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Abstract

We propose a new yet natural algorithm for learning the graph structure of general discrete
graphical models (a.k.a. Markov random fields) from samples. Our algorithm finds the
neighborhood of a node by sequentially adding nodes that produce the largest reduction in
empirical conditional entropy; it is greedy in the sense that the choice of addition is based
only on the reduction achieved at that iteration. Its sequential nature gives it a lower
computational complexity as compared to other existing comparison-based techniques, all
of which involve exhaustive searches over every node set of a certain size. Our main result
characterizes the sample complexity of this procedure, as a function of node degrees, graph
size and girth in factor-graph representation. We subsequently specialize this result to the
case of Ising models, where we provide a simple transparent characterization of sample
complexity as a function of model and graph parameters.

For tree graphs, our algorithm is the same as the classical Chow-Liu algorithm, and in
that sense can be considered the extension of the same to graphs with cycles.

1. Introduction

Markov Random Fields (MRF), or undirected graphical models, encode conditional in-
dependence relations between random variables. Depending on the application at hand,
nodes of a graphical model may represent people, genes, languages, processes, etc., while
the graphical model illustrates certain conditional dependencies among them (for example,
influence in a social network, physiological functionality in genetic networks, etc.). Often
the knowledge of the underlying graph is not available beforehand, but must be inferred
from certain observations of the system. In mathematical terms, these observations corre-
spond to samples drawn from the underlying distribution. Thus, the core task of structure
learning is that of inferring conditional dependencies between random variables from i.i.d
samples drawn from their joint distribution. The importance of the MRF in understanding
the underlying system makes structure learning an important primitive for studying such
systems.

This paper proposes a new yet natural method to infer the graph structure of an MRF
from samples, and analytically characterizes its sample complexity in terms of graph and

∗. The results in this paper were presented in (Netrapalli et al., 2010) without proofs of the theorems. This
paper includes all the proofs along with simulations.

1

ar
X

iv
:1

20
2.

17
87

v1
  [

st
at

.M
L

] 
 8

 F
eb

 2
01

2



model parameters. Our algorithm is based on the fact that the graph neighborhood of a
node is also its Markov blanket, and conditioned on it the node’s variable is independent
of all others. We build this neighborhood in a greedy fashion, by sequentially adding the
nodes that give the biggest reductions in conditional entropy. Our analytical results – both
for general models and Ising models – require lower bounds on the girth of the graph. In
practice – for both synthetic examples and a real dataset drawn from senate voting records
– our algorithm is seen to perform quite well even for graphs with lots of small cycles.

Our algorithm has lower computational complexity as compared to other algorithms
that are not tailored to specific model classes (note that if we know a-priori that we are
looking for an Ising model, or a Gaussian one, faster methods exist). We review and compare
our algorithms to existing literature below. We also elaborate on the sense in which our
algorithm can be thought of as an extension of the Chow-Liu algorithm (Chow and Liu,
1968) to graphs with cycles.

The remaining sections are organized as follows. In Section 2, we review graphical models
and some results from information theory, and set up the structure learning problem. Our
new structure learning algorithm, GreedyAlgorithm(ε), is given in Section 3. Next, in
Section 4, we develop a sufficient condition for the correctness of the algorithm for general
graphs. To demonstrate the applicability of this condition, we translate it into equivalent
conditions for learning an Ising model in Section 5. We present simulation results evaluating
our algorithm in Section 6. We discuss future work and conclude in Section 7. The proofs
of theorems are in the Appendix.

1.1 Related Work

Learning the structure of graphical models is a well-established problem; existing work
falls into two broad categories. The first category involves methods tailored for a specific
parametric form of the probability distribution. In particular, when a parametric family is
known, the (log) likelihood of the data is written as a function (often convex) of the param-
eters of the distribution; this likelihood is then maximized, often with added regularizers
like an `1 penalty, to find the parameters and hence the graph structure. Examples in this
category include (Ravikumar et al., 2011; El Karoui, 2008; Furrer and Bengtsson, 2007;
Zhou et al., 2010; Anandkumar and Tan, 2011a) for Gaussian graphical models, (Raviku-
mar et al., 2010; Banerjee et al., 2008; Santhanam and Wainwright, 2009) for Ising models,
(Jalali et al., 2011) for general discrete pairwise graphical models.

The other category of graphical model structure learning algorithms are those that do
not need to assume (and cannot leverage) specific parametric forms of the distribution.
Rather, they are based on the notion that a node’s Markov blanket, i.e. its neighborhood
in the graphical model, makes a node conditionally independent of other nodes. Examples
of such algorithms include (Chow and Liu, 1968; Abbeel et al., 2006; Bresler et al., 2008;
Anandkumar and Tan, 2011b; Bento and Montanari, 2009). All of these methods involve
an exhaustive search over all subsets of nodes upto a certain size d – typically the degree of
the node whose neighborhood we are trying to find. This results in a high computational
complexity for the algorithms.

This paper falls into the latter category, but avoids the high computational complexity
of exhaustive searching by building the sets in a greedy fashion instead.
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Finally, we note that if the graph is a tree, our method is equivalent to the classical
Chow-Liu method (Chow and Liu, 1968). In particular, (Chow and Liu, 1968) involves
making a max-weight spanning tree where the edge weights are mutual information. From
any given fixed node’s perspective, this algorithm adds edges in the same order as our
algorithm; i.e. greedily adding nodes that give the biggest reduction in conditional entropy.
In that sense, our algorithm can be considered a generalization of (Chow and Liu, 1968) to
graphs with cycles.

2. Preliminaries

We now setup the (standard) graphical model structure learning problem. Let X be a p-
dimensional random vector {X1, X2, . . . , Xp}, where each component Xi of X takes values in
a finite set X . We use the shorthand notation P (xi) , P(Xi = xi), xi ∈ X , and similarly for
a set A ⊆ {1, 2, . . . , p}, we define P (xA) , P(XA = xA), xa ∈ X |A|, where XA , {Xi|i ∈ A}.

Let G be the Markov graph of X, with vertex set V (one node i ∈ V for each variable
Xi), and edge set E. In particular, this means that the probability distribution of X
satisfies the local markov property (Lauritzen, 1996) with respect to G: for every i ∈ V ,
if its neighborhood in G is N(i), then for any set B ∈ V \ {i} ∪ N(i), we have that
P (xi|xN(i), xB) = P (xi|xN(i)) for all (xi, xN(i), xB).

Our goal is to learn the structure of G – i.e. the set of its edges E – from n vector samples
x(1), . . . , x(n), which are drawn iid from the joint distribution. The empirical distribution P̂
is defined as follows; for any set A of variables (nodes) and corresponding values xA,

P̂ (xA) ,
1

n

n∑
i=1

1{x(i)A =xA}

The empirical entropy and conditional entropy refer to the corresponding quantities for this
empirical distribution P̂ . In this paper we will refer to the true entropies by H and the
empirical ones by Ĥ. The following fact is immediate from conditional independence and
the Data Processing Inequality, see (Cover and Thomas, 2006).

Proposition 1 For any node i ∈ V , its neighborhood N(i) in G, and any set A ⊆ V \ {i},
we have that

H(Xi|XN(i)) ≤ H(Xi|XA),

Motivated by this relationship, (Abbeel et al., 2006) advocated finding N(i) by exhaustive
searching over all sets of size less than d, where d is the (upper bound on the) degree of node
i. Our method avoids this exhaustive search, but builds the neighborhood in a sequential
greedy fashion.

Of course, any algorithm would need to work with samples, which in our case would
be empirical entropies. We find the following result – obtained by combining Theorem
16.3.2 and Lemma 16.3.1 from (Cover and Thomas, 2006) – useful in translating between
conditions on the true and empirical entropy quantities.

Proposition 2 Let P and Q be two probability mass functions in a finite set X , with
entropies H(P ) and H(Q) respectively, and with total variational distance ||P −Q||1 given
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by:

||P −Q||1 =
∑
x∈X
|P (x)−Q(x)|.

Then

|H(P )−H(Q)| ≤ −||P −Q||1 log
||P −Q||1
|X |

. (1)

Further, if the relative entropy between them is given by D(P ||Q), then

D(P ||Q) ≥ 1

2 log 2
||P −Q||21. (2)

We characterize the sample complexity of our algorithm for a class of graphs and mod-
els. We specify these models in terms of their factor graph, which we define below for
completeness.

Definition 1 (Factor Graph) Given a graphical model G(V,E) its factor graph is a bi-
partite graph Gf with vertex set V ∪ C where each vertex c ∈ C corresponds to a maximal
clique in G. For any v ∈ V and c ∈ C, there is an edge {v, c} in Gf if and only if v ∈ c in
G.

We have the following simple lemma relating the distance between two nodes i, j ∈ V in
the graphs G and Gf .

Lemma 1 Given a graph G, let Gf be its factor graph. Then for every i, j ∈ V we have
df (i, j) = 2d(i, j) where d and df are the distances between i and j in G and Gf respectively.

3. The GreedyAlgorithm(ε) Structure Learning Algorithm

We now present our method, GreedyAlgorithm(ε), which proceeds by finding the Markov
neighborhood of each node separately. For the neighborhood of node i, it starts with an
empty set and iteratively adds nodes that bring the largest additional decrease in (empirical)
conditional entropy. It stops when this decrease is less than ε/2. The formal specification
is presented in Algorithm 1.

4. Sufficient Conditions for General Discrete Graphical Models

In this section, we provide guarantees for general discrete graphical models, under which
GreedyAlgorithm(ε) recovers the graphical model structure exactly. First, using an exam-
ple, we build up intuition for the sufficient conditions, and define two key notions: non-
degeneracy conditions and correlation decay. Our main result is presented in Section 4.2,
wherein we give a sufficient condition for the correctness of the algorithm in general discrete
graphical models.

4.1 Non-Degeneracy and Correlation Decay

Before analyzing the correctness of structure learning from samples, a simpler problem worth
considering is one of algorithm consistency, i.e., does the algorithm succeed to identify the
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Algorithm 1 GreedyAlgorithm(ε)

1: for i ∈ V do
2: complete ← FALSE
3: N̂(i)← Φ
4: while !complete do
5: j = argmin

k∈V \N̂(i)

Ĥ(Xi | XN̂(i)
, Xk)

6: if Ĥ(Xi | XN̂(i)
, Xj) < Ĥ(Xi | XN̂(i)

)− ε
2 then

7: N̂(i)← N̂(i) ∪ {j}
8: else
9: complete ← TRUE

10: end if
11: end while
12: end for

true graph given the true conditional distributions (or in other words, given an infinite
number of samples). It turns out that the algorithm as presented in Algorithm 1 does not
even possess this property, as is illustrated by the following counter-example

Let V = {0, 1, · · · , D,D+1}, Xi ∈ {−1, 1}∀i ∈ V and E = {{0, i}, {i,D + 1} | 1 ≤ i ≤ D}.
Let P (xV ) = 1

Z

∏
{i,j}∈E

eθxixj , where Z is a normalizing constant (this is the classical zero-

field Ising model potential). The graph is shown in Fig. 1.

0

1

2

D

D+1

Figure 1: An example of adding spurious nodes: Execution of GreedyAlgorithm(ε) for node
0 adds node D + 1 in the first iteration, even though it is not a neighbor.

Suppose the actual entropies are given as input to Algorithm 1. It can be shown in
this case that for a given θ, there exists a Dthresh such that if D > Dthresh, then the
output of Algorithm 1 will select the edge {0, D + 1} in the first iteration. This is easily
understood because if D is large, the distribution of node 0 is best accounted for by node
D + 1, although it is not a neighbor. Thus, even with exact entropies, the algorithm will
always include edge (0, D + 1), although it does not exist in the graph.

The algorithm can however easily be shown to satisfy the following weaker consistency
guarantee: given infinite samples, for any node in the graph, the algorithm will return a
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super-neighborhood, i.e., a superset of the neighborhood of i. This suggests a simple fix to
obtain a consistent algorithm, as we can follow the greedy phase by a ‘node-pruning’ phase,
wherein we test each node in the neighborhood of a node i returned by the algorithm (to do
this, we can compare the entropy of i conditioned on the neighborhood with and without
a node, and remove it if they are the same). However the problem is complicated by the
presence of samples, as pruning a large super-neighborhood requires calculating estimates
of entropy conditioned on a large number of nodes, and hence this drives up the sample
complexity. In the rest of the paper, we avoid this problem by ignoring the pruning step,
and instead prove a stronger correctness guarantee: given any node i, the algorithm always
picks a correct neighbor of i as long as any one remains undiscovered. Towards this end,
we first define two conditions which we require for the correctness of GreedyAlgorithm(ε).

Assumption 1 (Non-degeneracy) Choose a node i. Let N(i) be the set of its neighbors.
Then ∃ε > 0 such that ∀ A ⊂ N(i), ∀ j ∈ N(i) \A and ∀ l ∈ N(j) \ {i}, we have that

H(Xi | XA)−H(Xi | XA, Xj) > ε and (3)

H(Xi | XA, Xl)−H(Xi | XA, Xj , Xl) > ε (4)

Assumption 1 is illustrated in Fig. 2.

A

i
j l

Figure 2: Non-degeneracy condition for node i: (i) Entropy of i conditioned on any sub-
neighborhood A reduces by at-least ε if any other neighbor j is added to the
conditioning set, (ii) Entropy of i conditioned on A and a two hop neighbor l
reduces by at-least ε if the corresponding one hop neighbor j is added to the
conditioning set

Assumption 2 (Correlation Decay) Choose a node i. Let N1(i) and N2(i) be the sets
of its 1-hop and 2-hop neighbors respectively. Choose another set of nodes B. Let d(i, B) =
min
j∈B

d(i, j), where d(i, j) denotes the distance between nodes i and j. Then, we have that

∀xi, xN1(i), xN2(i), xB∣∣P (xi, xN1(i), xN2(i) | xB)− P (xi, xN1(i), xN2(i))
∣∣ < f(d(i, B))

6



where f is a monotonic decreasing function.

Assumption 1 (or a variant thereof) is a standard assumption for showing correctness
of any structure learning algorithm, as it ensures that there is a unique minimal graphical
model for the distribution from which the samples are generated. Although the way we
state the assumption is tailored to our algorithm, it can be shown to be equivalent to
similar assumptions in literature(Bresler et al., 2008). Informally speaking, Assumption 1
states that for node i, any 2-hop neighbor captures less information about node i than the
corresponding 1-hop neighbor. In the case of a Markov Chain, Assumption 1 reduces to a
weaker version of an ε−Data Processing Inequality (i.e., DPI with an epsilon gap), and in
a sense, Assumption 1 can be viewed as a generalized ε−DPI for networks with cycles.

On the other hand, Assumption 2 along with large girth implies that the information a
node j has about node i is ‘almost Markov’ along the shortest path between i and j. This
in conjunction with Assumption 1 implies that for any two nodes i and k, the information
about i captured by k is less than that captured by j where j is the neighbor of i on the
shortest path between i and k. It is also known (Bento and Montanari, 2009) that structure
learning is a much harder problem when there is no correlation decay.

4.2 Guarantees for the Recovery of a General Graphical Model

We now state our main theorem, wherein we give a sufficient condition for correctness of
GreedyAlgorithm(ε) in a general graphical model.

The counter-example given in Section 4.1 suggests that the addition of spurious nodes
to the neighborhood of i is related to the existence of non-neighboring nodes of i which
somehow accumulate sufficient influence over it. The accumulation of influence is due to
slow decay of influence on short paths (corresponding to a high θ in the example), and
the effect of a large number of such paths (corresponding to high D). Correlation decay
(Assumption 2) allows us to control the first. Intuitively, the second can be controlled if
the neighborhood of i is ‘locally tree-like’. To quantify this notion, we define the girth of
a graph Girth(G) to be the length of the smallest cycle in the graph G. Now we have the
following theorem.

Theorem 2 Consider a graphical model G where the random variable corresponding to
each node takes values in a set X and satisfies the following:

• Non-degeneracy (Assumption 1) with parameter ε,

• Correlation decay (Assumption 2) with decay function f(·),

• Maximum degree D.

Define h , h(ε,D) , ε2|X |−2(D+1)2

64 and suppose f−1(h) exists. Further suppose Gf (the
factor graph of G) obeys the following condition:

Girth(Gf ) , gf > 4
(
f−1 (h) + 1

)
. (5)

Then, given δ > 0, GreedyAlgorithm(ε) recovers G exactly with probability greater than 1−δ
with sample complexity n = ξ

(
ε−4 log p

δ

)
, where ξ is a constant independent of p, ε and δ.
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The proof follows from the following two lemmas. Lemma 3 implies that if we had access to
actual entropies, Algorithm 1 always recovers the neighborhood of a node exactly. Lemma
4 shows that with the number of samples n as stated in Theorem 2, the empirical entropies
are very close to the actual entropies with high probability and hence Algorithm 1 recovers
the graphical model structure exactly with high probability even with empirical entropies.

Lemma 3 Consider a graphical model G in which node i satisfies Assumptions 1 and 2.
Let the girth of Gf be gf > 4

(
f−1 (h) + 1

)
, where h is as defined in Theorem 2. Then,

∀ A ( N(i), u /∈ N(i), ∃ j ∈ N(i) \A such that

H(Xi | XA, Xj) < H(Xi | XA, Xu)− 3ε

4
(6)

Proof If A separates i and u in Gf it also does so in G. Then we have that P (xi|xA, xu) =
P (xi|xA) and hence H(Xi | XA, Xu) = H(Xi | XA). Then, the statement of the lemma
follows from (3).

Now suppose A does not separate i and u in Gf . Consider the shortest path between i
and u in Gf \A. Let j ∈ N(i) \A and l ∈ N(j) \ {i} be on that shortest path. Assumption
1 implies that H(Xi | XA, Xl) − H(Xi | XA, Xj , Xl) > ε. Now, choose B ∈ V such that

A ∪ B ∪ {j} separates i and l in Gf and df (i, B) ≥ gf−4
2 , where gf is the girth of Gf .

Note that such a B (possibly empty) exists since the girth of Gf is gf and if a node in the
separator is a factor node (i.e., not in V ) then we can replace it by all its neighbors (in V ).

We then see using Lemma 1 that d(i, B) ≥ gf−4
4 . From Assumption 2, we know that

|P (xi, xN(i)∪N2(i))− P (xi, xN(i)∪N2(i) | xB)| < f
(gf

4 − 1
)

⇒
∑

xi,xA,xj

|P (xi, xA, xj)− P (xi, xA, xj | xB)| < |X |(D+1)2f
(gf

4
− 1
)
∀ xB

⇒ H(Xi, XA, Xj)−H(Xi, XA, Xj | XB) < −|X |(D+1)2f
(gf

4 − 1
) (

log f
(gf

4 − 1
))

, ε̂
⇒ (H(Xi | XA, Xj) +H(XA, Xj))− (H(Xi | XA, Xj , XB) +H(XA, Xj | XB)) < ε̂
⇒ H(Xi | XA, Xj)−H(Xi | XA, Xj , XB) < ε̂,

where the first implication follows from marginalizing irrelevant variables and the second
implication follows from (1). Using this we have that,

H(Xi | XA, Xj , Xl) ≥ H(Xi | XA, Xj , Xl, XB)

= H(Xi | XA, Xj , XB) since Xi

XA,Xj ,XB

⊥⊥ Xl

> H(Xi | XA, Xj)− ε̂

Using a similar argument, we also have,

H(Xi | XA, Xl, Xu) > H(Xi | XA, Xl)− ε̂

Combining the two inequalities, and using the fact that under the given conditions ε̂ < ε
8 ,

we get

H(Xi | XA, Xj) ≤ H(Xi | XA, Xu)− 3ε

4
.
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Lemma 4 Consider a graphical model G in which each node takes values in X . Let the
number of samples be

n > 215ε−4|X |4(D+2)
(

(D + 2) log 2|X |+ 2 log
p

δ

)
Then ∀ i ∈ G, with probability greater than 1− δ

p , we have that ∀ A ⊆ N(i), u /∈ N(i)∣∣∣H(Xi | XA, Xu)− Ĥ(Xi | XA, Xu)
∣∣∣ < ε

8

Proof We use the fact that given sufficient samples, the empirical measure is close to the
true measure uniformly in probability. Specifically, given any subset A ⊆ V of nodes and
any fixed xA ∈ X |A|, we have by Azuma’s inequality after n samples,

P
[∣∣∣P (xA)− P̂ (xA)

∣∣∣ > γ
]
< 2 exp(−2γ2n) <

2δ

p2(2|X |)(D+2)
.

where γ = 2−8ε2|X |−2(D+2). Let V be the set of all vertices. Now, by union bound over
every A ⊆ N(i), u ∈ V and xi, xA, xu, we have

P
[∣∣∣P (xi, xA, xu)− P̂ (xi, xA, xu)

∣∣∣ > γ
]
<
δ

p
.

(1) then implies

P
[∣∣∣H(Xi | XA, Xu)− Ĥ(Xi | XA, Xu)

∣∣∣ > ε

8

]
<
δ

p
.

giving us the required result.

Using Lemmas 3 and 4, we have the following : ∀ i ∈ G, such that Assumptions 1 and 2 are
satisfied, with probability greater than 1 − δ

p , we have that ∀ A ⊆ N(i), u /∈ N(i), ∃ j ∈
N(i) \A such that

Ĥ(Xi | XA, Xj) < Ĥ(Xi | XA, Xu)− ε

2
(7)

and ∀ i ∈ G, such that Assumptions 1 and 2 are satisfied, ∀A ⊂ N(i), j ∈ N(i) \ A, we
have that

Ĥ(Xi | XA, Xj) < Ĥ(Xi | XA)− ε

2
(8)

Proof [Theorem 2] The proof is based on mathematical induction. The induction claim
is as follows: just before entering an iteration of the WHILE loop, N̂(i) ⊂ N(i). Clearly
this is true at the start of the WHILE loop since N̂(i) = Φ. Suppose it is true just

after entering the kth iteration. If N̂(i) = N(i) then clearly ∀j ∈ V \ N̂(i), H(Xi |
X
N̂(i)

, Xj) = H(Xi | XN̂(i)
). Since with probability greater than 1 − δ

p we have that∣∣∣Ĥ(Xi | XN̂(i)
, Xj)−H(Xi | XN̂(i)

, Xj)
∣∣∣ < ε

8 and
∣∣∣Ĥ(Xi | XN̂(i)

)−H(Xi | XN̂(i)
)
∣∣∣ < ε

8 , we

also have that
∣∣∣Ĥ(Xi | XN̂(i)

, Xj)− Ĥ(Xi | XN̂(i)
)
∣∣∣ < ε

4 . So control exits the loop with-

out changing N̂(i). On the other hand, if ∃j ∈ N(i) \ N̂(i) then from (8) we have that
Ĥ(Xi | XN̂(i)

) − Ĥ(Xi | XN̂(i)
, Xj) >

ε
2 . So, a node is chosen to be added to N̂(i) and

9



control does not exit the loop. Now suppose for contradiction that a node u /∈ N(i) is added
to N̂(i). Then we have that Ĥ(Xi | XN̂(i)

, Xu) < Ĥ(Xi | XN̂(i)
, Xj). But this contradicts

(7). Thus, a neighbor j ∈ N(i)\ N̂(i) is picked in the iteration to be added to N̂(i), proving
that the neighborhood of i is recovered exactly with probability greater than 1− δ

p . Using
union bound, it is easy to see that the neighborhood of each node (i.e., the graph structure)
is recovered exactly with probability greater than 1− δ.

Remark 5 The proof for Theorem 2 can also be used to provide node-wise guarantees, i.e.,
for every node satisfying Assumptions 1 and 2, if the number of samples is sufficiently large
(in terms of its degree, and the length of the smallest cycle it is part of), its neighborhood
will be recovered exactly with high probability.

Remark 6 Any decreasing correlation-decay function f suffices for Theorem 2. However,
the faster the correlation decay, the smaller the girth in the sufficient condition for Theorem
2 needs to be.

And finally we have a corollary for the computational complexity of GreedyAlgorithm(ε)
when executed on a graphical model that satisfies the conditions required by Theorem 2.

Corollary 1 The expected run time of Algorithm 1 is O
(
δnp3 + (1− δ)Dnp2

)
. Further, if

δ is chosen to be O(p−1), the sample complexity n is O(log p) and the expected run time of
Algorithm 1 is O(Dp2 log p).

Proof For the second part, note that with probability greater than 1 − δ, the algorithm
recovers the correct graph structure exactly. In this case, the number of iterations of the
while loop is bounded by D for each node . The time taken to compute any conditional
entropy is bounded by O(n). Hence the total run time is O(Dnp2). Using the previous
worst case bound on the running time, we obtain the result.

5. Guarantees for the Recovery of an Ising Graphical Model

To aid in the interpretation of our results and comparison to the performance of other
algorithms, we now specialize Theorem 2 to derive a self-contained result (i.e. we do not
need to make additional use of Assumptions 1 and 2) for the case of the widely-studied
(zero-field) Ising graphical model (Brush, 1967). We define it below for completeness:

Definition 2 A set of random variables {Xv | v ∈ V } are said to be distributed according
to a zero field Ising model if

1. Xv ∈ {−1, 1} ∀v ∈ V and

2. P (xV ) = 1
Z

∏
i,j∈V

exp(θijxixj)

10



where Z is a normalizing constant. The Markov graph of such a set of random variables is
given by G(V,E) where E = {{i, j} | θij 6= 0}.

The following is a corollary of Theorem 2. We note that while it may be possible
to derive a stronger guarantee for Ising models (this is also suggested by experiments), we
focus on just applying Theorem 2 as is, and obtaining a set of transparent and self-contained
conditions in terms of natural parameters of the model.

Theorem 7 Consider a zero-field Ising model on a graph G with maximum degree D.
Let the edge parameters θij be bounded in the absolute value by 0 < β < |θij | < log 2

2D . Let

ε , 2−10 sinh2(2β). If the girth of the graph satisfies g > 215

log 2

{
D2 log 2− log (sinh 2β)

}
then

with samples n = ξε−4 log p
δ (where ξ is a constant independent of ε, δ, p), GreedyAlgorithm(ε)

outputs the exact structure of G with probability greater than 1− δ.

The proof of this theorem consists of showing that such an Ising model satisfies Assump-
tions 1 and 2, and the other conditions of Theorem 2. In Section 5.1, we show that under
certain conditions, an Ising model has an almost exponential correlation decay. Then in
Section 5.2, we use the correlation decay of Ising models to show that under some further
conditions, they also satisfy Assumption 1 for non-degeneracy. Combining the two, we get
the above sufficient conditions for GreedyAlgorithm(ε) to learn the structure of an Ising
graphical model with high probability.

5.1 Correlation Decay in Ising Models

We will start by proving the validity of Assumption 2 in the form of the following proposition.

Proposition 3 Consider a zero-field Ising model on a graph G with maximum degree D
and girth g. Let the edge parameters θij be bounded in the absolute value by |θij | < log 2

2D .
Then, for any node i, its neighbors N1(i), its 2-hop neighbors N2(i) and a set of nodes A,
we have∣∣P (xi, xN1(i), xN2(i) | xA)− P (xi, xN1(i), xN2(i))

∣∣ < c exp

(
− log 2

3
min

(
d(i, A),

g

2
− 1
))

∀ xi, xN1(i), xN2(i) and xA (where c is a constant independent of i and A).

The outline of the proof of Proposition 3 is as follows. First, we show that if a subset of
nodes is conditioned on a Markov blanket (i.e., on another subset of nodes which separates
them from the remaining graph), then their potentials remain the same. For this we have
the following lemma.

Lemma 8 Consider a graphical model G(V,E) and the corresponding factorizable probabil-
ity distribution function P . Let A,B and C be a partition of V and B separate A and C in
G. Let G̃(A ∪B, Ẽ) be the induced subgraph of G on A ∪B, with the same edge potentials
as G on all its edges and P̃ be the corresponding probability distribution function. Then, we
have that P (xD | xB) = P̃ (xD | xB) ∀ xD, xB where D ⊆ A.

11



Now, for any node i, the induced subgraph on all nodes which are at distance less than
g
2−1 is a tree. Thus we can concentrate on proving correlation decay for a tree Ising model.
We do this through the following steps:

1. Without loss of generality, the tree Ising model can be assumed to have all positive
edge parameters

2. The worst case configuration for the conditional probability of the root node is when
all the leaf nodes are set to the same value and all the edge parameters are set to the
maximum possible value

3. For this scenario, correlation decays exponentially

The following three lemmas encode these three steps. For proofs, refer the Appendix.

Lemma 9 Consider a tree Ising graphical model T . Let the corresponding probability dis-
tribution be P . Replace all the edge parameters on this graphical model by their absolute
values. Let the corresponding probability distribution after this change be P̃ . Then, there
exists a set of bijections
{Mv : {−1, 1} → {−1, 1} | v ∈ V \ {r}} where V is the set of vertices and r is the root node
such that, ∀xr, xV \r we have that P (xr, xV \r) = P̃ (xr,Mv(xv), v ∈ V \ r).

Lemma 10 For a tree Ising graphical model T with root r and set of leaves L, we have

(xr = 1, xL = 1) ∈ arg max
xr,xL

|P (xr | xL)− P (xr)|

And finally we have the following lemma.

Lemma 11 In a tree Ising model, suppose |θij | < γ < log 2
2D where D is the maximum

degree of the graph. Then we have exponential correlation decay between the root node r,
its neighbors N1(r), its 2-hop neighbors N2(r) and the set of leaves L i.e.,

∣∣P (xr, xN1(r), xN2(r) | xL)− P (xr, xN1(r), xN2(r))
∣∣ < c exp(− log 2

3
d(r, L))

where c is a constant independent of the nodes considered.

5.2 Non-degeneracy in Ising Models with Correlation Decay

Now using the results from the previous section, we turn our attention to the question of
non-degeneracy. In particular, we have the following lemma which says that if an Ising
graphical model has almost exponential correlation decay and its edge parameters satisfy
certain conditions, then it also satisfies Assumption 1. For the proof, refer the Appendix.

Lemma 12 Consider an Ising graphical model with edge parameters θij bounded in the
absolute value by 0 < β < |θij | < γ, max degree D, and having correlation decay as follows

∣∣P (xi, xN1(i), xN2(i))− P (xi, xN1(i), xN2(i)|xB)
∣∣ < c exp

(
−αmin

(
d(i, B),

g − 2

2

))
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∀ i, B, xi, xN1(i), xN2(i). If the girth g > 2 + 2
α

{
(2D + 11) log 2 + log c + log

(
1 + 2De2γ

)
+

2γ(D + 3) − log |sinh 2β|
}

, then this graphical model satisfies Assumption 1 with ε =

2−7e−6γD sinh2(2β).

Finally, the proof of Theorem 7 follows directly by combining Theorem 2, Proposition
3 and Lemma 12. For complete details, refer the Appendix.

6. Simulations

In this section, we present the results of numerical experiments evaluating the performance
of our algorithm. We note that to satisfy the conditions so that our theoretical guarantees
are applicable, the graph should have a large girth. However, it seems that the strong
sufficiency conditions are a result of our analysis. In fact our algorithm seems to work well
even on graphs with small girth. To demonstrate this fact we perform our experiments on
graphs with small girth. ε, which is an input to the algorithm is chosen empirically.

In the first experiment, we evaluate our algorithm on grids of various sizes. Fig. 3
compares the sample complexity and computational complexity of our algorithm to those
of (Ravikumar et al., 2010) which will be henceforth referred to as RWL. Note that RWL
is specifically tailored to the Ising model, and leverages this to yield lower sample complex-
ity. Ours is a generic algorithm that can be used for any discrete graphical model, and
thus requires more (but comparable) number of samples. It can be seen however that our
algorithm is much faster than RWL.

Finally, we present an application of our algorithm to model senator interaction graph
using the senate voting records, following (Banerjee et al., 2008). A Yea vote is treated as
a 1 where as a Nay vote or absentee vote is treated as −1. To avoid bias, we only consider
senators who have voted in a fraction of atleast 0.75 of all the bills during the years 2009
and 2010. The output graph is presented in Fig. 4.

7. Discussion

We developed a simple greedy algorithm for Markov structure learning. The algorithm is
simple to implement and has low computational complexity. We then showed that under
some non-degeneracy, correlation decay, maximum degree and girth assumptions on the
MRF, our algorithm recovers the correct graph structure with O(ε−4 log p

δ ) samples. We
then specialize our conditions to prove a self-contained result for the most popular discrete
graphical model - the Ising model.

The success of our algorithm can be further improved by post-processing via pruning. In
particular, as mentioned, the neighborhood of a node as estimated by our algorithm always
includes the true neighborhood – but it may also include spurious nodes. The latter can be
then identified by checking each node of the estimated neighborhood, to see if it actually
provides a reduction in conditional entropy over and above all the other nodes. Analysis
of the improvement achieved by such a procedure is more challenging, but it may be likely
that doing so will reveal an algorithm that can handle much larger degrees and smaller
girths.
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(a)

(b)

Figure 3: Plots of (a) sample complexity and (b) computational complexity of our algorithm
(GA) and that of (Ravikumar et al., 2010) (RWL) for various grid sizes. Edge
parameters are all chosen to be equal to 0.5. X-axis represents the number of
variables (9 for a 3 × 3 grid, 16 for a 4 × 4 grid and so on). In (a), Y-axis
represents the sample complexity which is taken to be the minimum number of
samples required to obtain a probability of success of 0.95. In (b), Y-axis is
in logarithmic scale and represents the time taken in seconds for a single run
using the number of samples from (a). All the above quantities are calculated by
averaging over 50 runs.
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represents an independent. We can make some preliminary observations from the
graph. Most of the democrats are connected to other democrats and most of the
republicans are connected to other republicans (in particular, the number of edges
between democrats and republicans is approximately 0.1 fraction of the total
number of edges). The senate minority leader, McConnell is well connected to
other republicans where as the senate majority leader, Reid is not well connected
to other democrats. Sanders and Lieberman, both of who caucus with democrats
have more edges to democrats than to republicans. We use the graph drawing
algorithm of Kamada and Kawai to render the graph (Kamada and Kawai, 1989).
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Appendix

We will first prove the lemmas required for proving Proposition 3
Proof [Lemma 9] The proof is by construction. For each node v ∈ V , let Mv(xv) = ηvxv.
For the root node, let ηr , 1. For any other node v, let u be the parent of v in the rooted
tree with root r. Define ηv ,

θuv
|θuv |ηu. Let Φ and Φ̃ be the potential functions corresponding

to P and P̃ respectively. Then,

Φ(xV ) =
∏
uv∈T

exp (θuvxuxv)

=
∏
uv∈T

exp

(
|θuv|

θuv
|θuv|

η2
uxuxv

)
=
∏
uv∈T

exp (|θuv| ηuηvxuxv)

=
∏
uv∈T

exp (|θuv|Mu(xu)Mv(xv))

= Φ̃(xr,Mv(xv), v ∈ V \ r)

Since the potential functions are preserved by the bijections, so are the probabilities.

We will first prove the following lemma which will help us in proving Lemma 10.

Lemma 13 Consider a tree Ising graphical model T with root r, set of leaves L and all
positive edge parameters. Let P be its probability distribution. Then, the quantity P (Xr =
1 | XL = xL) is monotonically increasing in xl, ∀ l ∈ L. Moreover, P (Xr = 1 | XL = 1) is
monotonically increasing in θij ∀ {i, j} ∈ T .

Proof For simplicity of notation, we define f(xL) , P (Xr = 1 | XL = xL). Let us prove
the above statement by induction on the depth of the tree. For a tree of depth 1, we have
that

f(xL) =

∏
l∈L

exp(θrlxl)∏
l∈L

exp(θrlxl) +
∏
l∈L

exp(−θrlxl)

=

∏
l∈L,l 6=l̃

exp(θrlxl)∏
l∈L,l 6=l̃

exp(θrlxl) + exp(−2θrl̃xl̃)
∏

l∈L,l 6=l̃

exp(−θrlxl)

Since θ
rl̃
> 0, f(xL) increases when x

l̃
is changed from −1 to 1.

Now, suppose the statement is true for all trees of depth upto k. Consider a tree of
depth k + 1, with root r. Let N(r) be the set of children of r. For every c ∈ N(r), let Tc
be the subtree rooted at c with the same edge parameters as in T and Lc be the leaves of
Tc. Let Pc be the probability measure corresponding to Tc and fc(xLc) , Pc(xc = 1 | xLc).
Then, the conditional probability of the root node can be written as
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f(xL) =

∏
c∈N(r)

(exp(θrc)fc(xLc) + exp(−θrc) (1− fc(xLc)))

B
(9)

where

B =
∏

c∈N(r)

(exp(θrc)fc(xLc) + exp(−θrc) (1− fc(xLc))) +

∏
c∈N(r)

(exp(−θrc)fc(xLc) + exp(θrc) (1− fc(xLc)))

(9) can now be manipulated to obtain (10).

f(xL) =
K1

K1 +K2
gc̃(xc̃)+exp(2θrc̃)
gc̃(xc̃) exp(2θrc̃)+1

(10)

where gc̃(xc̃) =
fc̃(xLc̃

)

1−fc̃(xLc̃
) , and K1 and K2 > 0 are independent of xLc̃

and θrc̃. Since K2 > 0

and θrc̃ > 0, f(xL) increases if fc̃(xLc̃
) increases. So, for any leaf node, if its value changes

from −1 to 1, the corresponding fc̃(xLc̃
) increases and hence f(xL) increases, proving the

induction claim.
Using the same induction argument as above and noting that f(xL = 1) > 1

2 , it can be
seen that f(xL = 1) is monotonically increasing in θij ∀{i, j} ∈ T .

Proof [Lemma 10] We know that P (xr) = 1
2 for xr = ±1. Clearly any xL that maxi-

mizes |P (xr | xL)− P (xr)| should either minimize or maximize P (xr | xL). Note also that
there is a one-one correspondence between such configurations (i.e., for every maximizing
configuration, there exists a minimizing configuration such that both of them maximize
|P (xr | xL)− P (xr)|). From Lemma 13, we know that xL = 1 maximizes P (xr = 1 | xL)
and by symmetry this should be the same as P (xr = −1 | xL = −1) and equal max

xL
P (xr =

−1 | xL). So, we can conclude that |P (xr | xL)− P (xr)| is maximized by (xr = 1, xL = 1).

Lemma 14 Consider a tree Ising model T with root node r, set of leaves L and maximum
degree D. Let P be its probability measure. Suppose the absolute values of the edge param-
eters are bounded by |θij | < log 2

2D ∀ {i, j} ∈ T . Then, we have that |P (xr | xL)− P (xr)| <
exp(− log 2

3 d(r, L)) ∀xr, xL.

Proof Using Lemmas 9, 10 and 13, we can assume without loss of generality that the pa-
rameters θij on all the edges are positive and equal to log 2

2D (which is the maximum possible
value), consider a complete D-ary tree and concentrate on |P (Xr = 1 | XL = 1)− P (Xr = 1)|.
For simplicity of notation, let θ , log 2

2D . For a tree of depth d, let a(d) , P (Xr = 1 | XL = 1).
We have that

a(d+ 1) =
(exp(θ)a(d) + exp(−θ) (1− a(d)))D

(exp(θ)a(d) + exp(−θ) (1− a(d)))D + (exp(−θ)a(d) + exp(θ) (1− a(d)))D
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Using some algebraic manipulations and substituting the value of θ, we obtain∣∣∣∣a(d+ 1)− 1

2

∣∣∣∣ < exp

(
− log 2

3

) ∣∣∣∣a(d)− 1

2

∣∣∣∣
and the result follows.

We need the following lemma to prove Lemma 11.

Lemma 15 Consider a tree Ising model T , with root node r, set of leaves L and maximum
degree D. Let P be its probability measure. Suppose the absolute values of the edge param-
eters are bounded by |θij | < log 2

2D ∀ {i, j} ∈ T . Then, ∀c such that c is a child of r, we have

that |P (xc | xr, xL)− P (xc | xr)| < 4 exp(− log 2
3 d(r, L)) ∀xr, xj , xL.

Proof Using Lemma 9 we can assume without loss of generality that the parameters θij
on all the edges are positive. (xc, xr) can take values (±1,±1). For each of those values,
the value of xL that maximizes |P (xc | xr, xL)−
P (xc | xr)| either maximizes or minimizes P (xc | xr, xL). Noting from (a slight extension
to) Lemma 13 that P (xc | xr, xL) is monotonic in xL, it suffices to consider the eight pos-
sibilities |P (Xc = ±1 | Xr = ±1, XL = ±1)−
P (Xc = ±1 | Xr = ±1)|. We show how to calculate the above value for xc = 1, xr = 1, xL =
1. Interested readers can check that the conclusions below apply to all the other cases as
well. Using Lemma 13, we can assume that the parameters θij on all the edges except

the edge {r, c} are equal to log 2
2D and consider a complete D-ary tree. Let θ , θrc. We

know that P (Xc = 1 | Xr = 1) = exp(θ)
exp(θ)+exp(−θ) . Let d be the depth of the tree and

b(d) , P (Xc = 1 | Xr = 1, XL = 1). We have b(d) = exp(θ)a(d−1)
exp(θ)a(d−1)+exp(−θ)(1−a(d−1)) where

a(d) is as defined in Lemma 14. Using some algebraic manipulations, it can be shown that∣∣∣b(d)− exp(θ)
exp(θ)+exp(−θ)

∣∣∣ < 2
∣∣a(d− 1)− 1

2

∣∣. Using Lemma 14 finishes the proof.

Proof [Lemma 11] Using Lemma 15, we have∣∣P (xr, xN1(r), xN2(r) | xL)− P (xr, xN1(r), xN2(r))
∣∣

=

∣∣∣∣∣∣P (xr | xL)
∏

j∈N1(r)

P (xj | xr, xL)
∏

k∈N2(r)

P (xk | xj , xL)

− P (xr)
∏

j∈N1(r)

P (xj | xr)
∏

k∈N2(r)

P (xk | xj)

∣∣∣∣∣∣
< 2D

2+3 exp
(
− log 2

3 (d(r, L)− 1)
)

= c exp
(
− log 2

3 d(r, L)
)

proving the result.

Proof [Proposition 3] Let I , {i} ∪ N1(i) ∪ N2(i). Let B be a set that separates I and
A such that d(I,B) = min(d(i, A), g2 − 1). Let J be the component of nodes containing I
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when the graph is separated by B. We know that the induced subgraph on J ∪B is a tree.
Applying Lemma 11 on this tree and using Lemma 8, we obtain |P (xI | xB)− P (xI | x̃B)| <
2c exp(− log 2

3 d(I,B)) ∀xI , xB, x̃B. Since P (xI) is a weighted average of P (xI | xB) for
various xB, we have

|P (xI | xB)− P (xI)| < 2c exp(− log 2

3
d(I,B)) ∀xI , xB

The result then follows since P (xI | xA) is a weighted average of P (xI | xB).

Proof [Lemma 12] Let the graphical model be denoted by G(V,E), Φ(xi, xj) , exp(θijxixj)
denote the potential on edge {i, j} when Xi = xi and Xj = xj and Φ(xA) denote the poten-
tial due to all edges with both vertices in A when XA = xA, ∀A ⊆ V . In the following, we
assume that the girth of the graph is g > 4. Consider a node i and a subset of its neighbors
j1, · · · , jk, z and a node w which is a neighbor of z. We know that the pairwise potentials
satisfy exp(−γ) < Φ(xi, xj) < exp(γ). Let Ĕ , E \ {{i, j1}, · · · , {i, jk}, {i, z}, {z, w}}
and consider the graph Ğ(V, Ĕ) with the same potentials on all edges as in G. Let
A , {i, j1, · · · , jk, z, w} and choose any other set B ⊂ V . Let P and P̆ be the proba-
bility mass functions corresponding to G and Ğ respectively. Similarly let d(i, j) and d̆(i, j)
be the distance between i and j in G and Ğ respectively. Suppose further that d(i, B) = d.
Then, d̆(i, B) > d(A,B) = d. Note that,

P̆ (xA, xB) =
1

Z̆

P (xA, xB)

Φ(xA)
(11)

where Z̆ is an appropriate normalizing constant. Note that 1
Z̆

∑
xA

P (xA)

Φ(xA)
=
∑
xA

P̆ (xA) = 1.

It follows from this that exp(−γ) < 1
Z̆
< exp(γ). Using (11), the hypothesis that an Ising

model has almost exponential correlation decay, we obtain the following inequalities after
some algebraic manipulations,

|P̆ (xA, xB)− P̆ (xA)P̆ (xB)| < c2D+3 exp(4γ) exp(−αmin(d,
g − 2

2
))P (xB) (12)

P̆ (xB) ≥ exp(−2γ)

(
1− 2D+2c exp(−αmin(d,

g − 2

2
))

)
P (xB) (13)

∀xA, xB.Combining (12) and (13), we obtain

|P̆ (xA, xB)− P̆ (xA)P̆ (xB)| < c2D+3 exp(6γ)
exp(−αmin(d, g−2

2 ))

1− 2D+2c exp(−αmin(d, g−2
2 ))

P̆ (xB)

and subsequently by marginalizing, we obtain

|P̆ (xi, xB)− P̆ (xi)P̆ (xB)| < c22D+4 exp(6γ)
exp(−αmin(d, g−2

2 ))

1− 2D+2c exp(−αmin(d, g−2
2 ))

P̆ (xB)

20



Let A′ , A \ {i}. Since d(i, A′) = 2, we have that d̆(i, A′) ≥ g − 2. So, ∃ B ⊆ V separating
i and A′ in Ğ such that d(i, B) ≥ g−2

2 . Then, ∀ xi, xA′

|P̆ (xi | xA′)− P̆ (xi)| =

∣∣∣∣∣∑
xB

(
P̆ (xi | xB)− P̆ (xi)

)
P̆ (xB | xA′)

∣∣∣∣∣
< c22D+4 exp(6γ)

exp(−α g−2
2

)

1−2D+2c exp(−α g−2
2

)

< 2−(D+6) exp(−2γ(D + 1)) |sinh(2β)| , ε̆

(14)

where the last inequality follows from the lower bound on girth g in the hypothesis.

Now consider the graph G̃(V, Ẽ) where Ẽ , {{i, j1}, · · · , {i, jk}, {i, z}, {z, w}}. Let the
potentials on the edges in G̃ be the same as those in G and denote the corresponding
probability mass function by P̃ . Clearly, we have the following relation between P, P̆ and
P̃ .

P (xA) =
1

Z
P̆ (xA)P̃ (xA) ∀ xA

where Z is an appropriate normalizing constant. Using (14) and the symmetry of the Ising
model (i.e., P̆ (xi) = 1

2 for xi = ±1), we obtain

P (xi | xA′) =
P (xi,xA′ )
P (xA′ )

=
1
Z
P̆ (xi,xA′ )P̃ (xi,xA′ )

1
Z

∑
xi

P̆ (xi, xA′)P̃ (xi, xA′)

=
P̆ (xi,xA′ )P̃ (xi,xA′ )∑

xi

P̆ (xi | xA′)P̆ (xA′)P̃ (xi, xA′)

<
P̆ (xi|xA′ )P̃ (xi|xA′ )

( 1
2
−ε̆)

< 1+2ε̆
1−2ε̆ P̃ (xi | xA′)

after some algebraic manipulations. Similarly, we also have

P (xi | xA′) >
1− 2ε̆

1 + 2ε̆
P̃ (xi | xA′)

which implies ∣∣∣P (xi | xA′)− P̃ (xi | xA′)
∣∣∣ < 8ε̆
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Finally, letting A∗ , A′ \ {z}, we have,

H(Xi | XA∗)−H(Xi | XA′)

=
∑
xA′

P (xA′)
∑
xi

P (xi | xA′) log

(
P (xi | xA′)
P (xi | xA∗)

)
=
∑
xA′

P (xA′)D (P (Xi | xA′)||P (Xi | xA∗))

≥ 1
2 log 2

∑
xA′

P (xA′)
∑
xi

|P (xi | xA′)− P (xi | xA∗)|2

= 1
2

∑
xA∗

P (xA∗)
∑
xz

P (xz | xA∗)
∑
xi

|P (xi | xA′)− P (xi | xA∗)|2

≥ 1
2

∑
xA∗ ,xi

P (xA∗) min
xz

P (xz | xA∗)
1

2
|P (xi | xA∗ , xz = −1)− P (xi | xA∗ , xz = 1)|2

≥ 1
4

∑
xA∗ ,xi

P (xA∗)
exp(−γD)

exp(γD) + exp(−γD)(
max

(
0,
∣∣∣P̃ (xi | xA∗ , xz = −1)− P̃ (xi | xA∗ , xz = 1)

∣∣∣− 16ε̆
))2

> 1
8

∑
xA∗ ,xi

P (xA∗) exp(−2γD)

(
|sinh(2β)| exp(−2γD)

2
− 16ε̆

)2

> 1
128 exp(−6γD) sinh2(2β)

So, we have shown that under the given conditions, an Ising model satisfies (3) with ε =
1

128 exp(−6γD) sinh2(2β). It is straightforward to note that the above proof can also be
used to show that the Ising model also satisfies (4) with the same ε, completing the proof
of the lemma.

Proof [Theorem 7] The theorem follows directly from Theorem 2, Proposition 3 and Lemma
12.
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