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Abstract—We study a four terminal parallel relay- Relay
eavesdropper channel which consists of multiple independé Y11 Xa
relay-eavesdropper channels as subchannels. For the diste PO
memoryless case, we establish inner and outer bounds on the . .

rate-equivocation region. For each subchannel, secure tre-
mission is obtained through one of the two coding schemes
at the relay: decoding-and-forwarding the source messagero Source Destination
confusing the eavesdropper through noise injection. The imer
bound allows relay mode selection. For the Gaussian model
we establish lower and upper bounds on the perfect secrecy
rate. We show that the bounds meet in some special cases,
including when the relay does not hear the source. We illusate
the analytical results through some numerical examples. Y 7

|. INTRODUCTION >

The relay channel has been analyzed [ih [I], [2] (and
references therein), but the focus was on how to increase

achievable rate and reliability. The _idea of.cooperatio[q be Eavesdropper
tween users in the context of security was introducedin [3]
(and references therein). The premise is that when the main Fig. 1. Parallel relay-eavesdropper channel.

channel is more noisy than the channel to the eavesdropper,
cooperation between users is utilized to obtain a positive
secrecy capacity. Secrecy is achieved by using the relay as
a trusted node which facilitates the information decoding 8€crecy rate. We note that establishing a computable upper
the destination while confusing the eavesdropper. bounds on the secrecy rate for the Gaussian model is non-
In this paper, we Study a para”e] re|ay_eavesdropper Chéﬂylal In part, this is because converse tEChniqueS that
nel. A parallel relay-eavesdropper channel consists ofra gé'® obtained_ Qirectly from thg analysis in th_e discretg case
eralization of the setup ifi [3] to the case in which each of tHvolves auxiliary random variables, the optimal choice of
source-to-relay (S-R), source-to-destination (S-D)sseto- which is difficult to obtain. We develop anew upper bound on
eavesdropper (S-E), relay-to-destination (R-D) and rétay the secrecy rate for the parallel Gaussian relay-eavepdrop
eavesdropper (R-E) link is composed of several independ€R@nnel. Our converse proof uses elements from converse
parallel channels as subchannels. The model is depicted§niques developed inl[5].1[6] in the context of multi-
Figure[d. For this model, we establish outer and inner boun@aténnas wiretap channel; and in a sense, can be viewed
on the rate-equivocation region for the discrete memosyledS @ partial extension of these results to the case of the
case. The inner bound is obtained with a coding schemeSiidied model. The established upper bound on the secrecy
which, for each subchannel, the relay operates in decodidte shows some degree of separability for different peirall
and-forward (DF) or noise forwarding (NF) mode. The outefubchannels. It is especially useful when the multiple sece
bound does not follow directly from the single-letter outepart of the channel is the bottleneck.
bound for the relay-eavesdropper channel developedlin [3We also study a special Gaussian case in which the
Theorem 1] and so, a converse is needed. This conversky does not hear to the source, for example due to very
includes a redefinition of the involved auxiliary randommoisy source-to-relay links. In this case, we show thateiois
variables, a technique much similar to the one used beforefamwarding on all links achieves the secrecy capacity. The
the context of secure transmission over broadcast channedsverse proof follows from the general converse estaddish
[4]. We also show that the bounds on the equivocatidor the general Gaussian case, and a new genie-aided upper
rate coincide in the case in which all the subchannels d@weund that assumes full cooperation between the relay and
degraded, thus characterizing the secrecy capacity. the destination, and a constrained eavesdropper. The-eaves
For the Gaussian model, we focus on the perfect secretnppper is constrained in the sense that it has to treat the
case. We establish lower and upper bounds on the perfegday’s transmission as unknown noise for all subchannels,
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an idea used previously in the context of a class of classic [1l. DISCRETE MEMORYLESS CHANNEL
relay-eavesdropper channel with orthogonal components i, this section, we establish outer and inner bounds on

[7]. These assumptions turn the parallel Gaussian relgye rate-equivocation region of a parallel relay-eavespeo
eavesdropper channel into a parallel Gaussian wiretap-chgRannel.

nel, the secrecy capacity of which is established in [4].

Furthermore, we apply the results developed for the paréi- Outer bound
lel Gaussian relay-eavesdropper channel to the fading-rela Theorem 1: For the parallel relay-eavesdropper channel
eavesdropper channel, which is a special case of paraligih 1, subchannels, and for any achievable rate-equivocation
Gaussian relay-eavesdropper channel, with each faditg sigair (R, R, ), there exists a set of random variablés —

corresponding to one subchannel. We illustrate our resudl\smvm) — (X1, Xo1) — (Y3,Y1;,Yy), I =1,..., L, such
through some numerical examples. that (R, R.) satisfies

In this paper, the notatioX; ;) is used as a shorthand
for (Xi1,Xo,...,X1), the notationXﬁ_’L] is used as a
shorthand for(X}', X3,---, X}) where forl = 1,...,L,
X = (Xu, Xp2,- -+, X1) and the notationt; 1) isused  p ~ p
as a shorthand fot’;; x X1 . .. x X1 1,. We define the function -

C(x) as 5 logy(1 + x). Throughout the paper the logarithm p < min{ZI(VuVQz;Yz | Uy) — I(VyVag; Yar | UY),
function is taken to the base 2.

L
R < min{ I(ViVay; Y1), Y I(Vag YoV | Vzl)}
=1 =1

~

=1
L

Il. THE PARALLEL RELAY-EAVESDROPPERCHANNEL ZI(V YiYir | Vo) — I(ViaVs: Y, |U)} @)
1, Liri 2tY1) — 1val, rai l .
A parallel relay-eavesdropper channel is a four terminal T

network consisting oft|; 1), X,z as finite input alphabets
and V1, 1), Yipi,), Yopi,2) @s finite output alphabets. The Proof: The proof of Theorem 1 is given in Appendix I.

transition probability distribution is given by O
L B. Achievable rate-equivocation region
11 p( v vt | 210, 220) (1)

e Theorem 2: For the parallel relay-eavesdropper channel
B with L subchannels, the rate pairs in the closure of the convex

wherexy, € Xy, z21 € Xoy, Y1 € Y,y € Ve andyz, € Vo, pyll of all (R, R,) satisfying

forl =1,---, L. For the subchanné] X, and X5, are the

inputs from the source and relay; alhg, Yo, Y; are the out- R < min { ZI(Vquz; Yi|Uy), ZI(Vu; Y11|V21Ul)}
puts at the relay, eavesdropper and destination, respBctiv ica e

The source sends a messd§iec W = {1,--- , 2"} using

a 2", n) code consisting of: 1) a stochastic encoder at the * Z I(Va; Yi|Var)

source that maps” — X7}, |, 2) a relay encoder that maps RIGAC

fi(Yi5h ) — Xop gy for 1 < i < n, and 3) a decoding {
min

IN

1[1,L]
function g(Y[?_’L]) — W. The average error probability of a e

IN

> IV Vay; Yi|Uy) = T(VayVar; Yar | U),

(2"F n) code is defined as leA
n_ 1 n IV;YVU—IVV;YU}
Pe _ 2n_R Z p{g(}/[le]) 7& W|W} (2) IGZA ( 11 1l| 21 l) ( 1val 2l| l)
Wew
The eavesdropper listens to what the source and relay trans- ~ + Z IV Y| Var) + min{ Z I(Va; V1),
mit for free, due to the wireless nature of the medium. It then leAe leAe
tries to guess the information being transmitted. Denoting .
. . I Y5 — I 1Y)
Yoo the output at the eavesdropper, the equivocation rate ZGZA:C (Var; Yau [ V1) i IGZA;C (Ve Y1),
per channel use is defined & = H(W|Y2’[l1 L])/n. Perfect
secrecy for the channel is obtained when the eavesdropper Z I(VQI;YQI)} - Z T(Vyy; Yo | Vay), (5)
gets no information aboutV" from Yy, ;. That is, the leAe leA°

equivocation rate is equal to the unconditional sourceopgtr
A rate equivocation pairR, R.) is achievable, if for any
e > 0 there exists a sequence of cod2s/{, n) such that for

for some distributionp(u;, v1;, var, x11, a1, Y1, Y11, Y21) =

p(ur)p(vir, var|w)p(@r, za|vi, va)p(Yis Y, yai| T, 1)
for I e A and p(vi,ve, T, Ta, Yi, Y1, Yau) =

anyn > n(e) p(vu)p(var)p(xulvi)p(zar|va)p(yi, yar, yaleu, z2)  for
H(W) - R, I € A°, are achievable.
n - 7 In the statement of Theorem 2, setsand.A° represent the
H(W|Y27[11,L]) R —e¢ subchannels for which relay operates in DF and NF mode,
n - v respectively. The region in Theordrh 2 is obtained through a
Pl < e 3) coding scheme which combines appropriately DF and NF



schemes. The rates for the DF scheme can be obtaifedLower bound on the perfect secrecy rate
readily by SettingU = U[17|AH"/1 = ‘/1[1-,\-/4|]7‘/2 =

Vapjas Y = Y ) Y1 = Y4 and Yz = Yopr |4, For the parallel Gaussian relay-eavesdropper channel, de-
for [ € A in [B, Theorem 2]. Similarly the rates forfined by [T), we apply Theorefd 2 to obtain a lower bound
NF scheme can be readily obtained by settiig := On the perfect secrecy rate.

Vi e Va o= Vop e YVoi= Y Yaoi= Y jae)

andYs — Yy aep, for 1 € A° in [3 Theorem 3. Corollary 1: For the parallel Gaussian relay-eavesdropper

channel [[7), a lower bound on the perfect secrecy rate is
given by [10).
Remark 1: For a parallel relay-eavesdropper channel in

which all subchannels are degraﬂ,e'de., Proof: The achievability follows by applying Theorem

[2 with the choicel; = constant,V,;=X1;, Vai=Xo;, X1 =
(Y Y, v | 21, x21) Xll"‘\/ azlsillX2lv o = 1—ay, X1y ~ N(0,; Py) indepen-
dent of X9, ~ N(0, Py) for I € A; and X1; ~ N(0, Py;)
independent ofXy;, ~ N(0, Py;) for [ € A¢. Straightforward
forl=1,..., L, the perfect secrecy capacity is given by algebra which is omitted for brevity givels {10). O

L

Zp(yu | l'lla$2l)p(yl | yu,wzl)p(yzl | Y, Y11, T11, 21 )

) The parameterd’; and P, indicate the source and relay
Cs =maxmin { Z[I(V”V?“Yl | U) = I(ViVai; Yo | Ul)]+’power allocated for transmission over the subcharinéh
=1 (I0), after some straightforward algebra, the contrilutio
to the equivocation of information sent through NF (set
A€) can be condensed by observing that we only need
to considermin{) ;. 4. I(Xar, Ya1), > je e 1( X1, Y1)} =
where maximum is ovet/; — (Vi;, Vo) — (X1, Xop) — Y ieae 1(Xa1,Yay) in set A¢, to get a higher secrecy rate.
(Y1, Y1, Ye), fori=1,..., L. A simplified expression foR°" is given by [11).

Proof: The achievability follows from Theorem 2 by

setting A° = @. The converse follows along the lines of
Theorem 1 and is omitted for brevity. ) B. Upper bound on the perfect secrecy rate

L
Z[I(V”;Y” | VarUp) — I1(ViiVar; Yau | Ul)]+} (6)
=1

IV. GAUSSIAN CHANNEL The following theorem provides an upper bound on the

. . . secrecy rate of the parallel Gaussian relay-eavesdropperc
In this section we study a parallel Gaussian rela¥]—

eavesdropper channel. We focus on perfectly secure achiev- )
able rates, i.e{R, R.)= (R, R). The received signals at the Theorem 3: For the parallel Gaussian relay-eavesdropper

relay, destination and eavesdropper are given by channel[(¥), an upper bound on the secrecy rate is given by

Y= Xui+ Zus L
Yii = Xua+VouXoni + Zii RP < eax D T(X0u X Y1) = T(X0 Xor; Vo) (12)

T {KpeKpti=1...L =

Yor,i = Xu,i + p2Xowi + Zou (7)
where i is the time index,{Z1,,;},{Z;} and {Zy;} are Wwhere the maximization is oveX1;, Xoi] ~ N(0,Kp))
noise processes, independent and identically distrilfife) \yith 10 — {K Ko, — [ Py wVPuPa| _q <
with the components being zero mean Gaussian random f o o wVPuPa o Pa T
varlable_s with variances?;, of and o3;; X1;; and Xoti oy < 1%, for 1 = 1,...,L, with the covariance matrices
are the inputs from the source and relay nodes respectively. . . o
The parametepy; indicates the ratio of the R-D link signal- E[X1(1,1 X1}, 1), E[Xop,1 X5, ;)] satisfying [8) and[{9)
to-noise (SNR) to the S-D link SNR angb, indicates the respectively.
ratio of the R-E link SNR to the S-E link SNR for thi¢" Proof: The result in Theorem 1 established for the DM

SUbﬁh?nRel'_The source and relay input sequences are Suhjgce an pe extended to memoryless channels with discrete
to the Tollowing average transmit power constraints time and continuous alphabets using standard technifjiies [8

Lo Chapter 7]. Taking the first term of the minimization in the
- Z ZE[XIQM] < P, (8) bound on the equivocation rate, we get
=1 =1
1 L n L
=~ D EIX3,) < P ©) R <max > I(VuVai; Yi | Up) — I(Vi/Var; Yo | U)) (13)
=1 i=1 =1

lin parallel relay-eavesdropper channel if all the subchEnmre de-
graded, the entire relay-eavesdropper channel may nossety be de- whereU; — (Vllv VQZ) - (XlleQI) - (YlvylleQZ)* for

graded. l=1,..., L. The rest of the proof uses elements from related



works in [4] and [5]. Continuing from[{13), we obtain p(yi|z1, x2r) andp(yl, |z, z21) = p(yailzir, z2r).
It can be easily shown that the bound iRhJ(15) is

L
R, SZI(Vquz;Yz | Uy) — I(ViVay; Yo | U)) maximized when the inputs are jointly Gaussian, i.e.,

lLl [Xll,XQl] ~ N(O,Kpl), I(pI S ’Cpl with ’CB = {KP| :

(a)

< 1 ‘/lle2l7le) I(‘/ll‘/él;}/él) _ Py waqu} _ _
Z Keo = |, vmmm p o7l S s 1pdorl =
L 1,..., L with the covariance matricéE[Xl[l,L]XlT[l L]] and

< ZI(Vquz; YiYa) — 1(ViiVar; Ya) E[Xon 1) X5} 1) satisfying [8) and[(9) respectivelyl[5].1[6].

Il
-

Next, using the specified Gaussian inputs, it can be shown
that the evaluation of the upper boufd](15) minimized over

IS
(=

[[(X1 X213 Y1 Yo) — I( X1, X5 Y, Yoy | Vi Vay)] all possible correlations betweery, Yy, for | = 1,...,L
l_:[II(Xllez; Yar) — I( X1 Xop; Yoy | ViiVar)] yields )
:i[I(Xqul;Ylyzl) — (X1 Xo1; Yor)] R. < {KP|€I’138P{)}(I:1...L ;I(Xqul;Yl) ~ (X1 Xas; Yar)- (16)
i This concludes the proof. 0

(X1 Xo; VYo | ViuVar) — I( X1 Xor; Yo | Vi Var))
We now study the case in which the links S-R are very noisy,
[[( X1, X0 YY) — I(X1 Xop; Yoy)] i.e., the relay does not hear the source.

Theorem 4: For the model[{]7) in which the relay does not
hear the source, the secrecy capacity is given by

-

Il
-

-

I(X1 X3 Y1 | Yar), (14)
=1
Py + puPa P+ pa Py
where (a) follows by noticing thatl(Vy,Va;;Y; | Up) — Cs —mln{maXZC(Ui) C(T ;
I(ViiVay; Yor | Uy) is maximized by settind/;=constant and ! A
(b) follows from the Markov chain conditiofVy;, Vo) — o Py Py 17
(Xll;XQI)_)(}/h}/lh}/Ql)i forl:l;-"vL' malxz _2 B U§l+p2lp2l ( )

We now tighten the upper bourld {14) by using an argument
previously used in[]5],[]6] in the context of multi-antennaghere the maximization is OVG(rPu,Pzz} fori =1...L,
wiretap channels. More specifically, observing that, thigior such thaty> | Py, < Py and Y., Py < Px.

nal bound[(IB) depends @1ty;, y= |21, 22;) only through its Proof:
marginalsp(y: |1, x21) andp(yai|z1, z21), the upper bound ypper Bound: The bound given by the first term of the
(I4) can be further tightened as minimization in [I7) follows from a straightforward appic

L tion of the result in Theorem 3 — taking independent source

R. < max Z Cmin - I(XyXe; Y/ | Yy) (15) and relay inputs since the relay does not hear the source
p(@1,w21) — p(y),yh |2 1,221) .. . .
=1 transmission in this case.
where the joint conditionalp(y;, y5,|z1,z2;) has the  The bound given by the second term of the minimization
same marginals ag(y;, yai|z11, z21), i.€., p(y)|z1,z21) = in (I7) can be established as follows. Our approach borrows

P, P 2/ Py P P, P. 2V & Py P
Rl:w _ max min { ZC 11+ prtor + 2/ apu bt _c 11+ p21fo +2 Qp2a 11l 7
Sy Pus<Piy [ Py<Pa, icA of %2
0<e<1,forl=1,..., [A|
e P
ZC(MPu) _ <P1l + p21 Pa + 2v/ i par P Pa n Z c Pu 4 min Z c Pp1lP212 Z c P21P21
l1eA & leAe leAe utor) e &
. p1 P p21 Py Py
— min c S e L2 c (10)
{ lez;c (P” + Glz) l;‘: (P” + Ugl) lez;c (
RV — s min { Z {C Py puPo + 2\/ ap1 P Po _c Py + parPay +22\/ apar Py Poy }Jr’
YLy Pus<PL YL Pu<Pa, lea of T2
0<a;<1,forl =1,..., | Al

Z {C<CUP11> _ C<Pu + par Py + 2\/041;72113111321) +

2 2
€A 11 I

+ min Z {() L{;”Pﬂ _c Lﬁmpﬂ ]+7Z {C Py y, p2zP21 _ Pu-l-Pszz ]+ an
leAc 9 921 e Ac of o3 o3



elements from an upper bounding technique that is usezbpectively. The noise processég, ;},{Z;},{Z2.} are

in [7], and can be seen as an extension of it to the casero mean i.i.d complex Gaussian random variables with

of parallel relay-eavesdropper channels. Assume thahall variancess?, o and o3 respectively. The source and relay

links between the relay and the destination are noiselesss, anput sequences are subject to an average power constraint,

the eavesdropper is constrained to treat the relay’s signal >  E[|X1;]*] < nPi, Y., E[X2,*] < nP. Let

as unknown noise. As mentioned inl [7], any upper bourid := [hsa; hrai Psei hrei hsri] @and we assume that

for this model with full relay-destination cooperation angberfect channel state information (CSl) is available at all

constrained eavesdropper, also applies for the generatlmododes, i.e, each node has access to the instantaneous CSI and
Now, for the model with full relay-destination cooperatiorits statistics. For a given fading state realizatlonthe fading

and constrained eavesdropper, we develop an upper boundelay-eavesdropper channel is a Gaussian relay-eaveszrop

the secrecy capacity as follows. In this case, the destimatichannel. Therefore, for a given channel state witlfiading

can remove the effect of the relay transmission (which #ate realizations, the fading relay-eavesdropper charame

independent from the source transmission as the relay dbesseen as a parallel Gaussian relay-eavesdropper channel

not hear the source), and the equivalent channel to twgéh L subchannels. The power allocation vectors at the

destination can be written as source and relay are denoted By(h) and P»(h) respec-

, tively. The ergodic achievable secrecy rate of the fading

Vi =X+ Zua- (18) relay-eavesdropper channél}(21), which follows frdm] (11)

For the constrained eavesdropper the relay’s transmissisn IS given by [22). The upper bound for the fading relay-

as an interference, with the worst case obtained with Ganssgavesdropper channel follows from[12) and is giver(by (23).

Xop1.1 [7]. The equivalent output at the eavesdropper in thl8 the achievable region we proposed a coding scheme which

case is given by is a combination of DF and NF scheme. A pertinent question
is how to decide which scheme to use on each subchannel
Yo = X + 1/ p2aBlX3, ;] + Zayi. (19) ? To accomplish this we defind:= {h : |hsa|® < |hs|*}

) ) contains all the fading state realizations §h} where the
The rest of the proof follows by simply observing that th&_R |ink is better than S-D link. The complement of sét
resulting model (with the worst case relay transmission {9 ge:= ({; : |hyy[? > |h |2}

the eavesdropper and full relay-destination cooperatg)
fact a parallel Gaussian wiretap channel, the secrecy tgpac VI. NUMERICAL RESULTS
of which is established i [4],
L
Cy <max» I(X1;Y/) — I(X1;Yy)) (20)
=1

We consider a fading relay-eavesdropper channel with
L fading states. It is assumed that perfect channel state
information is available at all nodes. We can consider this
channel as a Gaussian relay-eavesdropper channel lwith
where the maximization is oveKy; ~ N(0, Py), Xoi ~  subchannels. We model channel gain between nedés, r}
N(0,Py) for I = 1...L, with >3- Py < P and andj € {r,d, e} as distance dependent Rayleigh fading, that
Zle Py < Ps. is, hij = hg_jd;]m, where~ is the path loss exponent and

Finally straightforwad algebra which is omitted for brgvit 7 ; is a complex Gaussian random variable with zero mean
shows that the computation ¢f(20) gives the second termad variance one. Each subchannel is corrupted by AWGN
the minimization in[(1I7). with zero mean and variance one. The objective function for
Lower Bound: The achievability follows by computing both Iowe_rand upper bogndsare_optimized numeri<_:a||y using
the lower bound in Theorem 2 with the choicpd®|:=L, AMPL with a commercially available solver, fo_r instance
V=X, Vari=Xa, and X1, ~ N(0, Py;) independent of SNOPT. Furthermore, for each symbol transmission same

Xop ~ N(0, Pyy). 0 sub_channel is used on S-R and R-D links to make the
optimization tractable.
V. FADING RELAY-EAVESDROPPER CHANNEL To illustrate the system performance, we set the source and

We consider a fading relay-eavesdropper channel that"f&y power to 64 Wat each. We consider a network geometry
corrupted by multiplicative fading gain processes in addit N Which the source is located at the point (0,0), the relay is
to additive white Gaussian noise (AWGN) processes. THcated at the pointd0), the destination is located at the

received signals are given by point (l,Q) and th_e eavesdropper is located at the poin},(0,1
where d is the distance between the source and the relay.
Yii=hsriX1i+ 21 In all numerical results we set path loss exponer?. Fig.
Y; = hsaiX1i + heaiXoi + Zi [2 shows the power allocation for a fading channel with 64
You = heei X1+ hyeiXoi + Zo, 1) subchannels where the relay is located at (0.5,0), and marke

‘x’ denotes NF on a particular subchannel while marker
where i is the time index,hsqi, hrdi. hsei. hre; and ‘00’ denotes DF on a particular subchannel. It can be seen
hsr; are the fading gain coefficients associated with S-Brom Fig.[2 that, achievable perfect secrecy rate is zero for
R-D, S-E, R-E and S-R links, given by complex Gaussome subchannels. Roughly speaking, this happens when the
sian random variables with zero mean and unit variancendition|h,.q|* > |h,.|? is violated.



2 2 7
R =  max min{EneA {20(”“' Pi(R) + [hral*Pa(h +2Va Nhsa2Pr(R) PQ(h))
E[Py(h)]<P1,
E[Py(h)] <P,
0<a(h)<1
<|hse| Pa(h) + |hrel* Po(h +2¢a IRRARIAAU ) 5 ( a(B)lherf Pr (b >>
heA 2C B E—
(71
2 2
<|hée| Pi(R) + |hee|* P2 (R +2¢a Yhae PP (W) I P P (R ) '\ in EhGAC {QC<|héd| Pi(h )+2|hn1| Py(h ))
o2 o)
+
QC<|hée| Pi(h +|hm| Py (R ))} Enes {QC<|hsd| Pi(R )) +QC<|hT.e| Pa(l )) <|hée| Pi(B) + [hoe* Po(h ))} }
g 0'2 0'2
(22)
R < max B, foc (1Bl PrB) £ Bl Po(h) 4+ 26(h)  Tha PP )yl Poh)
E[Py (R)]< Py, o2
E[P3(h)]< P2,
—1<y(h)<1
|hse*P1(R) + |hre*Pa(h )+2¢ )V |hse 2Py (h)[hre|* P2 (R) 23)
0'2 ’
il —nf]  [[=Upperbound
6- 0 0 oo ooo oooooo oo o oo o ooooopo o o og o o--|h r]2 35,
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Fig. 2. Achievable perfect secrecy rate of a fading parathy- Fig. 3. Bounds on perfect secrecy rate.
eavesdropper channel.

APPENDIXI

The proof generalizes the results of Theorem 1'in [3] and
uses elements from a similar proof in the context of parallel
Mode selection at the relay by only considering the relativ@Ccc in [4].
strength of the S-D and the S-R link is suboptimal because
the achievable secrecy rafe{22) also depends on the othea) We first bound the equivocation rate as follows.
link gain. We now consider the case in which the relay

independently selects the scheme which maximize the rate HW | Yap, L])
each subchannel. When the relay is close to the sourcesituse = H(W) - 1(W; 201, L])
DF scheme on all subchannels. Similarly when the relay is = I(W3 Y ) = T(W5 Yo 1) + HW [ YT )

close to the destination, use of NF scheme on all subchannels
offers better rate. The region when the relay is between < I(W:Y[ ) — I(W;Y5}, 1)) + nen

0.5 < d < 1.2, it selects between DF and NF scheme based L
on link gains of S-D, S-R link as mentioned above. In Eig. 3  — ZI WY | Y ag) — LW Yy [ Yo[4q 1)) + nen
we plot the optimized lower and upper bounds on the secrecy =1 "

rate for fading relay-eavesdropper channel. It can be desn t

when the relay is close to the source the lower and upper = ZZI (Wi | Y™ 1Yll 1)
bound matches. This follows because of using DF scheme 1=1 i=1

on all subchannels. —I(W; Yaui | Yaji1)Yaliin,1)) + €n



L n
= ZZI(WYﬁ[iH]YzTEzH,LﬁYli | Yzwly[ff,zfu)
=1 i=1

l 7

— (g Yohoa,op Yo | WYY )
_I(Wyzl_ly[?,z—my?li | }37[z'+1]y27[ll+1,L])
+I(Yzl_1y[711,z—1]§y2li | WY21ll[i+1]Y27[ll+l,L]) + nen

L

SN IWYg Yot o Vi | YY)
=1 =1

—I(Wyliily[?,lqﬁyﬂi | }/27;[i+1]}/27[ll+1,L]) + ne,
L n
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—I(Yl_ly[?z 13 Yot | Yol Yahen,n))
I(W You | Y/ Yy Yatipn Yatier,n) + nn

n

—
IN=

ZZI (WY | VY Yot Yatien o))
=1 i=1

—I(W; Yo | Yziily[?,zfuYz?[z'H]Yz’le,L]) + nen(24)

wheree, — 0 asn — oo; (a) follows from Fano’s
inequality; and(b) and (c) follows from lemma 7 in[[9].

We introduce a random variableT uniformly
distributed over {1,2 ,n} and set, Uy =
A G 1]Y2m+1]yz[z+1 p Vi = WYY
and Vy; = Y)'™ Lyn We defineU; = (T,U;), Vi, =

[1,0—1
(T, Vi), Vor = (T, VzlzB,Xu = Xir, Xoy = Xop, V) =
Yr, Y, = Yi7,Yey = Yop, for 1 = 1,---, L. Note that
(U, Vag, Vay, X1, Xa1, Y, Y11, Yoy ) satisfies the following
Markov Chain condition
U — Vi, Vi) — , R

(X1, Xo) = (Y1, Y1y, Yo), for i =1,---

Thus, we have

L n
1 i— n n
EZZI (W3 Y | Y, 1Y11 1] 2l[i+1]Y2[l+1,L])
=1 =1
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1 L n
— (W
D IPIR(

=1 i=1
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=1 =1
+ep
L
> IV Vai; Vi | Uy) —
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(25)

I(ViuVai; Yo, | Up) + €n (26)

where(d) and (e) follow by using the above definition.
We can also bound the equivocation rate as follows. We

R

<

IN

continue from[(24) to get

L
S S IOV Y Y Vi Vi)

=1 i=1
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where(f) and(g) follow from the above definition.

b) We now bound the raté& as follows.
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(29)

Hence, we have

n

Z I(Viis, Vi Yii) + €n

1i=1

R <

M ) F:)PﬁHh

< IV, Vai; i) + €n (30)

l

1

where(h) follows from Fano's inequality(i) and(;) follows
from the fact that conditioning reduces entropy.
We can also bound the rafe as follows

nR = H(W)

= IW; Y3 o) + HW [ Y 1)

(k
< I(W3 YT ) + ney

N

[
Mh

LW Y7 | Y gp) + H(W | ne,)

Il
-

I
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(W3 Y | 7Y o) +nen

I
-
-
Il
A

M=
M=

I(WsYiYe | Y/ 7Y y) +ney

I
-
-
Il

=1

[
M=
\E

H(Y1,Yi; | Yli_ly[?,l—u)

Il
-
.
Il
-

H(Yllz ZZ|VVYZ 1Y[ll 1])"’”671

S HMGYS | YY)

—~
—
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Mh

1=1 i=1
—H(}/lll 17 | WYl lif[ll 1]}/27[i+1]}/2?l+1,L])
+ne,
L n
- ZZI WY Yaln o YuaYi | Y'Y y)
=1 i=1
+ney
L n
= ZI(Vm;Ym i | Vaui) + nep, (31)
=1 i=1
Hence, we have
1 L n
R < =
< HZZI Vi YuiYai | Vaui) + €n
=1 i=1
L
< ZI(Vu;YzYu | Var) + €n (32)
=1

where (k) follows from Fano’s inequality; andi) follows
from the fact that conditioning reduces the entropy.

where the union is over all probability distributions

P(U[1,L]7U1[1,L],U2[1,L],£C1[1.,L],$2[1,L]7y[1,L]7y1[1,L],y2[1,L])-
Finally we note that the terms in[_(26)[ {28)[_130),
and [32) depend on the probability distribution

p(u[l,L]vvl[l,L]av2[1,L]aIl[l,L]aI2[1,L]7y[1,L]7yl[l,L]ay2[1,L])
only throughp(u;, v17, vy, 11, 21, Y1, Y11, Y21 ). Hence, there
is no loss of optimality to consider only those distributon
that have the form

L

{p(ul,vuvvzl)p(i?u,i?zl | ulvvllaUQZ)
=1

Py, ya | g, xa) |- (34)

This completes the proof of Theorem 1.
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Therefore an outer bound on the achievable rate equivoca-

tion region is given by the following set:

U {(R, R.) that satisty[[Z5)(ZE). (0), m)} (33)
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