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Abstract—We consider repeated coalitional TU games charac-
terized by unknown but bounded and time-varying coalitions’
values. We build upon the assumption that the Game Designer
uses a vague measure of the extra reward that each coalition
has received up to the current time to learn on how to re-adjust
the allocations among the players. As main result, we present an
allocation rule based on the extra reward variable that converges
with probability one to the core of the long-run average game.
Analogies with stochastic stability theory are put in evidence.

I. INTRODUCTION

This paper is in spirit with a few other recent attempts by
the same authors to bring robustness and dynamics within the
picture of coalitional TU games [3], [4], [5]. While in [4], [5]
we dealt with the robust stabilizability of the excesses, here
we are more concerned with their convergence in probability
which then translates into the long-run convergence in prob-
ability of the average allocation to the core of the average
game. Conversely, the main difference with respect to [3] is
that we now require convergence to a specific point in the
core whereas there we analized convergence to the core, and
whichever was the converging point was not really a point of
interest.

In particular, we deal with learning in robust and dynam-
ical coalitional TU games. Learning together with the above
two elements naturally arise in all the situations where the
coalitions values are uncertain and time-varying.

The issue of “robustness” is also addressed in some lit-
erature on stochastic coalitional games [15], [16]. However,
we deviate from this stochastic framework since we model
coalitions values as Unknown But Bounded variables within
a priori known polytopic sets [6]. A similar approach can be
found in the recent literature on interval valued games [1],
where the authors use intervals to describe coalitions values
similarly to what is done in this paper. A new element with
respect to [1] and the references therein is the time-varying
nature of the coalitions values. We have found inspiration for
our approach in Set invariance Theory [7] which provides us
some “nice” tools for stability analysis (see, e.g., the resort to
a Lyapunov function in the proof of Theorem IV.1).

Issues related to the dynamical nature of the coalitions’
values enter into the picture in the form of a differential
equation involving the system state. Under the assumption that
the game is played repeatedly and continuously over time,
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the state accounts for the accumulated discrepancy between
coalitions’ values and allocations up to the current time.
At each time, different coalitions’ values realize which are
undisclosed to the Game Designer (GD) who then adjusts the
allocations based on information on the system state. Bringing
dynamical aspects into the framework of coalitional TU games
is an element in common with other papers [9], [11]. The main
difference with those works is that the values of coalitions are
set exogenously and no relation exists between consecutive
samples.

The main contribution of this paper is a constructive way
to design an allocation rule converging to a specific point in
the average. Convergence conditions together with the idea
that allocation rules use a measure of the extra reward that a
coalition has received up to the current time by re-distributing
the budget among the players are a main issue in a number
of other papers [2], [8], [10], [13], [14] as well. However, this
paper departs from the aforementioned contributions mainly
in that dynamics is there captured by a bargaining mechanism
with fixed coalitions’ values while we let the values be time-
varying and uncertain. This last element adds some robustness
in our allocation rule which have not been dealt with before.

This paper is organized as follows. In Section II, we
formulate the problem. In Section III, we present the basic
idea of our solution approach. In Section IV, we state the main
result of this work. In Section V, we provide some numerical
illustrations. Finally, in Section VI, we draw some concluding
remarks.

II. PROBLEM FORMULATION

Consider a set of players N = {1, . . . ,n} and all possible
coalitions S⊆N arising among these players. Introduce a time-
varying characteristic function ψ(S, t) which assigns a real
value to each coalition S at time t ≥ 0:

ψ : 2N \ { /0}×R+ → R.

If we denote by m = 2n−1 the number of possible coalitions,
we can view the characteristic function ψ(.,t) as returning a
continuous-time signal in the m-dimensional space:

v(t) ∈ R
m, ∀t ≥ 0.

Turning from a function to a signal is useful to define the
following dynamical coalitional games.

Definition II.1 (dynamical TU game) For each time t ≥ 0,
the instantaneous, integral, and average dynamical game is
defined by the pairwise



• (instantaneous game) < N,v(t) >, with v(t) ∈ R
m;

• (integral game) < N, ṽ(t) >, with ṽ(t) =
∫ t

0 v(τ)dτ;
• (average game) < N, v̄(t) >, with v̄(t) = ṽ(t)

t .

Henceforth, we use the symbol ψ̃(t) and ψ̄(t) to indicate
the integral and average up to time t respectively of any given
function ψ(t). Also, the underlying assumption throughout this
paper is that v(t) is unknown to the GD but confined within
a convex set at any time. We also assume that v(t) is a mean
ergodic stochastic process.

Assumption 1 (UBB and mean ergodic) Signal v(t) is UBB
within a given convex set V : v(t)∈ V ∈R

m. Furthermore, the
expected value of v(t) coincides with the long term average,
i.e., E[v(t)] = limt→∞ v̄(t).

Under the above assumption, the core of the instantaneous
game can be empty at some time t. Even if the above is true,
we can still suppose that the core of the average game is non
empty on the long run.

Assumption 2 (balancedness) The core of the average game
is non empty in the limit: limt→∞ C(ṽ(t)) �= /0.

We can view the above assumption as introducing some
steady-state (average) conditions on a game scenario subject
to instantaneous fluctuations.

Now, assume that the GD can take actions in terms of
instantaneous allocations denoted by a(t) ∈ R

n and suppose
the following budget constraints.

Assumption 3 (bounded allocation) The instantaneous allo-
cation is bounded within a hyperbox in R

n

a(t) ∈ A := {a ∈ R
n : amin ≤ a ≤ amax},

with apriori given lower and upper bounds amin, amax ∈ R
n.

Let us turn to comment on the information structure of
the problem. To do this, we need to introduce some new
terminology which is useful to clarify the information available
to the GD.

For any coalition S ⊆ N, we define excess (extra reward) at
time t ≥ 0 as the difference between the total integral reward,
given to it, and the integral value of the coalition itself, i.e.,

εS(t) = ∑
i∈S

ãi(t)− ṽS(t).

Furthermore, we say that S is in excess at time t ≥ 0 if
the excess is non negative, i.e., ∑i∈S ãi(t) ≥ ṽS(t). In one
word, coalitions in excess are those with respect to which
the grand coalition of the integral game is stable. With the
above clarification in mind, we henceforth assume that the GD
has access to the limit of the average coalitions’ values, call
them nominal coalitions’ values, stored in the vector vnom :=
limt→∞ v̄(t). For future purposes, let us introduce an opportune
deviation Δv(t) so that we can express v(t) = vnom + Δv(t).
Furthermore, the GD also observes the vector of coalitions’
excess ε(t) := [εS(t)]S⊆N ∈ R

m.

v1 v2 v3 v4 v5 v6 v7
S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

TABLE I
CORRESPONDENCES VERTICES-COALITIONS

Assumption 4 (partial information) The GD knows vnom and
ε(t) at each time t ≥ 0. Furthermore, signal v(t) and excess
ε(t) are non correlated.

In [3] we have solved the problem of finding an allocation
rule based on the available partial information so that if the
instantaneous allocation is selected from this rule then the
average allocation converges to the core of the average game
on the long run. The problem in the present paper is slightly
different. Indeed, we first select apriori a specific point in the
core of the average game, say it nominal allocation and denote
it

anom ∈C(vnom).

Hence we look for an allocation strategy that converges exactly
to the nominal allocation in the average.

Problem 1 Find an allocation rule f : R
m → A ∈ R

n, such
that if a(t) = f (ε(t)) then limt→∞ ā(t) = anom.

III. FLOW TRANSFORMATION

The basic idea of our solution approach is to turn the
problem into a flow control one. To do this, consider the
hypergraph H with vertex set V and edgeset E as:

H := {V,E}, V = {v1, . . . ,vm}, E := {e1, . . . ,en}.
The vertex set V has one vertex per each coalition whereas
the edge set E has one edge per each player.

v1

v2

v3

v4

v5

v6

v7

e1

e3

e2

Fig. 1. Hypergraph H := {V,E} for a 3-player coalitional game.

A generic edge i is incident to a vertex v j if the player i
is in the coalition associated to v j. So, incidence relations are
described by matrix BH = [cT

S ]S⊆N ∈ R
m×n whose rows are

the characteristic vectors of all coalitions S ⊆ N.
The flow control reformulation arises naturally if we view

allocation ai(t) as the flow on edge ei and the coalition value



vS(t) of a generic coalition S as the demand d j(t) in the
corresponding vertex v j, namely vS(t) = d j(t). At this point
we can introduce a dnom and Δd(t) so that, in the future, we
can again use the expression d(t) = dnom + Δd(t) in analogy
with v(t) = vnom + Δv(t).

In view of this, allocation in the core translates into satis-
fying in excess the demand at the vertices. Specifically,

ã(t) ∈C(ṽ(t)) ⇔ BH ã(t) ≥ d̃(t) (1)

Now, since d̃(t) is unknown at time t, we need to introduce
some error dynamics which accounts for the derivatives of
excesses:

ε̇(t) = BH a(t)−d(t), d(t) ∈ V .

With the above in mind, the problem can be turned into a flow
control problem where a controller wishes to drive the error
ε(t) (the excesses) to a target set

T := {ε ∈ R
m : εm = 0,ε j ≥ 0, ∀ j = 1, . . . ,m−1}.

But we can do more than this to simplify the tractability of

ε1

ε2

εm

ε(0)

ε(t)

Fig. 2. Trajectory for ε(t).

the problem. Using standard LP techniques we can introduce
m−1 surplus variables (one per each coalition other than the
grand coalition) so to project the allocation space into a one of
higher dimension. In particular, let us expand control u(t) =
[a(t)T s(t)T ]T ∈ R

(n+m−1). This technique has the advantage
of turning the inequalities (1) into equalities of type (see, e.g.,
[4], [5]):

ẋ(t) = Bu(t)−d(t), d(t) ∈ V ,

where matrix B is defined as

B =
[

BH
−I
0

]
∈ R

m×(n+m−1)

and I is an identity matrix of compatible dimensions. Variable
x(t) ∈ R

m is now the state of the system. In order to rephrase
the original problem in terms of a flow control problem, we
still have to introduce the feasible controls set

U := {u ∈ R
n+m−1 : a ∈ A , s ≥ 0} ∈ R

n+m−1 (2)

and define a new vector unom = [aT
nom sT

nom]T ∈U satisfying

Bunom = vnom.

We hereafter abbreviate “with probability one” and write
“w.p.1”.

We are now ready to restate the original problem as follows.
Find a control strategy φ : R

m →U which drives the state x(t)
to zero in probability and returns the desired average control
unom:

u(t) := φ(x(t)) ∈U ⇔ lim
t→∞

x(t) = 0 w.p.1, and lim
t→∞

u(t) = unom.

Stating differently, we require the dynamics ẋ(t) = Bφ(x(t))−
d(t) to be stochastically stable with φ(x(t)) satisfying certain
average constraints.

ẋ(t) = BΔu(t) − Δd(t)

z(t) =
[

B† F
] ⎡

⎣ x(t)
y(t)

⎤
⎦

φ̂(z(t))

u(t)

d(t)

ẏ(t) = CΔu(t)

Fig. 3. Dynamical system.

IV. STOCHASTIC STABILITY AND AVERAGE CONSTRAINTS

In this section, we state the main result of this work which
proposes a solution to Problem 1. Before stating the result we
need to modify the dynamics (8) in the way explained next.
First denote by B† a generic pseudo inverse matrix of B and
complete matrices B and B† with matrices C and F such that

[
B
C

] [
B† F

]
= I. (3)

Then, building upon the new square matrix

[
B
C

]
, let us move

to consider the augmented system

ẋ(t) = BΔu(t)−Δd(t)
ẏ(t) = CΔu(t). (4)

After integrating the above system (see (5), right) we come
up with a new variable z(t) (see (5), left), that plays a central
role for the problem at hand:

z(t) =
[

B† F
] [

x(t)
y(t)

]
,

[
x(t)
y(t)

]
=

[
B
C

]
z(t). (5)

Indeed, it turns out that to drive x(t) to zero w.p.1, and
obtain unom as average allocation on the long run, we can
rely on a simple function φ̂ (.), which depends on z(t). Before
introducing this function, for future purposes observe that the
dynamics for z(t) satisfies the first-order differential equation:

ż(t) =
[

B† F
] [

ẋ(t)
ẏ(t)

]

=
[

B† F
] [

B
C

]
Δu(t)− [

B† F
][

Δd(t)
0

]

= Δu(t)−B†Δd(t).
(6)



Back to the function φ̂ (z(t)), let Δumin and Δumax be
the minimal and maximal values of Δu(t) for the following
constraints to hold true: u(t) = unom +Δu(t) ∈U . Then, let us
formally define φ̂(z(t)) as:

φ̂(z(t)) := unom + Δu(t) ∈U, Δu(t) = sat[Δumin,Δumax](−z(t)),
(7)

where with sat[a,b](ξ ) we denote the saturated function that,
given a generic vector ξ and lower and upper bounds a and
b of same dimensions as ξ , returns

sat[a,b](ξ ) .=

⎧⎨
⎩

bi for all i ξi > bi

ai for all i ξi < ai

ξi for all i ai ≤ ξi ≤ bi

.

Now, taking the control u(t) = φ̂ (z(t)), we obtain the
dynamic system ẋ(t) = Bφ̂(z(t))− d(t) as displayed in Fig.
3. With the above preamble in mind, we are ready to state the
following convergence property.

Theorem IV.1 The dynamic system (8) with φ̂(z(t)) as in (7)
converges to zero w.p.1 and satisfies limt→∞ ū(t) = unom:

ẋ(t) = Bφ̂(z(t))−d(t). (8)

Proof: Consider a candidate Lyapunov function V (z(t)) =
1
2 zT (t)z(t). The idea is to inspect that E[V̇(z(t))] < 0 for all
t ≥ 0. To see that this last is true, observe that from (6) we
have

E[V̇ (z(t))] = E[zT (t)ż(t)]
= E[zT (t)Δu(t)]−E[zT (t)B†Δd(t)]
= E[zT (t)sat(−z(t))] < 0,

where condition E[zT (t)B†Δd(t)] = 0 is a direct consequence
of Assumption 4 which translates into Δd(t) being uncor-
related with zT (t). But the above condition implies that
limt→∞ z(t) = 0 w.p.1, which, from (5)-left, and [B† F ] being
non singular and square, leads to limt→∞ x(t) = 0 w.p.1 as
well.So far we have proved the first part of the statement, i.e.,
that the dynamic system (8) converges to zero w.p.1. For the
second part, after integrating dynamics (6), we have

lim
t→∞

∫ t
0 [Δu(τ)−B†Δd(τ)]dτ

t
= lim

t→∞

z(t)− z(0)
t

= 0.

This last condition together with the assumption vnom :=
limt→∞ v̄(t) yield

lim
t→∞

∫ t
0 B†Δd(τ)dτ

t
= lim

t→∞

∫ t
0 Δu(τ)dτ

t
= 0

from which we can conclude limt→∞ ū(t) =
limt→∞

∫ t
0 unom+Δu(τ)dτ

t = unom as claimed in the statement.

In the next corollary, we use the previous result to provide
an answer to Problem 1.

Corollary IV.1 The average allocation converges to the nom-
inal allocation:

lim
t→∞

ā(t) = anom.

Proof: This is a direct consequence of the result proved
in the previous theorem: limt→∞ ū(t) = unom.

V. NUMERICAL ILLUSTRATIONS

Consider a 3 player coalitional TU game, so m = 7, with
the following intervals for values of coalitions:

v({1}) ∈ [0,4], v({2}) ∈ [0,4], v({3}) ∈ [0,4],
v({1,2}) ∈ [0,4], v({1,3}) ∈ [0,6],
v({2,3}) ∈ [0,7], v({1,2,3}) ∈ [0,12].

The convex set V is then a hyperbox characterized by the
above intervals. >From Assumption 4, the GD knows the long
run average game, i.e., limt→∞ v̄(t) = vnom. Without loss of
generality we take the balanced nominal game be as vnom =
[1 2 3 4 5 6 10]T . In other words, during the simulations we
randomize the instantaneous games v(t)∈ V so that it satisfies
the average behavior given by:

lim
t→∞

1
t

∫ t

0
v(τ)dτ = vnom. (9)

Next, we describe an algorithm to generate v(t) ∈ V such
that the above condition holds true.

Algorithm:

1) Generate m random points, ri ∈ V ⊂ R
m, i = 1,2, · · · ,m.

2) Solve R.p = vnom, with R = [r1, r2, · · · rm].
3) If p ≥ 0 and 1T p > 0, then go to (4) else go to (1).
4) Rescale R as R =

(
1T p

)
R and p as p = p

(1T p)
5) If ri ∈ V , i = 1,2, · · · ,m, then go to (6) else go to (1).
6) STOP

By construction of the algorithm, vnom is in the relative interior
of the convex hull generated by the columns of the matrix R. If
an instance of the game v(t) is chosen as ri with probability pi

from the pair (R, p), Assumption 4 is satisfied. For simulations
we ran the algorithm 20 times to generate a total of 140
points (or 20 (R, p) pairs) in V . Further, from each of the 20
pairs we take 2000 random selections (using Matlab randsrc
function), which amounts to 40,000 instantaneous games v(t).
The nominal choice of allocations and surplus is taken as
unom = [2.5 3 4.5 1.5 1 1.5 1.5 2 1.5]T . It can be verified
that Bunom = vnom.

For simulations, the saturation thresholds Δumin and Δumax

are chosen so as to ensure u(t) ∈U . This condition translates
into Umin ≤ unom+sat[Δumin, Δumax] ≤Umax. Denote 1 as a vector
with all entries equal to 1. For the instantaneous game a
negative allocation/surplus is not allowed, so Umin ≥ 0 · 1.
Further, an allocation/surplus greater than the value of grand
coalition is not allowed, so Umax ≤ vnom(N) ·1. For the given
game parameters, we see that the lower and upper thresholds
for the saturation function are −1 and 5.5 respectively. The
robust allocation rule is implemented numerically with a
step size of Δ = 0.01. Next, we present some significant
performance results of the robust control law given by equation
(7). >From Theorem IV.1, limt→∞ z̄(t) converges to zero with
the aforementioned specific choice of the control law. Fig.
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Fig. 4. Performance of the robust control law φ̂(z(t)): time plot of first
component of z̄(t).

4 illustrates this behavior for the first component of z(t).
Further, by Corollary IV.1, the same control law ensures that
the average game is balanced in the long run, in other words
limt→∞ x̄(t) = 0. The control law ensures that E[V̇(z(t))] is
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Fig. 5. Time plot of E[V̇ (x(t))]

negative for all t > 0; we illustrate this behavior in Fig. 5.
From Corollary IV.1, we also know that the average allocation
vector converges to the nominal allocation vector. We illustrate
this fact in Fig. 6. Here, we notice that convergence occurs
with an approximation error of about 10−2. This reflects the
fact that, in generating the instantaneous games v(t) through
the above algorithm, the average value of B †Δd(t) converges
to zero with, more or less, the same error as evident from
looking at Fig. 7. We can interpret the average value of Δd(t)
as a measure of the uncertainty in learning the nominal game
vnom, as given by (9). So, we believe an improvement in the
numerical precision while generating the instantaneous games
v(t) will result in the exact convergence of the allocations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we derived a robust control law that ensures
that the average allocation vector converges to the nominal
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Fig. 6. Time plot of ā(t)−anom.
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Fig. 7. Time plot of second component of B†Δd(t).

allocation vector on the long run. However, the control law
is derived on the premise that the GD knows apriori, the
nominal allocation vector. If this information is not available
the derivation of the control law implicitly involves solving an
LP problem. By further relaxing the information requirement,
the problem can be treated as a learning process where the
GD is trying to learn the nominal game from the instantaneous
games. We postpone working in this direction for the future.
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