l=1

I(V1lV2l;Yl)− I(V1lV2l;Y2l)

≤
L
∑

l=1

I(V1lV2l;YlY2l)− I(V1lV2l;Y2l)

(b)
=

L
∑

l=1

[I(X1lX2l;YlY2l)− I(X1lX2l;YlY2l | V1lV2l)]

−[I(X1lX2l;Y2l)− I(X1lX2l;Y2l | V1lV2l)]

=

L
∑

l=1

[I(X1lX2l;YlY2l)− I(X1lX2l;Y2l)]

−[I(X1lX2l;YlY2l | V1lV2l)− I(X1lX2l;Y2l | V1lV2l)]

≤
L
∑

l=1

[I(X1lX2l;YlY2l)− I(X1lX2l;Y2l)]

=

L
∑

l=1

I(X1lX2l;Yl | Y2l), (14)

where (a) follows by noticing thatI(V1lV2l;Yl | Ul) −
I(V1lV2l;Y2l | Ul) is maximized by settingUl=constant and
(b) follows from the Markov chain condition(V1l, V2l) →
(X1l, X2l) → (Yl, Y1l, Y2l), for l = 1, . . . , L.

We now tighten the upper bound (14) by using an argument
previously used in [5], [6] in the context of multi-antennas
wiretap channels. More specifically, observing that, the origi-
nal bound (13) depends onp(yl, y2l|x1l, x2l) only through its
marginalsp(yl|x1l, x2l) andp(y2l|x1l, x2l), the upper bound
(14) can be further tightened as

Re ≤ max
p(x1l,x2l)

L
∑

l=1

min
p(y′

l
,y′

2l
|x1l,x2l)

I(X1lX2l;Y
′
l | Y ′

2l) (15)

where the joint conditionalp(y′l, y
′
2l|x1l, x2l) has the

same marginals asp(yl, y2l|x1l, x2l), i.e., p(y′l|x1l, x2l) =

p(yl|x1l, x2l) andp(y′2l|x1l, x2l) = p(y2l|x1l, x2l).
It can be easily shown that the bound in (15) is

maximized when the inputs are jointly Gaussian, i.e.,

[X1l, X2l] ∼ N (0,KPl), KPl ∈ KPl with KPl =

{

KPl :

KPl =
[

P1l ψl
√
P1lP2l

ψl
√
P1lP2l P2l

]

,−1 ≤ ψl ≤ 1

}

, for l =

1, . . . , L with the covariance matricesE[X1[1,L]X
T
1[1,L]] and

E[X2[1,L]X
T
2[1,L]] satisfying (8) and (9) respectively [5], [6].

Next, using the specified Gaussian inputs, it can be shown
that the evaluation of the upper bound (15) minimized over
all possible correlations betweenY ′

l , Y
′
2l, for l = 1, . . . , L

yields

Re ≤ max
{KPl∈KPl}l=1...L

L
∑

l=1

I(X1lX2l;Yl)− I(X1lX2l;Y2l). (16)

This concludes the proof.

We now study the case in which the links S-R are very noisy,
i.e., the relay does not hear the source.

Theorem 4: For the model (7) in which the relay does not
hear the source, the secrecy capacity is given by

Cs = min

{

max

L
∑

l=1

C
(

P1l + ρ1lP2l

σ2
l

)

−C
(

P1l + ρ2lP2l

σ2
2l

)

,

max

L
∑

l=1

C
(

P1l

σ2
l

)

− C
(

P1l

σ2
2l + ρ2lP2l

)}

(17)

where the maximization is over{P1l, P2l}, for l = 1 . . . L,
such that

∑L
l=1 P1l ≤ P1 and

∑L
l=1 P2l ≤ P2.

Proof:
Upper Bound: The bound given by the first term of the
minimization in (17) follows from a straightforward applica-
tion of the result in Theorem 3 — taking independent source
and relay inputs since the relay does not hear the source
transmission in this case.

The bound given by the second term of the minimization
in (17) can be established as follows. Our approach borrows

R
low
e = max∑

L

l=1
P1l≤P1,

∑
L

l=1
P2l≤P2,

0≤αl≤1, for l = 1, . . . , |A|

min

{

∑

l∈A

C
(

P1l + ρ1lP2l + 2
√
ᾱlρ1lP1lP2l

σ2
l

)

− C
(

P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l

)

,

∑

l∈A

C
(

αlP1l

σ2
1l

)

− C
(

P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l

)

}

+
∑

l∈Ac

C
(

P1l

σ2
l

)

+min

{

∑

l∈Ac

C
(

ρ1lP2l

P1l + σ2
l

)

,
∑

l∈Ac

C
(

ρ2lP2l

σ2
2l

)

}

−min

{

∑

l∈Ac

C
(

ρ1lP2l

P1l + σ2
l

)

,
∑

l∈Ac

C
(

ρ2lP2l

P1l + σ2
2l

)

}

−
∑

l∈Ac

C
(

P1l

σ2
2l

)

. (10)

R
low
e = max

∑
L

l=1
P1l≤P1,

∑
L

l=1
P2l≤P2,

0≤αl≤1, for l = 1, . . . , |A|

min

{

∑

l∈A

[

C
(

P1l + ρ1lP2l + 2
√
ᾱlρ1lP1lP2l

σ2
l

)

− C
(

P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l

)

]+

,

∑

l∈A

[

C
(

αlP1l

σ2
1l

)

− C
(

P1l + ρ2lP2l + 2
√
ᾱlρ2lP1lP2l

σ2
2l

)

]+}

+min

{

∑

l∈Ac

[

C
(

P1l + ρ1lP2l

σ2
l

)

− C
(

P1l + ρ2lP2l

σ2
2l

)

]+

,
∑

l∈Ac

[

C
(

P1l

σ2
l

)

+ C
(

ρ2lP2l

σ2
2l

)

− C
(

P1l + ρ2lP2l

σ2
2l

)

]+
}

.(11)



elements from an upper bounding technique that is used
in [7], and can be seen as an extension of it to the case
of parallel relay-eavesdropper channels. Assume that all the
links between the relay and the destination are noiseless, and
the eavesdropper is constrained to treat the relay’s signal
as unknown noise. As mentioned in [7], any upper bound
for this model with full relay-destination cooperation and
constrained eavesdropper, also applies for the general model.

Now, for the model with full relay-destination cooperation
and constrained eavesdropper, we develop an upper bound on
the secrecy capacity as follows. In this case, the destination
can remove the effect of the relay transmission (which is
independent from the source transmission as the relay does
not hear the source), and the equivalent channel to the
destination can be written as

Y ′
l,i = X1l,i + Zl,i. (18)

For the constrained eavesdropper the relay’s transmissionacts
as an interference, with the worst case obtained with Gaussian
X2[1,L] [7]. The equivalent output at the eavesdropper in this
case is given by

Y ′
2l,i = X1l,i +

√

ρ2lE[X2
2l,i] + Z2l,i. (19)

The rest of the proof follows by simply observing that the
resulting model (with the worst case relay transmission to
the eavesdropper and full relay-destination cooperation)is, in
fact a parallel Gaussian wiretap channel, the secrecy capacity
of which is established in [4],

Cs ≤ max

L
∑

l=1

I(X1l;Y
′
l )− I(X1l;Y

′
2l) (20)

where the maximization is overX1l ∼ N (0, P1l), X2l ∼
N (0, P2l) for l = 1 . . . L, with

∑L
l=1 P1l ≤ P1 and

∑L
l=1 P2l ≤ P2.
Finally straightforwad algebra which is omitted for brevity

shows that the computation of (20) gives the second term of
the minimization in (17).

Lower Bound: The achievability follows by computing
the lower bound in Theorem 2 with the choices|Ac|:=L,
V1l:=X1l, V2l:=X2l, andX1l ∼ N (0, P1l) independent of
X2l ∼ N (0, P2l).

V. FADING RELAY-EAVESDROPPER CHANNEL

We consider a fading relay-eavesdropper channel that is
corrupted by multiplicative fading gain processes in addition
to additive white Gaussian noise (AWGN) processes. The
received signals are given by

Y1,i = hsr,iX1,i + Z1,i

Yi = hsd,iX1,i + hrd,iX2,i + Zi

Y2,i = hse,iX1,i + hre,iX2,i + Z2,i (21)

where i is the time index,hsd,i, hrd,i, hse,i, hre,i and
hsr,i are the fading gain coefficients associated with S-D,
R-D, S-E, R-E and S-R links, given by complex Gaus-
sian random variables with zero mean and unit variance

respectively. The noise processes{Z1,i}, {Zi}, {Z2,i} are
zero mean i.i.d complex Gaussian random variables with
variancesσ2

1 , σ2 andσ2
2 respectively. The source and relay

input sequences are subject to an average power constraint,
i.e,

∑n
i=1 E[|X1,i|2] ≤ nP1,

∑n
i=1 E[|X2,i|2] ≤ nP2. Let

h̄i := [hsd,i hrd,i hse,i hre,i hsr,i] and we assume that
perfect channel state information (CSI) is available at all
nodes, i.e, each node has access to the instantaneous CSI and
its statistics. For a given fading state realizationh̄i, the fading
relay-eavesdropper channel is a Gaussian relay-eavesdropper
channel. Therefore, for a given channel state withL fading
state realizations, the fading relay-eavesdropper channel can
be seen as a parallel Gaussian relay-eavesdropper channel
with L subchannels. The power allocation vectors at the
source and relay are denoted byP1(h̄) and P2(h̄) respec-
tively. The ergodic achievable secrecy rate of the fading
relay-eavesdropper channel (21), which follows from (11)
is given by (22). The upper bound for the fading relay-
eavesdropper channel follows from (12) and is given by (23).
In the achievable region we proposed a coding scheme which
is a combination of DF and NF scheme. A pertinent question
is how to decide which scheme to use on each subchannel
? To accomplish this we defineA:= {h̄ : |hsd|2 < |hsr|2}
contains all the fading state realizations in{h̄} where the
S-R link is better than S-D link. The complement of setA
is Ac:= {h̄ : |hsd|2 ≥ |hsr|2}.

VI. N UMERICAL RESULTS

We consider a fading relay-eavesdropper channel with
L fading states. It is assumed that perfect channel state
information is available at all nodes. We can consider this
channel as a Gaussian relay-eavesdropper channel withL
subchannels. We model channel gain between nodei ∈ {s, r}
andj ∈ {r, d, e} as distance dependent Rayleigh fading, that
is, hi,j = h′i,jd

−γ/2
i,j , whereγ is the path loss exponent and

h′i,j is a complex Gaussian random variable with zero mean
and variance one. Each subchannel is corrupted by AWGN
with zero mean and variance one. The objective function for
both lower and upper bounds are optimized numerically using
AMPL with a commercially available solver, for instance
SNOPT. Furthermore, for each symbol transmission same
subchannel is used on S-R and R-D links to make the
optimization tractable.

To illustrate the system performance, we set the source and
relay power to 64 Watt each. We consider a network geometry
in which the source is located at the point (0,0), the relay is
located at the point (d,0), the destination is located at the
point (1,0) and the eavesdropper is located at the point (0,1),
whered is the distance between the source and the relay.
In all numerical results we set path loss exponentγ:=2. Fig.
2 shows the power allocation for a fading channel with 64
subchannels where the relay is located at (0.5,0), and marker
‘×’ denotes NF on a particular subchannel while marker
‘�’ denotes DF on a particular subchannel. It can be seen
from Fig. 2 that, achievable perfect secrecy rate is zero for
some subchannels. Roughly speaking, this happens when the
condition |hrd|2 > |hre|2 is violated.



R
low
e = max

E[P1(h̄)]≤P1,

E[P2(h̄)]≤P2,

0≤α(h̄)≤1

min

{

Eh̄∈A

[

2C
(

|hsd|2P1(h̄) + |hrd|2P2(h̄) + 2
√

ᾱ(h̄)|hsd|2P1(h̄)|hrd|2P2(h̄)

σ2

)

− 2C
(

|hse|2P1(h̄) + |hre|2P2(h̄) + 2
√

ᾱ(h̄)|hse|2P1(h̄)|hre|2P2(h̄)

σ2
2

)

]+

,Eh̄∈A

[

2C
(

α(h̄)|hsr|2P1(h̄)

σ2
1

)

− 2C
(

|hse|2P1(h̄) + |hre|2P2(h̄) + 2
√

ᾱ(h̄)|hse|2P1(h̄)|hre|2P2(h̄)

σ2
2

)

]+}

+min

{

Eh̄∈Ac

[

2C
(

|hsd|2P1(h̄) + |hrd|2P2(h̄)

σ2

)

− 2C
(

|hse|2P1(h̄) + |hre|2P2(h̄)

σ2
2

)

]+

,Eh̄∈Ac

[

2C
(

|hsd|2P1(h̄)

σ2

)

+ 2C
(

|hre|2P2(h̄)

σ2
2

)

− 2C
(

|hse|2P1(h̄) + |hre|2P2(h̄)

σ2
2

)

]+}

.

(22)

R
up
e ≤ max

E[P1(h̄)]≤P1,

E[P2(h̄)]≤P2,

−1≤ψ(h̄)≤1

Eh̄

{

2C
( |hsd|2P1(h̄) + |hrd|2P2(h̄) + 2ψ(h̄)

√

|hsd|2P1(h̄)|hrd|2P2(h̄)

σ2

)

− 2C
( |hse|2P1(h̄) + |hre|2P2(h̄) + 2ψ(h̄)

√

|hse|2P1(h̄)|hre|2P2(h̄)

σ2
2

)}

. (23)
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Fig. 2. Achievable perfect secrecy rate of a fading parallelrelay-
eavesdropper channel.

Mode selection at the relay by only considering the relative
strength of the S-D and the S-R link is suboptimal because
the achievable secrecy rate (22) also depends on the other
link gain. We now consider the case in which the relay
independently selects the scheme which maximize the rate for
each subchannel. When the relay is close to the source, it uses
DF scheme on all subchannels. Similarly when the relay is
close to the destination, use of NF scheme on all subchannels
offers better rate. The region when the relay is between
0.5 < d < 1.2, it selects between DF and NF scheme based
on link gains of S-D, S-R link as mentioned above. In Fig. 3
we plot the optimized lower and upper bounds on the secrecy
rate for fading relay-eavesdropper channel. It can be seen that
when the relay is close to the source the lower and upper
bound matches. This follows because of using DF scheme
on all subchannels.
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Fig. 3. Bounds on perfect secrecy rate.

APPENDIX I

The proof generalizes the results of Theorem 1 in [3] and
uses elements from a similar proof in the context of parallel
BCC in [4].

a) We first bound the equivocation rate as follows.

nRe = H(W | Y n2[1,L])
= H(W )− I(W ;Y n2[1,L])

= I(W ;Y n[1,L])− I(W ;Y n2[1,L]) +H(W | Y n[1,L])
(a)

≤ I(W ;Y n[1,L])− I(W ;Y n2[1,L]) + nǫn

=

L
∑

l=1

I(W ;Y nl | Y n[1,l−1])− I(W ;Y n2l | Y n2[l+1,L]) + nǫn

=

L
∑

l=1

n
∑

i=1

I(W ;Yli | Y i−1
l Y n[1,l−1])

−I(W ;Y2li | Y n2l[i+1]Y
n
2[l+1,L]) + nǫn



=

L
∑

l=1

n
∑

i=1

I(WY n2l[i+1]Y
n
2[l+1,L];Yli | Y i−1

l Y n[1,l−1])

−I(Y n2l[i+1]Y
n
2[l+1,L];Yli | WY i−1

l Y n[1,l−1])

−I(WY i−1
l Y n[1,l−1];Y2li | Y n2l[i+1]Y

n
2[l+1,L])

+I(Y i−1
l Y n[1,l−1];Y2li |WY n2l[i+1]Y

n
2[l+1,L]) + nǫn

(b)

≤
L
∑

l=1

n
∑

i=1

I(WY n2l[i+1]Y
n
2[l+1,L];Yli | Y i−1

l Y n[1,l−1])

−I(WY i−1
l Y n[1,l−1];Y2li | Y n2l[i+1]Y

n
2[l+1,L]) + nǫn

=
L
∑

l=1

n
∑

i=1

I(Y n2l[i+1]Y
n
2[l+1,L];Yli | Y i−1

l Y n[1,l−1])

+I(W ;Yli | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

−I(Y i−1
l Y n[1,l−1];Y2li | Y n2l[i+1]Y

n
2[l+1,L])

−I(W ;Y2li | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + nǫn

(c)
=

L
∑

l=1

n
∑

i=1

I(W ;Yli | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

−I(W ;Y2li | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + nǫn(24)

where ǫn → 0 as n → ∞; (a) follows from Fano’s
inequality; and(b) and (c) follows from lemma 7 in [9].

We introduce a random variableT uniformly
distributed over {1, 2, · · · , n} and set, Uli =
Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L], V1li = WY n2l[i+1]Y

n
2[l+1,L]

and V2li = Y i−1
l Y n[1,l−1]. We defineUl = (T, Uli), V1l =

(T, V1li), V2l = (T, V2li), X1l = X1T , X2l = X2T , Yl =
YT , Y1l = Y1T , Y2l = Y2T , for l = 1, · · · , L. Note that
(Ul, V1l, V2l, X1l, X2l, Yl, Y1l, Y2l) satisfies the following
Markov Chain condition

Ul → (V1l, V2l) → (X1l, X2l) → (Yl, Y1l, Y2l), for l = 1, · · · , L.

Thus, we have

Re ≤ 1

n

L
∑

l=1

n
∑

i=1

I(W ;Yli | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

−I(W ;Y2li | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + ǫn

=
1

n

L
∑

l=1

n
∑

i=1

I(WY i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L];Yli |

Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

−I(WY i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L];Y2li |

Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + ǫn

(d)
=

1

n

L
∑

l=1

n
∑

i=1

I(V1liV2li;Yli | Uli)− I(V1liV2li;Y2li | Uli)

+ǫn (25)
(e)

≤
L
∑

l=1

I(V1lV2l;Yl | Ul)− I(V1lV2l;Y2l | Ul) + ǫn (26)

where(d) and (e) follow by using the above definition.
We can also bound the equivocation rate as follows. We

continue from (24) to get

Re ≤ 1

n

L
∑

l=1

n
∑

i=1

I(W ;Yli | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

−I(W ;Y2li | Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + ǫn

=
1

n

L
∑

l=1

n
∑

i=1

I(WY n2l[i+1]Y
n
2[l+1,L];Yli |

Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

−I(WY i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L];Y2li |

Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + ǫn

≤ 1

n

L
∑

l=1

n
∑

i=1

I(WY n2l[i+1]Y
n
2[l+1,L];YliY1li |

Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

−I(WY i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L];Y2li |

Y i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + ǫn

(f)
=

1

n

L
∑

l=1

n
∑

i=1

I(V1li;YliY1li | UliV2li)

−I(V1liV2li;Y2li | Uli) + ǫn (27)

(g)

≤
L
∑

l=1

I(V1l;YlY1l | UlV2l)− I(V1lV2l;Y2l | Ul)

+ǫn (28)

where(f) and (g) follow from the above definition.

b) We now bound the rateR as follows.

nR = H(W )

= I(W ;Y n[1,L]) +H(W | Y n[1,L])
(h)

≤ I(W ;Y n[1,L]) + nǫn

=

L
∑

l=1

I(W ;Y nl | Y n[1,l−1]) + nǫn

=

L
∑

l=1

n
∑

i=1

I(W ;Yli | Y i−1
l Y n[1,l−1]) + nǫn

=
L
∑

l=1

n
∑

i=1

H(Yli | Y i−1
l Y n[1,l−1])

−H(Yli |WY i−1
l Y n[1,l−1]) + nǫn

(i)

≤
L
∑

l=1

n
∑

i=1

H(Yli)−H(Yli |WY i−1
l Y n[1,l−1]) + nǫn

(j)

≤
L
∑

l=1

n
∑

i=1

H(Yli)

−H(Yli |WY i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L]) + nǫn

=

L
∑

l=1

n
∑

i=1

I(WY i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L];Yli) + nǫn



=

L
∑

l=1

n
∑

i=1

I(V1li, V2li;Yli) + nǫn. (29)

Hence, we have

R ≤ 1

n

L
∑

l=1

n
∑

i=1

I(V1li, V2li;Yli) + ǫn

≤
L
∑

l=1

I(V1l, V2l;Yl) + ǫn (30)

where(h) follows from Fano’s inequality;(i) and(j) follows
from the fact that conditioning reduces entropy.

We can also bound the rateR as follows

nR = H(W )

= I(W ;Y n[1,L]) +H(W | Y n[1,L])
(k)

≤ I(W ;Y n[1,L]) + nǫn

=

L
∑

l=1

I(W ;Y nl | Y n[1,L]) +H(W | nǫn)

=

L
∑

l=1

n
∑

i=1

I(W ;Yli | Y i−1
l Y n[1,l−1]) + nǫn

≤
L
∑

l=1

n
∑

i=1

I(W ;Y1liYli | Y i−1
l Y n[1,l−1]) + nǫn

=
L
∑

l=1

n
∑

i=1

H(Y1liYli | Y i−1
l Y n[1,l−1])

−H(Y1liYli |WY i−1
l Y n[1,l−1]) + nǫn

(l)

≤
L
∑

l=1

n
∑

i=1

H(Y1liYli | Y i−1
l Y n[1,l−1])

−H(Y1liYli |WY i−1
l Y n[1,l−1]Y

n
2l[i+1]Y

n
2[l+1,L])

+nǫn

=

L
∑

l=1

n
∑

i=1

I(WY n2l[i+1]Y
n
2[l+1,L];Y1liYli | Y i−1

l Y n[1,l−1])

+nǫn

=

L
∑

l=1

n
∑

i=1

I(V1li;Y1liYli | V2li) + nǫn. (31)

Hence, we have

R ≤ 1

n

L
∑

l=1

n
∑

i=1

I(V1li;Y1liYli | V2li) + ǫn

≤
L
∑

l=1

I(V1l;YlY1l | V2l) + ǫn (32)

where (k) follows from Fano’s inequality; and(l) follows
from the fact that conditioning reduces the entropy.

Therefore an outer bound on the achievable rate equivoca-
tion region is given by the following set:

⋃

{

(R,Re) that satisfy (26), (28), (30), (32)

}

(33)

where the union is over all probability distributions
p(u[1,L], v1[1,L], v2[1,L], x1[1,L], x2[1,L], y[1,L], y1[1,L], y2[1,L]).
Finally we note that the terms in (26), (28), (30),
and (32) depend on the probability distribution
p(u[1,L], v1[1,L], v2[1,L], x1[1,L], x2[1,L], y[1,L], y1[1,L], y2[1,L])
only throughp(ul, v1l, v2l, x1l, x2l, yl, y1l, y2l). Hence, there
is no loss of optimality to consider only those distributions
that have the form

L
∏

l=1

[

p(ul, v1l, v2l)p(x1l, x2l | ul, v1l, v2l)

.p(yl, y1l, y2l | x1l, x2l)
]

. (34)

This completes the proof of Theorem 1.
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