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Abstract—We study the Han-Kobayashi (HK) achievable sum
rate for the two-user symmetric Gaussian interference channel.
We find the optimal power split ratio between the common and
private messages (assuming no time-sharing), and derive a closed
form expression for the corresponding sum rate. This provides a
finer understanding of the achievable HK sum rate, and allowsfor
precise comparisons between this sum rate and that of orthogonal
signaling. One surprising finding is that despite the fact that the
channel is symmetric, allowing for asymmetric power split ratio
at both users (i.e., asymmetric rates) can improve the sum rate
significantly. Considering the high SNR regime, we specify the
interference channel value above which the sum rate achieved
using asymmetric power splitting outperforms the symmetric
case.

I. I NTRODUCTION

The subject of this paper is the interference channel, which
is one of the most fundamental models for wireless communi-
cation systems. Although this model is of utmost importance,
the capacity region for even the simplest two user symmetric
Gaussian interference channel is not yet fully characterized,
except for the special cases of strong interference [1], [2]and
very weak interference [5]–[7]. The best known achievability
strategy for the remaining unsolved cases was proposed by
Han and Kobayashi (HK) in [1], and it combines the ideas of
time-sharing and rate-splitting (i.e., dividing the transmitted
message into two parts: a common part decodable by both
receivers, and a private part decodable only by the intended
receiver). Significant progress towards the general capacity
region was made in [4], where a new capacity upper bound was
derived and it was shown that the HK rate region, restricted
to Gaussian inputs and not allowing for time-sharing, comes
within one bit of that upper bound.

In this paper we build on [4] and more carefully study
the HK achievable rate region. In [4] the authors chose the
private message power to be received at the noise level of the
unintended receiver; although this power split is not optimal,
it is sufficient to achieve the one bit result. On the other hand,
we characterize the exact power split that maximizes the HK
achievable sum rate. By finding the optimal power split, we are
able to obtain a closed form expression for the corresponding
maximum HK sum rate. In turn, this leads to a more precise
understanding of the achievable HK rate. We are able to use
our results to make comparisons between the HK achievable
rate (without time-sharing) and the sum rate of orthogonal
signaling (i.e., TDMA/FDMA), and to exactly identify the

Fig. 1. Two-user Gaussian interference channel

regions where simple orthogonal signaling outperforms rate-
splitting.

Since the channel is symmetric, one would assume that it
is optimal to use symmetric power splitting ratios (i.e., user 1
and user 2 use the same power splitting ratio). However, we
surprisingly find that allowing for asymmetric power splits
can enhance the sum rate. Specifically, if one user sends only
a common message while the second user uses a specific
private/common split, the sum rate outperforms that of the
symmetric case for a wide range of signal and interference
powers. Next, we consider the high SNR regime and precisely
identify the interference channel value above which the rate
achieved using the asymmetric power splitting outperforms
the symmetric case. We further consider specific time sharing
schemes and we show that the advantage of using such time
sharing schemes, as opposed to the case of not allowing time
sharing, is quite small.

II. N ETWORK MODEL

As shown in Figure 1, the two-user Gaussian interference
channel is modeled as:

y1 = h11x1 + h21x2 + z̄1, y2 = h12x1 + h22x2 + z̄2 (1)

where the noise processes̄zi are assumed to be circularly
symmetric Gaussian random variables with varianceN0. The
transmitted signal by each userxi is subject to an average
power constraintPi. We also assume that the codebooks
used are generated using i.i.d. random Gaussian variables as
considered in [4]. We consider the normalized symmetric two-
user Gaussian interference channel, specifically:

|h11| = |h22|, |h12| = |h21|, P1 = P2 = P. (2)
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Thus, the channel can be expressed in standard form as:

y1 = x1 +
√
ax2 + z1, y2 =

√
ax1 + x2 + z2 (3)

wherea = |h21|
2

|h11|2
= |h12|

2

|h22|2
and zi ∼ CN(0, 1). Hence, the

channel considered is fully characterized by the parametersP
(which represents the SNR) and the interference coefficienta.
Since the capacity is already known for the strong interference
case (i.e.,a ≥ 1) [1], [2], we focus exclusively on the range
0 < a < 1.

Each user chooses a power splitting ratioλi (0 ≤ λi ≤ 1)
and transmits a private messageui with powerPui = λiPi

and a common messagewi with powerPwi = λ̄iPi, where
λ̄i = 1 − λi. The common message should be decodable by
both receivers. The channel can be considered as two virtual3-
users multiple access channels, where the first has(u1, w1, w2)
as inputs andy1 as output withu2 treated as noise, and the
second has(u2, w2, w1) as inputs,y2 as output, andu1 is
treated as noise. In general, the HK strategy proposed in [1]
allows for arbitrary splits of each user’s transmit power into
the private and common messages in addition to time sharing
between multiple of such splits. We first consider the restricted
case of no time sharing, then the case of allowing time sharing
is considered later. Throughout the paper we use the notation
γ(x) , log2(1 + x).

III. O PTIMIZED HK RATE

A. No Time Sharing

We first derive an expression for the maximum sum-rate in
the HK region assuming no time sharing. For fixedλ1 andλ2,
the HK sum-rate is defined as:

RHK(λ1, λ2) , max
R1u,R1w ,R2u,R2w

(R1u +R1w
︸ ︷︷ ︸

R1

+R2u +R2w
︸ ︷︷ ︸

R2

)

(4)
whereRiu is the rate of a private message decoded at receiver
i, and similarlyRiw is the rate of a common message decoded
at receiveri.

Proposition 1: For fixedλ1 andλ2, the HK sum-rate is:

RHK(λ1, λ2) = γ

(
λ1P

1 + aλ2P

)

+ γ

(
λ2P

1 + aλ1P

)

+

min

{

γ

(
aλ̄2P

1 + λ1P + aλ2P

)

+ γ

(
aλ̄1P

1 + λ2P + aλ1P

)

,

1

2
γ

(
λ̄1P + aλ̄2P

1 + λ1P + aλ2P

)

+
1

2
γ

(
λ̄2P + aλ̄1P

1 + λ2P + aλ1P

)}

(5)

Hence, the optimized HK sum-rateRRS is the solution to the
following optimization problem:

RRS(a, P ) , max
0≤λ1,λ2≤1

RHK(λ1, λ2) (6)

Proof:
Based on the discussions in [1], [4], [8], it can be shown

that there is no rate loss if we fix the decoding order at each
receiver such that both common messages are decoded first
while the private message is decoded last. This is intuitive

since by decoding the common message of the other user,
part of the interference is canceled off. The private message
will be decoded last, while the private message of the other
user is treated as noise achieving a sum rate of the private
messages of both users given by:

R1u +R2u = γ

(
λ1P

1 + aλ2P

)

+ γ

(
λ2P

1 + aλ1P

)

(7)

Since the common messages from both users are decoded
first while treating both private messages as interference,the
sum rate of both common messages must satisfy the following
constraints:

R1w +R2w ≤

γ

(
λ̄1P

1 + λ1P + aλ2P

)

+ γ

(
λ̄2P

1 + λ2P + aλ1P

)

(8)

R1w +R2w ≤

γ

(
aλ̄2P

1 + λ1P + aλ2P

)

+ γ

(
aλ̄1P

1 + λ2P + aλ1P

)

(9)

R1w +R2w ≤
1

2
γ

(
λ̄1P + aλ̄2P

1 + λ1P + aλ2P

)

+
1

2
γ

(
λ̄2P + aλ̄1P

1 + λ2P + aλ1P

)

(10)

where inequality (8) correspond to the individual rate con-
straint of decoding the common messagesw1 at receiver 1 and
w2 at receiver 2, inequality (9) correspond to the individual
rate constraint of decodingw2 at receiver 1 andw1 at receiver
2, and inequality (10) correspond to the sum rate constraintof
jointly decoding both common messagesw1 andw2 at receiver
1 and receiver 2.

Comparing inequalities (8) and (9), we can see that the
bound in (9) is more tight than than the bound in (8) if:

log2

(
(1 + aλ2P + P )(1 + aλ1P + P )

(1 + λ1P + aλ2P )(1 + λ2P + aλ1P )

)

≥

log2

(
(1 + aP + λ1P )(1 + aP + λ2P )

(1 + λ1P + aλ2P )(1 + λ2P + aλ1P )

)

(11)

or,

(1+P (1+aλ1))(1+P (1+aλ2)) ≥ (1+P (a+λ1))(1+P (a+λ2))

which is always true for0 ≤ λi ≤ 1 and0 < a < 1. Therefore,
combining equations (7), (9) and (10) gives:

max
R1u,R1w,R2u,R2w

(R1u +R1w +R2u +R2w) =

γ

(
λ1P

1 + aλ2P

)

+ γ

(
λ2P

1 + aλ1P

)

+

min

{

γ

(
aλ̄2P

1 + λ1P + aλ2P

)

+ γ

(
aλ̄1P

1 + λ2P + aλ1P

)

,

1

2
γ

(
λ̄1P + aλ̄2P

1 + λ1P + aλ2P

)

+
1

2
γ

(
λ̄2P + aλ̄1P

1 + λ2P + aλ1P

)}

(12)

Finally, the optimized HK rate with no time sharingRRS is
achieved by maximizingRHK(λ1, λ2) with respect toλ1 and
λ2.



Next, we try to solve the maximization in Preposition 1.
Since the channel is symmetric, it might seem that only
symmetric power splits (i.e.,λ1 = λ2 = λsym) need to be
considered. The following theorem characterizes performance
under this restriction:

Theorem 1:If the power splits must satisfyλ1 = λ2 =
λsym, the maximum symmetric sum rate achievable with rate
splitting is:

Rsym(a, P ) = max
0≤λ1=λ2≤1

RHK(λ1, λ2) (13)

=







2γ

(

P
1+aP

)

if P ≤ 1−a
a2

2γ

(

(a2P+a−1)(1−a)+aP
1+a(a2P+a−1)

)

if 1−a
a2 < P ≤ 1−a3

a3(a+1)

γ

(

1−a
2a

)

+ γ

(

(1+a)2P−(1−a)
2

)

if P > 1−a3

a3(a+1)

(14)

and the corresponding optimal power split ratio is:

λ∗
sym =







1 if P ≤ 1−a
a2

a2P+a−1
P if 1−a

a2 < P ≤ 1−a3

a3(a+1)
1−a

(1+a)(aP ) if P > 1−a3

a3(a+1)

(15)

Proof: Refer to Appendix A for a detailed proof.
In the first regionP ≤ 1−a

a2 , Theorem 1 shows that
transmitting only a private message and treating interference
as noise (i.e.,λ(a, P ) = 1), maximizes the HK sum-rate. This
is consistent with the findings of [5]–[7] where it was shown
that this strategy achieves capacity for the further restricted
region:P ≤ 1

2a
−3/2 − a−1.

If we constrain one of the users to send only a common
message (i.e.,λi = 0 where i = 1 or 2), the corresponding
maximum sum rate achievable with such a structureRasym is
obtained by substitutingλ1 = 0 andλ2 = λ in equation (6),
hence:

Rasym(a, P ) = max
0≤λ≤1

RHK(λ1 = 0, λ2 = λ)

= max
0≤λ≤1

[

γ(λP ) + min

{

γ

(
aP

1 + λP

)

+ γ

(
aλ̄P

1 + aλP

)

,

1

2
γ

(
λ̄P + aP

1 + λP

)

+
1

2
γ

(
P + aλ̄P

1 + aλP

)}]

= max
0≤λ≤1

min{Ω1(a, λ, P ) , Ω2(a, λ, P )} (16)

whereΩ1(a, λ, P ) = γ(λP ) + γ

(

aP
1+λP

)

+ γ

(

aλ̄P
1+aλP

)

and

Ω2(a, λ, P ) = γ(λP ) + 1
2γ

(

λ̄P+aP
1+λP

)

+ 1
2γ

(

P+aλ̄P
1+aλP

)

.

For P ≥ 1−a
a2 , it can easily be shown that∂Ω1

∂λ < 0 (i.e,
Ω1 is a decreasing function inλ) and ∂Ω2

∂λ > 0 (i.e, Ω2 is an

increasing function inλ). Thus, the solution of equation (16)
is achieved atλ that satisfiesΩ1 = Ω2. Hence, it follows that:

Rasym(a, P ) = log2

(
(1 + λasymP + aP )(1 + aP )

1 + aλasymP

)

(17)

whereλasym, which is the power splitting ratio of the other
user, is the solution to the following equation:

√

1 + λP

1 + aλP
(1 +P + aP ) =

(1 + λP + aP )(1 + aP )

1 + aλP
. (18)

Otherwise forP < 1−a
a2 , it can be shown that∂Ω1

∂λ > 0 and
∂Ω2

∂λ > 0, hence the solution of equation (16) is obtained at
λasym = 1, yielding the sum rate:Rasym = log2(1+P+aP ).
However, it is easy to see thatRasym < Rsym for this power
region.

Based on the structure ofRHK(λ1, λ2) for various values of
a andP , we conjecture that the maximum HK sum-rateRRS is
achieved either using symmetric power splits (i.e.,λ1 = λ2 =
λsym) and maximizingRHK overλsym or by constraining one
of the users to send only a common message and maximizing
RHK over the other user’s power splitting ratio; i.e.,RRS =
max{Rsym, Rasym}. The main observations that lead to this
conjecture are given in Appendix B. We surprisingly find that
despite the fact that the channel is symmetric, the asymmetric
HK sum rateRasym, which results in an asymmetric rate for
user 1 and user 2, outperforms that of the symmetric case
Rsym for a wide range ofa andP values.

If orthogonal signaling is used instead of rate-splitting,the
resulting sum-rate is:

Rorth = γ(2P ) (19)

It worthwhile noting that the lower bound studied in [4]
corresponds to the HK sum-rate in (6) with the suboptimal
choiceλ1 = λ2 = 1

aP . The corresponding rate, which we
denote asRETW , is:

RETW = min

{

γ

(
1

2a

)

+ γ

(
P (1 + a)− 1

2

)

,

2γ

(
1− a+ a2P

2a

)}

. (20)

Comparisons betweenRsym, Rasym, RETW and Rorth for
differenta andP values are shown in Section IV.

B. High SNR Results

In order to better understand performance at high SNR, we
now study the asymptotic sum-rate offset with a fixed value
of a andP → ∞:

∆R(a) , lim
P→∞

(R − log2(P )). (21)
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Fig. 2. Comparing∆Rsym, ∆Rasym, ∆RETW , and∆Rorth.

Straightforward calculation yields the following:

∆Rsym(a) = log2

(
(1 + a)3

4a

)

(22)

∆Rasym(a) = log2

(
1 + a√

a

)

(23)

∆RETW (a) = log2

(
(2a+ 1)(a+ 1))

4a

)

(24)

∆Rorth(a) = 1 (25)

Comparing these asymptotic sum-rate offsets, we can conclude
the following at the high SNR:

• Rsym > Rasym for 0 < a < 0.087 whileRasym > Rsym

for 0.087 ≤ a < 1.
• Rasym > Rorth for all values ofa (i.e., Rorth is always

suboptimal at the high SNR), whereasRsym < Rorth for√
5− 2 ≤ a < 1.

• Rsym ≥ RETW for all values ofa which is a result of
the sub-optimal choice ofλ in RETW .

It can be further shown thatRsym is achieved withλ1 = λ2 =
1−a

(1+a)(aP ) while Rasym is achieved withλasym = a3/2

1+a−a1/2 .
Figure 2 gives the plots of∆Rsym, ∆Rasym, ∆RETW , and
∆Rorth versusa.

C. Allowing Time Sharing

By allowing time sharing between multiple power splits,
the total transmission time can be divided intoN time slots
where each time slotn (n = 1, . . . , N ) correspond to a fraction
δ(n) of the whole time (i.e.,

∑N
n=1 δ(n) = 1). The i’th user

can transmit with power up toαi(n)P in the n’th time slot
(this power is further split into private and common messages).
In order to satisfy the power constraint for each user,αi(n)
and δ(n) must satisfy:

∑N
n=1 δ(n)αi(n)P = P for i = 1, 2.

Clearly, orthogonal signaling is a special case of the general
HK strategy (ifα1(n) = 0 while α2(n) 6= 0, or vice versa).

We consider time sharing withN = 2 time slots of equal
durations (i.e.,δ(1) = δ(2) = 1

2 ). Thus, the power constraint
per useri is such that:αi(1) + αi(2) = 2 for i = 1, 2. It
is noted that TDMA is a special case of this strategy (e.g. if
α1(1) = α2(2) = 0 andα1(2) = α2(1) = 2). Sinceδ(1) =

δ(2), we assume thatα1(1) = α2(2), α1(2) = α2(1), λ1(1) =
λ2(2) andλ1(2) = λ2(1). This assumption guarantees equal
rates for both users (R1 = R2). Hence, by dropping the time
index notation, the maximum HK sum rate for this case can
be obtained as a straightforward extension of Preposition 1:

RTS(a, P ) = max
0≤λ1,λ2≤1,0≤α1,α2≤2

(R1 +R2)

= max
0≤λ1,λ2≤1,0≤α1,α2≤2

[

γ

(

λ1α1P

1 + aλ2α2P

)

+ γ

(

λ2α2P

1 + aλ1α1P

)

+ min

{

γ

(

aλ̄2α2P

1 + λ1α1P + aλ2α2P

)

+ γ

(

aλ̄1α1P

1 + λ2α2P + aλ1α1P

)

,

1

2
γ

(

λ̄1α1P + aλ̄2α2P

1 + λ1α1P + aλ2α2P

)

+
1

2
γ

(

λ̄2α2P + aλ̄1α1P

1 + λ2α2P + aλ1α1P

)

γ

(

λ̄1α1P

1 + λ1α1P + aλ2α2P

)

+ γ

(

λ̄2α2P

1 + λ2α2P + aλ1α1P

)}]

(26)

such thatα1 + α2 = 2.
After numerically solving this optimization problem, we

reach that the maximum HK sum rate for this case is the
maximum of the rates achieved using the following schemes:

1) TDMA: α1(1) = α2(2) = 0 andα1(2) = α2(1) = 2,
yielding the sum rate:Rorth = γ(2P )

2) Setλ1(n) = λ2(n) and α1(n) = α2(n) = 1 (i.e., no
advantage for using time sharing), yielding the sum rate
Rsym which is given in Theorem 1.

3) Setλ1 or λ2 to zero. Using time sharing gives a slight
advantage over the asymmetric scheme rate given in (17)
(i.e., RasymTS ≥ Rasym). It is worth noting that if we
choose to setλ1 = 0, then the optimization results in
α2 > α1.

Hence, we conjecture thatRTS is the maximum ofRorth,
Rsym, andRasymTS , although this has yet to be proved.

It is also worth noting that a specific time sharing scheme
was considered in [8]. The author considered the case ofN =
4 time slots, with the following assumptions:δ(n) = β for
n = 1, 2, αi(n) = 2β for i = 1, 2 andn = 1, 2, δ(n) = 1−2β

2
for n = 3, 4, α1(3) = α2(4) = 2(1 + 2β), α2(3) = α1(4) =
0, λ1(1) = λ2(2) and λ1(2) = λ2(1). As an extension of
Preposition 1, the maximum HK sum rate for this case is given
by:

RSason(a, P ) = max
0≤λ1,λ2≤1,0≤β≤ 1

2

(

2βRRS(a, 2βP ) + (1− 2β)γ
(
2(1 + 2β)P

)
)

(27)

Allowing for time sharing with the same assumptions as in
[8] gives a slight advantage over the case of no time sharing
as shown in Section IV.

IV. N UMERICAL RESULTS

In Figure 3, the value ofP is fixed to 20 dB, and rates
corresponding to the different schemes with no time sharing
(Rsym, Rasym, RETW and Rorth) are plotted. For small
values of a (a < 0.066), symmetric rate splitting (private
message only) achieves the largest rate. After this there is
a small region for which orthogonal is best (0.066 ≤ a <

0.145), followed by a small region where symmetric rate
splitting is again the best (0.145 ≤ a < 0.182). Finally,
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for 0.182 ≤ a < 0.9792 asymmetric rate splitting achieves
the largest rate while orthogonal is again the best for the
remaining small region (0.9792 ≤ a < 1). Notice also that
RETW ≤ Rsym as expected, due to the sub-optimal choice of
λ in RETW .

Figure 4 comparesRsym, Rasym and Rorth and shows
which strategy is best at each value ofa andP . The numbered
regions in the figure correspond to:

1) Symmetric rate split withλ1 = λ2 = 1 (i.e., private
messages only).

2) Orthogonal signaling.
3) Asymmetric rate split.
4) Symmetric rate split.

In order to understand these results from the perspective of[4],
the information in Figure 4 is re-plotted in Figure 5 with y-axis
equal to INRdB = log(aP ) (in dB units) instead ofa. We can
see from Figure 5 that ifINRdB

SNRdB
< 1

2 (i.e., region 1), both users
should send only private messages. IfINRdB

SNRdB
≈ 1

2 (i.e., region
2), orthogonal signaling should be used. IfINRdB

SNRdB
≈ 1 (i.e.,

region 3), one of the users should send the common message
only. Finally, if 1

2 < INRdB

SNRdB
< 1 (i.e., region 4), both users

should use the same private/common split ratio.
In Figure 6, the value ofP is fixed to 20 dB, and rates

corresponding to the time sharing schemesRTS and RSason

are compared to the maximum rate achieved with no time
sharing (i.e., maximum ofRsym, Rasym and Rorth). The
slight rate advantage of the time sharing schemes is apparatin
the figure. Figure 7 shows the values ofa andP at which the
rates achieved using the time sharing schemesRTS andRSason

outperforms the maximum rate achieved with no time sharing.

V. CONCLUSIONS

We studied the HK achievable sum rate for the two-
user symmetric Gaussian interference channel. Without the
allowance of time sharing we reached the following results:
(a) we derived a closed form expression for the HK sum rate
using symmetric power splits at both users and for the HK sum
rate using asymmetric power splits achieved with one of the
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users sending only a common message; (b) we conjectured that
the maximum HK sum-rate is achieved either using symmetric
power splits or constraining one of the users to send only a
common message (i.e.,RRS = max{Rsym, Rasym}); (c) we
showed that the asymmetric rate outperforms the symmetric
one for a wide range ofa and P values. At the high SNR
regime, we showed that fora > 0.087, the rate achieved using
the asymmetric power splitting outperforms the symmetric
case; (d) we showed that orthogonal signaling performs good
for a wide range of the low SNR regime and forINRdB

SNRdB
≈ 1

2 .
Finally, we considered specific time sharing schemes and we
show that the advantage of using such time sharing schemes,
as opposed to the case of not allowing time sharing, is quite
small.

APPENDIX A
PROOF OFTHEOREM 1

Substitutingλ1 = λ2 = λ in equation 6:

Rsym = max
0≤λ≤1

min

{

2γ

(
λP + aλ̄P

1 + aλP

)

,

γ

(
λP

1 + aλP

)

+ γ

(
P + aλ̄P

1 + aλP

)}

= max
0≤λ≤1

min{Ψ1(a, λ, P ) , Ψ2(a, λ, P )}, (28)

whereΨ1(a, λ, P ) = 2γ

(

λP+aλ̄P
1+aλP

)

and

Ψ2(a, λ, P ) = γ

(

λP
1+aλP

)

+ γ

(

P+aλ̄P
1+aλP

)

.

We note thatRsym is upper bounded as:

Rsym = max
0≤λ≤1

min{Ψ1(a, λ, P ),Ψ2(a, λ, P )} (29)

≤ max
0≤λ≤1

Ψj(a, λ, P ) = Ψj(a, λ
j∗, P ) (30)

for j = 1, 2, whereλj∗(a, P ) = argmax0≤λ≤1 Ψj(a, λ, P ).
Rsym is also lower bounded by:

Rsym ≥ min{Ψ1(a, λ
j∗, P ) , Ψ2(a, λ

j∗, P )} (31)

for j = 1, 2.
We first consider the caseP < 1−a

a2 . It is straightforward
to see that∂Ψ1(a,λ,P )

∂λ > 0 for this range ofP , and thus
λ1∗(a, P ) = 1. From (29), this impliesRsym ≤ Ψ1(a, 1, P ).
SinceΨ1(a, 1, P ) = Ψ2(a, 1, P ) for any values ofa andP ,
from (31) we haveRsym ≥ Ψ1(a, 1, P ). Since the upper and
lower bounds match, we have shown the first case of (13).

We next consider the rangeP > 1−a
a2 . Because

(
∂Ψ2(a,λ,P )

∂λ = 0
)

has only one solution atλ = 1−a
(1+a)(aP ) , and

since ∂Ψ2(a,λ,P )
∂λ > 0 for λ < 1−a

(1+a)(aP ) while ∂Ψ2(a,λ,P )
∂λ < 0

for λ > 1−a
(1+a)(aP ) , it follows that:λ2∗(a, P ) = 1−a

(1+a)(aP ) .

We now restrict attention toP > 1−a3

a3(a+1) . By (29),Rsym ≤
Ψ2(a, λ

2∗, P ). For this range ofP , it is straightforward to
see thatΨ2(a, λ

2∗, P ) < Ψ1(a, λ
2∗, P ). Thus, (31) gives

Rsym ≥ Ψ2(a, λ
2∗, P ). The upper and lower bounds meet,

thereby giving the third case in (13).
We finally consider the remaining power region1−a

a2 < P ≤
1−a3

a3(a+1) , for which we note the following:

•
∂Ψ1(a,λ,P )

∂λ < 0
• Ψ2(a, λ

2∗, P ) > Ψ1(a, λ
2∗, P )

• Ψ2(a, λ, P ) is increasing inλ for λ < λ2∗

As a result, it follows that the maximum occurs at the
intersection ofΨ1(a, λ, P ) andΨ2(a, λ, P ) (the intersection
occurs in the valid range). The value ofλ at the intersection is
λ∗(a, P ) = a2P+a−1

P which completes the proof of the final
case in (13). In the sum-rate expression in (13), the function
Ψ1(a, λ, P ) is active forP ≤ 1−a

a2 , Ψ2(a, λ, P ) is active for
P > 1−a3

a3(a+1) , and the remaining region corresponds to the
intersection ofΨ1 andΨ2.

APPENDIX B
ASYMMETRIC RATE SPLITTING CONJECTURE

Equation 6 can be written as:

RRS(a, P ) = max
0≤λ1,λ2≤1

min(Φ1(a, P, λ1, λ2),Φ2(a, P, λ1, λ2))

(32)
where,

Φ1(a, P, λ1, λ2) =

γ

(
λ1P

1 + aλ2P

)

+ γ

(
λ2P

1 + aλ1P

)

+γ

(
aλ̄2P

1 + λ1P + aλ2P

)

+ γ

(
aλ̄1P

1 + λ2P + aλ1P

)

Φ2(a, P, λ1, λ2) =

γ

(
λ1P

1 + aλ2P

)

+ γ

(
λ2P

1 + aλ1P

)

+
1

2
γ

(
λ̄1P + aλ̄2P

1 + λ1P + aλ2P

)

+
1

2
γ

(
λ̄2P + aλ̄1P

1 + λ2P + aλ1P

)

ForP ≥ 1−a
a2 and for a fixed value ofλ2, we find thatΦ1 is

a decreasing function inλ1 (i.e., ∂Φ1

∂λ1

< 0). The functionΦ2

is either monotonically increasing, monotonically decreasing
or increasing then decreasing inλ1. Specifically, fixingλ2 we
can observe the following:



1) For small values of λ2, Φ2(λ1) is monoton-
ically increasing in λ1, thus λ1 that solves
max0≤λ1,≤1 min(Φ1(λ1),Φ2(λ1)) is at the intersection
of Φ1(λ1) and Φ2(λ1) (i.e., at the value ofλ1 that
satisfiesΦ1(λ1) = Φ2(λ1))

2) For large values of λ2, Φ2(λ1) is mono-
tonically decreasing, thus λ1 that solves
max0≤λ1,≤1 min(Φ1(λ1),Φ2(λ1)) is at λ1 = 0.

3) For the remaining values ofλ2, Φ2(λ1) is increasing
till a certain value ofλ1 then decreasing, thusλ1

that solvesmax0≤λ1,≤1 min(Φ1(λ1),Φ2(λ1)) is either
at λ1 that satisfiesΦ1(λ1) = Φ2(λ1) or at λ1 =
argmaxλ1

Φ1(λ1).

Therefore, based on these observations and from
the symmetry of Φ1 and Φ2 with respect to λ1

and λ2, we conclude that λ1 and λ2 that solve
max0≤λ1,λ2≤1 min(Φ1(a, P, λ1, λ2),Φ2(a, P, λ1, λ2)) is
either at the maximum point of the line of intersection
betweenΦ1 and Φ2 or at the local maximum ofΦ1. Two
further observations; it can be shown that the maximum point
of the intersection line is either atλ1 = λ2 or at λ1 = 0 (or
λ2 = 0), and the local maximum ofΦ1 takes place atλ1 = λ2

(This can be shown by differentiatingΦ1 with respect toλ1

andλ2 and simultaneously solving both equations forλ1 and
λ2).

Hence, we conclude that the solution of
max0≤λ1,λ2≤1 min(Φ1(a, P, λ1, λ2),Φ2(a, P, λ1, λ2)) has
two possibilities:

1) Symmetric splitting ratio at both users (i.e.,λ1 = λ2 =
λsym)

2) Asymmetric power split withλ1 = 0 andλ2 = λasym

(or vice versa).

REFERENCES

[1] T. Han and K. Kobayashi,”A new achievable rate region for the
interference channel,”IEEE Transactions on Information Theory, vol.
IT-27, no. 1, pp. 4960, Jan. 1981.

[2] H. Sato,”The capacity of the Gaussian interference channel under strong
interference,” IEEE Transactions on Information Theory, vol. IT-27, no.
6, pp. 786688, Nov. 1981.

[3] G. Kramer, ”Outer bounds on the capacity of Gaussian interference
channels,” IEEE Transactions on Information Theory, vol. 50, no. 3, pp.
581586, Mar. 2004.

[4] R. Etkin, D. Tse and H. Wang,”Gaussian Interference Channel Capacity
to Within One Bit,” IEEE Transactions on Information Theory, vol. 54,
no. 12, pp. 55345562, Dec. 2008.

[5] V. Annapureddy and V. Veeravalli”Gaussian Interference Networks: Sum
Capacity in the Low Interference Regime and New Outer Boundson
the Capacity Region”Submitted to IEEE Transactions on Information
Theory, February 2008. Revised Nov 2008.

[6] A. S. Motahari and A. K. Khandani,”Capacity Bounds for the Gaussian
Interference Channel,”Library Archives Canada, 2007, Tech. Rep. UW-
ECE 2007-26.

[7] X. Shang, G. Kramer, and B. Chen,”A new outer bound and the noisy-
interference sum-rate capacity for Gaussian interferencechannels,”IEEE
Trans. Inf. Theory, vol. 55, no. 2, pp. 689699, Feb. 2009.

[8] I. Sason, ”On achievable rate regions for the Gaussian interference
channel,” IEEE Trans. Inf. Theory, vol. 50, no. 6, pp. 13451356, Jun.
2004

[9] D. Tuninetti and Y. Weng,”On the Han-Kobayashi achievable region for
Gaussian Interference Channels,”International Symposium on Informa-
tion Theory (ISIT), July 2008.


	I Introduction
	II Network Model
	III Optimized HK Rate
	III-A No Time Sharing
	III-B High SNR Results
	III-C Allowing Time Sharing

	IV Numerical Results
	V Conclusions
	Appendix A: Proof of Theorem 1
	Appendix B: Asymmetric Rate Splitting Conjecture
	References

