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Abstract

We consider a half-duplex diamond relay channel, which istq®f one source-destination pair
and two relay nodes connected with two-way rate-limited-aftitand conferencing links. Three basic
schemes and their achievable rates are studied: For thelelkecml-forward (DF) scheme, we obtain the
achievable rate by letting the source send a common messddea private messages; for the compress-
and-forward (CF) scheme, we exploit the conferencing liokselp with the compression of the received
signals, or to exchange messages intended for the secontb iejpoduce certain cooperation; for the
amplify-and-forward (AF) scheme, we study the optimal corirly strategy between the received signals
from the source and the conferencing link. Moreover, we skiwat these schemes could achieve the
capacity upper bound under certain conditions. Finally,ewaluate the various rates for the Gaussian

case with numerical results.

Index Terms

Diamond relay channel, conferencing, decode-and-forwenthpress-and-forward, amplify-and-

forward.

. INTRODUCTION

In most beyond-3G wireless technologies such as WiIMAX andPBGMTS Long Term

Evolution (LTE), the concept of relaying is introduced t@yide coverage extension and increase
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capacity. From the information-theoretical viewpoing ttapacity bounds of the traditional three-
node relay channel have been well studied [1]-[4], and variachievable schemes, such as
decode-and-forward (DF) and compress-and-forward (C&)e lbeen proposed. For the half-
duplex relay channel, in_[4] and the references therein tlieaas have studied the achievable
rates and the power allocation problem.

For the case with two relay nodes and no direct link betweenstiurce and the destination,
termed as the diamond relay channel, various achievabés naere studied in[[5]=[8]. In
particular, the authors in|[5] discussed the capacity ufyoeind and the achievable rates using
the DF and amplify-and-forward (AF) schemes under the duldlex relaying mode. Under
the half-duplex mode, the authors In [6] discussed the mable rates using two time-sharing
schemes, i.e., the simultaneous relaying and alternatiaging schemes. By further exploring
partial collaboration between the two relays, the authoif§], [8] developed some DF schemes
based on dirty paper coding (DPC) and block Markov encodBigE), where the DF scheme
is shown to be optimal in some special cases [7].

In practical communication systems, some nodes might hatra eut-of-band connections
with the others, e.g., through blue-tooth, WiFi, opticakfiletc., to exchange certain information
and improve the overall system performance. From the indbion-theoretical viewpoint, such
kind of interaction can be modeled as nodes conferencing18]. Specifically, for multiple
access channel (MAC) [9], encoder conferencing was usedxthaege part of the source
messages, and it is proved that one-round conferencingreche optimal. For the broadcast
channel (BC) in[[10], the decoders was designed to first cesgpthe received signal, and then
transmit the corresponding binning index number to therafim®ugh the receivers conferencing
links. In [10], [11], it was shown that the one-round schem@ptimal for physically degraded
BC channel, while the two-round and three-round schemesoogmerform the one-round one
in general cases. Moreover, in [12] and[13], the achievedtie of the compound MAC channel
with transmitter and receiver conferencing was discusaed, some capacity results for the
degraded cases were provided.

In this paper, we consider a two-hop diamond relay channleictwcontains two half-duplex
relay nodes. We assume that the relays can conduct confegenith each other via some
orthogonal out-of-band links [14]. Generally, the confatieg links can be used to exchange a

compressed version of the received signals at the relaysdaf of the messages intended to the
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destination between the two relays [9], or just to forward thceived signal to the other relay
[6]. With these ideas, we develop relaying schemes baseti@F, CF, and AF schemes by
exploiting the inter-relay conferencing, for both the sasédiscrete memoryless channel (DMC)
and Gaussian channel. Moreover, in stead of considering-nouind conferencing scheme [10],
[11], we just concentrate on the simple one-round conféngnscheme, which means that the
relays simultaneously process their received signal amdlwct conferencing with the other in

the same time slot. The main results of the paper are sumeadaaiz follows:

1) For the DF relaying scheme, we let the source to transn@tammmon message to both
relays and one private message to each relay. We prove thahdoDMC case, the DF
scheme could achieve the capacity cut-set bound just witle fbonferencing link rates; for
the Gaussian case, the cut-set bound is asymptoticallyethiwhen the source-to-relay
link signal-to-noise ratios (SNR) go to infinity.
2) For the CF relaying scheme, we develop three schemes:simg eonferencing links to help
the compression, and the other two using them to partiallfully exchange the binning
index of the compressed receiver signal. We prove that ferGaussian case, when the
SNRs of the BC channel or the MAC channel go to infinity, theacdy upper bound is
asymptotically achievable.
3) For the AF relaying scheme, we investigate the optimallwomg problem between the
received signals from the source and the other relay. Giyatas not a concave problem,
while semidefinite relaxation can be applied to transforito i quasi-concave problem.
The remainder of the paper is organized as follows. In Seclip we introduce all the
assumptions and channel models. In Section Ill, we derieectipacity upper bound and the
achievable rates for the DF, CF, and AF schemes. Moreovediseeiss some capacity achieving
cases. In Section IV, we show some simulation and numergsllts. Finally, the paper is
concluded in Section VI.

We define the following notations used throughout this palegrx) is the base-2 logarithm;

Tr(A) is the trace of matrixA; andR(x) is real part ofz.

1. ASSUMPTIONS ANDSYSTEM MODEL

In this paper, we consider a diamond relay channel with &ditamd conferencing links

between the relays, as shown in Hi@. 1, which contains onecemode, one destination node,
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and two relays. There is no direct link between the source gexlination. The relay nodes
work in a half-duplex mode: the source transmits and the ®lays listen in the first time slot;
the relays simutaneously transmit and the destinatioansstn the second time slot. Denote the
time fraction allocated to the first slot as with A € (0, 1), and the time fraction for the second
slot as\ = 1 — \. The capacity of the conferencing link from relay 1 to relays2jiven C,s,
and Cs; is defined similarly. Furthermore, these two conferencingsl are orthogonal to each
other and outside the bandwidth used by the source-to-eeldyrelay-to-destination links. The
time scheduling of the transmissions at the source, rekayd,conferencing links is shown in
Fig.[2(a) and Fig[ 2(b).

In this paper, we assume that for the DF and CF relaying schewe adopt the CF scheme
as the conferencing strategy; and for the AF relaying schemeeadopt the AF scheme for
conferencing. Due to this assumption, we note that the itn&sson scheduling schemes for
DF, CF, and AF are different: For the DF and CF relaying sclentiee block length of the
conferencing link codewords is equal to the sum of thoseHerdource and relay transmission
codewords; on the other hand, for the AF relaying schemeplbek lengthes of these three
codewords should be the same, and the conferencing linksratébject to a one-half half-duplex
penalty. Moreover, due to the relay conferencing, theré lvéla one-block delay between the
transmissions at the source and the relays, as shown if @pad Fig[ 2(B), which requires
the relays to buffer one block of source signals for eachymepoperation. Assume that during
each block, the communication rate i and we need to transmi8 blocks in total. Thus,
the average information rate EB%I — R, as B goes to infinity. In this paper, we focus on
one-block transmission and the associated coding schethewvispecifying the delay in the
proof of the achievability.

For the Gaussian case, we further define the following cHanpat-output relationship. The

received signal; from the source at théth relay ¢ = 1,2) is given as

wherez is the signal transmitted by the source with pov®r, h; is the complex channel gain
of the i-th source-to-relay link, and,’s are the independently and identically distributeddj)i.
circularly symmetric complex Gaussian (CSCG) noise witbtrdbutionCN (0, 1).

In the second hop, signal with average poweP%, is transmitted from theé-th relay to the
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destination; and the received signaht the destination is given as

2
y= Zgixi +n, (2)
i=1

where g; is the complex channel gain of theh relay-to-destination link, and is the CSCG

noise with distributionrCA/ (0, 1). For convenience, we define the link SNRs as

vi = |hi|*Ps, 5 = |g;|*Pr, i =1,2. (3)

IIl. CAPACITY UPPERBOUND AND ACHIEVABLE RATES

In this section, we exam the capacity upper bound and theeablie rates of the considered
channel with the following three relaying schemes: DF, Gfg AF, respectively. Moreover, we
prove some capacity achieving results under special donditTo be concise, in each relaying
scheme we generically describe the coding scheme foi-theaelay ¢ = 1,2), where we use

(3 — 1) to refer to the other relay index for the convenience of dpton.

A. Capacity Upper Bound

In this subsection, we first study the capacity upper boumdHte considered channel. The
upper bound is derived by the cut-set theary [1].
Theorem 3.1:The capacity upper bound for the discrete memoryless didmelay channel
with conferencing links is given as
[(X;0,Y5) 1 (Xy, Xy Y)
Comper = 70X Vr, Ya) + 1 (X, X V)
over distributionp(z)p(y1, ya|z)p(x1, 22)p(y|z1, 22).
Proof: By the cut-set bound, we ha@per < min { A/ (X; V3, Ya), M (X3, X5; V) }, which
comes from the broadcast (BC) cut-set and multiple accegsCjMeut-set [6], [20]. We then

(4)

optimize over)\ to obtain a better bound, and the minimum value is achievethef two terms

I(X1,X2;Y)
(X5Y1,Y2)+1(X1,X2;Y)

bound in [(4). [
This theorem implies that the capacity upper bound is aeldi@nly when a common message

are equal, which means" = - . With this optimal A\, we obtain the upper

with the rate given in[{4) is sent and can be perfectly decdoedoth of the relays in a

cooperative way.
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For the Gaussian case, since these two-hop communicatierisdependent with each other
(i.e., maximizingCypper means maximizing (X;Y3,Y,) and I (X;, X5;Y), respectively), we
chooseX, X;, and X, to be independent CSCG with distributiéV (0, Ps), CN (0, Pr), and
CN (0, Pgr), respectively; and the corresponding capacity upper basigd/en by the following
corollary.

Corollary 3.1: For the Gaussian case, we have the following capacity uppend
log (1 +71 + 72) log (1 +7 72+ 2y %%)

log (1 + 7+ ’YQ) + log <1 +7 +Y+ 2\/§1§2)

Cupper <

()

B. DF Achievable Rate

Main idea: For the DF scheme, the source transmits three messagesoommeon message
wy to both of the relays, and one private message to each of thgsredlenoted as; and
wy, respectively. In the-th relay, it compresses the received signal from the sowame sends
the corresponding binning index through the conferencinig fo the other relay, which helps
with decoding the desired common message. In the secondtt®ghannel is indeed a MAC
with common information. In the next, we first consider the OMase and then consider the
Gaussian case.

1) DF Rate for the DMC CaseWe first focus on the first hop that is a BC channel with
receiver one-round conferencing, for which the authorsldj jnvestigated the two cases with
two independent messages and only one common messagestingdpeln this subsection, we
extend their results with a more general coding scheme, amd the following lemma.

Lemma 3.1:The achievable rate region of the general discrete mengsBE€ with common
message and decoder conferencing is given as

Rpc = U

p(uo)p(urluo)p(uz|uo)z(uo,ur,uz)p(y1,y2le)p(d1ly1)p(d2]y2)
(Ro, Ry, R2) : Ry, Ri, Ry >0,
Ry + R < AT (Up, Uis V31, i)
Ro+ Ry + Ry < A (Ui; Vas, Yi|U0) Y
2Ry + Ri + Ry < A <U0, Ul;i/?,Yl) Y

. . (6)
Us, Us-i3 Y, Yai) = M (Ur; Ua|Uo)

Uy, U2§}A/1>YZ) — M (Uy; Us|Uy)

—~
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subject to the following constraints
Cig-i 2 M (Vi Ye) = M (VisYasi) s i = 1,2 (7)

where Ry, R,, and R, are the rates of the common message, the private messadeeférst
relay and the private message for the second relay, reselgctandl,, U, Us, Y;, andY; are
auxiliary random variables defined on arbitrary finite seithwhe distribution given in[{6).
Proof: See AppendiXx_A. [
For the second hop, i.e., the MAC with common message, thiexatile rate region is well
studied, which is presented in the following lemma.
Lemma 3.2:The achievable rate for discrete memoryless MAC with commmssage is
given as[[16]

(Ro, Ry, R2) : Ro, Ry, Ry >0,

Ry <M (X1 YU, X,),

Ryac = U Ry <M (Xo; YU, Xy), : (8)
p(zo)p(z1|u)p(za|u)p(yle1,ze) Ry + Ry <\ (X1, Xo: Y|U),

Ry+ R+ Ry <M (U, X1, X Y).

\ J

whereU is an auxiliary random variable defined on arbitrary finitevsith the distribution given
in @).

From the Lemmabk 3.1 and 8.2, we have the following theorenthi®rachievable rate of the
considered diamond relay channel.

Theorem 3.2:The achievable rate of the DMC diamond relay channel witfe@mcing links

is given as

RDF = max RO + Rl -+ Rg. (9)
X, (Ro,R1,R2)€Rac () Rmac

Corollary 3.2: For the DMC case, the capacity upper bound given(in (4) isexeli with

finite C1, and Cy;, which are upper-bounded as

Cia < N*H (Y1|Ys)

, (10)
Cyn < XN*H (Y2|Y1)

where \* is defined in Theorern 3.1.
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Proof: First, we notice that using one common message only is srifido achieve the
capacity upper bound; so we focus on the case with only onemmnmessage transmitted. In
(@), by choosing’/; andU, as constants (also by Theorem 3[in![10]), we obtain

Rg)\*min{l (X;Yl,ifg) ,I<X;Y2,Yl)}, (11)

subject toCy, > A1 <Y1 Yl) Y <Y1 Yg) andCy, > \*1 (Yz Yg) N (Yz Yl). We choose
Vi =Y; andY;, = Y5, and obtain[{Z0). m

Remark 3.1:This corollary only gives a maximum value f@r; ;_; to achieve the capacity
upper bound, and the upper bound€pt_;, : = 1, 2, can be regarded as the maximum difference
between the two received signals at the relays. In the pm@fpoint out that this result is only
a sufficient condition, and this is due to the fact that thesaitbound is relatively loose under
general channel conditions [17]. Another reason is thatsfume cases, the DF scheme can
achieve with capacity upper bound without conferencing. &ample, when the BC channel
part is deterministic, i.eY; = f1(X) andY; = f»(X), where f; and f, are some deterministic
functions, the BC cut-set bound is achieved by sending oivatprmessage to each relay [18],
and this means that conferencing will not introduce any oupment.

Remark 3.2:With C;;_, = 0, we claim that our proposed scheme is equivalent to the
traditional DF scheme without conferencing. For such a,casechoosé’; andY; as constants,
and Rgc will degrade to the rate region of a BC channel with commongsags. Moreover, for
the Gaussian BC channel, we only need to transmit one comnessage to both relays and one
private message to the better relay [6]. Thus, our schemegenaralization of the traditional
DF scheme, and our DF rate will be the same as or higher thamwitteout conferencing.

2) DF Rate for the Gaussian Caseéirst, we consider the BC part. The first hop is indeed a
vector BC with correlated noises, which is not physicallgm&ed in general. Therefore, it is
possible to transmit a unique private message to each dayhe compression at the relays, we
chooseY; = Y; + N;s_i, WhereN, ;_; is a CSCG random variable distributed @% (0, aﬁg_i).

It is easy to check that the Pareto boundary of the rate regiem (R, R, Rs) is achieved
when the variances of the compression noises are minimizeidh means that the equality in
(@) is achieved, i.e., the compression noise is set to have

1 fyl 72
2
o2, = . 12
BT (g + 1) (2082 — 1) (12)
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We now discuss the coding scheme for the Gaussian BC, whictbioes DPC and super-
position coding[[18]. We choose the transmitting sighal= X, + X; + X,, where X, X1,
and X, denote the common message and the private messages intenaday 1 and relay 2,
respectively, and they are independent zero mean CSCG mamdoables with variancegPs,

11 Ps, and uo Pg, respectively, where the positive parameterg:;, andu, are power allocation
factors for Xy, X, and X,, respectively, witha + 1 + o = 1.

At the relays, the common message is first decoded by botheof,tland then each relay
decodes its intended private message. Private messagescaded using DPC [19]: If we first
encodeX;, we useX; as a state information to help with encodiig; and in the decoding
process, relay 2 can decodg without interference fronX; on the other hand, we can exchange
the encoding and decoding orders to possibly obtain a lretieregion. Therefore, the rate region

of the first hop is given as

Rgc = CO”V( U R (7T, 1, Mg)) , (13)

T 1542
where Cony-) is the convex hull operator, antl (r, i1, 1) is the achievable rate region under
a given power allocation schenfg,, 1») and encoding ordet € {72, 72 } With 7; 5_; meaning

that thei-th relay’s private message is encoded first. Speciallyifis encoded first, we have

( )

(R07 R17 RZ) .

i (1403, )+
7 +1)(1+0§1)+(u1 +u2)v2

fﬁékbgO+MWr%“”) ’

1+0§1

RQS)\IOg (1+ u272(1+a%2)+u271 )

(p1y2+1) (1+U%2)+M2’Y1

< min,_—
Ry < min;—; 2 Aog (1 + Gt

R (7T21, K1, ,UQ) = (14)

\

and R (w9, i1, pt2) can be computed similarly.

Next, we consider the MAC part. We choodg = vaPU + vaPV; and X, = JB?U +
V/BPV,, whereU, Vi, andV; are independent CSCG variables with distribuiiov (0, 1). Thus,
the achievable rate region of the MAC channel with commonsags is given as

p

Ry < Xog (14 o71)

Ry < Xlog (1 + 572)

Ry + Ry < Alog (1 + o, + 72)

Ro+ Ry + Ry, < Mog (1 +91 4+ 72+ 2V 537172>

(15)
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Therefore, as stated in Theorém]3.2, the DF achievable satigei maximum sum rate over
the intersection of the regions given [n{14) ahd] (15).

Remark 3.3:From [12), we observe that wheffg_i goes to zero(; 3_; goes to infinity.

In other words, for the Gaussian case, only whieén and Cy; are infinity, the DF scheme
can achieve the capacity upper bound, which is differeninftbe DMC case. Intuitively, for
Gaussian channels, the alphabet sizeYois infinite, and each relay cannot reliably decode its
counterpart’s received signal with the limited help frone thther relay.

Remark 3.4:When-~; goes to infinity, the optimak goes to 0, and the capacity upper bound
becomes the same as the MAC cut-set bound. In this case, tineesonly needs to transmit
a common message, and both relays can successfully decddesrefore, for finiteC; ;_; and
7:, the DF scheme can asymptotically achieve the cut-set basng goes to infinity. On the
other hand, wheny, and C;5_; are fixed, andy; goes to infinity, the upper bound cannot be
asymptotically achieved. This is due to the fact that the BEset bound cannot be achieved

with finite-rate relay conferencing.

C. CF Achievable Rates

In this subsection, we discuss three different coding sesdmased on the CF relaying scheme.
The first two schemes exploit the conferencing links to pytior completely exchange the
binning index of the compressed receiver signals at theyseland we call them the partial
cooperation CF scheme (PCF) and the full cooperation CFnseH&CF), respectively, which
implies how much cooperation is introduced in the MAC palte tthird scheme uses the
conferencing links to help compression, called as the CCerse.

1) PCF achievable rateHere each relay first compresses its received signal; asdepen-
dently and obtains the corresponding binning index. Thaaheelay splits the binning index into
two sub-messages, and transmit one of them to the other bglapnferencing. In the second
hop, the active part of the system is nothing but a MAC chawiil a common message. Since
we only introduce partially cooperative transmission i@ MMAC channel, we call it as the partial
cooperation CF scheme, i.e., PCF, as defined earlier.

DMC Case: We have the following theorem for the achievable rate.
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Theorem 3.3:The PCF achievable rate for the DMC case is given as

RpCF < max A <X7 }Afl, Y@) (16)
st AT (Vi YilVz) <00 (X3 YU, Xa) + Coo (17)
M (Y2 Yal93 ) < X (X5 Y[U, Xi) + Con (18)

M (Y3, Y3 Y3,%2 ) < min{A (X5, Xo: Y|U) + oo + Cot, X (X3, X0 V), (29)

over the distributionp(z)p(y1, y2)p(41|y1)p(Yaly2)p(w)p(z1|w) p(zs|w)p(y|z:, z2), and U is an
auxiliary random variable similarly defined as before.

The proof of this theorem is trivial: The coding scheme in tingt hop is the same as that
for the traditional CF scheme inl[6]; the second hop with eoarficing links is a MAC channel
with conferencing encoders and its rate region is given JnB9 a similar argument to that in
[6], we can obtain the PCF rate as shown in this theorem.

Remark 3.5:For the case&”; ;_;, =0, 7 = 1,2, the PCF scheme is the same as the traditional
CF scheme without conferencing [6]; for the ca&se_, > 0, the PCF scheme is not worse than
the traditional CF scheme. Note that even when the MAC remiatrictly enlarged compared to
the case without conferencing, we still cannot claim that RCF scheme is strictly better than
the case without conferencing, since the right-hand sid@®f may not be strictly improved,
and when [(I9) is dominant among these constraints, the PeFwil be equal to the case
without conferencing.

Gaussian Case: We define the compression at the relay§fa& Y, + Ni, 1=1,2, where N,
is the compression noise with distributiéV (0, o2).

Corollary 3.3: The PCF achievable rate for the Gaussian case is given as

71 Y2
Rpcep= Al 1 20
o s s (1 T ) >
1 1 (14 03) ~ ~
s.t. AMog |1+ —= 1+ —F—2~ < Alog (1 + av1) + Cia, 21
g( O_%< vl p)) S g ( Y1) + Ciz (21)
1 71 (1+03) - ~
Aog ([1+ — (1 4+ ———2~ < \log (1 + + Oy, 22
g( U%( 1_'_0_%_’_72 = g( 572) 21 ( )
1+ 1+ 147+ .o~ - -
Alog <1+ 271 + 272+ 721 5 72) Smln{)\log(1+(wl+ﬁ72)+C12+Cgl,
01 03 0103

Xlog <1 + ?1 + ;\}//2 + 2\/ 53§1§2) } . (23)
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Remark 3.6:For given~;, C;s_;, a, and 3, whenv, — oo, which means that the optimal
A — 1, from (21), [22), and(23), we see that bethands? scale to 0, and{20) asymptotically
achieves the capacity upper bouod (1 + v, + ~,). Thereforewheny; — oo, the PCF scheme
asymptotically achieve the capacity upper bound

Remark 3.7:For given~; and~;, whenC}, andCy; are large enough, i.e.,

Ciz + Cor 2 log (1+ 71 +% +2v/31% ) (24)
the constraintd (21) and (22) become redundant, and the RiEvable rate becomes
1 Y2
Rpcr= Al 1 25
Per ,\I,E?;{g 0g< +1+U%+1+U%) (25)

I+m T1T+4+vm T+m+7 < - =
2 + 2 + 2 92 S)‘log<1+71+72+2 7172)- (26)

01 ) 0103

s.t. Alog (1 +

However, since the left-hand side &f [26) is strictly lardglean \log (1 + 11;% + 11’;%), we
cannot find a\, which makes[(20) equal to the capacity upper bound andisatifie constraint
(28) simultaneously. Thusyith finite channel gains, the PCF scheme cannot achieveapaaity
upper bound even with infinite conferencing rates

Remark 3.8:For the case that’; ;_; and7; are fixed, andy; — oo, only if the condition [(24)

is satisfied, we can approach the capacity upper bound. Jdisa to the following fact: If we fix
log (71 +72+2/7172)

log(1+v1+72)

the upper bound, the constrainisl(21) and (22) become redanand[(2B) asymptotically holds
when we havey; — oo and [24) satisfied.
2) FCF Achievable RateWith FCF, after obtaining the compression of the receivephai

o? ando?, and choose = , itis easy to check that (20) asymptotically achieves

Y;, each relay finds the binning index (the number of bins isrdgteed by the corresponding
conferencing link rate), and send this binning index to ttieeprelay. Based on its own received
signal and the binning index from the other relay, each rétes to decode the compressed
signal of the other relay. Then, we partition the two comgiss again into some other bins and
transmit the new binning indices to the destination. In tase, each relay has a full knowledge
of these two binning indices, and transmits a common mes&ag#rough the MAC channel
to the destination. Since we introduce full cooperationrawech a MAC channel, we call this
scheme as the full cooperation CF scheme, i.e., FCF, as dedfemdier.

DMC Case: We have the following theorem for the achievable rate.
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Theorem 3.4:The FCF achievable rate for the DMC case is given as

Rece < max Al (X:V1,72) 27)
St Ciay> A (YZ—; Yi> Y (ffi;Yg,_i) i=1,2, (28)
M (VY5 13,72 ) 0T (X5Y), (29)

over the distributionn(z)p(y1, y2)p(¥1|y1)p(Y2ly2)p(z,. )p(y| 2, ).
Proof: See AppendixB. u

Gaussian Case: We choose the distributions of and X, asCN (0, Ps) and CN (0, P,),

respectively. Furthermore, the compressions at the reeysccording 18, =Y+ N;, i =1,2.

Corollary 3.4: The FCF achievable rate for the Gaussian case is given as

71 2
Rece < Al 1 30
FCF_)IIUI?’Z(% og< +1+U%+1+05) (30)
1
st o’ > Tt =12, (31)

o (’73—2’ + 1) (202'»3*1'/)‘ — 1)

1+ 1+ 14+m+
Alog (1+ 271 I 272 I Y12

2 9
01 03 0103

) < Mog (147 + 7+ 2%) . (32

Remark 3.9:It can be checked that whet}; ;_; = 0, Recg = 0 for any channel parameters.
This suggests that the FCF scheme is worse than the tragit©f scheme wheid; 5_; is
relatively small. In this case, we should not use conferant¢o obtain full cooperation in the
second hop, and the PCF scheme should be adopted insteasteDka optimal solution for
the CF rate (by Theorem 5.8 inl[6]) 87,53, A), and it is easy to check that this solution
also satisfies the constraint in_{32). Thus, the thresl@!gLZ—, below which the FCF scheme

performs worse than the CF scheme, is obtained when theiggma(31) is achieved, i.e.,

L+ +7 )
it (Y3 + 1))
Remark 3.10:For any given finitey; andC; 5_;, when=; goes to infinity, the optimak goes

Ui,?)—i = XlOg <1 + (33)

to 1. However, the compression noise powércannot scale to 0 due to the constraintdin (31),
which means that the asymptotic capacity upper bound cadmaichieved.

Remark 3.11:For any given finitey; andC; 5_;, when~y; — oo (assuming that, and-, are
log (F1+72+21/7132)
log(1+71+72)
according to[(311). Fof(32), it is easy to check that the efitd side of the inequality is equal to

on the same order), we choogse= — 0, while o7 scales on the order o,yi
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the right-hand side asymptotically. Therefore, we coneltlthtthe FCF scheme asymptotically
achieves the capacity upper bound as— oo.

Remark 3.12:For any given finitey; and~;, whether there exist a finite set 6, andCy; to
achieve the capacity upper bound is also determined by wh¢#3) can meet the upper bound
or not. By the same argument as in Remark 3.7, we concluddahéiked channel coefficients,
the FCF scheme cannot achieve the capacity upper bound ewernnfinite conferencing link
rates

3) CCF Achievable Ratetn this scheme, each relay generates its own compressiended
for the second hop based on two signals: the received sigmalthe source, and the compressed
signal from the other relay through the conferencing link.

DMC Case: We have the following theorem regarding the achievable rate

Theorem 3.5:As we use the conferencing links to help with compressingéeeived signal
at the relays, the CCF achievable rate for the DMC case isngiye

Recr = max Ml (X141, 2 ) (34)
s L@, A (Vs Y3, VauV2) < N (X3 Y1)

A (Yz Ya, Yum) <M (X2;Y|X))

A (Vi Y3 1h, Ya, Via, Yar ) < M (X, XiY),

over the distribution(2)p(y1, y2|7)p (J12ly1) p (F21ly2) P (1lyr, Y21) p (F2]y2, G12) (21, 22)p(Y |21, T2).
Proof: See Appendix . |

Gaussian Case: We choose the distributions of transmit signals over theerencing links
asYi, = Y, + Nyp and Yy, = Y 4+ Ny, respectively, wheréV,, and N, are independent zero
mean CSCG random variable, with variances defined the sarime(@&8). For the relay signals
to the destination, we choodg = aY; + bYs; + V4 and Yy = ¢Ys + dYis + Vs, Wherea, b, c,

andd are some parameters, andV; are independent zero mean CSCG random variables with
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variancess? and o?, respectively. Then, the achievable rate for the Gaussiae & given as

P -
Rcce= max Alog ( - Nty ) (35)

X a,b,c,d,53,62 6265 — |ad* + ber|?

PA y J—
s.t. Al Y1Ya <1 e
og (a%(|dh1 +Ch2|2P+a—§)) < Alog (1 +7)

PA y R
| Y1Ys < L=
Moe (U§(|ah1 +bh2|2P+5%)) < Alog (1 +72)

Py, - o
Alog 0202 < Alog (1+791 +72),
103
where
Py g, = |ahy + bha|*Ps63 + |dhy + cho|*Ps67 + 6165
— |ad* + bc*|* — 2R [(ahy + bhy) (dhy + chy)”™ (ad* + bc*) Ps], (36)

6% = la* + |b]* (1 +03)) + 0%, and 63 = |c|> + |d|* (1 + 0%,) + o3. It is easy to check that
the above objective function is not convex overb, ¢, andd jointly. Since it is difficult to
compute the maximum rate, we try to find a sub-optimal but maintpler solution, i.e., letting
a=d=hj andb = c = hj}, which will be used for the simulations in Section IV.

Remark 3.13:Since the traditional CF scheme is just a special case of @upsby letting
Y;;’g_i be a constant, the CCF achievable rate for the DMC case isathe as the case without
conferencingl[6]. Hence, with our setup, we conclude thatGICF rate is the same as or higher
than the traditional CF rate. However, since only the sutinod solution for the combining
problem at the relay is adopted, the CCF scheme may not peletter than the traditional CF
scheme for the Gaussian case, and this will be shown in $ebtfio

Remark 3.14:Consider another case whén, and Cy; go to infinity, while ~; and~; are
finite. In this case, both of the relays could kngwand s, which corresponds to the perfect
cooperation case. Then, the diamond relay channel becortves laop degraded relay channel.
By the results of[[l], we know that the CF scheme is strictlpaptimal, and there is a gap to
the capacity upper bound in general. Therefore, we condhdewhen the channel gains are

fixed, even ifC; 53—, goes to infinity, the CF scheme cannot achieve the capacjigrupound.

D. AF Achievable Rate

In this subsection, to make the AF relaying scheme meaningt further assume that the

conferencing links are Gaussian channels, which also usasAke conferencing scheme. With-

November 12, 2018 DRAFT



16

out loss of generality, we assume that the input of the cenfgng link isz; 5_; = y; = hjx+n;.
Furthermore, we assume that the link gain of each confargntihk equals to 1, and the

conferencing link output in théth relay is given as
Y3—ii = T3—ii + N3—ii, (37)
wherens_; ; is CSCG noise with distributio6 N/ (0, a%_m-). Based on the conferencing link rate

constraints, the variance ak_; ; is given asJ§_i,i > 20;@*77}1 Obviously, when the equality

holds, the AF scheme performs the best. Thus, we let

s Ya—it1
O3 ;= SCr 1 (38)

After the conferencing, the relays combine the two recesigdals from the source node and

the other relay, which leads to
Ti = QilYi + A3 iY3—i; (39)
wherea;; andas_; ; are some complex parameters, and satisfy the following peaestraints
E (27) = |au|® (|| Ps + 1) + |ag—i4* (|hs—i|*Ps + 1+ 03_;;) < Pg. (40)
Therefore, the received signal at the destination is giwen a
Y= 0171 + G2T2 + 1
= (a11h191 + ar2h1ga + ao1hagi + axnhage) v
+ (a1191 + a1292) N1 + (a2191 + a2292) N2 + a2191M21 + a1292M12 + 1,
and the achievable rate of the AF scheme is given as
Rar = %108; (1+7aF), (41)

where~,r is the received SNR at the destination, given as

_ la11hig1 + a1ah1gs + a1 hagy + asshaga|*Ps
la1191 + a1292|> + |a21g1 + asga|? + |a2191\20'§1 + \CL1292|20'%2 +1

We now rewrite [(4R) to a matrix form, and maximize it to obtdire maximum AF rate

(42)

YAF

defined in [(41l). Thus, we have the following optimization gemm

alRa
WX e (43)
s. t. (40),
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wherea = [ayy, a1, a1, az)’, b = [higt, higs, gt higi]”, and the matriceR = bb”,

|91/ 9192 0 0
X 2(1 4 o2 0 0
Q= 9195 192|° ( i2) 2 2 * . (44)
0 0 911 (1 +031) 9792
0 0 9195 |g2]* ]

From [42), we know thaR and Q are positive semidefinite. By a similar argument asin [22],

this problem can be shown equivalent to

r%z’itx t (45)

s.t. Tr(A(R—-tQ)) >t (40), RankKA)=1,A >0,

where A = aa’. Using semidefinite relaxation [22], we aim to solve thedaling optimization

problem:

max ¢ (46)

At

s.t. Tr(AR-tQ)) >t (40, A>D0.

Remark 3.15:This optimization problem can be efficiently solved by big@at search ovet;
and for each, the remaining problem is a convex feasibility problem, ethcan be efficiently
solved using existing numerical tools, e.g., CMX][23]. Howe the final solution may not be
rank-1 to satisfy the constraint in_(45); so we use the folflmgarrandomization technique [22] to
provide an approximate solution to the original rank-1 peabin (43): Denote the solution of
problem [46) asA*, with its eigenvalue decompositioh* = UDU¥; we choosea = UD'/?v,
wherev is a vector of zero-mean unit-variance i.i.d. Gaussian sandariables. We then scale
a to make the power constrainfs {40) satisfied [24].

Remark 3.16:If a rank-one optimal solution fof (46) can be found, our AEeraill be higher
than the AF rate without conferencing, i.e., the ca$g_; = 0. This is due to the facts that
the traditional AF relaying optimization problem is a spdaase of[(4B) withi;, = as; = 0.
However, sometimes we may not obtain the exact optimalisolatf rank-one for[(46), such that
there is a gap to the optimal value with the solution from thedomization method [24]. For
these cases, our proposed AF scheme may not be better thaasthevithout conferencing. By

the results shown in Section IV, we observe that for smallf@@mcing link rates, our scheme
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performs worse than the traditional AF scheme without c@mfeing; but the reverse is true for
large C; 5_; cases.

Remark 3.17:It is easy to check that whey goes to infinity, the AF scheme can achieve one-
half of the capacity upper bound, which is due to the halflelgonstraint. On the other hand,
if both ~; and~; are finite, the upper bound is not achievable even with iicinferencing

link capacity.

IV. NUMERICAL RESULTS

In this section, we present some numerical results to coentfeg performance among the

proposed coding schemes. For simplicity, we only considersymmetric case, i.€/;| = |hs

lg1| = |go|, and C15, = Cs = C. Set the locations of the source node, the destination node,
and the relays as, = (—1,0), s3 = (0,1), sy = (d,—v1—d?), and sy = (d,+v1 — d?),
respectively, wherd € (—1,1). Furthermore, we assume that the link gains satisfy= —!

[so—sil

and|g;| = m i = 1, 2. For the phases df; andg;, we assume that they are uniform random
variables over0, 27].

In Fig.[3, we compare the performance of the proposed schavitleshe conferencing link
rate C' = 0.5 bit/s/Hz. We observe that wheh goes to—1, i.e., when the relays get close to
the source node, the DF scheme asymptotically achievesagh&city upper bound, so do the
FCF and PCF schemes. Moreover, all three CF schemes outpetfie AF scheme, but they
are worse than the DF scheme. Agoes to 1, i.e., when the relays get close to the destination,
we observe that the PCF scheme achieve the capacity uppad Emymptotically, while the
DF, AF, and FCF schemes are strictly suboptimal. For the edsen d is around O, the DF
scheme performs the best among all the achievable schentetheperformances of the others
are almost the same.

In Fig.[4(a) and Fig[ 4(b), with different channel gains, veenpare the performances of the
coding schemes as the conferencing link rate increases.dieider two typical setups: the
BC channel gains are larger than those of the MAC channel ifprif{a), and the reverse case
for Fig. Fig.[4(B). Overall, we observe that for each relgystheme, there is an asymptotic
performance limitation as the conferencing link rate iases.

Note that wherC' = 0, the proposed DF and PCF schemes are equivalent to thedradiDF

and CF schemes. From these two subfigures, we observe thiatemring can strictly increase
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the DF and CF achievable rates using the proposed DF and Pemss, respectively. However,
for the AF, CCF, and FCF schemes, they cannot guarantee ftease the AF and CF rates as
we discussed before, respectively, especially wheis small.

For both cases shown in Fig. 4(a) and Fig. 4(b), the DF schest® @ose to the capacity
upper bound whei' is large enough: For the good BC channel case, we néed2 bits/s/Hz,
and for the good MAC channel case, we néed 4 bits/s/Hz. For the PCF and FCF schemes,
we observe that a§’ becomes large, they have the same performance; whenvery close
to 0, the PCF scheme always performs better; for sddtiut not close to 0, the FCF scheme
performs better in the good BC channel case, and the revetseei for the good MAC channel
case. In the high conferencing rate regime, the CCF schenferms better than the other two
CF schemes for the good MAC channel case, and the reversegeigar the good BC channel

case.

V. CONCLUSION

In this paper, we discussed the capacity upper bound andctiievable rates of the diamond
relay channel with conferencing links. For the DF scheme,deBved the achievable rate by
sending a common message and two private messages. We phavddr the DMC case, the
DF scheme can achieve the capacity upper bound with finitéecamcing link rates, which is
not true for the Gaussian case. Moreover, the DF scheme mpstically optimal when the
link SNRs of the first hop go to infinity. We developed three reewding schemes based on CF
and used the conferencing links to exchange certain cosgulaaformation between the relays.
The achievable rates were computed for both the DMC and Geausases, and the capacity-
achieving cases were discussed. For the AF scheme, we sksttie optimal combining problem
between the signals from the source and the conferencikgtithe relays, and use semidefinite

relaxation and bisection search to efficiently obtain a gptasmal solution.

APPENDIX A

PROOF OFLEMMA [3.1

Fix the distributionp(ug)p(u1|ue)p(usz|we)p(y1, yo|x) p(91|y1)p(ya|y2) @and the function:(ug, uq, us).
Codebook Generation: In the source, genera®’ i.i.d. sequences, (wy), wy € [1 : Q”RO},

according to the distributio!‘[T[j.le (uo,;). For eachug (wg), generate" i.i.d. sub-codebooks
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Q; (wo,w;), w; € [1:2"%], where each sub-codebook contaizi§ ™) iid. sequences
u; (wo, ll), l; € |:(’(UZ — 1) 2n(1§Z—R2) +1: w12n<§L_RL> , according tOH;\21p (ui,j‘uo,j (wo)) For
each triple(wg, wy, wy), define the set

Q (wo, wr, wa) ={(u1 (wo, lh) , uz (wo,l2)) € Q1 (wo, w1) X Q2 (wo, wa) :
(uo (wo) , ur (wo, 11) , ug (wo, l2)) € ALY}

Conferencing function generation: Generate2"®: i.i.d. sequenceg;(k;), k; € [1:2"F],
according to [\, p (§:,), where py. (i) = >y, 3,2 @ilvi) p (91, v2l7) p(x) and p(x) =
> uu, P(t1, u2, ). Randomly and uniformly partition the index set : 2"%%] into 2"
binnings S; (s;), s; € [1: 2"%s-1].

Encoding and Decoding: In the source, for each triplaug, wy, w,), pick one sequence pair
(w1 (wo, l1) , w2 (wo, l2)) € Q (wo, wy,ws), and generate a codewodd wy, wy, we) according to
Hjjlp (x;|uy (wo, l1) , us (wo, l2)); if No such pair exists, declare an error. This operationlman
done reliably if [25]

(le . Rl) + (fzz - RQ) >\ (Uy; Us|Up) . (47)

In the i-th relay, upon receivingy;, it tries to find ay;(k;) such that(y,, g:(k;)) € A”, and
this can be done reliably as goes to infinity, if

R > M (Y3 Y:). (48)

Then, thei-th relay finds the corresponding binning index numbgrwherek; € S;(s;), and
sends it to the other relay through the conferencing link.

After receiving the conferencing message from its courteyphei-th relay first tries to find
the uniqueks_; such that('g:;_i(]%g_i),yi) € A" with ky_; € Ss_;(ss_;). This can be done
reliably if

R, . <)\ (ffii—i; Yz’) + 5. (49)
From (48) and[(49), we obtain

Ciami = M (YY) = M (Vis¥asi) (50)
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Then, thei-th relay finds a unique paitiy, @;) satisfying<uo(zb0), wi(Wo, i), Ys—i(ks—), y,-) €
A?, and this can be done reliably if
Ei <A <Ui§}>3—i7}/;|U0)
Ry + Ry < M (Up, Ui Va1, i)
From [47), [50), and (31), we obtain the rate region of theeganbroadcast channel with
common message and conferencing as follows:

/ —
BC —

p(u0)p(us o) (2o (s uz)p (ys el (91 1y )p(Glve)
( (Ro, Ri, Rs) :

0<Ry,0< R, <Ry,0< Ry <Ry,

Ry <A <U1;5A/27Y1|U0) ;

Ro+ By < M (U, Ui Y, 1)

Ry < AI <U2;5A/1,Y2|Uo) ;

Ry + By < M (Up, Ui 13, Y3) |

(le - Rl) + (fzz - RQ) > M (Uy; Us|Us)
| subject to: (20).

Thus, the rate regiotitgc is obtained fromRg using the Fourier-Motzkin elimination [26] to

(51)

S (52)

Vs

ellmlnateRZ-, 1=1,2.

APPENDIX B

PROOF OFTHEOREM[3.4

Fix the distribution as given in the theorem.

Codebook generation: Generate2" i.i.d. sequencesc(w), w € [1 : 2”3}, according to
IT=, p(zs). Generate2"?, i = 1,2, i.i.d. sequences);(w;), w; € [1 : Q"Ri}, according to
the distributionp(9;) = [ p(x)p(vi|z)p(9:|y;)dzdy;. Randomly and uniformly partition the set
[1 : 2an1 into 2"F: binnings S;(s;), s; € [1:2"f]. Randomly and uniformly partition the
set [1:2"%] into 2“3~ binnings M;(m;). Generate2""1772) ji.d. sequences, (s, s2),
according top (z,.).

Encoding and decoding: At the source, it transmits(w). At the i-th relay,i = 1,2, it
finds ag;(w;) such that(y;(w;),y;) € A", and this can be done reliably &; > Al (Y“Y,)

November 12, 2018 DRAFT



22

Then, at thei-th relay, it finds the conferencing binning index;, and sends it to the other
relay through the conferencing link. Upon receiving_;, the i-th relay decodegj;_;(ws_;)
such that<yg_i(l%3_i),yi) e A" with ks_; € M;_;(ms_;). This can be done reliably iR}, _, <
A (Yfg_i;Y,) + C5_;;. Thus, we satisfy the constraints In_{28). Then, thh relay knows the
binning index pair(s, s2), and transmitse,.(sq, s2).

At the destination, it first decodds,, s;), and we obtaink; + R, < M\ (X,;Y). Then, the
destination decode&y;,y>) and the original message. By a similar argument as in Section
VC of [6], we obtain [29).

APPENDIX C

PROOF OFTHEOREM[3.5

First fix the distribution as shown in the theorem.

Codebook Generation: Generater(w) the same as those in Appendix B. Gener2iti -
i.i.d. sequenceg; s ;(k;), according tOH?; p(lgz{?)—i) with p (453-:) = [ 0 () p (Ji3—ilvi) dys.
Randomly and uniformly partition the s@l : Q"Riasfi] into 2"Ci3-i bins S; 3_;(s;3_;); generate
2"f0 ji.d. sequences; (w;), according tq_[;ﬁlp (9i.g) With p () = [ p (Gilyi, 93—i.6) P (Yir J3—i1)
dy;djs—;;. Randomly and uniformly partition the set : 2"F] into 2"% bins S,(5;); and
generate2"% i.i.d. sequences;(s;), according topx, (z;).

Encoding and Decoding: At the source, it transmits(w); in the i-th relay, the conferencing
scheme is the same as the DF scheme, which is omitted herayawtbtain [V). Based ow;
andys_,;, thei-th relay find ay; (k;) such that(y; (k;) . ys—.: (ws—.;),y:;) € AZ, and this can
be done reliably ifR;, > I <Y,, Ya_ii, Yi>. Then, thei-th relay obtains the binning index and
sendsz;(s;) to the destination.

In the destination, upon receiving, it first decodes the paifs;,s2), and the rate region
(R, Ry) is given by the MAC rate region as in [20], [25]. Then, the desion tries to decode

(91, 92). Following a similar argument as in![6], [21], we have
Ry = M (Vs Vi, Vi 12)
Ry = M (Vs Y2, Vo V1) . (53)
Ry + Ry = AT (Y3, Y313, %3, Via, Va )
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Finally, by finding a uniqued such that(@ (), 1, §2) € A", we obtainRee = A (X; Vi, Yg)

With the Fourier-Motzkin elimination[[26], and the factsath/ <}71,}72;Y1,Y2,1712,Ym) >

1(Va: 2, You|¥2) + 1 (Vi Yo, VoY1) and 1 (X1, X5:Y) € 1 (X3 Y[Xa) + 1 (X3 Y[X2), the

theorem is proved.
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Fig. 1. Diamond relay channel with conferencing links.
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