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Abstract—This work addresses private communication
with distributed systems in mind. We consider how to best
use secret key resources and communication to transmit
signals across a system so that an eavesdropper is least
capable to act on the signals. One of the key assumptions
is that the private signals are publicly available with a
delay—in this case a delay of one. We find that even if
the source signal (information source) is memoryless, the
design and performance of the optimal system has a strong
dependence on which signals are assumed to be available
to the eavesdropper with delay.

Specifically, we consider a distributed system with two
components where information is known to only one com-
ponent and communication resources are limited. Instead
of measuring secrecy by “equivocation,” we define a value
function for the system, based on the actions of the
system and the adversary, and characterize the optimal
performance of the system, as measured by the average
value obtained against the worst adversary. The resulting
optimal rate-payoff region is expressed with information
theoretic inequalities, and the optimal communication
methods are not standard source coding techniques but
instead are methods that stem from synthesizing a mem-
oryless channel.

I. INTRODUCTION

Consider a situation where an adversary attempts to
disrupt a distributed system. The adversary may be
attempting to jam communications, destabilize a power
grid, or counter a miliary attack. We investigate the
nature of the communication used to control the system.
How should the system use secret key resources to
establish coordinated behavior? How should the system
disseminate information about availability of power in a
power grid, frequency channels or network routes used
for communication, or military strategy adjustments?
This work establishes a new approach for defining se-
crecy in distributed systems, robust against an attacker
who can causally observe the behavior of the system and
apply statistical attacks to make use of the intercepted
communication signals. We find that the optimal way to
communicate with limited encryption capability (secret

key) is to reveal a distorted version of the information
in the clear and use the encryption resources to hide the
most important aspects of the information.

A large body of theoretical research provides a foun-
dation for understanding privacy in communication. The
bulk of this research focusses on creating private chan-
nels from limited physical resources. A formal informa-
tion theoretic study began with Shannon’s 1949 paper,
“Communication Theory of Secrecy Systems” [1], where
he established that the Vernam cipher using a one-time
pad was necessary and sufficient for perfect secrecy.
Thus, we understand how to use a random secret key
to create a private communication channel. But how
do we create and distribute this secret key? Diffie and
Hellman gave birth to modern cryptographic methods in
1976 [2] by showing how to use “trapdoor functions” to
enable key distribution using communication over public
channels. The resulting keys are protected by computa-
tional complexity but are not theoretically proven to be
secret. Nevertheless, they have withstood tests of time
and enabled the broad commercial use of encryption.
Some different approaches for distributing secret keys
use quantum channels [3] or observations of correlated
variables [4] [5].

Another method for creating private communication
channels has had extensive recent interest. Without the
use of a shared secret key, channel noise can be used
to hide a message if the noise is different for the
eavesdropper than it is for the intended receiver. This
so-called “physical layer security” began with Wyner’s
famous wiretap channel [6]. Now a variety of situations
are studied, with multiple sources of information, fading,
or multiple parties involved (see for example [7]).

In this work we do not worry about establishing a
secret key or creating a private channel. We assume that
such a resource is already available, and we investigate
how to best use it. Just as channel coding and source
coding share a complementary relationship—channel
capacity characterizes the creation of communication
resources from physical constraints, and rate-distortion
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theory establishes the best use of such resources—we see
this work as a complementary development to the main
body of information theoretic secrecy research, which
is typically concerned with creating private communi-
cation resources. We show how to use those resources
to achieve optimal performance in a particular broad
setting.

In our framework, the transmitter and intended re-
ceiver of communication are part of a distributed system.
A sequence of information is known at the transmit node,
but the objective may not be to send that information
to the receiver node verbatim. Instead, the receiver will
be producing a sequence of actions important to the
distributed system that should be somehow correlated
with the information sequence. This is captured by a
payoff function, the average value of which the com-
munication system is designed to maximize. So far this
falls exactly in the category of rate-distortion theory.
However, the catch is that an adversary, who is also
observing the communication over the public channel, is
able to perform actions that will also affect the payoff.

This view of a secrecy system puts the adversary and
the communication system in a zero-sum game against
each other. Indeed, when talking about security, a game
theoretic formulation seems appropriate. The optimal
communication system in our framework is designed to
maximize the average payoff against the most clever ad-
versary. Measurements of the uncertainty of the informa-
tion with respect to an adversary, such as “equivocation,”
do not indicate how useful the intercepted information is.
We work directly with an operational quantity—average
payoff.

The main result, given in Section III, corresponds to
an encoding scheme that is quite different from optimal
encoding techniques commonly used for source coding.
A reasonable question to explore is, “which parts of
problem statement are pivotal for these results?” We
find, for example, that the information we assume is
available to the adversary is of primary importance.
In our framework, we assume the adversary not only
intercepts the public communication but also observes
the past information and actions of the system. If we
weaken the adversary by reducing the information that
is available, then the results change substantially. This is
explored in Section VII.

On the other hand, some details of the problem state-
ment are not crucial. Although our problem formulation
defines the payoff of the system to be a function of three
variables—the information, the action of the intended
receiver, and the action of the adversary—a small mod-
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Fig. 1. Distributed System with Adversary.The information sequence
Xn is i.i.d according top0(x). Node A and Node B are designed so
that Node B can produce a sequence of actionsY n which depend
on Xn. The resources available to them are communication over a
public channel at rateR bits per action and secret key (independent
of Xn) at rateR0 bits per action. An adversary taps into the message
sent over the public channel and observes the actions of the system
and information sequence causally. The adversary attacks the system
by minimizing a value functionπ(x, y, z), and the system is designed
to maximize the worst case average value obtained.

ification would be to have two objectives to separately
handle the behavior of the system and the adversary.
The first objective could be a distortion constraint at the
intended receiver, and the second objective could be to
force a level of distortion on the adversary. In this case,
the two distortion functions, each of only two variables,
take the place of the payoff function. It may seem that
this special case would allow for a simplification of the
main result given in Section 3.1, allowing for a much
more basic optimal communication scheme. Surprising,
this does not seem to be true (see Section VI-B).

II. PROBLEM STATEMENT

In Figure 1, a distributed system is represented by
two components, Node A and Node B. A third node,
Node C, represents a hypothetical adversary who attacks
the system. An i.i.d. source of information{Xi}

∞
i=1 is

known to Node A. The distribution of each element of
the sequenceXi is given by the probability mass function
p0(x).

Node B and Node C take actions in the system. A
function π(x, y, z) represents the value obtained by the
system during each time epoch when the information
symbolXi is x, the actionYi by the cooperating agent
at Node B isy, and the attackZi by the adversary isz.
The system, which operates over blocks of lengthn, is



designed to maximize the average value

Π = E
1

n

n
∑

i=1

π(Xi, Yi, Zi),

while the adversary tries to minimizeΠ. One interpreta-
tion of π is as the payoff function of a zero-sum game
between the distributed system and the adversary.

The communication in the system is defined as fol-
lows. Node A sends a message to help Node B coordi-
nate actions with the source sequence{Xi}

∞
i=1, but the

message is available to both agents, Node B and Node
C. However, a secret key (independent of the source
sequence) is known only to Nodes A and B, which
can be used to establish secrecy and coordination in the
system. For example, if the secret key is large enough,
the communication can be fully encrypted so that only
Node B can make use of it.

An (R0, R, n) coordination scheme consists of an
encoder and a decoder utilizing a secret key rate of
R0 bits per symbol and a description rate ofR bits
per symbol. The encoder at Node A transmits annR-
bit messageJ ∈ [2nR] based on the source realization
Xn and annR0-bit secret keyK ∈ [2nR0 ] which is
independent of the source. The encoding at Node A can
be designed to use randomization; thus, it is described
by a conditional probability functionp(j|xn, k).

The attack by the adversary (Node C) on the dis-
tributed system (Nodes A and B) occurs interactively.
Nodes B and C first receive the communication produced
by Node A. Then they each produce one action,Y1

andZ1. This constitutes the first instance of the game,
after which both nodes are aware of the action taken
by the other node and the first symbol of the source
realizationX1. At this point they each choose a second
action, Y2 and Z2, and proceed in a similar manner.
For each iteration of the game, the decoder at Node
B generates an actionYk based on the messageJ , the
secret keyK, and the past actionsXi−1, Y i−1, andZi−1.
This decoder is described by a set of conditional proba-
bility distributions {p(yi|j, k, xi−1, yi−1, zi−1)}ni=1. The
adversary (Node C) also generates actions in a similar
way as the coordinating agent (Node B), except that he
doesn’t have access to the secret key. His actions are
described by a set of conditional probability distributions
{p(zi|j, x

i−1, yi−1, zi−1)}ni=1. We consider the strategy
of the eavesdropper that inflicts the most damage on the
system. An(R0, R, n) coordination scheme is evaluated
by the expected average payoff it assures against the
worst-case adversary.

To summarize:

• Source:{Xi} i.i.d. ∼ p0(x)
• (R0, R, n) Coordination Scheme:

– Key: K ∼ Unif [2nR0 ] independent of source
– Message:J ∈ [2nR]
– Encoder (Node A):

CA , p(j|xn, k)

– Decoder (Node B):

CB , {p(yi|j, k, x
i−1, yi−1, zi−1)}ni=1

• Adversary

– Strategy (Node C):

CC , {p(zi|j, x
i−1, yi−1, zi−1)}ni=1

• Joint Distribution: product of all of the above.
• Average Value:

Πp0
(CA, CB , CC) , E

1

n

n
∑

i=1

π(Xi, Yi, Zi),

• Robust achievable value:

Πp0
(R0, R) , sup

{n,CA,CB}
min
CC

Π

Note: A system may not be aware of an adversary
or the actions an adversary has taken. There may be
multiple adversaries attacking a system. This problem
statement defines a decoder at Node B that responds to a
single adversary. However, we will find that the optimal
max-min codec does not take the actions of adversary
into account, nor does it use the causal source informa-
tion. Decoders at Node B of the formCB = {p(yi|j, k)}
achieve optimality. Therefore, these results are more
widely applicable than the specific setting described.
They may also apply to situations where an adversary
is not easily detected or multiple adversaries exist.

On the other hand, the causal information available to
the adversary is crucial for these results. If the adversary
had less information available, the system can achieve
the same value using less resources. In the extreme case,
if the adversary has no causal information of the actions
at Node B or the information at Node A, then it is easy to
transmit a message that is useless to the adversary. Any
small rate of secret key is as good as perfect secrecy in
the sense that the adversary cannot mount an attack based
on the intercepted message. This is discussed further in
Section VII.



III. M AIN RESULT

Theorem 3.1:

Πp0
(R0, R) = max

p(y,u,v|x)∈P
min
z(u)

E π(X,Y, z(U)),

where

Pp0
(R0, R) ,















p(y, u, v|x) :
p(y|u, v, x) = p(y|u, v),

R0 ≥ I(X,Y ;V |U),
R ≥ I(X;U, V ).















.

IV. CONVERSE

Proof: In this section we prove an upper bound on
Πp0

(R0, R). For any coordination scheme satisfying the
rate constraintsR0 andR, we identify random variables
X, Y , U , andV such thatp(y, u, v|x) ∈ Pp0

(R0, R) and

min
CC

Π = min
z(u)

E π(X,Y, z(U).

We first identify the random variables for the converse.
Let Q be a random variable uniformly distributed on
the set[n] and independent of(Xn, Y n, Zn, J,K). We
will use Q as a random index for sequences, whereXQ

is a function of the sequenceXn and the variableQ
that selects theQth element of the sequence. Notice
that for an i.i.d. sequence likeXn, the random indexQ
is independent ofXQ.

Identification of variables:

• X = XQ

• Y = YQ

• Z = ZQ

• V = K

• U = {J,XQ−1, Y Q−1, ZQ−1, Q}

Important properties:

• Independence

XQ ⊥ Q,

• Markovity

(Xn
i , Zi) − (J,K,Xi−1, Y i−1, Zi−1) − Yi,

(Xn
i , Yi,K) − (J,Xi−1, Y i−1, Zi−1) − Zi,

(Xi) − (J,K,Xi−1) − (Y i, Zi).

We start by noticing thatX is distributed according to
p0 andX− (U, V )−Y form a Markov chain, according
to the definitions and properties above.

Next, we show the inequalities that involveR0 andR.

nR0 ≥ H(K)

≥ H(K|J)

≥ I(Xn, Y n, Zn;K|J)

=

n
∑

q=1

I(Xq, Yq, Zq;K|J,Xq−1, Y q−1, Zq−1)

= n I(XQ, YQ, ZQ;K|J,XQ−1, Y Q−1, ZQ−1, Q)

= n I(XQ, YQ;K|J,XQ−1, Y Q−1, ZQ−1, Q)

= n I(X,Y ;V |U).

nR ≥ H(J)

≥ H(J |K)

≥ I(Xn;J |K)

= I(Xn;J,K)

=

n
∑

q=1

I(Xk;J,K,Xk−1)

=

n
∑

q=1

I(Xk;J,K,Xk−1, Y k−1, Zk−1)

= n I(XQ;J,K,XQ−1, Y Q−1, ZQ−1, Q)

= n I(X;U, V ).

Consequently, the variablesU , V , and Y are
conditionally distributed according top(y, u, v|x) ∈
Pp0

(R0, R). Now consider that

min
CC

Π = min
{p(zi|j,xi−1,yi−1,zi−1)}n

i=1

E
1

n

n
∑

i=1

π(Xi, Yi, Zi)

= min
p(zq|j,xq−1,yq−1,zq−1,q)

E E [π(XQ, YQ, ZQ)|Q]

= min
p(z|u)

E π(X,Y,Z)

= min
z(u)

E π(X,Y, z(U)).

V. SKETCH OF ACHIEVABILITY

Proof: Here we design a system that guarantees
an average expected reward approaching the value of
Πp0

(R0, R) given in Theorem 3.1. This is done using
the notions of empirical coordination and strong coordi-
nation discussed in [8].

Begin with the optimal conditional distribution
p(y, u, v|x) ∈ Pp0

(R0, R). The main idea is to first
specify aUn sequence that is empirically coordinated
with Xn, which is to say that it is jointly typical
with high probability, using a communication rate of



roughly I(X;U) bits per source symbol. Then produce
a sequenceY n that is strongly coordinated withXn,
conditioned onUn, which is to say thatXn and Y n

appear to be memoryless, even with full knowledge
of the codebook used for coordination. The variable
V is an auxiliary variable that only has meaning in
the process of achieving strong coordination. The rates
needed for strong coordination over a public channel
are I(X,Y ;V |U) bits of secret key per symbol and
I(X;V |U) bits of communication per symbol, with the
condition thatX − (U, V ) − Y form a Markov chain.
These rate requirements are touched on in [9].

After encoding, the adversary knows the sequence
Un. The other sequences in the system,Xn and Y n,
are correlated withUn, but otherwise appear to be
nearly memoryless (in total variation), even conditioned
on everything known by the adversary. Therefore, the
best strategy for the adversary to minimize the average
value to the system will not be substantially better
than choosing the best strategyz(u) that minimizes
E π(X,Y, z(U)) and applying this strategy during each
iteration.

VI. SPECIAL CASES

A. Lossless

In some cases ofπ, the description ofΠp0
(R0, R)

simplifies. A particular important case is the lossless
setting, whereY n is required to be equal toXn with
high probability.1 This is worth considering because it
resembles the familiar setting usually considered for
information theoretic secrecy, where the information
source sequenceXn must be recovered by the intended
receiver.

In the lossless case,π can be though of as a distortion
function that is being inflicted on an eavesdropper. The
system is designed to maximize the distortion.

The following corollary is found in [10] and can be
reduced to a linear program.

Corollary 6.1: For the lossless case, whereY n must
equalXn with high probability, the robust average value
is

Πp0
(R0, R) = max

p(u|x)∈P
min
z(u)

E π(X, z(U)),

where

Pp0
(R0, R) ,







p(u|x) :
R0 ≥ H(X|U),
R ≥ H(X).







.

1This would be the case ifπ(x, y, z) took on very large negative
values forx 6= y.

B. No interaction

We can imagine some cases where the intended re-
ceiver and the adversary each attempt to reconstruct the
sourceXn with low distortion, and they are each not
concerned with the reconstruction of the other. This situ-
ation can be expressed with two separate value functions
π1(x, y) and π2(x, z). We might ask for two separate
constraints to be satisfied or simply construct a value
function π(x, y, z) that is the product or sum of these
two separate components.

By removing the direct interaction between the in-
tended receiver and the adversary, it might seem that a
simpler encoding scheme, not involving strong coordi-
nation, is optimal. Unfortunately, that is not the case. If
the distortion constraint of the intended receiver were
achieved in a careless way, without using strong coordi-
nation, then the adversary would be able to infer extra
information aboutXn indirectly through observation of
the past actions of the intended receiver. This would help
the adversary to reduce its own distortion.

VII. L IMITED ADVERSARY

The result expressed in Theorem 3.1 specifies a
guaranteed average value against an adversary who has
causal information of all actions and information in the
system. The results change significantly if the adversary
is limited in the information available. Here we give three
results related to the main result in Theorem 3.1, with
proofs omitted.

Theorem 7.1:Consider an adversary who only has
access to the messageJ and the past actions at Node B,
but not the past information symbols. Thus, the strategies
of the adversary are defined by{p(zi|j, yi−1, zi−1)}ni=1.

Πp0
(R0, R) = max

p(y,u,v|x)∈P
min
z(u)

E π(X,Y, z(U)),

where

Pp0
(R0, R) ,















p(y, u, v|x) :
p(y|u, v, x) = p(y|u, v),

R0 ≥ I(Y ;V |U),
R ≥ I(X;U, V ).















.

Theorem 7.2:Consider an adversary who only has ac-
cess to the messageJ and the past information symbols,
but not the past actions at Node B. Thus, the strategies
of the adversary are defined by{p(zi|j, xi−1, zi−1)}ni=1.

Πp0
(R0, R) = max

p(y,u|x)∈P
min
z(u)

E π(X,Y, z(U)),



where

Pp0
(R0, R) ,







p(y, u|x) :
R0 ≥ I(X,Y |U),
R ≥ I(X;U, Y ).







.

Theorem 7.3:Consider an adversary who only has
access to the messageJ . Thus, the strategies of the
adversary are defined by{p(zi|j, zi−1)}ni=1.

Πp0
(R0, R) = max

p(y|x)∈P
min
z

E π(X,Y, z),

where

Pp0
(R0, R) ,







p(y|x) :
R0 > 0,
R ≥ I(X;Y ).







.

The third setting, in which the adversary has no causal
information, is the approach taken by Yamamoto in [11].
We see from Theorem 7.3 that there is no non-trivial
lower bound on the rate of secret key needed. In Theorem
3 of [11] a lower bound is provided, but after careful
consideration and with the proper choice of auxiliary
random variables, that bound can be shown to be zero.

In other work by Yamamoto [12],R0 is taken to
be exactly zero. The results do not have the form of
Theorem 7.3. Instead they coincide with Theorems 3.1,
7.1, and 7.2 withR0 = 0. This illustrates a discontinuity
of Πp0

(R0, R) at R0 = 0.

VIII. S UMMARY

We’ve identified the optimal use of communication
and secret key resources for a distributed system to
compete in what amounts to a zero-sum game with an
adversary. This brings new insight into the theoretical
limits of secrecy systems. The results found here are not
directly related to information measures such as “equiv-
ocation,” which are commonly used in the literature.

Perhaps the most surprising, yet subtle consequence
of the main result is that the combined resources of
public communication and secret key of equal rates is
strictly superior to a singleprivate channel resource of
the same rate. Furthermore, a secret key rate in excess
of the public communication rate can actually be useful.
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