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Abstract—In large wireless networks, acquiring full network
state information is typically infeasible. Hence, nodes need to
flow the information and manage the interference based on
partial information about the network. In this paper, we consider
multi-hop wireless networks and assume that each source only
knows the channel gains that are on the routes from itself to
other destinations in the network. We develop several distributed
strategies to manage the interference among the users and prove
their optimality in maximizing the achievable normalized sum-
rate for some classes of networks.

I. INTRODUCTION

One of the key challenges in the design of wireless net-
works is optimizing system efficiency while the network is
constantly in flux. To manage system resources efficiently,
it is crucial to keep track of the state of the network and
determine what resources are actually available. However,
in large wireless networks, keeping track of the state for
making optimal decisions is typically infeasible. Thus, in the
absence of centralization of network state information, nodes
have limited local view of the network and make distributed
decisions, which are based on their own local view of the
network. The key question then, is how do optimal distributed
decisions perform in comparison to the optimal decisions when
full network state information is available at all nodes.

All wireless networks (eg. 2G/3G, WiFi, WiMax Bluetooth,
ZigBee) rely on a host of distributed coordination protocols for
their operation. The numerous protocol innovations have led to
many practical advances in deployed networks. However, there
is very little work in understanding the fundamental limits for
distributed protocols [1, 2].

A systematic study to understand the role of limited net-
work knowledge, was first initiated in [3, 4] for single-layer
networks, where the authors used a message-passing abstrac-
tion of network protocols to formalize the notion of limited
network view at each node in the form of number of message
rounds; each message round adds two extra hops of channel
information at each source. The key result was that distributed
decisions can be either sum-rate optimal or can be arbitrarily
worse than the global-information sum-capacity.

This result was further strengthened for arbitrary k-user
single-layer interference network in [5, 6, 8], where the authors
proposed a new metric, normalized sum-capacity, to measure
the performance of distributed decisions. Further, the authors
computed the capacity of distributed decisions for several

network topologies with one-hop and two-hop network infor-
mation at each source. In this paper, we characterize the next
major step in understanding the performance of distributed
decisions for general acyclic linear deterministic networks [7].

In single-layer networks, the main challenge is to manage
the interference among the sources with partial network in-
formation. However, in more general networks, we face an
additional complication - the relaying of information with par-
tial network information in addition to managing interference
at all nodes. While the hop-count model of [6] can still be
used to quantify partial network-state information, we will
develop a more scalable model for general acyclic networks
in this paper, which is based on the knowledge about the
routes in the network. The motivation for this model is that
in general networks, coordination protocols like routing, aim
to discover source-destination routes in the network. Hence,
a more suitable quanta for network-state information is the
number of such end-to-end routes that are known at the nodes.

Our results are three-fold. First, as mentioned we will
develop a more scalable model for general acyclic networks in
this paper. Second, we develop new strategies that can be used
with this local knowledge, and third, we prove the optimality
of these strategies for a variety of networks.

In this paper, we will consider the case where each source
has full information about network topology, as well as full
information about the routes from itself to all the destinations.
Each node (which is not a source), has the union of the
information of all those sources that have a route to it.
This model of partial information will be formally defined in
Section II-B. We will start by a natural extension of Maximum
Independent Set (MIS) scheduling [5, 6], called the Maximum
Independent Route (MIR) scheduling and we notice that it fails
to perform optimally in many cases. We will remove a main
limitation of MIR scheduling, and through this, we develop
the Maximum Independent Link (MIL) scheduling and we
prove its optimality for a class of networks, namely k× 2× k
networks. We will face an interesting example, that shows the
requirement of network coding at relays. This motivates us to
consider a broader class of networks and strategies.

The rest of the paper is organized as follows. In section
II, we will introduce our network model and the new model
to capture partial network knowledge. Section III is dedicated
to a brief overview of the results for single-layer networks.
In Section IV, we describe our main results including the
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achievability schemes. We introduce upper bounds on the
performance of distributed decisions based on local network
knowledge in Section V. Finally, Section VI concludes the
paper and presents some future directions.

II. PROBLEM FORMULATION

In this section, we first introduce our channel and network
models. We will then describe our model for partial network
knowledge. Finally, we define normalized sum-rate and nor-
malized sum-capacity with partial network knowledge.

A. Network Model

We represent a network with a directed graph G =
(V,E, {nij}(i,j)∈E), where V is the set of vertices representing
nodes in the network and E is the set of edges representing
links among the nodes, and {nij}(i,j)∈E is the set of channel
gains that will be described later in this section. We further
assume that G is acyclic, and there is no outgoing edge from
any destination and no incoming edge to any source. We
denote the vertices in G as Ni’s, i = 1, 2, . . . , |V|. Of the
nodes in the network, there are k source-destination pairs
and we label them as (Si, Di), i = 1, 2, . . . , k. The rest of
the nodes are considered as relays who try to facilitate the
communication between sources and destinations.

A route from Si to Dj is simply a path from Si to Dj in G.
The in-degree of a node Ni, denoted by dini , is the number of
in-coming edges connected to it. Similarly, the out-degree of
a node Ni, denoted by douti , is the number of out-going edges
connected to it, see Figure 1. We will explicitly distinguish
between the in-degree and the out-degree of a node, and will
not use sum of the two throughout the paper.

Ni

Fig. 1. A node with in-degree 2 and out-degree 3.

We consider the linear deterministic model [7] for the
channels in the network. In this model, there is a non-negative
integer, nij , associated with each link (i, j) ∈ E, which
represents its gain. Let q be the maximum of all the channel
gains in this network. In the linear deterministic model, the
channel input at node i at time t is denoted by Xi[t] =
[Xi1 [t], Xi2 [t], . . . , Xiq [t]]

T ∈ Fq2. The received signal at node
j at time t is denoted by Yj [t] = [Yj1 [t], Yj2 [t], . . . , Yjq [t]]

T ∈
Fq2, and is given by

Yj [t] =
∑

i:(i,j)∈E

Sq−nijXi[t], (1)

where S is the q× q shift matrix and the operations are in Fq2.
If a link between Ni and Nj does not exist, we set nij to be
zero.
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Fig. 2. (a) A multi-layer acyclic network, and (b) its route-adjacency graph.

B. Modeling of Partial Network Knowledge

In this subsection, we will describe a model for partial
network information that will be used in this paper.

We first define the route-adjacency graph P, which is an
undirected bipartite graph, consisting of all the sources on one
side and all the destinations on the other side, see Figure 2
for a depiction. A source Si and a destination Dj are adjacent
in P, if there exists a route between them in G. Each link
(Si,Dj) in P is assigned with the set of all channel gains that
are in a route from Si to Dj .

We now define the partial network knowledge that will be
used in the paper as the following:
• All nodes have full knowledge of the network topology,

(V,E), (i.e., which links are in G, but not their channel
gains) (this side information is denoted by side informa-
tion SI),

• Each source, Si, has full knowledge of the channel gains
assigned to those edges in P that are at most h hops away
from Si (this local knowledge at a source is denoted by
LSi ),

• Each node Ni (which is not a source) has the union of
the information of all those sources that have a route to
it (this local knowledge at node is denoted by LNi ).

We name this model for partial network knowledge as h-local
view. Note that this model is a generalization of the hop-
based model for partial network knowledge in single layer
networks [6]. In this paper, we focus on the case where h = 1.

C. Normalized Sum-Capacity

We now describe our metric for evaluating network capacity
with partial network knowledge. As in [6, 8], we use the
normalized sum-capacity, which represents the fraction of the
sum-capacity with full knowledge that can be achieved when
nodes have only partial knowledge about the network.

For each source Si, let message Wi be encoded as Xn
Si

,
where n is the block length, using the encoding function
ei(Wi|LSi ,SI), which depends on the available network knowl-
edge, LSi , and the side information, SI. Each relay in the
network creates its input to the channel XNi , using the encod-
ing function fNi(YNi |LNi ,SI), which depends on the available
network knowledge, LNi , and the side information, SI. A relay
strategy is defined as the union of of all encoding functions



in the network, {fNi(YNi |LNi ,SI)}. Destination Di is only
interested in decoding Wi and it will decode the message
using the decoding function Ŵi = di(Y

n
Di
|LDi ,SI), where LDi

is the destination’s network knowledge. A strategy is defined
as the union of of all encoding and decoding functions in the
network, {ei(Wi|LSi ,SI), di(Y

n
Di
|LDi ,SI)}, i = 1, 2, . . . , k, and

the relay strategy. We note that the local view can be different
from node to node.

An error occurs when Ŵi 6= Wi and we define the decoding
error probability, λi, to be equal to P (Ŵi 6= Wi). A rate
tuple (R1, R2, . . . , Rk) is said to be achievable, if there
exists a strategy such that the decoding error probabilities
λ1, λ2, . . . , λk go to zero as n goes to infinity for all network
states consistent with the side information. The sum-capacity
Csum, is the supremum of

∑
iRi over all possible encoding

and decoding functions with full network knowledge. We will
now define the normalized sum-rate and the normalized sum-
capacity.

Definition 1 ([6]). Normalized sum-rate of α is said to be
achievable for a set of network states with partial information
if there exists a strategy such that following holds. The
strategy yields a sequence of codes having rates Ri at the
source i such that the error probabilities at the destinations,
λ1(n), · · ·λK(n), go to zero as n goes to infinity, satisfying∑

i

Ri ≥ αCsum − τ

for all the network states consistent with the side information,
and for a constant τ that is independent of the channel gains,
but may depend on the side information SI. Here Csum is the
sum-capacity of the whole network with the full information.

Definition 2 ([6]). Normalized sum-capacity α∗, is defined
as the supremum of all achievable normalized sum-rates α.
Note that α∗ ∈ [0, 1].

III. BACKGROUND ON SINGLE-LAYER NETWORKS

In this section, we will summarize the results in [6, 8], where
the increase of normalized sum-capacity with increasing local
view was considered. The interference network has h-local
view if each source knows the channel gains of all the links
which are at-most h hops distant from it, and each destination
knows the channel gains of all the links that are at-most h+
1 hops distant from it. The local view defined in this paper
reduces to that in [6] for single-layer networks.

With h-local view, one intuitive solution is for nodes to
coordinate their transmissions such that the nodes beyond h
hops transmit only if they can cause no interference with h-
hop size sub-network and thus each connected sub-network
operates as if it is a network with full global information.
This is formalized through the notion of an independent graph,
which is defined as a sub-graph which admits a distributed
encoding and decoding scheme which achieves same sum-
capacity as a scheme with full global information. This
intuition was used in [6] to propose maximal independent
graph (MIG) scheduling, where the network is divided into

sub-graphs (equivalently sub-networks) and the sub-graphs are
scheduled orthogonally over time. The sub-graphs are chosen
such that they are maximal independent graphs which ensures
highest spatial reuse of the users. The authors also showed that
MIG scheduling is optimal in many cases, but is not always
optimal. The rest of this section will describe the results in
[6] with 1-local view for a linear deterministic model. In this
section, we will define MIS scheduling, which is a special
case of MIG scheduling with 1-local view. We will further
describe an example where MIS scheduling is not optimal,
and define CS scheduling algorithm as an achievable strategy.
Finally, we will describe the optimal strategy that can be used
with 1-local view for which the optimal strategy for a special
case of interference network is required as input.

A. MIS Scheduling

For 1-local view, the MIG scheduling strategy reduces
to maximal independent set (MIS) scheduling that can be
described as follows. An independent set Ai ⊆ {1, · · · , k} is
a set that contains mutually non-interfering nodes. A maximal
independent set (MIS) is an independent set Ai such that
Ai∪{x} is not an independent set for any x ∈ {1, · · · , k}\Ai.
Using t time-slots, a maximal independent set Ai is scheduled
in each time-slot such that

min
i

1

t

t∑
j=1

1i∈Aj

is maximized over the choice of t and A1 · · · , At. When a
user is scheduled, it sends at the direct channel rate. The
resulting strategy achieves a normalized sub-rate of α =
mini

1
t

∑t
j=1 1i∈Aj

.
This is similar to the following vertex coloring algorithm. To

relate to vertex coloring, we will need the concept of conflict
graph [9] derived from G as follows. Consider a graph C with
k vertices (half as many as present in G), where two vertices
i and j are connected if there is an edge between Si and Dj
or between Sj and Di in G. Suppose that there are t colors,
labeled 1, 2, · · · , t. We assign m ≤ t of these colors to each
vertex in C such that the sets of colors associated with two
vertices connected by an edge are disjoint. In conventional
graph coloring [10], each vertex has only one color and the
objective is to assign a color to each vertex such that adjoining
vertices have different colors. In contrast, the generalized set
coloring algorithm can assign multiple colors to each vertex as
long as the color sets for adjoining vertices are disjoint. The
best set coloring corresponds to MIS schedule and maximizes
m
t with m and t as variables. The scheduling algorithm uses
t time slots and schedules the vertices with color i in the ith

time-slot.
An m-fold coloring of a graph is an assignment of sets of

size m to vertices of a graph such that adjacent vertices receive
disjoint sets. A t : m-coloring is a m-fold coloring out of t
available colors. The m-fold chromatic number ξm is the least
t such that a t : m-coloring exists. Note that MIS Scheduling
achieves α = maxm∈N

m
ξm

, where ξm is the m-fold chromatic
number of the conflict graph. The following theorem gives an



optimality condition of MIS Scheduling algorithm in terms of
the m-fold chromatic number of the conflict graph.

Theorem 1 ([6]). If the conflict graph of a single-layer
interference network has m-fold chromatic number of at most
2m for some m ∈ N, then the MIS scheduling algorithm is
optimal, i.e. achieves normalized sum-capacity with 1-local
view.

In [6], MIS scheduling was shown to be optimal in several
cases as described next.

Theorem 2 ([6]). MIG scheduling is optimal with 1-local view
for the following single-layer networks.

1) All the three-user interference networks, except the 3-
user folded-chain,

2) chain interference network,
3) d-to-many interference network,
4) many-to-d interference network,
5) fully-connected interference network.

For all cases, the achievability holds for τ = 0.

B. Coded Set Scheduling

In this subsection, we will describe an example where MIS
scheduling is not optimal and further define a new achievable
strategy called coded set (CS) scheduling.

S1 D1 S1 D1

S2 D2 S2 D2

S3 D3 S3 D3

Sq−n11X1[1]

Sq−n22X2[2]

+− +

Sq−n33X3[2]

Time-slot 1 Time-slot 2

Fig. 3. Two time-slots for CS scheduling. The sources with a tick sign
transmit, the second user repeats X2 (X2[1] = X2[2]) in the two time-slots.

We will now illustrate the only case when MIS Scheduling is
not optimal in a 3-user interference network, which is a folded-
chain interference network (this network was called “cyclic Z-
chain” in [6], however in order to avoid any confusion about
our intuition of cyclic networks, we use the name “folded-
chain”). The MIS scheduling algorithm uses three time-slots,
scheduling user i in time-slot i. Thus, MIS scheduling achieves
α = 1

3 (note that there are only 3 independent sets consisting
of individual users and thus optimality of 1

3 using MIS
scheduling is straightforward).

We will now describe another strategy for this example,
which uses two time slots as follows (and depicted in Figure
3). The main idea is to perform coding across time. In the first
time slot, we schedule A1 = {1, 2} and in second time slot,
we schedule A2 = {2, 3} such that the codeword of the second
user is repeated in the two time slots. All the users send at the

rate equal to the direct link capacity to the intended destination
(nii). We will now show that the data can be decoded at the
intended destinations. The first destination can decode its data
in the first time slot since it receives no interference. The
second destination can similarly decode the data in the second
time slot. The third destination on the other hand subtracts the
data received in the first time slot from that in the second time
slot, which gives an interference-free direct signal that can be
decoded. Thus, all the destinations can decode the data and
this strategy achieves α = 1/2. This result, will be formally
generalized as follows.

Definition 3. A (k, d) folded-chain network, d ≤ k, is an
interference network with k source-destination pairs. Source
i, is connected to destinations (i, i + 1, . . . , i + d) mod k,
i = 1, 2, . . . , k. Note that in this networks, all in-degrees and
all out-degrees are equal to d.

Theorem 3. The normalized sum-capacity of a (k, d) folded-
chain network with 1-local view is

α∗ =

{
1 k = 1, 2
1
d k ≥ 3

(2)

Proof: The result for k = 1, 2 is trivial. For k ≥ 3, we first
establish an upper bound on the achievable normalized sum-
rate. Consider a (k, d) folded-chain network where the channel
gain of a link from source i to destinations i, i + 1, . . . , d is
equal to n, i = 1, 2, . . . , d, and all the other channel gains are
equal to zero. See Figure 4 for a depiction.

S1

S2

Sk

D1

D2

Dk

Sd Dd

Sd+1 Dd+1

Fig. 4. Channel gain assignment in a (k, d) folded-chain network. All solid
links have capacity n and all dashed links have capacity 0.

Suppose, a normalized sum-rate of α is feasible in this
network with 1-local view. Each source due to its local view of
the network, should transmit at a rate ≥ αn−τ , to guarantee a
normalized sum-rate of α. Destination 1 receives its message,
W1, with no interference and can decode it. Destination 2,
decodes its message and removes it from the received signal,
what is left is exactly the same as what destination 1 receives,
therefore destination 2 is able to decode W1 and W2. If we
continue this argument, we see that destination d should be
able to decode all Wi’s, i = 1, 2, . . . , d. From the MAC
capacity at destination d we have

d(αn− τ) ≤ n⇒ (dα− 1)n ≤ dτ (3)

since this has to hold for all values of n where α and τ are
independent of n, we get α ≤ 1

d .



The achievability scheme works as follows. First, assume
that d < k < 2d, and we will later generalize the achievability
scheme for arbitrary k. Let d

′
= k − d + 1. In time slot j,

sources j, (j + 1), . . . , (j + d
′ − 1) transmit their messages

at full rate n, for j = 1, 2, . . . , d. This way, in time slot j,
destination j will get its message interference-free and as a
result, first d destinations can decode their messages easily.

Consider destination k. In time slot 1, it will receive
interference from Sd′ . During second time slot, it will receive
interference from Sd′ and Sd′+1. It will remove the signal
received during first time slot, from the new signal, and it has
access to the interference coming from Sd′+1. Similarly, it
will have access to the interference it receives from any source.
Finally at time slot d, it will remove all the interference signals
to get its message, Wk, interference-free.

A similar argument is valid for any destination. They
will successively remove the signal that they received in
previous time slot from their new signal to have access to
the interference. Through this scheme, destination i, i =
d + 1, d + 2, . . . , k, will be able to remove interference from
its message and decode it.

For general k of the form c(2d− 1) +m, where c ≥ 2 and
0 ≤ m < (2d − 1), we implement the scheme for source-
destination pairs 1, 2, . . . , 2d− 1 as if they are the only pairs
in the network. The same for source-destination pairs 2d, 2d+
1, . . . , 4d−2 and etc. Finally, for the last m source-destination
pairs, we implement the scheme with d

′
= max{m−d+1, 1}.

Note that in the case where m ≤ d, we have d
′
= 1, and we

turn on source c(2d−1)+ j in time slot i, where j = ((i−1)
mod m) + 1. This proves that α∗ as in the statement of the
theorem is achievable. Also note that this achievability scheme
has τ = 0.

Remark: If all nodes follow the same strategy, i.e. succes-
sively remove received signal from the new one, they will have
access to all interference signals.

The achievability scheme developed for the (k, d) folded-
chain network with 1-local view, motivates an extension of
the MIS Scheduling algorithm to involve coding. This new
scheduling algorithm is called Coded Set Scheduling (CS
Scheduling) [6]. For this, the authors consider subgraphs
A ⊆ G with a set of sources Si and all the destinations
{D1, · · · ,Dk} in the subgraph so as to not throw away
any received signal. Suppose that each source generates k
independent codewords (The rate of these codewords will be
nii). Let Mi,j be a vector of time-slots in which source Si is
transmitting the jth codeword. Note that each time-slot should
be used at a source Si for only one codeword, thus giving Mi,u

and Mi,v disjoint for u 6= v. Thus, in time-slot u, the subgraph
Au used has sources Si where i satisfies Mi,j ⊇ {u} for some
1 ≤ j ≤ k. The sets Mij and thus Au, t and k are all design
variables for the CS scheduling algorithm that satisfy some
conditions on the constraint matrix, which is defined next.

We form a binary constraint matrix Fi of size kdi×t at each
destination i which is defined as follows. The constraint matrix
has di blocks of size k × t where the top block corresponds
to the transmitted signal from Si while the rest belong to the

different sources causing interference at Di. In each k × t
subpart of this matrix, only the entries (j,Mi,j) are 1 for all
1 ≤ j ≤ k. Suppose that the t columns of the constraint
matrix are denoted as Qi,1, · · ·Qi,t respectively. Suppose that
a kdi× t matrix with the top k×k part as an identity and rest
of the elements 0 can be formed by choosing each column j
as
∑t
l=1 ajlQi,l where al’s are binary and addition is binary

addition. If such a transformation exist at destination i, this
configuration is feasible at vertex i. If the assignment of Mij

is feasible at each vertex, this strategy achieves α of k/t. The
strategy that achieves the maximum k/t is called Coded Set
(CS) Scheduling.

The scheduling algorithm uses t time-slots. Each user
forms k independent codewords at rate nii. User i transmits
codeword j in time-slots corresponding to Mi,j . It is easy to
see that the data can be decoded at the destinations. The con-
straint matrix reduction represents that all the k independent
codewords can be decoded in the presence of the interference
from other sources.

C. Optimal Approach

We note that MIS is not always optimal. In this subsection,
we describe the optimal algorithm for single-layer networks
with 1-local view.

Definition 4 ([6]). A binary model of a given interference
network is a linear deterministic model with channel gains of
links in E equal to 1 and all the rest equal to 0.

Definition 5 ([6]). Symmetric capacity of an interference
network is the maximum r such that rate pair (r, r, · · · , r) is
in the capacity region of the interference network with the full
information of network and channel gains.

The authors of [6] showed that the normalized sum-capacity
of a given interference network with 1-local view is the
symmetric capacity of the binary model of that interference
network as described below.

Theorem 4 ([6]). The normalized sum-capacity of a given in-
terference network with 1-local view is the symmetric capacity
of the binary model of that interference network.

The achievable strategy is to use the symmetric capacity
achieving scheme for the binary model of interference net-
work at all the bit levels of the original linear deterministic
interference network.

IV. TRANSMISSION STRATEGIES FOR MULTI-LAYER
NETWORKS WITH PARTIAL INFORMATION

In this section, we focus on 1-local view at the nodes as
defined in Section II-B. We will introduce a set of successively
more efficient transmission strategies that only require 1-local
view and achieve the normalized sum-capacity for several
multi-layer networks.

A. Maximum Independent Route (MIR) Scheduling

We start this section by considering a natural extension
of the MIS scheduling defined in section III. We apply



MIS scheduling to the route-adjacency graph of a general
network, and we label this achievability strategy as Maximum
Independent Route (MIR) scheduling.

We now go through an example to illustrate MIR schedul-
ing. Consider the network depicted in Figure 5(a) with 1-
local view. The route-adjacency graph of this network is also
depicted in Figure 5(b). Applying MIS scheduling to the graph
in Figure 5(b), we can schedule pairs 1 and 3 to communicate
at full rate in one time slot and pair 2 at a different time
slot, which results in a normalized sum-rate of α = 1

2 . This
strategy in the original network of Figure 5(a), means to turn
on source-destination pairs 1 and 3 and all the links that are
on a route for either of them in one time slot, and the same
for source-destination pair 2 in a different time slot. We show
that this is indeed the normalized sum-capacity of this network
with 1-local view, and as a result MIR scheduling is optimal
in this case.

S1

S2

S3

D1

D2

D3

A1

A2

(a)

S1

S2

S3

D1

D2

D3

(b)

Fig. 5. (a) A network where MIR scheduling is optimal, and (b) its route-
adjacency graph.

Theorem 5. The normalized sum-capacity of the network in
Figure 5(a) with 1-local view, is α∗ = 1

2 and is achieved by
MIR scheduling.

Proof: We have already shown that α = 1
2 , is achievable

through MIR scheduling. Now we prove the converse by
assuming that all the links in the network have equal capacity
of n and assume that a normalized sum-rate of α is achievable.
Since each source has 1-local view and it has a capacity of
n to its destination when other source-destination pairs are
silent, it has to transmit at a rate ≥ αn − τ , to guarantee a
normalized sum-rate of α. This is due to the fact that from
its point of view, it is possible that other source-destination
pairs have capacity zero. Relay A2, has all the information
that destinations 2 and 3 have, and it should be able to decode
W2 and W3 using its n signal levels. The MAC capacity at
relay A2 results in

2αn− 2τ ≤ n⇒ (2α− 1)n ≤ 2τ (4)

since this has to hold for all values of n where α and τ are
independent of n, we get α ≤ 1

2 . Note that the achievability
scheme holds for τ = 0.

While MIR scheduling performed optimally in the example
of Figure 5, we now illustrate one of its main deficiencies.
Consider the network depicted in Figure 6(a) with 1-local
view. Applying MIS scheduling to its route-adjacency graph as
depicted in Figure 6(b), we achieve a normalized sum-rate of

α = 1
3 . However, we show that the normalized sum-capacity

of this network with 1-local view, is α∗ = 1
2 , and as a result

MIR scheduling is not optimal in this case.
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Fig. 6. (a) A network where MIR scheduling is not optimal, and (b) its
route-adjacency graph.

The argument for the converse of Theorem 5 is valid here,
i.e. α ≤ 1

2 . To achieve this normalized sum-rate, we will
schedule nodes separately in each layer. In the first layer, we
schedule Sources 1 and 3 to transmit at full rate in the first time
slot and Source 2 in the second time slot. In the second layer,
we schedule relays to serve destinations 1 and 2 at the same
time and Destination 3 in a different time slot. This way, each
source-destination pair achieves its maximum possible rate in
two time slots, and we have α = 1

2 .
The previous example illustrated a major deficiency of

MIR scheduling, which is the fact that we apply the same
scheduling to all nodes in a route and we ignore the flexibility
of scheduling nodes differently. In this example, we scheduled
nodes differently at different layers and we got a higher
normalized sum-rate than that of MIR scheduling. We will
formally define this scheduling in the following subsection
and we refer to it as Maximum Independent Link (MIL)
scheduling. A general lower-bound on the performance of MIR
scheduling has also been derived in Appendix A.

B. Maximum Independent Link (MIL) Scheduling

MIL scheduling is defined as follows.

Definition 6. MIL Scheduling: We assign a set, J (e), to
each link e, containing all the indices of the source-destination
pairs, that have that link on a route between them. We form
a new set, called the color-index set, associated with each
link that pairs up each source-destination index with a unique
color from a set of t colors. Therefore, such a set would look
like {(colori, j)}, where i = 1, 2, . . . , t and j ∈ J (e).

A coloring is valid, if the union of color-index sets of all
incoming edges at a node, does not contain (colori, j) and
(colori,m), where j 6= m. In other words, the transmitting
node of a link does not interfere with any other link that has
one of the same colors paired up with a different index, and
the receiving node of an edge does not get interference from
any other link that has one of the same colors paired up with
a different index.

Each source-destination pair has a certain capacity when
all the other source-destination pairs are silent. MIL schedul-
ing is defined as scheduling the links using a valid coloring
with t colors, such that each source-destination pair achieves
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Fig. 7. A k × 2× k network.

its capacity over t time slots. In fact, each color represents
a time slot and in the time slot associated with colori, all
the links that have colori will be activated, and the source-
destination pair that is paired up with that color on a link will
use it for communication. The optimal MIL scheduling is the
one that requires the minimum number of colors t.

We will show that MIL scheduling is optimal for a class of
networks, namely k × 2× k networks, defined as follows.

Definition 7. A k × 2 × k network is a two-layer network
with k sources on one side, 2 relays in the middle, and k
destinations on the other side. Note that there should exist at
least one path from Si to Di in this network, i = 1, 2, . . . , k,
see Figure 7.

Theorem 6. The normalized sum-capacity of a k × 2 × k
network with 1-local knowledge, is

α∗ =

{
1 k = 1

1
maximum degree of nodes in G k ≥ 2

(5)

where the maximum degree is defined as max{dini , d
out
i }, i =

1, 2, . . . , n.

Proof:
Converse: The result for k = 1 is trivial. Note that, in a

k × 2 × k network, the maximum degree happens at one of
the relays for k ≥ 2.

Suppose this maximum degree happens in the first layer,
and without loss of generality assume it is the in-degree at
relay A1. Divide the sources into 3 disjoint subsets. Subset Vi
consists of all the sources that are only connected to relay Ai,
i = 1, 2, and V12 consists of the sources that are connected
to both relays.

Our goal is to derive an upper bound on the normalized sum-
rate of this network. Consider the corresponding destinations
of the sources in V1. Any such destination is either connected
to relay A1 or to both relays. If it is connected to both, then
set the channel gain of any link from relay A2 equal to zero.
Follow the similar steps for members of V2 and assign channel
gain of n to all other links in the network.

Relay A1 should be able to decode all the messages coming
from sources in V1, since it has more information about
messages than the intended destination of each message. A

similar claim is valid for relay A2, i.e. it should be able to
decode all the messages coming from V2. Relays A1 and A2

will decode messages coming from members of V1 and V2

respectively, and remove them from their received signals.
Now, the relays should be able to decode the rest of the

messages together. However, since all the channel gains are the
same, they have the same signal after removing the previously
decoded messages. As a result each relay should be able to
decode the remaining messages, which means relay A1 is able
to decode all the messages from V1 and V12 using its n signal
levels, note that dinA1

= |V1|+ |V12|.
Since we assume 1-local knowledge at the sources, to

achieve a normalized sum-rate of α, each source should
transmit at a rate greater than or equal to αn−τ . This together
with the MAC capacity at relay A1, gives us

dinA1
(αn− τ) ≤ n⇒ (dinA1

α− 1)n ≤ dinA1
τ (6)

since this has to hold for all values of n where α and τ are
independent of n, we get α ≤ 1

din

A1

.

A similar argument is valid for the case where maximum
degree happens in the second layer of the network, therefore
we get

α ≤ 1

maximum degree of nodes in G
(7)

this completes the proof of the converse.
Achievability: In a k×2×k network, any link can at most

be on one route. MIL scheduling works as follows. Assume
that dinA1

is the maximum degree in the graph.
Consider the first layer, we pick one link corresponding to

a member of V1 and one corresponding to a member of V2

randomly, and we assign to both of them the same color. We
keep picking two new links and assign them an unused color
till there is no more link connected to a member of V2. We
then assign to each remaining link connected to a member of
V1 a new unique color. Any member of V12, has either one
link or two links associated with its index. In either case we
assign a new unique color to the associated link(s). This way,
we need dinA1

number of colors.
Following the same steps and we will need max{doutA1

, doutA2
}

colors to color all the links in the second layer. The total
number of colors is therefore equal to the maximum degree
of the graph, which alongside with MIL scheduling, completes
the achievability proof. Note that the assumption that dinA1

is the maximum degree in the graph, can be considered for
any other degree and the same reasoning is valid there. Our
achievability scheme holds for τ = 0.

The result presented as Theorem 6 will be extended to k×
2× . . .× 2× k networks, defined as follows.

Definition 8. A k × 2 × . . . × 2 × k network is a layered
network with k sources in the first layer, k destinations in the
last layer, and 2 relays in each layer in between. Any link in
this network is either from a source to a relay, from one relay
to another, or from a relay to a destination. Note that relays
in the same layer are not connected to each other.



Theorem 7. The normalized sum-rate capacity of a k × 2×
. . .× 2× k with 1-local knowledge is

α∗ =

{
1

maximum degree of nodes in G doutAi
= 1

1
k otherwise

(8)

where as before the maximum degree is defined as
max{dini , d

out
i }, i = 1, 2, . . . , |V|.

Proof of this theorem is presented in Appendix B.
Again, it is quite interesting to see whether MIL scheduling

is always optimal or not. The following example, will lead us
to the answer. We will refer to the network depicted in Figure 8
as the two-layer (3, 2) folded-chain network. We will see that
the normalized sum-capacity of this network is 1

2 and cannot
be achieved by MIL scheduling. Note that MIL scheduling
achieves only α = 1

3 . This example is significant, in the sense
that it depicts a case where network-coding is required. We
will achieve the normalized sum-capacity by using repetition
coding at the sources and linear network-coding at relays.

S1

S2

S3

D1

D2

D3

A1

A2

A3

Fig. 8. Two-layer (3, 2) folded-chain network.

See Theorem 9 for the fact that α ≤ 1
2 . We achieve α = 1

2
as follows.

First note that each source-destination pair has a diamond
network, when other source-destination pairs are silent. In
this diamond network, there exists an optimal achievability
scheme, as shown in Figure 9 for pair 1. We will give each
source-destination pair a chance to implement its optimal
strategy for the diamond network, in the two-layer (3, 2)
folded-chain network over two time slots. In the first layer, we
use repetition coding at the sources as in section III, which
will provide all relays with the messages they require to create
their input to the channel as if they are in any of the diamond
networks, this happens in two time slots.

S1 D1

A1

A2

x1
1

x1
2

yD1

Fig. 9. The diamond network of pair 1 when other source-destination pairs
are silent.

In the second layer, the achievability scheme works as
follows. In each time slot, we will serve one destination

completely. This way one relay is free at each time slot and the
goal is to use this relay to serve the remaining the destination
that will not be served completely in any time slot. See Table
I for details of a possible scheme.

In time slot 1, Relays A1 and A2 serve Destination 1 and
Relay A3 sends its signal to Destination 3 alongside with its
signal for Destination 2. Note that Destination 2, does not have
to be on in the first time slot. In second time slot, Relays A2

and A3 serve Destination 2 and Relay A1 combines its signal
for Destination 3 with its previous sent signal and transmit it.
At the end of second time slot, if Destination 2 combines all
its received signals, the interference will cancel out and it will
get its message, i.e y13⊕y33 , interference-free. In this table, yj

′

i

represents the version of the message for Destination i through
Relay Aj , x

j
i , received at a destination different from i, and

yji represents xji as received at Destination i.

TABLE I
SECOND LAYER ACHIEVABILITY SCHEME FOR THE NETWORK DEPICTED

IN FIGURE 8.

Destination id time slot # 1 time slot # 2
(D1 being served) (D2 being served)

D3 y1
′

1 ⊕ y3
′

2 ⊕ y33 y13 ⊕ y3
′

2 ⊕ y1
′

1
Relay A3 serves D3 Relay A1 serves D3

As described in the last example, in some cases we need to
combine MIL scheduling with linear network coding, in fact
we can generalize the previous example as follows.

Definition 9. A two-layer (k, d) folded-chain network is a two-
layer network with k source-destination pairs and k relays in
the middle. Each source-destination pair i has d disjoint paths,
through relays i, i+1, . . . , i+(d− 1) mod k, i = 1, 2, . . . , k.
See Figure 10 for a depiction.
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Fig. 10. A two-layer (5, 3) folded-chain network.

Theorem 8. The normalized sum-capacity of a two-layer
(k, d) folded-chain network with 1-local view is α∗ = 1

d , and
is achieved by CMIL scheduling.

Suppose in the first layer all channel gains are equal to n and
in the second layer, all channel gains are equal to zero, but the
ones from Ai to Di, i = 1, 2, . . . , k, which are equal to n. With
this setting the idea developed to upper bound the normalized
sum-rate in Theorem 3, is valid here. The achievability is a
simple extension of the one developed for the example of two-
layer (3, 2) folded-chain network and is omitted in the paper.



V. UPPER BOUND

In this section, we will develop general upper bounds on the
normalized sum-capacity. One immediate upper bound on the
normalized sum-capacity of an acyclic network with 1-local
view is presented below.

Theorem 9. In a k-user acyclic network with 1-local view, if
there exists a path from Si to Dj, i 6= j, then the normalized
sum-capacity is upper bounded by 1

2 .

Proof: Consider a path, Pij, from Si to Dj, i 6= j. Assign
channel gain of n to all edges in this path. For each source-
destination pairs i and j, create exactly one path from the
source to destination with all channel gains equal to n. Assign
channel gain of 0 to all remaining edges in this network. See
Figure 11 for a depiction.
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Fig. 11. A path exists from S1 to D2; all solid edges have capacity n and
the rest have capacity 0.

In order to guarantee a normalized sum-rate α, each source
should transmit at a rate ≥ αn−τ . Sppose this rate is feasible,
therefore Dj is able to decode Wj and it will remove it from
the received signal. The remaing signal is exactly the signal
that Di receives, and since Di should be able to decode Wi, Dj

can decode it as well. Hence, the MAC capacity at Dj gives
us

2αn− 2τ ≤ n⇒ (2α− 1)n ≤ 2τ (9)

since this has to hold for all values of n where α and τ are
independent of n, we get α ≤ 1

2 .
In Section III, the binary model and the symmetric capacity

were introduced. Based on those ideas, we will develop a
general upper bound for acyclic network with 1-local view.
Assume that all the channel gains in the network have equal
capacity, n, however, we still assume the assumption of 1-local
view at sources. In other words, each source is only aware that
all the edges that are on a path form it to a destination, have
equal capacity, n, but it has no information about the channel
gains of other edges.

Suppose that in the network described above, the sum-
capacity is equal to α∗sym. Then, since the channel gains in
this network form a realization of network state, we have
α∗ ≤ α∗sym. The significance of this result is that, in all the
networks we have considered so far, we have α∗ = α∗sym.
However, unlike the single-layer case, where the achievability
scheme of binary model could be generalized, in this case the
achievability scheme can be quite different, as in the example

depicted in Figure 8. An interesting direction is to figure out
for what classes of networks this upper bound is tight.

VI. FUTURE WORK AND CONCLUSION

In this paper, we developed a new model for partial netwrok
knowledge in acyclic wireless networks. Different schemes
were studied and their performances were examined in several
cases, in terms of the normalized sum-capacity. Deep connec-
tions between network topology, normalized sum-capacity and
the achievability strategies were noticed, and we saw several
motivating results. One of the important future directions is to
extend our results to Gaussian networks.

In this paper, we have only studied cases with 1-local view, a
major direction is to figure out how normalized sum-capacity
increases as nodes learn more and more about the network.
Moreover, we have considered the case that the nodes know
the network-connectivity globally, but the actual values of
the channel gains are only known for a subset of routes. An
appealing extension in this case, would be to understand the
effects of local knowledge about network connectivity on the
capacity and develop distributed strategies to optimally route
information with partial knowledge about network connec-
tivity. It is also desired to develop scalable network coding
strategies that only rely on local network information. As
mentioned before, the very idea of developing fundamental
information-theorectic based foundations for networks with
partial information at nodes is in its beginning stages and as
a result, there are many salient directions to work on.

APPENDIX A
A LOWER-BOUND ON THE PERFORMANCE OF MIR

SCHEDULING

In order to establish a lower-bound on the performance of
MIR scheduling, we need the following definition.

Definition 10. The pair-adjacency graph of a network is
formed by representing each source-destination pair by a
vertex in a graph. We put an undirected edge between two
vertices i and j in this graph, if and only if there exists a path
from Si to Dj or from Sj to Di. Note that, pair-adjacency
graph is an extension of conflict graph introduced in section
III.

The maximum number of time slots required by MIS
scheduling in a network, is equal to the m-fold chromatic
number of the pair-adjacency graph, which is defined in
section III. We will next establishe a lower-bound on the
performance of MIR scheduling for two-layer networks as
defined below.

Definition 11. A two-layer network is a network with k
sources on one side, a number of relays in the middle, and
finally k destinations on the other side. Any edge in this
network is either from a source to a relay or from a relay
to a destination. See Figure 5(a) as an example.

Theorem 10. Consider a two-layer network where d is
the maximum degree of nodes, i.e. max{dini , d

out
i }, i =



1, 2, . . . , |V|, in G with 1-local knowledge. The normalized
sum-rate that is achieved by MIR scheduling, satisfies

α ≥ 1

min(k, 2d(d− 1) + 1)
(10)

Proof: If two sources are connected to the same relay,
their corresponding vertices in the pair-adjacency graph are
adjacent, the same is true for any two destinations. The
maximum degree in the pair-adjacency graph due to first layer
is at most min(k − 1, d(d − 1)) and this is also true for the
second layer. Therefore, the maximum vertex degree in the
pair-adjacency graph would be min(k − 1, 2d(d− 1)). Using
greedy coloring we know that every graph can be colored with
one more color than the maximum vertex degree. Therefore,
we are able to color the vertices in this graph using at most
min(k, 2d(d−1)+1) colors, which gives us the desired lower
bound. Note that α = 1

k can be achieved by doing equal time-
division among the k users.

APPENDIX B
PROOF OF THEOREM 7

If each relay in a layer is only connected to one relay in the
previous layer and one in the next layer, then for the converse,
we set all the channel gains among relays equal to n, and all
the other channel gains as in the proof of Theorem 6. Supoose
the only outgoing edge from relay Ai is connected to relay
Aj , then they have exactly the same information and we can
consider them as a single relay. Achievability, is the same as in
theorem 6. This can be seen in Figure 12, here we can merge
relays A1 and A3 and the same thing for relays A2 and A4.
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Fig. 12. A k × 2× . . .× 2× k network.

If the condition does not hold, we will have a relay that
can decode all messages if we set the channel gains as in the
previous case. From the MAC upper bound at such relay, we
have α ≤ 1

k . We can achieve this upper bound by TDMA
and this completes the proof. Also note that the achievability
scheme holds for τ = 0.
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