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Abstract

We consider a dynamical system for computing Nash bargaining solutions on graphs

and focus on its rate of convergence. More precisely, we analyze the edge-balanced dy-

namical system by Azar et al and fully specify its convergence for an important class of

elementary graph structures that arise in Kleinberg and Tardos’ procedure for comput-

ing a Nash bargaining solution on general graphs. We show that all these dynamical

systems are either linear or eventually become linear and that their convergence times

are quadratic in the number of matched edges.

1 Introduction

Bargaining and, in particular, the concept of Nash bargaining on general graphs has been the
focus of much recent research in economics, sociology and computer science [2, 5, 10, 9, 12].
In a bargaining system, players aim at making pairwise agreements to share a fixed wealth
specific to each pair of players. Bargaining solutions provide predictions on how the wealth
will be shared and how this sharing would depend on players’ positions in a network describing
some notion of relationships among players.

The concept of Nash bargaining solution was introduced by Nash [14] for two players, each
having an exogenous, alternative profit at its disposal were they to disagree on how to share
the wealth. Recent research has focused on the concept of Nash bargaining with multiple
players where each player has alternative profits determined by trading opportunities with
neighbors in a graph. In the computer science literature, Kleinberg and Tardos [12] were the
first to establish various properties of Nash bargaining outcomes on general graphs. They
also propose a polynomial-time algorithm for computing them, provided one exists. Follow
up work aimed at introducing some local dynamics that are natural (so they, hopefully, have
some connections with reality) and studied their convergence properties. In particular, Azar
et al [2] considered the so called edge-balanced dynamics and established various properties
about fixed points and convergence but left open the characterization of the convergence rate.
In a tandem of papers [9, 10], Kanoria et al considered an alternative, natural dynamics, and
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established polynomial convergence time bounds under some generic assumptions. An open
research question has been to gain a better understanding of convergence properties and
obtain tight bounds on the convergence time for these types of systems.

In this paper, we consider the edge-balanced dynamics of Azar et al [2] over elementary
graphs that arise in the decomposition procedure of Kleinberg and Tardos [12] which include
a path, a cycle, a blossom and a bicycle (see Figures 1, 2, 3 and 4 for examples). It turns
out that, for all these network structures, the dynamics is either linear or eventually becomes
linear. Specifically, we show that the dynamics is linear for a path and a cycle and is
eventually linear for a blossom and a bicycle (and characterize the time when this takes
place). This allows us to fully characterize the rate of convergence by deploying well known
spectral methods for linear systems. As a result, for all these elementary structures, we find
that the convergence time is quadratic in the number of matched edges.

1.1 Outline of the Paper

In Section 2 we introduce system assumptions and overview relevant concepts, including the
concept of Nash bargaining outcomes, local dynamics, and the KT procedure. Section 3
provides the characterization of the edge-balanced dynamics and convergence times for each
of the elementary graphs of the KT decomposition. Finally, we discuss related work and
conclude in Sections 4 and 5 respectively.

2 System and Assumptions

2.1 Nash Bargaining Outcomes on Graphs

We consider a graph G = (V,E) where V is the set of nodes and E is the set of edges. Each
node corresponds to a distinct player that participates in the trading game defined as follows.
Each edge (i, j) ∈ E is associated with a weight wi,j ≥ 0 representing the amount that can
be shared between players i and j should these two players decide to trade with each other.
The trading game is one-exchange meaning that each player attempts to make a pairwise
agreement with at most one other player, which corresponds to a matching M ⊂ E in the
graph where (i, j) ∈ M if and only if players i and j reached an agreement. We denote with
xi the profit of player i where xi ≥ 0 and let ~x = (xi)i∈V denote the vector of players’ profits.

A balanced outcome or a Nash bargaining solution is a pair (M,~x) where M is a matching
in G and ~x is a vector of players’ profits. Such an outcome satisfies the following properties:

• Stability: for every edge (i, j) ∈ E,

xi + xj ≥ wi,j.

• Balance: for every (i, j) ∈ M , it holds that

xi − max
k∈Vi\{j}

(wi,k − xk)+ = xj − max
k∈Vj\{i}

(wj,k − xk)+

where, hereinafter, Vi denotes the set of neighbors of a node i and (·)+ := max(0, ·).
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The stability property means that there exists no player that can improve her profit
by unilaterally deciding to trade with an alternative trading partner. The balance property
originates from the Nash bargaining problem [14] where two players 1 and 2 aim at a pairwise
agreement to share a profit w having outside profit options r1 and r2 in case of disagreement.
The Nash bargaining solution is then for players 1 and 2 to share the surplus w − r1 − r2
equally, if positive, i.e. receive profits p1 = r1+

1
2
(w−r1−r2)+ and p2 = r2+

1
2
(w−r1−r2)+,

respectively. This allocation is balanced in the sense that p1 − r1 = p2 − r2, which is exactly
the above asserted balance property where the outside profit options are determined by the
values that players may extract through trading agreements with their neighbors.

2.2 KT Procedure

Nash’s bargaining solutions on graphs are intimately related to maximum-weight matchings.
In [12] it was found that the matching M of a stable outcome ~x is a maximum-weight
matching. Furthermore, whenever a stable outcome exists, a balanced outcome exists as
well [12]. The outcome vector ~x can be seen as a feasible solution of a dual to the fractional
relaxation of a maximum-weight matching (primal):

maximize
∑

(i,j)∈E wi,jxi,j

over xi,j ≥ 0, (i, j) ∈ E
subject to

∑

j:(i,j)∈E xi,j ≤ 1

where the dual problem is the following linear problem with two variables per inequality:

minimize
∑

i∈V xi

over xi ≥ 0, i ∈ V
subject to xi + xj ≥ wi,j, (i, j) ∈ E.

In [12], it was established that a balanced outcome (M,~x) can be found in polynomial
time by first finding a maximum-weight matching M and then solving the above dual problem
to find a balanced vector ~x. The dual problem can be solved by an iterative procedure where
each iteration maximizes the smallest slack as described in the following.

We denote by si the slack of node i defined by

si = xi − max
(l,i)∈E\M

(wi,l − xl)+

while the slack of edge (i, j) denoted by si,j is defined by

si,j = xi + xj − wi,j .

Indeed, for a stable outcome ~x, si,j ≥ 0, for every (i, j) ∈ E. It is not difficult to observe
that node and edge slacks satisfy

si = min(xi, min
(i,l)∈E\M

si,l) .

The KT procedure for finding a balanced outcome proceeds by successively fixing the
values xi for some nodes in V . This is allowed by the following key property [12]: if there
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exists a set A ⊂ V and σ ≥ 0 such that si ≤ σ for every i ∈ A and si ≥ σ for i ∈ V \ A
and a vector ~x such that values xi are balanced in A, then there exists a vector ~x′ such that
x′
i = xi for every i ∈ A that is a balanced outcome for G.

The KT algorithm is sketched as follows. Let σ ≥ 0 be a variable and let A be a set of
nodes for which values xi have been already assigned. The set A is constructed such that
no matched edge crosses the cut (A, V \ A), i.e. for every node i ∈ A there exists no node
j ∈ V \ A such that (i, j) ∈ M . Initially, σ = 0 and the set A contains all the unmatched
nodes. The algorithm then proceeds inductively with respect to the number of nodes with
unassigned values as given by |V \A|. Given σ and A the inductive step amounts to assigning
values to nodes in V \A that maximize the minimum slack σ′ ≥ σ which amounts to solving
the following linear program

maximize σ′

subject to x′
i ≥ σ′, i ∈ V \ A

x′
i + x′

j = wi,j, (i, j) ∈ M
x′
i + x′

j ≥ wi,j + σ′, (i, j) ∈ E \ (M ∪ E(A))
x′
i = xi, i ∈ A,

(1)

where E(A) corresponds to the set of edges of the graph G linking nodes in A.
For a fixed σ′, this is a linear inequalities’ problem with at most two variables per inequal-

ity, for which polynomial algorithms exist. In particular, by results of Aspvall and Shilach [1],
for a given σ′, the system of inequalities is infeasible if there exists an infeasible simple loop
in the graph construction described in [1]. A path is said to be a loop if the initial and final
nodes are identical and is said to be simple if all intermediate nodes of this path are distinct.
Furthermore, if a feasible solution exists than it can be constructed by finding the most con-
straining feasible simple loop. For the above system of inequalities, any such feasible simple
loop is either a path, a cycle, a blossom or a bicycle. We refer to these as KT elementary
graphs and define them in the following:

• Path. A path consists of alternating matchings with each of its end nodes anchored at
either a node i ∈ A or at a matched edge (i, j) ∈ M such that sj = xj .

1

• Cycle. A cycle consists of an even number of nodes connected by a path of alternating
matchings.

• Blossom. A blossom is a concatenation of a cycle and a path (we refer to it as a stem)
as follows. The cycle consists of an odd number of nodes that are connected by a cycle
of alternating matchings started from a node (we call gateway) with an unmatched
edge. The stem is a path of alternating matchings such that one end node is matched
to the gateway node and the other end node is anchored as for a path.

• Bicycle. A bicycle is a concatenation of two blossoms by connecting the end nodes of
their respective stems such that the connected stems form alternating matchings.

The above described step is repeated until all the nodes are assigned values, i.e. until
V \ A = ∅. Hence, the total number of such steps k is at most the number of nodes |V |. At

1Recall that if for a matched edge (i, j) ∈ E, i ∈ V \A, then also j ∈ V \A, and vice versa.
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each step l, a KT elementary structure Cl and maximum slack σl are identified such that the
σl’s form an non-decreasing sequence, 0 = σ0 ≤ σ1 ≤ · · · ≤ σk.

2.3 Convergence

We introduce a few elementary concepts about stability of dynamical systems in a somewhat
informal manner and then define the notion of convergence time considered in this paper.
We say that a dynamical system, according to which ~x(t) evolves over t ≥ 0, is asymptotically
stable, if for every initial value ~x(0), there exists a point ~x∗ such that

lim
t→∞

||~x(t)− ~x∗|| = 0.

The system is said to be globally asymptotically stable if ~x∗ is unique, i.e. does not depend
on the initial value ~x(0).

In particular, for a linear system

~x(t+ 1) = A~x(t) +~b(t)

where A is a given matrix and ~b(t) is a vector that may depend on t, we have that the system
is globally asymptotically stable if the spectral radius of the matrix A is smaller than 1 (i.e.
all eigenvalues are of modulo strictly smaller than 1). The concepts of asymptotic stability
and global asymptotic stability are standard, see [11] for more details.

We say that the convergence to a point ~x∗ is exponentially bounded if there exist C > 0
and R > 0 such that for every initial value ~x(0), we have

||~x(t)− ~x∗|| ≤ Ce−Rt, for every t ≥ 0,

where we refer to R as the rate of convergence and call T = 1/R the convergence time.
Moreover, If ~x(t) evolves according to the aforementioned linear system then the rate of
convergence is given by (i) R = log(1/ρ(A)) where ρ(A) is the spectral radius of matrix A

if the system is globally asymptotically stable, and (ii) R = log(1/λ2(A)) where λ2(A) is
the modulus of the largest eigenvalue of matrix A that is smaller than 1, if the system is
asymptotically stable.

3 Edge-Balanced Dynamics for KT Elementary Graphs

The edge-balanced dynamics was first considered by Rochford [15] and Cook and Yamag-
ishi [6], this dynamical process assumes that players already agreed on a matching M and
are negotiating the value of the outcome ~x. Hence, each matched player i is assigned a trading
partner, which we denote with pi. A version of this dynamics in discrete-time can be repre-
sented as follows. For a fixed 0 < α ≤ 1 and given an initial value ~x(0), for i = 1, 2, . . . , n
and t = 0, 1, . . ., we have that

xi(t + 1) = xi(t) + α

{[

yi(t) +
1

2
(wi,pi − yi(t)− ypi(t))

]wi,pi

0

− xi(t)

}

(2)
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where yl(t) is the best alternate value that a matched player l may get at time t by trading
with her other neighbors, i.e.

yl(t) = max
k:(l,k)∈E\M

(wl,k − xk(t))+

and we use the notation [·]ba = min(max(·, a), b), for a ≤ b.
It is not difficult to observe that if players i and j are matched, then xi(t) + xj(t) = wi,j

is time invariant, i.e. if the latter holds for a time t, then it still holds for time t + 1.
Note that the dynamics is not necessarily consistent with Nash bargaining solution for every
time t as for a matched pair (i, j), the edge-surplus wi,j − yi(t) − yj(t) is allowed to be
negative; the only requirement is that the allocation yi(t)+

1
2
(wi,j−yi(t)−yj(t)) is in [0, wi,j].

However, the edge surpluses are guaranteed to be positive for t large enough [2]. Besides the
dynamics described in (2) is guaranteed to converge to a fixed point that corresponds to a
Nash bargaining solution, see [2, Theorems 1,2].

In this section, we will observe that for all the elementary graphs of the KT decomposition,
the values held by the nodes eventually evolve according to a linear discrete-time dynamical
system, i.e., for a given matrix A and a vector ~b(t), ~x(t) evolves according to

~x(t+ 1) = A~x(t) +~b(t). (3)

We will find that for a path and a cycle the dynamics is linear for every time t ≥ 0 while
for a blossom and a bicycle there exists a finite time T0 ≥ 0 such that the dynamics is linear
for every t ≥ T0. The asymptotic behavior is determined by spectral properties of matrix A.
Note that it suffices to consider the spectrum of matrix A for α = 1. This is because, for
every given 0 < α ≤ 1, λ′ = 1−α+αλ is an eigenvalue and ~v is an eigenvector of the matrix
A, where λ is an eigenvalue and ~v is an eigenvector of the matrix A under α = 1. We will see
that for every KT elementary graph, the eigenvalues of matrix A, under α = 1, are located
in the interval [−1, 1] and will show that −1 can be an eigenvalue only for a cycle with an
even number of matched edges or a bicycle with an even number of matched edges in each
of its loops. In the latter two cases, for α = 1, there is no convergence to a limit point as the
asymptotic behavior is periodic because of the eigenvalue −1. This is ruled out by choosing
the smoothing parameter 0 < α < 1, making all the eigenvalues strictly larger than −1, and
thus ensuring convergence to a limit point.

It is also worth noting that if the system is globally asymptotically stable and if when,
the term b(t) in (3) is equal to b a constant, that does not depend on t, then the fixed point
to which the system converges is given by (I−A)−1b where (I−A)−1 =

∑

k≥0A
k. We would

like to mention that the analysis of the fixed points of these dynamical systems is relevant
to understanding the bargaining power of nodes depending on their position in the network.

Finally, we note that for our results in this section, we assume uniform edge weights and
under this assumption, without loss of generality, we let we = 1, for every e ∈ E.

3.1 Path

We consider a path with n matched edges with boundary values x+(t) and x−(t) as illustrated
in Figure 1. In this case, the evolution of the node values ~x(t) boils down to a discrete-time
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linear dynamical system (3) where A is the n× n symmetric tridiagonal matrix

A =











0 1/2 0 · · · 0

1/2
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . 1/2

0 · · · 0 1/2 0











(4)

and ~b(t) = (1−x+(t)
2

, 0, . . . , 0
︸ ︷︷ ︸

n−2

, x
−(t)
2

)T .

PSfrag replacements

x+ x−x1 x2 xn

· · ·

Figure 1: A path with boundary conditions. Note that the values at the ends of each matched
edge are given by xi and 1− xi, the latter being omitted in the figure.

The eigenvalues of matrix A are λk = cos
(

πk
n+1

)
, k = 1, 2, . . . , n, with the corresponding

orthonormal eigenvectors

~vk =

√

2

n+ 1

(

sin

(
πk

n+ 1

)

, . . . , sin

(
πkn

n+ 1

))T

.

Note that every eigenvalue is of modulo smaller than 1. This implies asymptotic stability for
every 0 < α ≤ 1. From the above spectrum, we have the following characterization of the
convergence time:

Theorem 1 For a path of n matched edges and every 0 < α ≤ 1, the convergence time is

T =
2

απ2
n2 · [1 +O(1/n2)].

Proof. An eigenvalue λ and associated eigenvector ~v of matrix A satisfy

λv1 =
1

2
v2

λvi =
1

2
vi−1 +

1

2
vi+1, 1 < i < n

λvn =
1

2
vn−1.

Using λ = cos(φ) and vi = sin(φi), for φ ≥ 0 in the above equations, along with some
elementary trigonometric calculus, it readily follows that φ = πk

n+1
, for k = 1, 2, . . . , n.

Since −1 < λk < 1 for every k and λ1 > 0 has the largest modulo, the convergence time
is given by T = log(1 − α + αλ1). Noting that λ1 = 1 − π2

2n2 + O(1/n4), the asserted result
follows.
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From this theorem, we observe that the convergence time is quadratic in the number of
matched edges. Moreover, if x+ = x− = 0 then it is not difficult to see that the dynamics
convergence to the fixed point given by

(I − A)−1(1/2, 0, . . . , 0)T .

3.2 Cycle

For an alternating cycle between n nodes (n even), the dynamics of node values ~x(t) boils
down to a linear dynamical system (3) where A is the following circulant matrix, for n = 2,

A =

(
0 1
1 0

)

, and otherwise

A =
















0 1/2 0 · · · 0 0 1/2

1/2 0 1/2
. . .

. . .
. . . 0

0 1/2
. . .

. . .
. . .

. . . 0
...

. . .
. . .

. . .
. . .

. . .
...

0
. . .

. . .
. . .

. . . 1/2 0

0
. . .

. . .
. . . 1/2 0 1/2

1/2 0 0 · · · 0 1/2 0
















(5)

and where vector ~b = ~0. Note that in this case ~x(t) = At~x(0), for t ≥ 0.

PSfrag replacements

x1

x2

xn

Figure 2: A cycle.

By using similar arguments as for a path, it is not difficult to establish that the eigenvalues

of matrix A are λk = cos
(

2π(k−1)
n

)

, k = 1, 2, . . . , n, with the corresponding orthonormal

eigenvectors

~vk =







1√
n
(1, 1, . . . , 1, 1)T , if k = 1

1√
n
(1,−1, . . . , 1,−1)T , if k = 1 + n/2

√
2
n
(1, cos (φk) , . . . , cos (φk(n− 1)))T , o.w.

where for ease of notation, φk =
2π(k−1)(n−1)

n
.

Using the spectral decomposition of the symmetric matrix A (see [11] for details), we
have

~x(t) =

n∑

k=1

λt
k~vk~v

T
k ~x(0). (6)
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We distinguish two cases:

• Case 1: n is even. In this case, λk = −1, for k = 1 + n/2, and λk > −1, otherwise.
From (6), we have

~x(t) =
(
~v1~v

T
1 + (−1)t~v1+n/2~v

T
1+n/2

)
~x(0) + o(1).

Therefore, the asymptotic behavior is periodic.

• Case 2: n is odd. In this case, −1 < λk ≤ 1, for every k, and thus we have asymptotic
convergence to the limit point, limt→∞ xi(t) =

1
n

∑n
j=1 xj(0), for every i.

In view of the above observations, we note that for even n, we need to assume that α is
strictly smaller than 1 in order to rule out asymptotically periodic behavior, while for odd
n, we can allow for α = 1. Moreover, it is worth noting that the limit point, in both cases,
depends on the initial condition and is given by 1

n

∑n
j=1 xj(0)(1, . . . , 1)

T .
The following result shows that in like manner as for a path, the convergence time is

quadratic in the number of matched edges, but note that it is four times smaller, asymptot-
ically for large n.

Theorem 2 For cycle graph with n matched edges and for α ∈ (0, 1) the convergence time
is

T =
1

α2π2
n2 · [1 +O(1/n2)].

3.3 Blossom

A blossom is a concatenation of a cycle and a path (we refer to it as a stem); see Figure 3
for an example. We consider a blossom with n matched edges in the stem and m matched
edges in the loop. We refer to the node that connects the stem and the loop as a gateway
node. The matched edges of the stem are enumerated as 1, 2, . . . , n along the stem towards
the gateway note. We let xi denote the value of the end node of an edge i of the stem that
is connected to a node towards the open end of the stem. Similarly, we enumerate matched
edges of the loop as 1, 2, . . . , m and let yi denote the value of the node that appears first on
a matched edge i as we go along the loop in the clockwise direction.

PSfrag replacements

x1 x2 xn

y1
y2

ym

Figure 3: A blossom.
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It can be observed that node values ~x(t) and ~y(t) evolve according to the following non-
linear dynamical system:

x1(t+ 1) =
x2(t)

2

xi(t+ 1) =
xi−1(t) + xi+1(t)

2
, 1 < i < n

xn(t+ 1) =
1 + xn−1(t)−max[1− y1(t), ym(t)]

2

y1(t+ 1) =
xn(t) + y2(t)

2

yi(t+ 1) =
yi−1(t) + yi+1(t)

2
, 1 < i < m

ym(t+ 1) =
1 + ym−1(t)− xn(t)

2
.

(7)

Note that the system is non-linear only because of the maximum operator that acts in
the update for the node matched to the gateway node, which connects the stem and the
loop of the blossom. The maximum operator is over the values of the nodes that are in the
loop and are matched to the neighbors of the gateway node, 1 − y1(t) and ym(t). It turns
out that, eventually, one of these two values is larger or equal to the other and, hence, the
system dynamics becomes linear. This is shown in the following lemma. Note that the sum
y1(t) + ym(t), if smaller than or equal to 1, indicates max(1 − y1(t), ym(t)) = 1 − y1(t), and
otherwise, max(1− y1(t), ym(t)) = ym(t).

Theorem 3 For a blossom with n matched edges in the stem and m matched edges in the
loop, for every initial value (~x(0), ~y(0)), the sum of node values y1(t) + ym(t) satisfies:

1. y1(t) + ym(t), for t ≥ 0, is autonomous of ~x(t), t ≥ 0.

2. limt→∞ y1(t) + ym(t) = 1.

3. The asymptotic rate of convergence is π2

2m2 .

4. There exists a time T0 ≥ 0 such that either y1(t) + ym(t) ≤ 1 or y1(t) + ym(t) ≥ 1 for
every t ≥ T0.

5. T0 = O(m2).

As an aside remark, note that the value sum
∑m

i=1 yi(t) for the loop nodes evolves au-
tonomously from ~x(t), t ≥ 0. To see this, from (7) note

m∑

i=1

yi(t+ 1) =

m∑

i=1

yi(t)−
1

2
(y1(t) + ym(t)) +

1

2
.

and that the claim follows from Theorem 3 item 1, saying that y1(t) + ym(t) evolves au-
tonomously of ~x(t), t ≥ 0.

The theorem derives from an explicit characterization of y1(t) + ym(t), for every t ≥ 0,
which we present in the following:
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Lemma 1 Given initial value ~y(0), for every t ≥ 0,

y1(t) + ym(t) = 1−
2

m+ 1

⌈m
2
⌉

∑

i=1

f2i−1(~y(0))λ
t
2i−1 (8)

where fk(~y) = 1 + λk − 2
√

1− λ2
k

√
m+1
2

~vTk ~y.

Proof. The part of the system ~y(t) evolves as the following non-autonomous linear system

~y(t + 1) = A~y(t) + ~b(t) where A is a tridiagonal matrix that corresponds to a path of m

matched edges and ~b(t) = (xn(t)/2, 0, . . . , 0
︸ ︷︷ ︸

m−2

, (1− xn(t))/2)
T .

Since A is a symmetric matrix, we can use the spectral decomposition A =
∑m

k=1 λk~vk~v
T
k

where λ1, λ2, . . . , λm are the eigenvalues and ~v1, ~v2, . . . , ~vm are the orthonormal eigenvectors
of matrix A, which we identified in Section 3.1.

Using the spectral decomposition, we note

yi(t) =

m∑

k=1

λt
kvk,i~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k vk,i~v

T
k
~b(s)

where vk,i =
√

2
m+1

sin
(

πk
m+1

i
)

is the i-th coordinate of the eigenvector ~vk. Summing up y1(t)

and ym(t), we obtain

y1(t) + ym(t) =

m∑

k=1

(vk,1 + vk,m)

(

λt
k~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k ~vTk

~b(s)

)

=
∑

k odd

2vk,1

(

λt
k~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k ~vTk

~b(s)

)

where the last inequality is because of the fact vk,m = vk,1 for k odd and vk,m = −vk,1 for k
even. Furthermore,

~vTk
~b(s) = vk,1

xn(s)

2
+ vk,m

1− xn(s)

2

vk,1
2

for k odd.

Therefore,

y1(t) + ym(t) =
∑

k odd

(

λt
k2vk,1~v

T
k ~y(0) +

t−1∑

s=0

λt−s−1
k v2k,1

)

=
∑

k odd

(

λt
k2vk,1~v

T
k ~y(0) +

1− λt
k

1− λk

v2k,1

)

=
∑

k odd

(

λt
k2

√

2

m+ 1

√

1− λ2
k~v

T
k ~y(0) + (1− λt

k)
2

m+ 1
(1 + λk)

)

=
2

m+ 1

∑

k odd

(1 + λk)−
2

m+ 1

∑

k odd

(

1 + λk − 2

√

m+ 1

2

√

1− λ2
k~v

T
k ~y(0)

)

λt
k.

11



It remains only to show that
2

m+ 1

∑

k odd

(1 + λk) = 1

which follows readily by elementary trigonometric calculations.

We now give the proof of Thereom 3.

Proof of Thereom 3. The statements of the theorem derive from Lemma 1 as follows.
Item 1 clearly holds as the function (8) depends only on the initial value ~y(0). Item 2
follows from (8) because all the eigenvalues λk are real and with modulo strictly smaller
than 1. Item 3 holds from the fact that the largest modulo eigenvalue of matrix A is λ1 =
cos
(

π
m+1

)
= 1− π2

2m2 +O(1/m4) and hence R = log(1/λ1) =
π2

2m2 +O(1/m4). Item 4 holds as
the sum in (8) is asymptotically dominated by the largest modulo eigenvalue λ2i−1 such that
~vT2i−1~y(0) 6= 0, i.e. the mode associated to the eigenvalue λ2i−1 is excited. Let us consider
the case where such an eigenvalue is λ1 and m is even; the other cases follow by similar
arguments. From Lemma 1, we have y1(t) + ym(t) =

1−
2

m+ 1
λt
1



f1(~y(0)) +

⌈m
2
⌉

∑

i=2

f2i−1(~y(0))

(
λ2i−1

λ1

)t


 ,

and, thus, since |λ2i−1/λ1| < 1, for every 1 < i ≤ ⌈m/2⌉, for t large,

y1(t) + ym(t) = 1−
2

m+ 1
λt
1 [f1(~y(0)) + o(1)] .

Finally, item 5 holds as, for m large enough,

γ := max
i

|
λ2i−1

λ1
| ≤

λ3

λ1
= 1−

4π2

m2
+O(1/m4).

For an arbitrary ǫ > 0, we have |λ2i−1/λ1|
t ≤ ǫ, for every i > 1, provided that time t is such

that

t ≥
log
(
1
ǫ

)

log
(

1
γ

) =
log
(
1
ǫ

)

4π2
m2[1 + o(1)].

Hence, T0 = O(m2).

From Theorem 3 item 4, we have that the dynamics for a blossom is eventually according
to the following linear system

(
~x(t+ 1)
~y(t + 1)

)

= A

(
~x(t)
~y(t)

)

+~b

where matrix A and vector ~b assume one of the following two choices:

12



• Case 1: (1− y1(t) ≥ ym(t))

A =

(
Tn P

Q Tm

)

(9)

with Tn and Tm tridiagonal matrices of paths of n and m matched edges, respectively,
and

P =










0 0 · · · 0
0 0 · · · 0
...

... · · ·
...

0 0 · · · 0
1
2

0 · · · 0










,Q =










0 · · · 0 1
2

0 · · · 0 0
... · · ·

...
...

0 · · · 0 0
0 · · · 0 −1

2










.

and ~b = (0, . . . , 0
︸ ︷︷ ︸

n+m−1

, 1/2)T .

Moreover, if the initial condition is such that 1− y1(0) ≥ ym(0), e.g. yi(t) = 0 for all i,

then the fixed point is given by (I − A)−1~b.

• Case 2: (1− y1(t) < ym(t)) same as under Case 1 but

P =










0 · · · 0 0
0 · · · 0 0
... · · ·

...
...

0 · · · 0 0
0 · · · 0 −1

2










and ~b = (0, . . . , 0
︸ ︷︷ ︸

n−1

, 1/2, 0, . . . , 0
︸ ︷︷ ︸

m−1

, 1/2)T . Finally, it the initial condition is such that

1− y1(0) < ym(0), e.g. yi(t) = 1 for all i, then the fixed point is given by (I − A)−1~b.

In the following we only consider Case 1 as the spectrum of matrix A under Case 2 is ex-
actly the same. We note that the eigenvalues of the matrix A are (λ1, λ2, . . . , λn+⌊m/2⌋, µ1, µ2, . . . , µ⌈m/2⌉)
where

λk = cos

(
2πk

2n+m+ 1

)

, k = 1, . . . , n+ ⌊m/2⌋

µk = cos

(
π(2k − 1)

m+ 1

)

, k = 1, . . . , ⌈m/2⌉

with a proof provided in Section 6.1.
It is noteworthy that all the eigenvalues have modulo strictly smaller and 1, and thus, the

system is globally asymptotically stable. We now characterize the convergence time from an
instance at which the system became linear.

Theorem 4 For a blossom with n matched edges in the stem and m matched edges in the
loop, for every 0 < α ≤ 1, the convergence time T satisfies: if m is even, then

T =
2

απ2
(2n+m)2 · [1 + o(1)]

13



otherwise, for m odd,

T =
2

απ2
max

(

m2,
1

4
(2n+m)2

)

· [1 + o(1)].

Observations. The result implies that the convergence time is O((n+m)2), i.e. quadratic
in the number of matched edges. There is a significant difference with regard to whether the
number of matched edges in the loop, m, is even or odd. The convergence is slower for m even.
Specifically, if the length of the stem is at least twice the length of the loop, the convergence
time is larger for a factor 4. For a fixed n, the convergence time is asymptotically 2

απ2m
2 as for

a path of length m which is intuitive. Likewise, if m is fixed and odd, the convergence time
is asymptotically 2

απ2n
2 as for a path of length n and thus also in conformance to intuition.

Proof. For the eigenvalues λ1, λ2, . . . , λn+⌊m/2⌋, it is readily checked that

max
k

|λk| = −λn+⌊m/2⌋ = cos

(
(1 + 1

m odd )π

2n+m+ 1

)

where 1
m odd stands for the indicator that m is odd, while, on the other hand,

max
k

|µk| = µ1 = cos

(
π

m+ 1

)

.

Therefore, the spectral radius of matrix A, ρ(A) = max(maxk |λk|,maxk |µk|) is given by

ρ(A) =







cos
(

π
2n+m+1

)
, m even

cos
(

2π
2n+m+1

)
, m odd , m ≤ 2n− 1

cos
(

π
m+1

)
, m odd , m > 2n− 1.

The asserted asymptotic follows from the last identities.

3.4 Bicycle

PSfrag replacements

x1 x2 xn

y1
y2

ym
z1

z2

zl

Figure 4: A bicycle.

A bicycle graph consists of two loops that are connected by a path. Without loss of
generality, we refer to one of the loops as loop 1 and to other as loop 2 and refer to the
path as a cross-bar; see Figure 4 for an illustration. Notice that a bicycle graph corresponds
to a concatenation of two blossoms by connecting the end nodes of their respective stems
so that a cross-bar is formed of alternating matchings. We let l and m be the number of
matched edges in loop 1 and loop 2, respectively, and let n be the number of matched edges
of the cross-bar. The values of the end nodes of the matched edges are denoted by ~z(t) =

14



(z1(t), z2(t), . . . , zl(t))
T , ~x(t) = (x1(t), x2(t), . . . , xn(t))

T and ~y = (y1(t), y2(t), . . . , ym(t))
T for

loop 1, cross-bar, and loop 2, respectively. See Figure 4 for positions of the corresponding
nodes.

We note that for a bicycle the system evolves according to the following non-linear system:

z1(t+ 1) =
1 + z2(t)− x1(t)

2

zi(t+ 1) =
zi−1(t) + zi+1(t)

2
, 1 < i < l

zl(t+ 1) =
zl−1(t) + x1(t)

2

x1(t+ 1) =
x2(t) + max[1− z1(t), zl(t)]

2
plus other updates as for blossom (7).

(10)

In this case, the non-linearity originates because of two gateway nodes that connect the cross-
bar with loops, each such gateway node having two alternative profit options with nodes in
the loops. Similarly as for a blossom we have that eventually the dynamics becomes linear
as stated in the following:

Proposition 1 For a bicycle with l and m matched edges in loops and n matched edges in
the cross-bar, there exists a time T0 ≥ 0 such that for every t ≥ T0, (~z(t), ~x(t), ~y(t)) evolves
according to a linear system. Furthermore, T0 = O(max(l, m)2).

This observation follows from Theorem 3 applied to each loop of the bicycle. This can be
done because both y1(t) + ym(t) and z1(t) + zl(t) evolve autonomously as given by Lemma 1
for y1(t) + ym(t) and analogously for z1(t) + zl(t).

We have shown that the dynamics for a bicycle is eventually according to a linear system,
which is specified as follows:





~z(t+ 1)
~x(t+ 1)
~y(t+ 1)



 = A





~z(t)
~x(t)
~y(t)



+~b (11)

where

A =





Tl Q′ 0

P′ Tn P

0 Q Tm





with the given matrix blocks defined by

(
Tl Q′

P′ Tn

)

and

(
Tn P

Q Tm

)

are the matrices that correspond to two blossoms formed by loop 1 and cross-bar, and cross-
bar and loop 2, respectively.

The pair (A,~b) admits four possible values, corresponding to all possible combinations of
two cases for each of the loops (Case 1 and Case 2 in Section 3.3):

15



1. Both P′ and P as in Case 1
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l+n+m−2

, 1/2)T ,

2. P′ as in Case 1, P as in Case 2,
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l−1

, 1/2, 0, . . . , 0
︸ ︷︷ ︸

m+n−2

, 1/2)T ,

3. P′ as in Case 2, P as in Case 1,
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l+n−2

,−1/2, 0, . . . , 0
︸ ︷︷ ︸

m−1

, 1/2)T ,

4. Both P′ and P as in Case 2,
~b = (1/2, 0, . . . , 0

︸ ︷︷ ︸

l−1

, 1/2, 0, . . . , 0
︸ ︷︷ ︸

n−2

,−1/2, 0, . . . , 0
︸ ︷︷ ︸

m−1

, 1/2)T .

In the following, we will only consider the case under item 1 as the same end results hold
for other cases. The eigenvalues of the matrix A are given by

cos

(
π(2k − 1)

l + 1

)

, k = 1, . . . , ⌈l/2⌉,

cos

(
π(2k − 1)

m+ 1

)

, k = 1, . . . , ⌈m/2⌉,

cos

(
2πk

2n+ l +m

)

, k = 1, . . . , n+ ⌊l/2⌋ + ⌊m/2⌋

which we establish in Section 6.2.
Remark that in any case all the eigenvalues are strictly smaller than 1. On the other hand,

if both l and m are even, then −1 is an eigenvalue with eigenvector (1,−1, 1,−1, . . . , 1,−1)T ,
and otherwise, all the eigenvalues are strictly larger than −1. Therefore, if both l and m are
even, then the asymptotic behavior of system (11) is periodic, while otherwise, it is globally
asymptotically stable.

As a byproduct, similarly to Theorem 4, we can establish that from an instance at which
the system became linear, the convergence time scales as follows.

Theorem 5 For a bicycle with n matched edges in the stem and m and l matched edges in
the loops, the convergence time T satisfies the following. If m or l is even, then for every
0 < α < 1,

T =
2

απ2
(2n+m+ l)2 · [1 + o(1)]

otherwise, if m and n are odd, then for every 0 < α ≤ 1,

T =
2

απ2
max

(

m2, l2,
1

4
(2n+m+ l)2

)

· [1 + o(1)].

Therefore, the convergence time is O((l + n + m)2), i.e. quadratic in the number of
matched edges.
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4 Related Work

The concept of balanced outcomes was introduced by Nash in [14] for the case of two players
with exogenous profit options. This concept follows from a set of axioms and different axioms
were subsequently considered; e.g. see [13].

Kleinberg and Tardos [12] considered the concept of Nash bargaining solutions on graphs
where profit options available to a player are not exogenously given but determined by her
position in the graph. They established relations between stable and balanced outcomes and
devised a polynomial time algorithm for computing balanced outcomes. Their work left open
the question on existence and properties of local dynamics.

A local dynamics for Nash bargaining on graphs was recently considered by Azar et
al [2]. This paper assumed a fixed matching of nodes and considered a local, so called edge-
balanced dynamics, for outcome vector ~x. They established that fixed points of this dynamics
are balanced outcomes and that the convergence to the fixed point occurs in an exponential
number of rounds. A concurrent and independent work by Celis, Devanur and Peres [4]
considered the rate of convergence of edge-balanced dynamics. Their approach is different
from ours in using a reduction of edge-balanced dynamics to a random-turn game for a class
of graphs with uniform edge weights. For this class of graphs, their convergence time is
quadratic in the maximum path length of an auxiliary graph derived from the input graph
and given matching. This class of graphs does not accommodate cycles, but accommodates
paths, blossoms and bicycles and for these cases the bound is quadratic in the number of
matched edges. Another difference with our work is that for each of our elementary subgraphs
we provide explicit characterization of dynamics and tight asymptotic estimate of convergence
rates (exact constant factors).

The assumption that matching is fixed was removed by Kanoria et al by introducing a
natural dynamics studied in [9] and [10]. It was shown in [9] that provided that there exists a
unique Nash bargaining solution and the graph satisfies the positive gap condition, the natural
dynamics converges to this Nash bargaining solution in a polynomial time. Specifically, they
showed that there exists a constant C > 0 such that the convergence time is upper bounded
by C[W/σ+ log(σ/ǫ)]n6+δ, where W is an upper bound on the maximum edge weight, σ > 0
is the gap and ǫ, δ > 0. In [7], we showed, using techniques similar to the ones introduced
in this paper, that the bound in the number of nodes can be improved to O(n4+δ). Using a
different approach, in [10], the authors established that if the maximum weight matching is
unique, then there exists T = O(n4/g2) such that for every initial value the natural dynamics
induces the maximum-weight matching, for every t ≥ T ; where g is the difference between
the weight of the maximum-weight matching and the weight of the second best matching (we
refer to as matching weight gap).

Finally, another related work is that on maximum-weighted matchings on graph. There
indeed is a close connection between stable outcomes and maximum weight matchings re-
flected by the similarity of the distributed algorithms considered for solving both problems.
In particular, Bayati et al [3] considered an auction-like algorithm, which is similar in spirit
to the natural dynamics for solving the balanced allocation problem, and showed that for
complete bipartite graphs with a unique maximum-weight matching, the convergence time is
O(Wn/g) where W is the maximum edge weight, g is the matching weight gap and n is the
number of nodes.
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5 Conclusion

In this paper we showed that some known Nash bargaining dynamics on graphs can (even-
tually) be characterized by linear dynamical systems and this enabled us to derive tight
characterizations of their convergence rates. Note that if the dynamics, as restricted to each
of the KT elementary graphs that arise in the KT decomposition, were decoupled then the
previous analysis will yield O(n3) convergence time, since there are at most n such structures
each taking O(n2) time to converge.

An interesting direction for future work is to investigate the extent by which the dynamics
on the different KT substructures are coupled under assumptions such as the positive gap
condition of the KT decomposition or the matching weight gap. Another interesting direction
is to analyze the bargaining power of nodes based on their network position.
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6 Appendix

6.1 Eigenvalues for a Blossom

Remark that an eigenvalue λ and eigenvector ~v of matrix A satisfy A~v = λ~v, i.e.

1

2
v2 = λv1 (12)

1

2
vi−1 +

1

2
vi+1 = λvi, 1 < i < n+m (13)

−
1

2
vn +

1

2
vn+m−1 = λvn+m (14)

Suppose λ = cos(φ) and ~v = (sin(φ), sin(2φ), . . . , sin((n + m)φ))T . Then, by elementary
trigonometric identities we note that (12) and (13) hold for every φ. On the other hand, (14)
is equivalent to

sin((n+m− 1)φ) = sin(nφ) + 2 cos(φ) sin((n+m)φ)

which by using elementary trigonometric identities is equivalent to

sin

(
2n+m+ 1

2
φ

)

cos

(
m+ 1

2
φ

)

= 0.

Therefore, φ is either

φ1 =
2k1

2n+m+ 1
π or φ2 =

2k2 − 1

m+ 1
π

where k1 and k2 are arbitrary integers. Since cosine is a periodic function, it can be readily
checked that cos(φ1) attains all possible values over k = 1, 2, . . . , n+ ⌊m/2⌋ and similarly for
cos(φ2) over k = 1, 2, . . . , ⌈m/2⌉.
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6.2 Eigenvalues for a Bicycle

If λ is an eigenvalue of matrix A with eigenvector ~v, then we have

λv1 =
1

2
v2 −

1

2
vl+1

λvi =
1

2
vi−1 +

1

2
vi+1, i = 2, . . . , n+m+ l − 1

λvn+m+l =
1

2
vn+m+l−1 −

1

2
vl+n .

In the remainder, we separately consider two cases depending on whether either l or m
is even, or otherwise.
Case 1: l or m is odd.

Without loss of generality, suppose l is odd. Let us introduce the following one-to-one
linear transformation ~z = S~v where matrix S is defined by zi = vi+vl−i+1, for i = 1, . . . , ⌊l/2⌋,
and zi = 2vi for i = ⌊l/2⌋+1, . . . , n+ l+m. It is not difficult to verify that S is non-singular
and thus a matrix B such that A = S−1BS is similar to A and, therefore, has the same
eigenvalues [8][Theorem 1.3.3].

Using the transformation ~z = S~v and A~v = λ~v, we have

λz1 =
1

2
z2

λz⌊l/2⌋+1 = z⌊l/2⌋

λzn+m+l =
1

2
zn+m+l−1 −

1

2
zn+l

and for i = 2, . . . , ⌊l/2⌋ and i = ⌊l/2⌋+ 2, . . . , n+ l +m− 1,

λzi =
1

2
zi−1 +

1

2
zi+1 .

Notice that λ~z = SAS−1~z = B~z, and from the above identities

B =

(
P 0

Q R

)

where P is a ⌈l/2⌉ × ⌈l/2⌉ tridiagonal matrix given by

P =











0 1/2 0 · · · 0

1/2
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . . 1/2

. . . 1/2
0 · · · 0 1 0











,

Q is a (n+m+ ⌊l/2⌋)× ⌈l/2⌉ matrix with all elements equal to zero but the element in the
first row and last column equal to 1/2, and R is a (n+m+ ⌊l/2⌋)× (n+m+ ⌊l/2⌋) matrix
that corresponds to a blossom with n+⌈l/2⌉ matched stem edges and m matched loop edges
and is of the form (9) under Case 1 in Section 3.3.
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Using the properties of determinants of block matrices, we observe that eigenvalues of B
consist of eigenvalues of matrices P and R. Therefore, the eigenvalues of matrix B, and by
similarity of matrix A, are

cos
(

π(2k−1)
l+1

)

, k = 1, . . . , ⌈l/2⌉, (15)

cos
(

π(2k−1)
m+1

)

, k = 1, . . . , ⌈m/2⌉, (16)

cos
(

2πk
2n+l+m

)
, k = 1, . . . , n + ⌊l/2⌋+ ⌊m/2⌋ (17)

where (15) are eigenvalues of matrix P, which is easily derived and thus omitted, and (16)
and (17) are eigenvalues of R which we have already showed in Section 3.3.

It is not difficult to see that the above eigenvalues hold whenever either l or m is odd.
Case 2: both l and m are even.

We use a similar but different one-to-one transformation as under Case 1: zi = vi+vl−i+1,
for i = 1, . . . , l/2, zi = vi+vi+1 for i = l/2+1, . . . , n+l+m/2, and zi+n+l = vn+l+i+vm+n+l−i+1

for i = 0, . . . , m/2. We have that

λz1 =
1

2
z2

λzl/2 =
1

2
zl/2−1 +

1

2
zl/2

λzn+l+m/2 =
1

2
zn+l+m/2 +

1

2
zn+l+m/2+1

λzn+m+l =
1

2
zn+m+l−1

and for i = l/2 + 1, . . . , n+ l +m/2− 1 and i = n+ l +m/2 + 1, . . . , n+m+ l − 1,

λzi =
1

2
zi−1 +

1

2
zi+1 .

Similarly as for Case 1, using the properties of determinants of block matrices, we have
that the eigenvalues of A are

cos

(
π(2k − 1)

l + 1

)

, k = 1, . . . , l/2,

cos

(
π(2k − 1)

m+ 1

)

, k = 1, . . . , m/2,

cos

(
πk

n+ l/2 +m/2

)

, k = 1, . . . , n+ l/2 +m/2− 1,

and − 1

where (1,−1, 1,−1, . . . , 1,−1)T is the eigenvector of eigenvalue −1.

21


	1 Introduction
	1.1 Outline of the Paper

	2 System and Assumptions
	2.1 Nash Bargaining Outcomes on Graphs
	2.2 KT Procedure
	2.3 Convergence

	3 Edge-Balanced Dynamics for KT Elementary Graphs
	3.1 Path
	3.2 Cycle
	3.3 Blossom
	3.4 Bicycle

	4 Related Work
	5 Conclusion
	6 Appendix
	6.1 Eigenvalues for a Blossom
	6.2 Eigenvalues for a Bicycle


