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Abstract—We study the Han-Kobayashi (HK) achievable sum
rate for the two-user symmetric Gaussian interference chanel.
We find the optimal power split ratio between the common and
private messages (assuming no time-sharing), and derive éosed
form expression for the corresponding sum rate. This proviés a
finer understanding of the achievable HK sum rate, and allowsor
precise comparisons between this sum rate and that of orthampal
signaling. One surprising finding is that despite the fact that the
channel is symmetric, allowing for asymmetric power split 1atio
at both users (i.e., asymmetric rates) can improve the sum ta
significantly. Considering the high SNR regime, we specifyhte
interference channel value above which the sum rate achietde
using asymmetric power splitting outperforms the symmetrt
case.

Fig. 1. Two-user Gaussian interference channel

. INTRODUCTION _ ) ) _
regions where simple orthogonal signaling outperforms-rat

The subject of this paper is the interference channel, whisplitting.
is one of the most fundamental models for wireless communi-Since the channel is symmetric, one would assume that it
cation systems. Although this model is of utmost importancis optimal to use symmetric power splitting ratios (i.e.eu$
the capacity region for even the simplest two user symmetdad user 2 use the same power splitting ratio). However, we
Gaussian interference channel is not yet fully charaadriz surprisingly find that allowing for asymmetric power splits
except for the special cases of strong interferentel[1]af®] can enhance the sum rate. Specifically, if one user sends only
very weak interference [5]H7]. The best known achievapilia common message while the second user uses a specific
strategy for the remaining unsolved cases was proposed fisivate/common split, the sum rate outperforms that of the
Han and Kobayashi (HK) i [1], and it combines the ideas gymmetric case for a wide range of signal and interference
time-sharing and rate-splitting (i.e., dividing the trarited powers. Next, we consider the high SNR regime and precisely
message into two parts: a common part decodable by badentify the interference channel value above which the rat
receivers, and a private part decodable only by the intendachieved using the asymmetric power splitting outperforms
receiver). Significant progress towards the general capadhe symmetric case. We further consider specific time sbarin
region was made ifn [4], where a new capacity upper bound wechemes and we show that the advantage of using such time
derived and it was shown that the HK rate region, restrictestharing schemes, as opposed to the case of not allowing time
to Gaussian inputs and not allowing for time-sharing, comsbaring, is quite small.
within one bit of that upper bound.

In this paper we build on[ 4] and more carefully study
the HK achievable rate region. Ihl[4] the authors chose th
private message power to be received at the noise level of
unintended receiver; although this power split is not optim vy, = hy12y + ho122 + 21, Y2 = hiax1 + haszo + 72 (1)

it is sufficient to achieve the one bit result. On the otherchan

. ) o ere the noise processes are assumed to be circularly
we characterize the exact power split that maximizes the : : . : .
. o . . symmetric Gaussian random variables with variange The
achievable sum rate. By finding the optimal power split, we a

able to obtain a closed form expression for the corres di[rqansmitted signal by each user is subject to an average
P pan ower constraint?;,. We also assume that the codebooks

maximum HK sum rate. In turn, this leads to a more prec@e o : .
. . used are generated using i.i.d. random Gaussian variables a
understanding of the achievable HK rate. We are able to use . ; : : .
. . nsidered in[4]. We consider the normalized symmetrictwo
our results to make comparisons between the HK achievable L o )
: . : user Gaussian interference channel, specifically:
rate (without time-sharing) and the sum rate of orthogona

signaling (i.e., TDMA/FDMA), and to exactly identify the |h11| = |hazl, |h12| = |h21|, PL = Py = P. (2)

II. NETWORK MODEL

As shown in Figuré1l, the two-user Gaussian interference
nnel is modeled as:
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Thus, the channel can be expressed in standard form as: since by decoding the common message of the other user,
part of the interference is canceled off. The private messag

y=a+Varz+z, p=vVantertzan G) ilbhe decoded last, while the private message of the other

wherea — iﬁ}z - \lelz and z; ~ CN(0,1). Hence, the User is treated as noise achieving a sum rate of the private

] ha2 . : .
channel considered is fully characterized by the paramdter Mmessages of both users given by:

(which represents the SNR) and the interference coeffiaient A\ P Ao P
Since Fhe capacity is already known for th_e strong interfeee Riy + Roy = 7(1 n a/\2P> + 7(1 T a)\1P> ()
case (i.e.a > 1) [1], [2], we focus exclusively on the range

Since the common messages from both users are decoded
first while treating both private messages as interferetiee,
sum rate of both common messages must satisfy the following
constraints:

0<a<l.

Each user chooses a power splitting ratio(0 < \; < 1)
and transmits a private messaggewith power P,, = \;P;
and a common message with power P,,, = \;P;, where
Ai = 1 — ;. The common message should be decodable byr,,, + Ry, <
both receivers. The channel can be considered as two vBtual AP Ao P
users multiple access channels, where the firs{haso, , ws) gl (m> + (W) 8)
as inputs and;; as output withu, treated as noise, and the Riw + Row <
second hagusq,ws,wr) a@s inputs,y, as output, andu; is P M P
treated as noise. In general, the HK strategy proposed| in [1] 7(—2) (—1) 9)
allows for arbitrary splits of each user’s transmit powetoin 1+ M P +al P 1+ P +ahP
the private and common messages in addition to time sharingRl“f + Row < _ - _
between multiple of such splits. We first consider the retsd l’7< AP +aP ) + 17< AP + ad P )
case of no time sharing, then the case of allowing time sbarin 2 \1+MP+adP 2 \1+XoP+a\P
is considered later. Throughout the paper we use the notatio (10)

v(z) = logy(1 + ). where inequality [(8) correspond to the individual rate con-
I1l. OPTIMIZED HK RATE straint of decoding the common messagegsat receiver 1 and
wo at receiver 2, inequality{9) correspond to the individual
] i ] ) rate constraint of decoding, at receiver 1 andv; at receiver
We first derive an expression for the maximum sum-rate B and inequality{T0) correspond to the sum rate constadint

the HK region assuming no time sharing. For fixedandAs,  jointly decoding both common messagesanduws at receiver
the HK sum-rate is defined as: 1 and receiver 2.

A. No Time Sharing

Rux(M,ho) 2 max (Riy + Riw + Rou + Row) Comparing inequalities {8) and(9), we can see that the
RiusRiw, Rous Raw ~ bound in [9) is more tight than than the bound[ih (8) if:
1
4) | (1+adP+P)(1+aMP+P) \
whereR;, is the rate of a private message decoded at receiver °%2 (14+ M P+ aXaP)(1+ AP +a\P)) =

i, and similarlyR;,, is the rate of a common message decoded (1+aP +MP)(1+aP + \P)
log, (
(

at receiver. ) (11)
Proposition 1: For fixed A\; and )., the HK sum-rate is: or L+ M P +adP)(1+ 3P +ad P)

A P Ao P
Ruk (A1, A2) = 7(1;7213) +7 (ﬁ) + (1+P(14+aX))(1+P(1+a)2)) > (1+P(a+A1))(1+P(a+Az2))

. ara P N ar P which is always true fob < \; < 1 and0 < a < 1. Therefore,
min .. . .
77 + M P+ a\P 77 + X P +a)\ P )’ combining equations{7)[}(9) and {10) gives:

1 (M) 1 (M) } max (Rlu + le + R2u + RZU}) -

2\ Tr P ranp) T2\ 15 P +anP R R, Rau, Rz

(5) _ P _ P
o . _ Ni7awr) " N\T7anp) "
Hence, the optimized HK sum-raf@rs is the solution to the . { ( AP > ( AP >
min g vy Y )

following optimization problem:

14+ MP+a)XP 14+ X P+aMP
RRS(avp) £ 0<§\111.3>\)§<1RHK(/\17)\2) (6) 1 ;\1P+a;\2P 1 ;\2P+a;\1p
S 2\ T+ P ranpP)  27\T 5 %P +anP

Proof: (12)
Based on the discussions in [1]] [4]. [8], it can be shown
that there is no rate loss if we fix the decoding order at ea€imally, the optimized HK rate with no time sharifgrg is
receiver such that both common messages are decoded éitdtieved by maximizind? g x (A1, A2) with respect to\; and
while the private message is decoded last. This is intuitive.



m increasing function im\). Thus, the solution of equation (16)
Next, we try to solve the maximization in Preposition lis achieved af\ that satisfie€2; = Q5. Hence, it follows that:
Since the channel is symmetric, it might seem that only

symmetric power splits (i.ed; = A2 = Agym) Need to be R (a, P) = o (1 + Xasym P + aP)(1 4+ aP) (17)
considered. The following theorem characterizes perfogaa * @sv™\% 4/ = 1062 1+ aXgsymP
under this restriction:

Theorem 1:1f the power splits must satisfh; = X2 = where\,s,,, which is the power splitting ratio of the other
Asym, the maximum symmetric sum rate achievable with ratgser, is the solution to the following equation:
splitting is:

Rom(a,P) = _max _ RizicOu, o) (13) 1/%@@“@ - QAP AP0 P) ag)
27<1+%> if p< s
%% > 0, hence the solution of equatiol {16) is obtained at
5 <(a2p+a_1)(1_a)+ap) Aasym = 1, yielding the sum rateR, ., = logy(1+P+aP).
v 1+a(a?P+a—1) However, it is easy to see th&, sy, < Rsym for this power
= m region.
Based on the structure &y i (A1, \2) for various values of
) a and P, we conjecture that the maximum HK sum-rétggs is
7<12_ > + 7<(1+a) F-(-a) achieved either using symmetric power splits (iJg.= Xy =
Asym) @nd maximizingR i Over Ag,,,, Or by constraining one
if P> a3(a+1) of the users to send only a common message and maximizing
(14)  Rpx over the other user’s power splitting ratio; i.&ps =
and the corresponding optimal power split ratio is: max{ Reym, Rasym}. The main observations that lead to this
conjecture are given in Appendix B. We surprisingly find that
1 if despite the fact that the channel is symmetric, the asynnetr
/\:ym _ % W:l) (15) HK sum rateR,sy,m, Which results in an asymmetric rate for
1—a if P a® user 1 and user 2, outperforms that of the symmetric case
(Fa)(aP) > a%(a+1)

Rsym for a wide range ofr and P values.

Proof: Refer to Appendix A for a detailed proof. m If orthogonal signaling is used instead of rate-splittitig
In the first regionP < 1;2“, Theorem 1 shows that resulting sum-rate is:

transmitting only a private message and treating intenfeze
as noise (i.e.\(a, P) = 1), maximizes the HK sum-rate. This

) . X S . . orth = 7(2P 19

is consistent with the findings of [5]2[7] where it was shown Rorin =1(2P) (19)
that this straliteg?))//gachievles capacity for the further reteti It worthwhile noting that the lower bound studied inl [4]
region: P < 5a7°/% —a™".

If we constrain one of the users to send only a Comm&ﬁrresponds to the HK_?;:m -rate il (631 with the Sl:]bohptlmal
message (i.e.\; = 0 wherei = 1 or 2), the correspondingg oice AlsR_ de =3 e corresponding rate, which we
maximum sum rate achievable with such a structidre,,, is enote asiprw, IS:
obtained by substituting; = 0 and )\, = X in equation [(B), 1 P(l+a)—1
hence: Rerw = min{7 <%> + v (f) ,
Rasym(a, P)—Ogl/\atx Ruyx(A1 =0, =X) ) (1—a—|—a2P> } 20)

o por 2 (£557) (7)) ’
= max min ¥
==t Lrar LraAP Comparisons betweeR, .., Rasym, Rerw and R, for
17 AP +aP +3 1 P +a\P differenta and P values are shown in SectignlIV.
2 1+ AP 1+ a\P
= Joax min{ (a, A, P ), Qa(a, A\, P)} (16)

0<A<L

B. High SNR Results

P
whereQ,(a, A, P) = y(AP) + 7<1Hp) (%) and In order to better understand performance at high SNR, we

B now study the asymptotic sum-rate offset with a fixed value
Qa(a, A, P) = y(A\P) + <ﬁi§'}f) + 37| BKF ). of a and P — oo:
For P > % it can ea5|ly be shown thﬁa& < 0 (i.e, .
Q, is a decreasing function in) and &2 > 0 (i.e, Qs is an AR(a) = lim (R —log,(P)). (21)
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Fig. 2. Compal’ingARsym, ARgsym, ARgTW, and ARy ¢h-

Straightforward calculation yields the following:

3
Afym(a) = tog, () @2)
ARgysym(a) = log, (i\/aa) (23)
I e e I
ARyrip(a) = 1 (25)

Comparing these asymptotic sum-rate offsets, we can cdaclu

the following at the high SNR:

o Roym > Rasym fOr 0 < a < 0.087 while Rysym > Reym
for 0.087 <a < 1.

o Rusym > Roren, foOr all values ofa (i.e., Ry is always
suboptimal at the high SNR), whereRs,,,, < R+, for
VE—2<a<l1.

e Rsym > Rerw for all values ofa which is a result of
the sub-optimal choice of in Rgrw .

It can be further shown thag,,,,, is achieved with\; = Ay =

s While Raaym is achieved With\geym = 2.
[gigurell) gives the plots oA Ry, ARgsym, ARgTw, and

AR, VErsusa.

C. Allowing Time Sharing

By allowing time sharing between multiple power splits,

§(2), we assume that; (1) = a2(2), a1(2) = az(1), M (1) =
A2(2) and A\;(2) = A2(1). This assumption guarantees equal
rates for both usersij = R). Hence, by dropping the time
index notation, the maximum HK sum rate for this case can
be obtained as a straightforward extension of Preposition 1

R P) = R R
1@ P) = e BB ) 0y o T T F2)
Ao P Ao P
= max Y| —— | + Y| ———
0<A1,22<1,0<ay,a0<2 1+alasP 14+ alia1 P

+ min {Fy( alaas P ) +'y( alial P )7
1+ Mo P+ alsas P 1+ XoaoP +alia P
1 Mai P+ adaas P 1 XoasP + aljal P
57(1+)\1a1P+a)\2a2P) 57(1+)\2a2P+a)\1a1P>
Aoy P A2ag P
7(1 + a1 P+ a>\2a2P> * 7(1 + A2 P+ a>\1a1P> H (20)
such thatoy + as = 2.

After numerically solving this optimization problem, we
reach that the maximum HK sum rate for this case is the
maximum of the rates achieved using the following schemes:

1) TDMA: 061(1) = 062(2) =0 and 061(2) = 062(1) =2,
yielding the sum rateR,,;, = v(2P)

SetA(n) = A2(n) and ai(n) = az(n) =1 (i.e., no
advantage for using time sharing), yielding the sum rate
Rsym which is given in Theorem 1.

SetA; or A\ to zero. Using time sharing gives a slight
advantage over the asymmetric scheme rate givénln (17)
(i.e., RasymTs > Rasym)- It is worth noting that if we
choose to sef\; = 0, then the optimization results in
Qg > 0.

Hence, we conjecture thakrs is the maximum ofR,,p,
Rsym, and R.symrs, although this has yet to be proved.

It is also worth noting that a specific time sharing scheme
was considered in_[8]. The author considered the caseé ef
4 time slots, with the following assumptiong(n) = g for
n=1,2, a;(n) =26 fori=1,2 andn = 1,2, (n) = =22
forn = 3,4, 01(3) = az(4) = 2(1 + 20), a2(3) = a1(4) =
0, A1(1) = X2(2) and A1 (2) = A2(1). As an extension of
Preposition 1, the maximum HK sum rate for this case is given
by:

RSasm{aa P) =

2)

3)

max
0<A1 A2 <1,0<A< S

<25RRs(a, 28P) + (1 —28)v(2(1 + 25)13)) (27)

the total tran_smission time can be divided imtbtime slof[s Allowing for time sharing with the same assumptions as in
where each time slot (n = 1, . .., N) correspond to a fraction g gives a slight advantage over the case of no time sharing

d(n) of the whole time (i.e.,Zf:]:1 d(n) = 1). The'th user
can transmit with power up te;(n)P in the n’th time slot

(this power is further split into private and common message

In order to satisfy the power constraint for each usg(n)
andd(n) must satisfy:Zf:]:1 d(n)a;(n)P = P fori = 1,2.

as shown in Section V.

IV. NUMERICAL RESULTS

In Figure[3, the value ofP is fixed to 20 dB, and rates
corresponding to the different schemes with no time sharing

Clearly, orthogonal signaling is a special case of the gdne(r, .., Rusym, Rerw and Ro.,) are plotted. For small

HK strategy (ifa; (n) = 0 while as(n) # 0, or vice versa).
We consider time sharing withv = 2 time slots of equal

durations (i.e.§(1) = §(2) = 3). Thus, the power constraint

per user: is such thata;(1) + «;(2) = 2 for ¢ = 1,2. It

values ofa (a < 0.066), symmetric rate splitting (private

message only) achieves the largest rate. After this there is
a small region for which orthogonal is best.q66 < a <

is noted that TDMA is a special case of this strate?y (e.g.#145), followed by a small region where symmetric rate

a1(1) = a2(2) = 0 and a;1(2) = az(1) = 2). Sinced(1) =

splitting is again the best0(145 < a < 0.182). Finally,
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Fig. 6. Showing the slight advantage of the time sharing melsaRts and
Rsasonover the case with no time sharing fét = 20dB.

for 0.182 < a < 0.9792 asymmetric rate splitting achieves
the largest rate while orthogonal is again the best for the
remaining small region((9792 < a < 1). Notice also that
Rerw < Rsym as expected, due to the sub-optimal choice of
Ain ReTw.

Figure[4 comparesR,y,, Rasym and R, and shows
which strategy is best at each valuescdnd P. The numbered
regions in the figure correspond to:

1) Symmetric rate split with\; = Ay = 1 (i.e., private

messages only).

2) Orthogonal signaling.

3) Asymmetric rate split.

4) Symmetric rate split.

In order to understand these results from the perspectifd],of
the information in Figurgl4 is re-plotted in Figure 5 with yis
equal to INR;z = log(aP) (in dB units) instead ofi. We can
see from Figurgl5 that iffz2 < ; (i.e., region 1), both users
should send only private messages%% ~ 1 (i.e., region

2), orthogonal signaling should be used.%%‘;ﬂ;—i ~ 1 (ie.,
region 3), one of the users should send the common message
only. Finally, if 1 < 'szf; < 1 (i.e., region 4), both users
should use the same private/common split ratio.

In Figure[®, the value ofP is fixed to 20 dB, and rates
corresponding to the time sharing schemegs and Rsason
are compared to the maximum rate achieved with no time
sharing (i.e., maximum ofRsym, Rasym and Ropp). The
slight rate advantage of the time sharing schemes is apiparat
the figure. Figuré€l7 shows the valuescoand P at which the
rates achieved using the time sharing sche®gsand Rsason
outperforms the maximum rate achieved with no time sharing.

V. CONCLUSIONS

We studied the HK achievable sum rate for the two-
user symmetric Gaussian interference channel. Without the
allowance of time sharing we reached the following results:
(a) we derived a closed form expression for the HK sum rate
using symmetric power splits at both users and for the HK sum
rate using asymmetric power splits achieved with one of the
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. It is straightforward
to see thatw > 0 for th|s range ofP, and thus
| A*(a, P) = 1. From [29), this impliesRs,, < ¥i(a, 1, P).
Rrs i Since¥y(a, 1, P) = ¥y(a,1, P) for any values ofe and P,
from (31) we haveR,,,, > ¥,(a, 1, P). Since the upper and
lower bounds match, we have shown the first casé _df (13).
We next consider the range® > 1;2“. Because

0.8

0.7F
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il ] (M O) has only one solution at = A5+, and

0.1 N B smcew >0for )\ < (1+ )( 5 while 8\112(?\)\ ,P) <0
0 R ———— for A > m, it follows that: /\2*(a P) = m
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We now restrict attention t& > a3 @ +1 . By (29), Rsym <

P (SNR) [dB]

Fig. 7. Showing the regions in which time sharing schemepestdrm the Us(a A%, P). For this range ofP, it is stralghtforwar(_j to

no time sharing case for different values ofnd P. see thatWs(a,A\?*, P) < Wi(a,\?*, P). Thus, [31) gives
Rsym > Wa(a,A\**, P). The upper and lower bounds meet,
thereby giving the third case ih (113).

users sending only a common message; (b) we conjectured thewe finally consider the remaining power reglée— <P<

the maximum HK sum-rate is achieved either using symmetrla a® “ . for which we note the following:

power splits or constraining one of the users to send only“a* DU, (aA,P)

common message (i.eRrs = max{Rsym, Rasym }); (C) we * 7A2* <0 .

showed that the asymmetric rate outperforms the symmetric® Wa(a, A", P) > Wi(a, A™, P) )

one for a wide range of and P values. At the high SNR  * Y2(a; A, P) is increasing in\ for A <A™

regime, we showed that far> 0.087, the rate achieved usingAs a result, it follows that the maximum occurs at the

the asymmetric power spliting outperforms the symmetrigtersection of¥;(a, A, P) and Ws(a, A, P) (the intersection

case; (d) we showed that 0rthogona| S|gna||ng performs go@@CUfS in the valid range) The value bft the intersection is

for a wide range of the low SNR regime and ffse ~ 1. A"(a.P) = @’PLa=1 \which completes the proof of the final

Finally, we considered specific time sharing schemes and @@se in [(ZB). In the sum- rate expressmn- nl (13), the functio

show that the advantage of using such time sharing schembs(a, A, P) i (a, A, P) is active for

as opposed to the case of not allowing time sharing, is quite > i and the remalnlng region corresponds to the

a3(a+1)’

small. intersection of¥; and ¥,.
APPENDIX A APPENDIXB
PROOF OFTHEOREM 1 ASYMMETRIC RATE SPLITTING CONJECTURE
Substituting\; = \» = X in equatior[6: Equatior(6 can be written as:
RRs(a,P) max min((I)l(a,P, )\1,/\2),(I)Q(G,P, )\1,)\2))
- 0< A1, M2 <
R B N 49 AP + a\P (32)
symo O?A%(l e ) 14+ a\P ’ where,
AP P+ a)\P
No—73 )+ —5 ®i(a, P, A, A2) =
14+ aAP 14+ a\P P Ao P
. 1 2
= Orggglmln{\lll(a,)\,P), Us(a, A\, P)}, (28) ’Y<1+a/\2p) +7(1—|—a)\1p>
AP+a)P + (D‘—?P + a;\—lP
where ¥ (a, A, P) = 27( ey > and NI+ P +ranP) T "\ T+ P +anp
N (I)Q(CL P /\1 /\2) =
ll)\ 3 3 3
Wa(a, A, P) =~ 1+a>\P +7 gjfia,\g . M P Ao P
We note thatR,,,, is upper bounded as: N1+ als P T 1+a\P
Ryym = max min{®;(a, A, P),Us(a, A, P)} (29) VL MPradP N1 AP taP
0=Asl 2'\1+XNP+a\P) 2'\1+XP+a\P

< max V;(a,\, P) = ¥,;(a, \*, P) (30) =

0<A<1 ForpP > =2 we find that®, is
a decreasmg function iny (i.e., g‘fl < 0). The function®,
is either monotonically increasmg, monotonically desirg
or increasing then decreasingin. Specifically, fixingAs we

Reym > min{¥y(a, N*, P), ¥y(a, \*, P)} (31) can observe the following:

for j = 1,2, where\*(a, P) = arg maxo<a<1 ¥;(a, A, P).
Rgym is also lower bounded by:



1) For small values of Ay, ®2(\;) is monoton-
ically increasing in )y, thus A; that solves
maxo<,,<1 min(®1 (A1), ®2(A1)) is at the intersection
of ®;(A1) and &5(N\;) (i.e., at the value of\; that
satisfies®; (A1) = P2(A\1))

2) For large values of Xy, ®o()\;) is mono-
tonically  decreasing, thus \; that solves
maxo<i,,<1 min((I)l ()\1), (1)2()\1)) is at A1 =0.

3) For the remaining values ofy, ®3(\1) is increasing
till a certain value of \; then decreasing, thug;
that solvesmaxg<y, <1 min(®; (A1), P2(A1)) is either
at \; that satisfies®;(A;) = ®o(N\1) or at A\; =
argmaxy, ®1(\1).

Therefore, based on these observations and from
the symmetry of &; and &, with respect to \;

and )Xy, we conclude that\; and )\, that solve
maxo<ig,a,<1 min(fl)l(a, P, /\17 )\2), (I)Q(CL, P, /\17 )\2)) is
either at the maximum point of the line of intersection
between®; and ®, or at the local maximum ofp;. Two
further observations; it can be shown that the maximum point
of the intersection line is either at; = A\, or at\; = 0 (or

A2 = 0), and the local maximum ob; takes place ak; = )\,
(This can be shown by differentiating; with respect to\;

and A2 and simultaneously solving both equations fqrand

A2).

Hence, we conclude that the solution of
maxo< i, ,\o<1 min((I)l (a, P, A, )\2), (132((1, P, A, )\2)) has
two possibilities:

1) Symmetric splitting ratio at both users (i.83, = Ay =

)\sym)

2) Asymmetric power split withh\; = 0 and A2 = Agoym

(or vice versa).
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